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Cup products, the Johnson homomorphism and
surface bundles over surfaces with multiple fiberings

NICK SALTER

Let †g ! E ! †h be a surface bundle over a surface with monodromy repre-
sentation �W�1†h ! Mod.†g/ contained in the Torelli group Ig . We express
the cup product structure in H�.E;Z/ in terms of the Johnson homomorphism
� W Ig !

V3
.H1.†g;Z//=H1.†g;Z/ . This is applied to the question of obtaining

an upper bound on the maximal n such that p1WE! †h1
; : : : ;pnWE! †hn

are
fibering maps realizing E as the total space of a surface bundle over a surface in
n distinct ways. We prove that any nontrivial surface bundle over a surface with
monodromy contained in the Johnson kernel Kg fibers in a unique way.

57R22; 57R95

1 Introduction

The theory of the Thurston norm gives a detailed picture of the set of possible ways
that a compact, oriented 3–manifold M can fiber as a surface bundle. If b1.M / > 1,
then M admits infinitely many such fibrations †g !M ! S1 , finitely many for
each g � 2. The purpose of the present paper is to take up a similar sort of inquiry for
4–manifolds †g!E!†h fibering as a surface bundle over a surface of genus g� 2.

When hD 1 (ie the base surface is a torus), a similar story as in the 3–manifold setting
unfolds; if M 3 is a 3–manifold admitting infinitely many fiberings pW M ! S1 , then
p � idW M 3 �S1! S1 �S1 admits infinitely many fiberings as well. However, in
stark contrast with the 3–dimensional setting and with the case of surface bundles
over the torus, F E A Johnson [8] showed that if †g!E!†h is a surface bundle
over a surface with g , h � 2, then there are only finitely many distinct fibrations
pi W E! †hi

realizing E as the total space of a surface bundle over a surface (see
Proposition 2.1 for a precise definition of what is meant by “distinct”). Hillman [7]
contains a treatment of results of this type, as does Rivin [12], in which the case of
surface bundles over surfaces is situated in the larger context of “fibering rigidity” for
a wide class of manifolds.

A particularly simple example of a surface bundle over a surface admitting two fiber-
ings is that of a trivial bundle, ie a product of surfaces †g � †h . At the time of
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Johnson’s result, there was essentially one known method for producing nontrivial
surface bundles over surfaces with multiple fiberings, due independently to Atiyah [1]
and Kodaira [9] (see also the summary in [11]). Their construction is built by taking
a certain cyclic branched covering pW E! †g �†h of a product of surfaces. The
two fibering maps are inherited from the projections of †g �†h onto either factor.
While Johnson’s argument produces a bound on the number of possible fiberings of
a surface bundle E that is super-exponential in the Euler characteristic �.E/, until
recently all known examples of surface bundles over surfaces had at most two fiberings,
leaving a large gap between the upper and lower bounds on the number of possible
fiberings.

The author [14] gave a new method for constructing surface bundles over surfaces with
multiple fiberings, including the first examples of bundles admitting an arbitrarily large
number of fiberings. In fact, the methods of [14] are capable of producing families En

of surface bundles admitting exponentially many fiberings as a function of �.En/. The
results of this paper can be seen as a complement to that work, in that our concern
here is in addressing the question of when surface bundles over surfaces admit unique
fiberings.

A central theme in the study of surface bundles is the “monodromy–topology dictionary”.
For any reasonable base space M , there is a well-known correspondence (see eg Farb
and Margalit [3])

(1)
�

bundle isomorphism classes of
oriented †g –bundles over M

�
 !

�
conjugacy classes of represen-
tations �1.M /!Mod.†g/

�
:

This raises the question of translating between topological and geometric properties of
surface bundles on the one hand and, on the other, algebraic or geometric properties of
the monodromy representation. Certain entries in this dictionary are well established,
for instance Thurston’s landmark result that a fibered 3–manifold †g!M� ! S1

admits a complete hyperbolic metric if and only if the monodromy is a so-called
“pseudo-Anosov” element of Mod.†g/. In this paper we add to the dictionary by
relating the cohomology ring of a surface bundle over a surface to its monodromy
representation, then apply these results to give various obstructions for the surface
bundle to admit more than one fibering.

From the perspective of the monodromy representation, the phenomenon of multiple
fibering remains mysterious. The central result of this paper shows that there is a strong
interaction between the existence of multiple fiberings and the theory of the Torelli
group Ig . Recall that the Torelli group is the kernel of the symplectic representation
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‰W Mod.†g/ ! Sp2g.Z/ and that the Johnson kernel Kg is defined as the group
generated by Dehn twists T with  a separating curve.1

Theorem 1.1 Let � W E! B be a surface bundle over a surface with monodromy in
the Johnson kernel Kg . If E admits two distinct fiberings then E is diffeomorphic
to B�B0 , the product of the base spaces. In other words, any nontrivial surface bundle
over a surface with monodromy in Kg admits a unique fibering.

The surface bundles over surfaces of [14] can be constructed so as to have monodromy
contained in Ig . It follows that the hypothesis in Theorem 1.1 that the monodromy
be contained in Kg is effectively sharp with respect to the Johnson filtration (see [3,
Chapter 6] for the definition of the Johnson filtration).

Theorem 1.1 is proved by first relating the monodromy representation of a surface
bundle over a surface E4! B2 to the cohomology ring H�.E/. This analysis will
show that the integral cohomology of a surface bundle over a surface with monodromy
in Kg is as simple as possible. It is then shown that, in these circumstances, obstructions
to possessing alternative fiberings can be extracted from H�.E/.

In a similar spirit we also have the following general criterion, which we believe to
be of independent interest, for a surface bundle over a surface to possess a unique
fibering. It can be viewed as the 4–manifold analogue of a well-known fact about
fibered 3–manifolds (see Remark 3.6).

Theorem 3.5 Let pW E! B be a surface bundle over a surface B of genus g � 2

with monodromy representation �W �1B ! Mod.†g/. Suppose that the space of
invariant cohomology .H 1.F;Q//� (equivalently, the coinvariant homology of the
fiber .H1.F;Q//� ) vanishes. Then E admits a unique fibering.

The paper is organized as follows. In Section 2, we give various characterizations of
the notion of equivalence under consideration. In Section 3, we prove Theorem 3.5.
Sections 4–7 are devoted to the proof of Theorem 1.1. Section 4 is devoted to a lemma
in differential topology that features in later stages of the proof of Theorem 1.1. The
technical heart of the paper is Section 5. In it, we first give an overview of the classical
description of the Johnson homomorphism � in terms of the intersection theory of
surfaces in 3–manifolds that fiber over S1 . Using this description of � , we then carry
out a construction of 3–manifolds embedded in surface bundles over surfaces that

1As discussed further in Section 5.1, there is an alternative characterization of Kg as the kernel of
the Johnson homomorphism (to be defined there). We will pass between these two perspectives as the
situation dictates.
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realizes the relationship between the Johnson homomorphism and the intersection
product in the homology of the surface bundle. We give a complete description of the
product structure in (co)homology for a surface bundle over a surface with monodromy
in Ig . These methods of Section 5 extend to an arbitrary surface bundle over a surface,
but we do not state them in this level of generality since we have no need for them
here.

Section 6 is devoted to some technical results concerning multisections of surface
bundles, and their connection to splittings on rational cohomology. These results are
used in the course of proving Theorem 1.1.

In Section 7 we turn finally to the proof of Theorem 1.1. The result follows from
an analysis of the intersection product structure in H�.E/ for a surface bundle over
a surface †g ! E ! †h with monodromy in Kg . The results of Section 5 are
applied to show that if the monodromy of †g!E!†h is contained in Kg , then E ,
which necessarily has H�E � H�†g ˝ H�†h as an additive group, in fact has
H�E�H�†g˝H�†h (with Z coefficients) as a graded ring. This condition is then
exploited to prove Theorem 1.1.

Acknowledgements The author would like to express his gratitude to Tom Church,
Sebastian Hensel, Jonathan Hillman, Andy Putman, and Alden Walker for illuminating
discussions at various stages of this work. He is grateful to the anonymous referees for
many helpful suggestions. He would also like to extend his warmest thanks to Benson
Farb for his extensive comments as well as his invaluable support from start to finish.

2 Equivalence

If E is a smooth n–manifold and pi W E! Bi , i D 1; : : : ; k , are projection maps for
various fiber bundle structures on E , we can consider the product of all the projection
maps

p1 � � � � �pk W E! B1 � � � � �Bk :

In particular, if E4 is the total space of a surface bundle over a surface with two
fiberings, the bi-projection p1 � p2W E ! B2 �B2 is defined. As remarked in the
introduction, ultimately we are concerned with fiberwise diffeomorphism classes of
surface bundles. However, it is convenient to consider a more restrictive notion of
equivalence, which will turn out to have the advantage of being describable purely on
the level of the fundamental group.
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We say that two fiberings p1W E! B1 and p2W E! B2 are �1 –fiberwise diffeomor-
phic if .1/ they are fiberwise diffeomorphic, ie there exists a commutative diagram

E
�
//

p1

��

E

p2

��

B1 ˛
// B2

with � , ˛ diffeomorphisms, and .2/ ��.�1F1/D�1F1 (here, as always, Fi denotes a
fiber of pi ). Certainly if p1 and p2 are �1 –fiberwise diffeomorphic bundle structures,
then they are fiberwise diffeomorphic in the usual sense. We are interested in this
notion because we want to always regard the trivial bundle †g �†h as having two
distinct fiberings. In the setting of fiberwise diffeomorphism, the projections onto either
factor of †g �†g yield equivalent fiberings via the factor-swapping map �.x;y/D
.y;x/, which covers the identity on †g , but ��.�1.†g � fpg// ¤ �1.†g � fpg/.
The following proposition asserts that �1 –fiberwise diffeomorphism classes are in
correspondence with the fiber subgroups �1F C �1E . Recall that this is the setting in
which F E A Johnson proved his finiteness result (see [8]).

Proposition 2.1 Suppose E is the total space of a surface bundle over a surface in
two ways, p1W E!B1 and p2W E!B2 . Let F1 and F2 denote fibers of p1 and p2 ,
respectively. Then the following are equivalent:

(1) The fiberings p1 and p2 are �1 –fiberwise diffeomorphic.

(2) The fiber subgroups �1F1 , �1F2 � �1E are equal.

If deg.p1 �p2/¤ 0 then the bundle structures p1 and p2 are distinct.

Proof First suppose that p1 and p2 are equivalent. Appealing to the long exact
sequence in homotopy, we see that:

1 // �1F1
//

��
��

�1E //

��
��

�1B1
//

˛�
��

1

1 // �1F2
// �1E // �1B2

// 1

By assumption, ��.�1F1/D �1F1 , so that (1) implies (2).

Conversely, suppose that �1F1 D �1F2 . Then the bundle structures p1 and p2 give
rise to the same splitting

1! �1F ! �1E! �1B! 1
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on fundamental groups. The monodromy for each bundle can be obtained from this
sequence via the map �1B ! Out.�1F / � Mod.†g/. This shows that the mon-
odromies for the two bundle structures are conjugate and so, via the correspondence (1),
there is a bundle isomorphism �W E ! E covering the identity on B . To see that
��.�1F1/D �1F1 , consider the induced map on the long exact sequence in homotopy
coming from � :

1 // �1F1
//

��
��

�1E //

��
��

�1B // 1

1 // �1F2
// �1E // �1B // 1

This shows ��.�1F1/D �1F2 , and �1F1 D �1F2 by assumption, so (2) implies (1).

It remains to show that if deg.p1�p2/¤ 0 then p1 and p2 are distinct. We establish
the contrapositive. Suppose that �1F1 D �1F2 . For i D 1, 2, we view �1Bi as the
quotient �1Bi � �1E=�1Fi . If p1 �p2 is the bi-projection then, in this notation,

.p1 �p2/�W �1E! �1B1 ��1B2

is given by
.p1 �p2/�.x/D .x �1F1;x �1F2/D .Œx�; Œx�/;

where Œx�D x .mod �1F1/D x .mod �1F2/. As �1F1 D �1F2 , the quotients �1B1

and �1B2 are isomorphic, and as they are K.G; 1/ spaces, there is a homotopy
equivalence

f W B1! B2:

Let g be the map
g D .f � id/ ı .p1 �p2/W E! B2 �B2:

By the above,
Im.g/D�D f.x;x/ j x 2 B2g:

Being nonsurjective, g has degree 0. As p1 � p2 is the composition of g with a
homotopy equivalence, we conclude that also deg.p1 �p2/D 0.

In general the condition deg.p1 �p2/D 0 on a bi-projection does not imply that the
associated fiberings are equivalent. However, in the setting of the Johnson kernel, this
is indeed the case.

Proposition 2.2 Suppose E is the total space of a surface bundle over a surface
in two ways, p1W E ! B1 and p2W E ! B2 . Let F1 and F2 denote fibers of p1

and p2 , respectively. Suppose that �1W �1B1!Mod.F1/ is contained in the Johnson
kernel Kg . Then the following are equivalent:
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(1) The fiberings p1 and p2 are not �1 –fiberwise diffeomorphic.

(2) The fiber subgroups �1F1 , �1F2 � �1E are distinct.

(3) deg.p1 �p2/¤ 0.

(4) E is diffeomorphic to B1 �B2 .

The additional assertions in Proposition 2.2 will be proved in the course of establishing
Theorem 1.1 (see Remark 7.6).

3 Surface bundles over surfaces with unique fiberings

In this section, we prove Theorem 3.5. The additive structure of H�E is central to
everything that follows in the paper, so we begin with a review of the relevant results.
The following theorem was formulated and proved by Morita [10] for the case of
field coefficients of characteristic not dividing �.F /; subsequently this was improved
to integral coefficients in the cohomological setting by Cavicchioli, Hegenbarth and
Repovš [2].

Proposition 3.1 (Morita, Cavicchioli–Hegenbarth–Repovš) Let F be a closed sur-
face of genus g � 2. The Serre spectral sequence (with twisted coefficients) of any
surface bundle F ! E ! B collapses at the E2 page. Consequently, there are
noncanonical isomorphisms for all k ,

Hk.E;Q/DHk.B;Q/˚Hk�1.B;H1.F;Q//˚Hk�2.B;Q/;

H k.E;Z/DH k.B;Z/˚H k�1.B;H 1.F;Z//˚H k�2.B;Z/:

The Hk�2B summand of HkE is canonical and is realized by the Gysin map p! ,
which associates to a homology class x 2B the induced sub-bundle Ex sitting over x .
Similarly, the H kB summand is canonical via the pullback map p�W H kB!H kE .

If F ! E ! B has monodromy in Ig , then the coefficient system is untwisted
and H�.E;Z/ � H�.B;Z/ ˝ H�.F;Z/ additively. In particular, H�.E;Z/ is
torsion-free and so, by the universal coefficients theorem, there is also an isomorphism
H�.E;Z/�H�.B;Z/˝H�.F;Z/.

Because the surface bundles we will be considering in this paper have monodromy
lying in Ig , we will subsequently take all coefficients to be Z without further mention.
A remark, which is obvious from Proposition 3.1, is that if � generates H0.B/ then
p!.�/ is a primitive class; we will use this fact later on. Here and throughout, we will
use the notation

ŒF �D p!.�/ 2H2.E/
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to denote the (pushforward of the) fundamental class of the fiber.

The following result is a well-known application of the theory of the Gysin homomor-
phism and we state it without proof.

Proposition 3.2 Let pW E! B be a surface bundle with fiber F . If �.F /¤ 0, then
there are injections

p�WH�.B;Q/!H�.E;Q/;

p!
WHk.B;Q/!HkC2.E;Q/:

In the case where H�.E;Z/ is torsion-free, the same statements hold with Z coeffi-
cients. In particular, this is true whenever E has monodromy lying in Ig , since in
this case H�.E;Z/ is isomorphic to H�.F;Z/˝H�.B;Z/ as an abelian group (see
Proposition 3.1).

For surface bundles over surfaces with multiple fiberings, there is an extension of the
previous result.

Lemma 3.3 Let E be a 4–manifold with two distinct surface bundle structures
p1W E! B1 and p2W E! B2 . Then

p�1 .H
1.B1;Q//\p�2 .H

1.B2;Q//D f0g

and so, by Proposition 3.2, there is a canonical injection

p�1 �p�2 W H
1.B1;Q/˚H 1.B2;Q/ ,!H 1.E;Q/:

Proof By the universal coefficients theorem, for any space X there is an identification

H 1.X;Q/� Hom.�1X;Q/:

Under this identification, a character ˛ 2 Hom.�1Bi ;Q/ is pulled back to p�i .˛/

in Hom.�1E;Q/ by precomposition with .pi/� . In particular, p�i .˛/ vanishes on
�1Fi D ker.pi/� . Therefore, any character ˛ 2 p�

1
.H 1.B1;Q//\ p�

2
.H 1.B2;Q//

must vanish on the subgroup generated by .�1F1/.�1F2/.

By Lemma 3.4 below, .�1F1/.�1F2/ has finite index in �1E . For any group � , any
character ˛W � ! Q vanishing on a finite-index subgroup must vanish identically,
proving the claim.

Lemma 3.4 Let E be a surface bundle over a surface with two distinct fiberings
pi W E!Bi , i D 1, 2; let the fibers be F1 and F2 , respectively. Then .�1F1/.�1F2/

has finite index in �1E .
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Proof Consider the cross-projection �1F1! �1B2 . Let the image of �1F1 in �1B2

be denoted by � . This is a finitely generated normal subgroup of �1B2 . For any
surface group of genus g � 2, any nontrivial finitely generated normal subgroup has
finite index (see [8, Property (D6)]). If � is the trivial group, then �1F1 � �1F2 ,
necessarily again of finite index. In this case, the image of �1F2 in �1B1 is therefore
finite, but �1B1 is torsion-free. We conclude that � � �1B2 has finite index. The
kernel of the map �1E! .�1B2=�/ is exactly .�1F1/.�1F2/.

Recall that if �W G!GL.V / is a representation then the invariant space V � is defined
by

V �
D fv 2 V j �.g/.v/D v for all g 2Gg:

The space of coinvariants V� of the representation is defined as

V� D V =W; where W D fv� �.g/.v/ j v 2 V; g 2Gg:

Theorem 3.5 Let pW E! B be a surface bundle over a surface B of genus g � 2

with monodromy representation �W �1B ! Mod.†g/. Suppose that the space of
invariant cohomology .H 1.F;Q//� (equivalently, the coinvariant homology of the
fiber .H1.F;Q//� ) vanishes. Then E admits a unique fibering.

Proof For any surface bundle pW E ! B with monodromy � and any choice of
coefficients, there is a (noncanonical) splitting

H 1.E/D p�.H 1.B//˚ .H 1.F //�

(see Proposition 3.1). If .H 1.F;Q//� D 0, then this reduces to

H 1.E;Q/D p�H 1.B;Q/:

If p2W E! B2 is a second, distinct fibering, the above shows that

p�2 .H
1.B2;Q//� p�H 1.B;Q/:

However, this contradicts Lemma 3.3.

Remark 3.6 Recall that a surface bundle over S1 , viewed as the mapping torus M

of some diffeomorphism � of a surface F , admits a unique fibering if and only
if b1.M /D 1. This is the case exactly when .H1.F;Q//� D 0, so Theorem 3.5 is the
counterpart to this fact in dimension 4. Moreover, a random element � 2Mod.†g/

satisfies .H1.F;Q//� D 0 (see [13]). It easily follows that a generic monodromy
representation will also have .H1.F;Q//� D 0: “most” surface bundles over surfaces
have a single fibering. The proof of Theorem 3.5 is special to the case of surface
bundles over surfaces and it is not clear if Theorem 3.5 is true in greater generality.

Algebraic & Geometric Topology, Volume 15 (2015)



3622 Nick Salter

4 Bi-projections

In this section we state and prove the key lemma from differential topology needed for
the proof of Theorem 1.1.

Proposition 4.1 Let E be a 4–manifold with surface bundle structures p1W E! B1

and p2W E ! B2 . Let F1 and F2 denote fibers of p1 and p2 lying over a regular
value of p1�p2 . If deg.p1�p2W E!B1�B2/¤ 0, then the following five quantities
are equal:

(1) deg.p1 �p2W E! B1 �B2/.

(2) deg.p1jF2
W F2! B1/.

(3) deg.p2jF1
W F1! B2/.

(4) The algebraic intersection number IE.F1;F2/.

(5) The cardinality of the intersection jF \F2j.

As (5) indicates, this quantity is always positive.

Proof As p1 and p2 are projection maps for fiber bundle structures on E , they are
everywhere regular, and ker.dp1/x is identified with the tangent space to the fiber
of p1 through x . Let zD .b1; b2/2B1�B2 be a regular value for p1�p2 . It follows
from the assumption that deg.p1 � p2W E! B1 �B2/ ¤ 0 that d.p1 � p2/x is an
isomorphism for all x 2 .p1 �p2/

�1.z/ (and that this preimage is nonempty). The
kernel of d.p1�p2/x is just the intersection of the kernels of d.p1/x and d.p2/x . It
follows that, for all x 2 .p1 �p2/

�1.z/,

(2) TxE � TxF1˚TxF2:

Note that this shows that the fibers F1 and F2 over b1 and b2 , respectively, are
transverse.

If orientations on E , B1 and B2 are chosen properly, then this specifies an orienta-
tion on each fiber of p1 and p2 via the following decomposition, where Hx is any
complement to TxF1 D ker d.p1/x :

TxF1˚Hx � TxE:

The orientation on Hx is specified by the isomorphism Hx � Tp1.x/B1 . Of course an
analogous convention orients each fiber of p2 . In particular, it follows from Equation (2)
that at any regular point for p1 �p2 we can take Hx D TxF2 and that the restriction
of d.p1/x to TxF2 is an isomorphism.
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Recall that if f W X n! Y n is a smooth map of oriented closed n–manifolds then

deg.f /D
X

x2f �1.y/

".x/;

where y is any regular value of f , and ".x/D 1 if the orientation on TyY induced
by dfx agrees with the pre-chosen orientation on Y and ".x/D�1 otherwise. If Y

and Z are smoothly embedded and transversely intersecting oriented submanifolds of
the oriented manifold X such that dim.X /D dim.Y /C dim.Z/, then the algebraic
intersection number of Y and Z is computed as

IX .Y;Z/D
X

w2Y\Z

".w/;

where ".w/ D 1 if the orientation on TwX given by TwY ˚ TwZ agrees with the
pre-chosen orientation on X and ".w/D�1 otherwise.

It follows from the definitions that

.p1 �p2/
�1.b1; b2/D p1j

�1
F2
.b1/D p2j

�1
F1
.b2/D F1\F2:

Therefore, each of the sums computing (1)–(5) take place over the same set of points.
So it remains only to show that, in each of the contexts (1)–(4), the relevant orientation
convention assigns a positive value.

The orientation number assigned to x 2 .p1 �p2/
�1.b1; b2/ is given by the sign of

the determinant of the map

d.p1 �p2/x W TxE! Tb1
B1˚Tb2

B2:

By the above discussion, our orientation convention stipulates that

d.p1jF2
/x W TxF2! Tb1

B1

is an orientation-preserving isomorphism and similarly for d.p2jF1
/. This proves the

equality of (2) and (3) with (5).

As
TxF1 D ker d.p1/x and TxF2 D ker d.p2/x;

it follows that d.p1 �p2/x has a block-diagonal decomposition

d.p1 �p2/x D d.p1/x˚ d.p2/x W TxF1˚TxF2! Tb2
B2˚Tb1

B1;

from which it follows that x also carries a positive orientation number in setting (1).
Finally, the orientation number for x as a point of intersection between F1 and F2
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records whether the orientations of TxE and TxF1˚TxF2 agree, but we have already
seen that they necessarily do.

5 Cup products and the Johnson homomorphism

The goal of this section is to give a construction of embedded submanifolds in a surface
bundle over a surface E that will be explicit enough to compute the intersection form
on homology or, dually, the cup product structure in cohomology. One of the original
definitions of the Johnson homomorphism was via the cup product structure in surface
bundles over S1 . In this section we turn this perspective on its head and explain how
the Johnson homomorphism computes the cup product structure in a surface bundle over
a surface (in fact, these methods extend to surface bundles over arbitrary manifolds).
The submanifolds we construct will be codimension-1 (ie 3–manifolds) and built so
that their intersection theory is explicitly connected to the Johnson homomorphism.

To this end, in Section 5.1 we give a discussion of the definition of the Johnson
homomorphism in the setting of the cup product in surface bundles over S1 . The
centerpiece of this is the construction of geometric representatives for classes in H 1 ,
via embedded surfaces which we call “tube-and-cap surfaces”. Then, in Section 5.2,
we return to the original problem of constructing representatives for classes in H 1 of a
surface bundle over a surface as embedded 3–manifolds. The construction is carried
out so that the intersection of particular pairs of these 3–manifolds is a tube-and-cap
surface, thereby realizing the link between cup products in surface bundles over surfaces
and the Johnson homomorphism.

5.1 From the intersection form to the Johnson homomorphism, and back
again

In this subsection we will begin to dive into the theory of the Torelli group in earnest,
so we begin with a brief review of the relevant definitions. The Torelli group Ig is
the kernel of the symplectic representation ‰W Mod.†g/! Sp2g.Z/. The Johnson
kernel Kg is the subgroup of Ig generated by all Dehn twists T about separating
curves  . It is a deep theorem of D Johnson that Kg can alternately be characterized
as the kernel of the Johnson homomorphism � to be defined below.

Let � 2 Ig be a Torelli mapping class and build the mapping torus

M� D†g � I=f.x; 1/� .�.x/; 0/g:

As � 2 Ig for any curve  �†g , the homology class Œ ����Œ � is zero. Thus there
exists a map of a surface i W S !†g which cobounds  [�. /. Indeed, there exists
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an embedded surface S �†g � I whose boundary is given by

@S D  � f1g[�. /� f0g:

To see this, recall that since S1 is a K.Z; 1/ there is a correspondence

H 1.†g;Z/� Œ†g;S
1�:

Via Poincaré duality,
H 1.†g;Z/�H1.†g;Z/:

The induced correspondence

H1.†g;Z/� Œ†g;S
1�

is realized by taking the preimage of a regular value, which will be an embedded
submanifold. Under this correspondence, homotopic maps f , gW †g ! S1 yield
homologous submanifolds, and conversely. Therefore, the maps f , gW †g!S1 which
determine  and �. / are homotopic. This gives the desired map F W †g � I ! S1

such that the preimage of a regular value is an embedded surface S cobounding 
and �. /.

In fact, the choice of S is not unique. Let i 0W S 0!M� be any map of a closed surface
to M� . Then the chain S CS 0 satisfies @.S CS 0/D @S D  � �. /. Nonetheless,
given any S satisfying @.S/D  ��. /, we can form a closed submanifold of M�

in the following way. We begin with a tube, diffeomorphic to S1 � I , embedded
into M� as �. /� Œ0; 1

3
�[  � Œ2

3
; 1�. We may then glue in S to †g � Œ

1
3
; 2

3
�. The

result is a smoothly embedded oriented submanifold † �M� , which will descend to
a homology class †z (here z D Œ �). See Figure 1.

For convenience, we introduce the following terminology for these surfaces, which
we will refer to as tube surfaces. The tube of a tube surface is the cylinder S1 � I D

�. /� Œ0; 1
3
�[  � Œ2

3
; 1� and the cap is the subsurface S .

We assign an orientation to † as follows. The tangent space to a point x contained
in the tube has a direct sum decomposition

(3) Tx† D V ˚Tx;

where V is any preimage of T�.x/S
1 and Tx is interpreted as the tangent space to

the copy of  sitting in the fiber containing x . Both of the summands in (3) have
orientations induced from those on S1 and  , respectively, and this endows Tx† with
an orientation. This can then be extended over the cap surface in a coherent way, since
S was chosen to be a boundary for Œ �� Œ�. /� with Z coefficients.
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M�

�. /

tube region tube region



cap

�

S1

Figure 1: A tube surface

Recall however that the choice of S was not unique. Any closed surface mapping
into †g is homologous to some multiple of the fundamental class, so the above
procedure really defines a homomorphism H1.†g/! H2.M�/=ŒF �, where ŒF � is
the fundamental class of the fiber. If the bundle has a section � W S1!M� , then we
can choose S so that Im � and †z have zero algebraic intersection, which gives a
canonical lift H1.†g/!H2.M�/. In the absence of such auxiliary data, we instead
just choose an arbitrary lift and we will account for the consequences later.

Having chosen an embedding i W H1.†g/ ,!H2.M�/ such that z 7!†z , there is an
associated direct sum decomposition of H2.M�/, namely

H2.M�/D hŒF �i˚ Im i:

Relative to such an embedding, we form the map �.�/ 2 Hom.
V3

H1.†g/;Z/ by

�.�/.x ^y ^ z/D†x �†y �†z;

the term on the right being interpreted as the triple algebraic intersection of the given
homology classes. Suppose a section exists and that the †x have been constructed
accordingly. In this case, D Johnson showed that the map

� W Ig;�! Hom
�

3̂H1.†g/;Z
�
;

� 7! �.�/;

is a surjective homomorphism. See [3, Chapter 6] for a summary of the Johnson homo-
morphism, including two alternative definitions. The (pointed) Johnson kernel Kg;�
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is defined, analogously to the case of closed surfaces, as the subgroup of Mod.†g;�/

generated by Dehn twists about separating simple closed curves (scc). As in the closed
case, D Johnson established that Kg;� coincides with the kernel of � . In our context
this precisely means that all triple intersections between the various †x vanish.

Having fixed a family of †x , it is then easy to compute the entire intersection form onV3
H2.M�/. Certainly ŒF �2 D 0. It is also fairly easy to see that

ŒF � �†x �†y D i.x;y/;

where i.x;y/ denotes the algebraic intersection pairing in H1.†g/. Indeed, by picking
the choice of fiber to intersect †x on the tube, it is clear that the result is simply the
curve x , so that ŒF � �†x �†y computes the intersection of x and y on F , at least up
to a sign that may be introduced by the (non)compatibilities of the various orientation
conventions in play. A quick check reveals this sign to be positive.

We will now be able to account for the ambiguity introduced by our choice of embedding
i W H1.†g/ ,! H2.M�/, which will in turn lead to the definition of the Johnson
homomorphism on the closed Torelli group Ig . Suppose that †0w D †w C kw ŒF �

is some other set of choices that is coherent in the sense that †0w C †
0
z D †0wCz

(ie x 7! kx 2H 1.†g/). By linearity,

†0x �†
0
y �†

0
z D†x �†y �†zC kxi.y; z/C kyi.z;x/C kzi.x;y/

D �.�/.x ^y ^ z/C kxi.y; z/C kyi.z;x/C kzi.x;y/

D �.�/.x ^y ^ z/CC �.k/I

here C W
V3

H1.†g/! H1.†g/ is the contraction with the symplectic form i. � ; � /

and k 2 Hom.H1.†g/;Z/ is the form such that k.w/ D kw . The upshot of this
calculation is that �.�/ is well defined as an element of Hom.

V3
H1.†g/;Z/= Im C � ,

which can be identified with the more familiar space
V3

H=H (here we adopt the usual
convention that H D H1.†g/). The Johnson homomorphism on the closed Torelli
group is then given by

� W Ig! Hom
�

3̂H1.†g/;Z
�
= Im C � � 3̂H=H;

� 7! �.�/:

As mentioned above, work of D Johnson shows that the kernel of � coincides with the
previously defined subgroup

Kg D hT j  separating scci:

Remark 5.1 The construction given above with the tube-and-cap surfaces is a concrete
realization of the isomorphism H1.†g/�H2.M�/=ŒF � coming from the Serre spectral
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sequence for pW M�! S1 . In fact, this same construction will work for an arbitrary
� 2Mod.†g/, yielding an isomorphism .H1.†g//

� �H2.M�/=ŒF �, but we do not
pursue this here.

The above discussion shows how to construct the Johnson homomorphism in terms
of the intersection form on M� . Conversely, we will show next how to recon-
struct the intersection form on M� from the data of the Johnson homomorphism
�.�/ 2

V3
H=H � Hom.

V3
H†g;Z/= Im C � . Begin by selecting an arbitrary lift

Q�.�/ of �.�/ (of course, the presence of a section gives a canonical such choice). Next,
construct a coherent family of homology classes †0x by making choices arbitrarily.
Define � 0.�/ 2 Hom.

V3
H;Z/ by

� 0.�/.x ^y ^ z/D†0x �†
0
y �†

0
z :

There is no reason to suspect that � 0.�/D Q�.�/. However, as we saw above, we do
know that � 0.�/� Q�.�/ 2 Im C � , so there is some functional ˛ 2H 1.†g/ such that
� 0.�/� Q�.�/DC �.˛/. This functional ˛ will allow us to choose the correct set of †x

so that the triple intersections are computed by our choice of Q�.�/.

Lemma 5.2 We assume the notation of the above setting. By taking

†x D†
0
x �˛.x/ŒF �;

there is an equality for all x , y and z ,

†x �†y �†z D Q�.�/.x ^y ^ z/:

Proof We compute:

†x �†y �†z D†
0
x �†

0
y �†

0
z �˛.x/i.y; z/�˛.y/i.z;x/�˛.z/i.x;y/

D � 0.�/.x ^y ^ z/�C �.˛/.x ^y ^ z/

D Q�.�/:

5.2 Intersections in surface bundles over surfaces, and beyond

The methods of the previous subsection can be adapted to give a description of certain
cup products in H 1.E/, where pW EnC2 ! Bn has monodromy lying in Ig . The
idea will be to define an embedding, as before,

i W H1.†g/ ,!HnC1.E/;

by constructing submanifolds M for curves  �†g by means of a higher-dimensional
“tubing construction”. Then the triple intersections of collections of M will be
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partially computable via the Johnson homomorphism in a certain sense, to be described
below. In this subsection we will first briefly sketch the properties we require of the
submanifolds M , then we will give the construction. Then, in Section 5.3, we will
determine much of the intersection pairing in H�.E;Z/.

Our construction will provide, for each simple closed curve  �F , a submanifold M

such that if Œ �D Œ 0� then also ŒM �D ŒM 0 �. If Œ �Dx , we write Mx in place of ŒM �.
Let pW E! B be a surface bundle with monodromy in Ig and let �W �1B! Ig be
the monodromy. By post-composing with � W Ig!

V3
H=H , we obtain a map from

�1B to an abelian group, so � ı� factors through H1.B/. By an abuse of notation we
will write �.b/ for b 2H1.B/.

This map computes (most of) the intersection form in H�.E/. Recall the notation from
Proposition 3.1: given a curve ˛ � B , there is an induced bundle E˛ over ˛ , which
determines a homology class Ea . A given M can be intersected with E˛ to yield a
surface †˛; inside E˛ . Our construction will be set up so that

Mx �My �Mz �Eb D �.b/.x ^y ^ z/;

possibly up to a sign. This is the sense in which Mx �My �Mz is partially computable.
As an aside, the intersections Mx �My �Mz �X for arbitrary X 2H3E will all involve
intersections with further Mw and are describable (at least in the case of bundles with
section) in terms of the higher Johnson invariants

� W Hi.Ig;�/!
îC2H;

but we will not pursue this point of view further in this paper.

The construction As usual, let � W E! B be a surface bundle over a surface with
monodromy �W �1B ! Ig . We turn now to the question of constructing suitable
homology classes Mx 2H3.E/ for x 2H1.†g/. The construction will be a higher-
dimensional analogue of the construction of tube-and-cap surfaces given in the previous
subsection. The reader may find it helpful to consult Figure 2 as they read this
subsection.

When the base space B has dimension 2, a new layer of complexity is introduced
by the potential absence of sections � W B!E , which will require some additional
preparatory work in order to construct geometric representatives for homology classes.
Our construction method proceeds by exploiting the fact that it is always possible
to find sections defined on B0 WD B nD2 . We define E0W D ��1.B0/ and refer to a
section � W B0!E0 as a partial section of the bundle E . We say that two sections �0

and �1 of a fiber bundle are homotopic through sections if there exists a homotopy �t

between �0 and �1 such that �t is a section for each fixed t .
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N.b1/

�.b1/

�.a1/

N.p/

p

N.a1/

�.b1/. / �.a1b1/. /D �.b1a1/. /

�.a1/. /

Figure 2: Upper left: the neighborhoods N.e/ and N.p/ . Upper right:
M 1
 intersected with four different fibers. Lower left: cap surfaces, lying over

different portions of N . Lower right: a depiction of M 2
 \�

�1.@N / .

Lemma 5.3 Let � W E ! †h be a surface bundle over a surface with monodromy
�W �1†h!Mod.†g/. Let E0 D ��1.†h nD2/ and note that � restricts to give E0

the structure of a †g –bundle over †h nD2 . Then there is a one-to-one correspondence
between the set of classes of partial sections � W †h nD2 ! E0 , up to homotopy
through sections, and homomorphisms Q�W F2h ! Mod.†g;�/ making the diagram
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below commute:

1 // K //

Q�

��

F2h
//

Q�

��

�1†h
//

�

��

1

1 // �1†g
// Mod.†g;�/ // Mod.†g/ // 1

Proof This follows immediately from the well-known fact that there is a homotopy
equivalence

K.Mod.†g;�/; 1/' B.Diff.†g;�//;

the latter space being the classifying space of †g –bundles with section.

The kernel K C F2h is normally generated by a single element ! , represented geo-
metrically by the boundary of †h nD2 . The element Q�.!/ 2 �1†g associated to a
section � will be denoted by !� . It is called the index curve. The following lemma is
immediate from the definitions.

Lemma 5.4 Assume the notation of Lemma 5.3. Let � be a partial section of E and
let !� 2�1†g be the corresponding index curve. Then there exists a local trivialization
of E ,

t W ��1.D2/!D2
�†g;

relative to which �.@D2/ is in the free homotopy class of !� .

The next lemma will be used in the course of the construction in Proposition 5.6.

Lemma 5.5 Let S � †g � S1 be an embedded, closed, oriented subsurface. Sup-
pose  W S1 ! †g � S1 is a section of the projection †g � S1 ! S1 and that
p�Œ � D 0 2 H1.†g;Z/ (where pW †g � S1 ! †g is the obvious projection). Let
i W †g�S1!†g�D2 be the natural inclusion. If the algebraic intersection number is
Œ � � ŒS �D 0 (computed in †g �S1 ), then there exists an oriented, properly embedded
3–manifold M �†g �D2 such that @M D S .

Proof The first step is to establish that i�ŒS � D 0 in H2.†g �D2/. The Künneth
formula establishes natural splittings

H1.†g �S1/�H1.†g/˚H1.S
1/;

H2.†g �S1/�H2.†g/˚ .H1.†g/˝H1.S
1//:

In these coordinates, the map i�W H2.†g �S1/!H2.†g �D2/�H 2.†g/ is given
simply by projection onto the H2.†g/ factor. The assumptions on  imply that Œ �
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generates H1.S
1/�H1.†g �S1/. Under the intersection pairing, H1.S

1/ is orthog-
onal to H1.†g/˝H1.S

1/. From the assumption Œ � � ŒS �D 0, it then follows easily
that i�ŒS �D 0. Consequently, there exists a 3–chain Cp in †g �D2 with @Cp D S .

It remains to explain why Cp can be replaced with a smooth, oriented, properly
embedded 3–manifold. This will follow from general results on representing (relative)
codimension-1 homology classes by smooth submanifolds (with boundary). The
argument proceeds along very similar lines to the construction of embedded cap
surfaces in fibered 3–manifolds described above. For an oriented manifold X with
boundary, Lefschetz duality gives an isomorphism

Hn�1.X; @X;Z/�H 1.X;Z/� ŒX;S1�:

In our setting, the surface S �†g �S1 is represented by a map

f W †g �S1
! S1

such that SDf �1.�/ for some regular value �2S1 . Similarly, the (relative) homology
class of Cp in H3.†g �D2; †g �S1;Z/ corresponds to a map

F W †g �D2
! S1:

Moreover, as @Cp D S , they represent the same homology class in H2.†g �S1;Z/.
This means that the maps f and F j†g�S1 are homotopic. We can therefore concatenate
this homotopy with F to obtain a map

zF W †g �D2
! S1:

On the boundary, zF equals f and is therefore transverse to � � S1 . In order to
replace Cp by a smooth submanifold such that @Cp DC , we must therefore perturb zF
away from a neighborhood of @.†g �D2/ and make the result everywhere transverse
to � � S1 . The extension theorem (see [4, page 72]) asserts that we can do precisely
this.

The theory of index curves established above will allow us to construct embedded
representatives of homology classes in surface bundles over surfaces when suitable
conditions on the monodromy are satisfied.

Proposition 5.6 Let � W E! B be a surface bundle over a surface with monodromy
�W �1B ! Ig contained in the Torelli group. Suppose there is a partial section
� W B0!E0 for which the associated index curve !� lies in the commutator subgroup
Œ�1†g; �1†g�. Then there is an embedding

�W H1.F;Z/!H3.E;Z/
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constructed so that, if c 2H1.F;Z/ is a primitive class, then �.c/ can be represented
by some embedded, oriented, piecewise-smooth 3–submanifold Mc of E .

Proof Let c 2 H1.F;Z/ be given. By assumption, c is primitive, so that there
exists a simple closed curve  � †g with Œ � D c . We will use this to construct a
3–manifold M .

Consider a cell decomposition

B D B0
� B1

� B2

of B , where B0 consists of the single point p , there are 2g one-cells fa1;b1; : : : ;ah;bhg

and a single two-cell D . For each one-cell e , there is an associated element �.e/ of the
monodromy such that the effect of transporting a curve  across e (from the negative
to the positive side, relative to orientations of B and e ) sends the isotopy class of 
to �.e/ . For a one-cell e , let N.e/� e� I be a (closed) regular neighborhood in B .
We also let N.p/ be a small closed neighborhood of p . If necessary, shrink N.e/ so
that

N WDN.a1/[ � � � [N.bh/ nN.p/

is a union of 2h disjoint rectangles.

Let  � F be a simple closed curve on a fiber F over a point in

D0 WDD n .N.p/[N.a1/[ � � � [N.bh//:

By construction, D0 is nothing more than a closed disk (in the upper-left portion of
Figure 2, D0 is the closure of the complement of the shaded regions). The submanifold
M will be constructed in three stages, denoted by M i

 for i D 1, 2, 3: first over D0 ,
then over N and finally over N.p/. Choose a trivialization ��1.D0/�D0 �F and
define M 1

 D  �D0 relative to this trivialization. Then @.M 1
 / � �

�1.@D0/. We
specify an orientation on M 1

 as follows: a point x 2M 1
 has a decomposition of the

tangent space

(4) TxM 1
 � T�.x/B˚Tx:

Both of these two summands carry pre-existing orientations and M 1
 is then oriented

by specifying the above isomorphism to be orientation-preserving. By analogy with
the construction of tube surfaces, we refer to M 1

 as the tube region of M .

Next we construct M 2
 . Let e be a one-cell and consider M 1

 \�
�1.N.e/\N /. The

base space N.e/\N is just a rectangle, so the bundle ��1.N.e/\N / is trivializable.
We can therefore find a diffeomorphism

 W ��1.N.e/\N /� I � I �†g
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under which M 1
 \�

�1.N.e/\N / is identified with

.I � f0g �  /[ .I � f1g �  0/;

where  0 is some curve in the isotopy class of �.e/. /. As we saw in the previous
subsection, for each e there exists a family of properly embedded surfaces Se in I�†g

such that @Se D f0g �  [f1g � 
0 .

Our choice of Se will be dictated by the section � . Applying  , the image of � in
ftg�I�†g is a properly embedded arc ˛� . This determines a preferred homology class
in H2.I�†g; @.I�†g/;Z/ among the set of possible Se , by the relation Œ˛� ��ŒSe �D0.

Let Se be any properly embedded subsurface of I �†g satisfying the conditions
@Se D f0g� [f1g�

0 and Œ˛� � � ŒSe �D 0. We can then fill in ��1.N.e/\N / with
I �Se for each e , creating M 2

 . As in the case of a tube surface, the orientation for
M 1
 can be extended over each of these pieces coherently. We refer to M 2

 nM 1
 as

the cap region of M .

It therefore remains to construct M 3
 DM . By construction, @M 2

 � �
�1.@N.p//.

We would like to be able to fill this boundary in by inserting a “plug” contained
in ��1.N.p//. A priori, there is a homological obstruction to this: if Œ@M 2

 �¤ 0 in
H2.�

�1.N.p/// then this problem is not solvable even on the chain level.

However, the assumption that the index curve !� is in Œ�1†g; �1†g� will imply
that this obstruction vanishes. Let t W ��1.N.p//! D2 �†g be the trivialization
of Lemma 5.4 and define  D t.�.@.N.p////. Set S D t.@.M 2

 //. By Lemma 5.4,
Œ � D 0 2 H1.�

�1.N.p/// � H1.†g/. We wish to show that Œ � � ŒS � D 0. By
construction, @.M 2

 / consists of 4g subsurfaces, corresponding to the 2g surfaces
Sa1

; : : : ;Sbg
, each appearing twice (once for each component of N.e/\N.p/). Simi-

larly,  is comprised of 4g segments, again indexed by the components of N.e/\N.p/.
On each one of these components, the relevant Se was selected to have zero algebraic
intersection with the relevant portion of  , so the same holds true globally: Œ � � ŒS �D 0.

Applying Lemma 5.5, we obtain a 3–manifold Mp�N.p/�†g with @MpD t.@.M 2
 //.

Extending the orientation of M 2
 over Mp , the result is an oriented, piecewise-smooth

submanifold M �E .

Remark 5.7 It is apparent in the above construction that if  and  0 are homologous
curves, the associated 3–manifolds M and M 0 are homologous. Accordingly, if
Œ �D Œ 0�D x , we adopt the notation Mx D ŒM �D ŒM 0 �.

While, in general, not every surface bundle over a surface satisfies the hypotheses
of Proposition 5.6 (specifically the requirement that there exist a partial section with

Algebraic & Geometric Topology, Volume 15 (2015)



Cup products, the Johnson homomorphism and surface bundles with multiple fiberings 3635

Œ!� � D 0 2 H1.†g;Z/), it turns out that this is always the case for surface bundles
over surfaces with monodromy in Kg .

Lemma 5.8 Let �W �1†h!Kg be given. Then, for any lift Q�W F2h!Kg;� of � , the
index curve satisfies !� 2 Œ�1†g; �1†g�.

Proof When restricted to Kg , the Birman exact sequence takes the form

1! Œ�1†g; �1†g�! Kg;�! Kg! 1:

The result follows.

An essential feature of the above construction is the relationship between an M and
a sub-bundle E˛ lying over a curve ˛ � B . Suppose ˛ is chosen so that, relative
to the cell decomposition of B used in constructing M , ˛ is transverse to all the
one-cells e and does not pass through N.p/. Then a little visual imagination reveals
that the intersection of M and E˛ is given by a tube surface for  sitting inside E˛ .
We call the resulting surface †˛; and then Œ†˛; � is denoted by †a;x , where Œ˛�D a

and Œ �D x .

We define a family of Mx to be a choice of Mx for each x 2H1.F / such that, for all
c 2 Z and x , y 2H1.F /,

McxCy D cMxCMy :

Different choices of Mx lead to different spaces of †b;x but, conversely, a choice of a
family of Mx leads to a corresponding distinguished summand of H2.E/.

5.3 Determination of the intersection form

From this point onwards, we assume without further comment that our surface bundle
over a surface, � W E ! B , satisfies the hypotheses of Proposition 5.6 (as a special
case, these results apply to all surface bundles over surfaces with monodromy in Kg ,
by Lemma 5.8). The purpose of this subsection is to give a description of the cup
product structure on H�.E;Z/; equivalently, we will describe the intersection form.
By Poincaré duality, it suffices to determine, for each X , the set of pairings X �Y .

Proposition 5.9 Let iB and iF denote the algebraic intersection pairing on the homol-
ogy of the base and on the fiber, respectively.

(1) There exists a unique class C 2 H2.E/ such that C � ŒF �D 1 and C �†b;z D 0

for all b 2H1.B/ and z 2H1.†g/. The intersection pairing H2.E/˝H2.E/! Z
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is given as follows, where e D C 2 by definition:

C ŒF � †a;z

C e 1 0

ŒF � 1 0 0

†b;w 0 0 �iB.a; b/iF .z; w/

In the case where the monodromy is contained in the Johnson kernel, we have e D 0.

(2) For any family of Mx , we have

Ea �Eb D iB.a; b/ŒF �;

Mx �Eb D†b;x;

Mz �Mw � ŒF �D iF .z; w/:

(3) Let � W B0!E0 be a partial section for which Œ!� �D 0 2H1.F /. Associated to
such a section is a lift of � W H1.B/!

V3
H=H to Q� W H1.B/!

V3
H . The choice

of � gives rise to a splitting

H3.E/D �
!.H1.B//˚H1.M /D fEb; b 2H1.B/g˚ fMz; z 2H1.F /g

relative to which

Mx �My �Mz �Eb DMx �My �†b;z D Q�.b/.x ^y ^ z/:

In the case where the monodromy is contained in the Johnson kernel, we can take the
canonical lift Q� � 0 and, for this family of Mx , we have

C �Mx D 0 and C 2
D 0

for all x 2H1.†g/.

Remark The intersection pairing Hn�kE ˝ HkE ! Z identifies Hn�kE with
Hom.HkE;Z/ and hence with H kE by the universal coefficients theorem, since the
homology of a surface bundle over a surface with monodromy in Ig is torsion-free
(see Proposition 3.1). Therefore, Proposition 5.9 can also be viewed as a description of
the cup product in H�.E/.

Proof Before beginning the proof of the statements, a comment on orientations is in
order. Recall that if X and Y are embedded surfaces intersecting transversely, then
X \Y is oriented via the convention that

N.X /˚N.Y /˚T .X \Y /
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should be positively oriented, where, for W D X or W D Y , N.W / is oriented
by the convention that N.W / ˚ T .W / be positively oriented with respect to the
orientation fixed on W . Note that relative to this convention, if X is of odd codimension,
then X �X D 0; we will often employ this fact without comment in the sequel.

Recall that the submanifolds †x �M� and Mz �E have been oriented using a “base
first” convention; see (3) and (4). As remarked already in the proof of Proposition 4.1,
E itself is oriented by selecting orientations for B and F . It is a somewhat tedious
process to go through and verify the signs on all of the intersections being asserted in
this theorem, so we omit the full verification of these results. At the same time, the
reader who is interested in verifying the calculations should have no trouble doing so
by carefully tracking the orientation conventions we have laid out.

It will turn out to be most natural to construct C after verifying the statements not
involving C . We begin with computing †a;z �†b;w . These are represented by surfaces
contained in some E˛ and Eˇ , respectively, where they are tube surfaces constructed
from curves  and ı . We can arrange it so that ˛ and ˇ intersect transversely and
such that, over these points, the surfaces intersect in their tube regions. Following
the orientation conventions as above, one verifies that the local intersection at such a
point .p; q/, written I.p;q/ , is equal to �IpIq , where Ip denotes the local intersection
of ˛ and ˇ relative to the orientation on B and Iq is the local intersection of  and ı
relative to the orientation on F . Summing over all local intersections gives the result
in the lower right-hand corner of the table in Proposition 5.9(1).

The relation ŒF � �†a;z D 0 is easy to verify, by taking ŒF � to be represented by a fiber
not contained in the E˛ containing †a;z . This same idea also shows ŒF �2 D 0, by
picking representative fibers over distinct points.

Let us turn now to Proposition 5.9(2). If E˛ and Eˇ intersect transversely at a point,
then E˛ \Eˇ D F , the fiber over the point of intersection; a check of the orientation
conventions shows that the orientation on F given by the intersection convention agrees
with the predetermined orientation, so that

Ea �Eb D iB.a; b/ŒF �;

as asserted.

The manifolds M were constructed so as to intersect each Eb in a tube surface, so
the relation

Mz �Eb D†b;z

can be taken as a definition of the orientation on †b;z . We choose this over the
alternative because it can be verified that, under this convention, the orientation on †b;z

agrees with the “base first” convention discussed above.
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Now let Mx and My be given and consider Mx �My � ŒF �. By perturbing the one-
skeleton of B , it can be arranged so that the plugs for Mx and My are disjoint, the
cap regions intersect transversely and the representative fiber intersects Mx and My

in their tube regions. The local picture therefore becomes the intersection of x and y

on F . A check of the orientation convention then shows

Mx �My � ŒF �D iF .x;y/:

Turning to Proposition 5.9(3), consider now a four-fold intersection

Mx �My �Mz � ŒEˇ �:

We will assume without further comment that the intersection of representative subman-
ifolds has been made suitably transverse by choosing one-skeleta wisely. The Mw were
constructed so that the problem of computing Mx �My �Mz � ŒEˇ � is exactly the same as
the problem of computing the corresponding †x �†y �†z inside the 3–manifold Eˇ ,
up to a sign which records whether the orientation on Mx � ŒEˇ � agrees with the
orientation on the corresponding †x �Eˇ ; the convention Mx �Eb D†x;b makes
this sign positive. Lemma 5.2 shows that, within Eb , there exist choices of homology
classes †x such that

†x �†y �†z D Q�.b/.x ^y ^ z/:

Recall from Lemma 5.2 that the †x are obtained by starting with an arbitrary fam-
ily †0x and adding appropriate multiples of ŒF �. By the preceding, if a 2 B satisfies
iB.a; b/D 1, then

.MzCEa/ �Eb DMz �EbC ŒF �:

This shows that, by adding appropriate multiples of Ea to Mz (as specified by the
formulas in Lemma 5.2), for a given b the formula

(5) Mx �My �Mz � ŒEˇ �D Q�.b/.x ^y ^ z/

can be made to hold. By choosing a symplectic basis for H1.B/, this can be made to
hold for all b 2H1.B/ simultaneously.

It therefore remains to construct the class C . If x , y 2H1.†g/ satisfy iF .x;y/D 1,
then ŒF � �Mx �My D 1. Similarly, if ˛ and ˇ are loops in B intersecting transversely
exactly once and Mx and My are as above, then

(6) †˛;x �†ˇ;y D†˛;x �Mx �Eˇ D˙1:

As the space spanned by ŒF � and the †b;x classes has codimension one in H2.E/,
(5) and (6) together show that the space of classes in H2.E/ pairing trivially with the
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space of Mx has dimension at most one. We claim that

C DMx1
�My1

C

X
.b;z/2B�F

Q�.b/.x1 ^y1 ^ z/† Ob Oz

has all the required properties; here, B and F are symplectic bases for H1.B/

and H1.F /, respectively, the map x 7! Ox satisfies i.x; Ox/D 1, x1 2 B and Ox1 D y1 .
Recall that C is asserted to have the following properties: C � ŒF �D 1 and C �†b;z D 0

for all b 2 H1.B/ and z 2 H1.†g/. Additionally, when the monodromy of E is
contained in the Johnson kernel, we require C 2 D 0 and C �Mx D 0 for Mx in the
family associated to the lift of � to the zero homomorphism. The proof is a direct
calculation. For C � ŒF �, one has, by Proposition 5.9(1) and then Proposition 5.9(2),

C � ŒF �D

�
Mx1
�My1

C

X
.b;z/2B�F

Q�.b/.x1 ^y1z/† Ob Oz

�
� ŒF �DMx1

�My1
� ŒF �D 1:

Computation of C �†b;z proceeds by Proposition 5.9(3) and Proposition 5.9(1), re-
spectively:

C �†b;z DMx1
�My1

�†b;zC Q�.b/.x1 ^y1 ^ z/.† Ob Oz/ �†b;z

D Q�.b/.x1 ^y1 ^ z/� Q�.b/.x1 ^y1 ^ z/

D 0:

When the monodromy of E is contained in Kg , the above formula for C simplifies
to C DMx1

�My1
, from which it is apparent that C 2D 0. To see that C �Mx D 0 for

all x , we will apply Poincaré duality to see that it suffices to show that

C �Mx �Y D 0

for all classes Y 2H3E . Since Mx �Eb D†bx and we have shown C �†bx D 0, it
remains only to consider C �Mz �Mw . Expanding Mz �Mw in the additive basis for
H2.E/,

Mz �Mw D ˛ŒF �CˇC C
X

.b;z/2B�F

b;z† Ob;Oz :

As the monodromy of E is contained in Kg , we have Mz �Mw �†b;x D 0; applying
this in coordinates for some .b;x/ 2 B�F gives, by applying the prior formulas,

0D

�
˛ŒF �CˇC C

X
.b;z/2B�F

b;z† Ob;Oz

�
�†b;x D�b;x;

so that all b;z are 0. Consequently, Mz �Mw D ˛ŒF �CˇC . Recalling that ŒF �2 D
C 2 D 0 and that .Mz �Mw/

2 D 0, this implies ˛ˇ D 0.
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Also,
iF .z; w/DMz �Mw � ŒF �D ˇ:

Therefore, we conclude that, in the case iF .z; w/¤ 0,

Mz �Mw D iF .z; w/C:

As C 2 D 0, this shows the result in this case. Now suppose that iF .z; w/D 0. Then
we can find z0 such that Mz �Mz0 D cC by the above, with c ¤ 0, then

0DMz �Mw �Mz �Mz0 D cMz �Mw �C:

This shows that Mz �Mw �C D 0 for all z and w , finishing the proof of Proposition 5.9.

6 Multisections and splittings on rational cohomology

Let pW E! B be a surface bundle over an arbitrary base space B equipped with a
section � W B!E . Then there is an associated splitting of H 1.E;Z/ as a direct sum,

(7) H 1.E;Z/D Im p�˚ ker ��:

The condition that pW E ! B admit a section is restrictive. However, recent work
of Hamenstädt shows that all surface bundles over surfaces with zero signature admit
multisections (see Theorem 6.2). In this section, we develop some necessary machinery
showing how a multisection of a surface bundle gives rise to a splitting of H 1.E;Q/,
similarly to (7). The results of this section will be required in the proof of Theorem 1.1.

Remark 6.1 Theorem 6.2 is the only result in this section that requires the base
space B to be a surface of genus g � 2. Lemma 6.3 and Proposition 6.4 are valid for
any base space B .

Let Confn.E/ denote the configuration space of n unordered distinct points in E and
let PConfn.E/ denote the space of n ordered distinct points in E . The symmetric
group Sn on n letters acts freely on PConfn.E/ by permuting the order of the points,
and PConfn.E/=Sn D Confn.E/.

By a multisection of pW E! B , we mean a map

� W B! Confn.E/

for some n� 1 such that the composition

B! Confn.E/! Bn=Sn
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is given by x 7! Œx; : : : ;x�. In other words, a multisection selects n distinct unordered
points in each fiber. A pure multisection is a map

� W B! PConfn.E/

such that the composition
B! PConfn.E/! Bn

is given by x 7! .x; : : : ;x/. Our interest in multisections is due to the following result
of Hamenstädt (see [5]; also personal communication, 2015):

Theorem 6.2 (Hamenstädt) Let pW E! B be a surface bundle over a surface such
that the signature of E is zero (eg a bundle with at least one fibering with monodromy
lying in Ig ). Then pW E! B has a multisection � of cardinality 2g� 2.

We will use this result to obtain a splitting on H�.E;Q/. As (7) indicates, this is
straightforward when the multisection is pure; the work will be to obtain the required
maps for general multisections. First note that, by taking a finite cover zB! B , we
can pull the bundle back to QpW zE! zB so that the multisection pulls back to a pure
multisection

 W zB! PConfn. zE/:

Moreover, we can assume that the covering zB! B is normal with deck group � . By
pulling back the � action on zB , we see that � also acts on zE , by sending the fiber
over b to the fiber over  .b/. Then the multisection  is in fact �–equivariant. This
suggests the following lemma:

Lemma 6.3 Let z� W zB! zE be a �–equivariant section. Then there is an induced map
on �–invariant cohomology:

z��W H�. zE;Q/� !H�. zB;Q/� :

As a result, the transfer map

��W H�. zB;Q/!H�.B;Q/

is injective when restricted to z��.H�. zE;Q/�/.

Proof If f W X ! Y is any �–equivariant map of topological spaces, then the map
f �W H�.Y /!H�.X / will be equivariant, so will restrict to a map on the �–invariant
subspaces. Transfer (see [6]) gives an identification H�. zB;Q/� �H�.B;Q/ and the
remaining statement follows.
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We now come to the main result of the section. This asserts that, when pW E ! B

is a surface bundle with a multisection � W B ! Confn.E/, there exists a map
y��W H�.B;Q/!H�.E;Q/ with many of the same properties as (the pullback of)
an actual section map.

Proposition 6.4 Suppose � W B! Confn.E/ is a multisection. Then there exist maps

y��WH�.E;Q/!H�.B;Q/;

y��WH�.B;Q/!H�.E;Q/;

with the following properties:

(1) y�� ıp�W H�.B/!H�.B/D id;

p� ı y��W H�.B/!H�.B/D id :

(2) The maps y�� and y�� are adjoint under the evaluation pairing. That is, for all
˛ 2H�.E/ and x 2H�.B/,

h˛; y��xi D hy�
�˛;xi:

(3) If ˛ 2 ker y�� then, for any ˇ 2H�.E;Q/ and any x 2H�.B;Q/,

h˛ ^ ˇ; y��.x/i D 0:

Consequently, y�� induces a splitting

(8) H 1.E;Q/D Im p�˚ ker y��:

Proof Begin by assuming that the multisection is pure. Let pi W PConfn.E/!E be
the projection onto the i th coordinate for i D 1; : : : ; n. We define

y��.˛/D
1

n

nX
iD1

��.p�i .˛//;

y��.x/D
1

n

nX
iD1

.pi/�.��.x//:

Then properties (1)–(3) follow by direct verification.

In the general case, let cW zB ! B be a normal covering such that � pulls back
to a pure multisection  . We will use Nc to denote the covering zE ! E . Let
��W H�. zB;Q/! H�.B;Q/ be the transfer map, normalized so that c� ı �� D id.
Then define y��W H�.E;Q/!H�.B;Q/ by

y�� D �� ı y � ı Nc�:
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Similarly, define y��W H�.B;Q/!H�.E;Q/ by

y�� D Nc� ı y � ı ��:

For what follows, it will be useful to refer to the following diagram:

H�. zE/

y �

��

��
//
H�.E/

Nc�
oo

y�

��

H�. zB/

Qp�

OO

��
//
H�.B/

c�
oo

p�

OO

By definition,
y�� ıp� D �� ı y � ı Nc� ıp�:

By commutativity, Nc� ıp� D Qp� ı c� . Then

�� ı y � ı Nc� ıp� D �� ı y � ı Qp� ı c� D �� ı c� D id :

Here we have used the property y � ı Qp� D id for the pure multisection  as well as
our normalization convention �� ı c� D id for the transfer map. A similar calculation
proves the corresponding result for y � and (1) follows.

Statement (2) follows from the observation that the cohomology and homology transfer
maps are adjoint under the evaluation pairing. That is, if zX !X is a normal covering
space with deck group � then, for x 2H�.X / and ˛ 2H�. zX /,

h˛; ��.x/i D h�
�.˛/;xi:

As y � and Nc� certainly also enjoy this adjointness property, so does y�� , and (2)
follows.

To establish (3), suppose ˛ 2 ker y�� and take ˇ 2H�.E;Q/ and x 2H�.B;Q/. As
the transfer map is not a ring homomorphism, (3) does not follow immediately from (2).
However, we see that

h˛ ^ ˇ; y��.x/i D hy�
�.˛ ^ ˇ/;xi D

˝
��.. y � ı Nc�/.˛/ ^ . y � ı Nc�/.ˇ//;x

˛
:

It therefore suffices to show that y � ı Nc�.˛/ D 0. This follows from Lemma 6.3.
Indeed, Nc�.˛/ 2 H�. zE;Q/� and y � , being a sum of �–equivariant maps, is itself
�–equivariant, so y � ı Nc� takes image in H�. zB;Q/� . On the one hand, we have

0D y��˛ D �� ı y � ı Nc�.˛/

by assumption. Also, by Lemma 6.3, �� is injective on the image of y � ı Nc� , so that
y � ı Nc�.˛/D 0 as desired.
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7 Unique fibering in the Johnson kernel

This section is devoted to the proof of Theorem 1.1. The outline is as follows. Let
p1W E!B1 be a surface bundle with monodromy in the Torelli group Ig and suppose
there is a second distinct fibering p2W E! B2 with fiber F2 . The proof proceeds by
analyzing ŒF2� in the coordinates on H�.E/ coming from the Torelli fibering p1 . On
the one hand, the intersection form in these coordinates is completely understood by
virtue of Proposition 5.9. On the other, ŒF2� is realizable as an intersection of classes
induced from H1.B2/. Under the assumption that the monodromy of p1 is contained
in Kg and not merely Ig , it will follow that there is a unique possibility for ŒF2�. The
final step will be to extract the condition that the genera of F2 and B1 must be equal
from the cohomology ring H�.E/ and to argue that this enforces the triviality of either
bundle structure.

The fundamental class of a second fiber In this subsection we will compute ŒF2�

in the coordinates on H2 coming from the fibering p1 . The results are formulated
under the more general assumption that the monodromy of p1 lie in Ig rather than Kg ,
because we feel that the arguments are clearer in this larger context. The main objective
is Lemma 7.3.

Suppose that p1W E! B1 is a bundle with monodromy lying in Ig . Suppose there
is a partial section � W B0!E0 such that Œ!� �D 0 2H1.F /, giving rise to a lift Q� of
the Johnson homomorphism to

V3
H ; then, by Proposition 5.9(3), there is a natural

splitting
H3.E/� p!

1H1.B1/˚H1.F1/:

We use this direct sum decomposition to define the projections

P W H3.E/! p!
1H1.B1/ and QW H3.E/!H1.F /

and we consider the restrictions of P and Q to p!
2
.H1.B2// for a second fibering

p2W E! B2 . Where convenient, we will also define P and Q on H1.B2/ directly,
by precomposing with the injection p! .

Lemma 7.1 For any second fibering p2W E! B2 , the restriction of Q to H1.B2/

is a symplectic mapping with respect to diF1
on H1.F1/ and iB2

on H1.B2/, where
d D ŒF1� � ŒF2� is the algebraic intersection number of the two fibers.

Proof There exist classes x , y 2 H1.B2/ such that x � y D 1 2 H0.B2/, so that
ŒF2�D p!

2
x �p!

2
y and there are expressions

p!
2x D PxCQx; p!

2y D PyCQy:
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Consequently,

ŒF2�D Px �PyCPx �Qy �Py �QxCQx �Qy:

By Proposition 5.9, ŒF1� �Pz D 0 for all z 2H1.B2/, so that

d D ŒF1� � ŒF2�D ŒF1� �Qx �Qy;

with the first equality holding by assumption. The condition ŒF2� D p!
2
x � p!

2
y is

equivalent to iB2
.x;y/D 1. By Proposition 5.9,

d D ŒF1� �Qx �Qy D iF1
.Qx;Qy/;

proving the claim.

As in the above proof, let x , y 2H1.B2/ satisfy x � y D 1. By Poincaré duality, in
order to determine ŒF2� it suffices to determine the collection of cup products ŒF2� �Z

for Z 2 H2.E/. Relative to the splitting of H2.E/ coming from p1 (where the
monodromy lies in Ig ), in particular we must determine ŒF2� �†b;z , where b 2H1.B1/

and z 2H1.F1/.

Lemma 7.2 Take x , y2H1.B2/ satisfying x�yD1. For b2H1.B1/ and z2H1.F1/,
let †b;z be the associated element of H2.E/. Then

(9) ŒF2��†b;zD iB1
.Px; b/iF1

.Qy; z/�iB1
.Py; b/iF1

.Qx; z/C�.b/.Qx^Qy^z/:

In particular, if z 2 hQx;Qyi? then (9) simplifies to

(10) ŒF2� �†b;z D �.b/.Qx ^Qy ^ z/:

In fact, for all z2H1.F1/ there exist pairs xz , yz 2H1.B2/ such that z2hQxz;Qyzi
?

holds, so that, for all b and z , (10) is satisfied for this choice of xz and yz .

Proof The formulas in (9) and (10) follow directly from the description of the intersec-
tion form given in Proposition 5.9. The existence of a suitable x and y for a given z is
nothing but a matter of symplectic linear algebra. Since we will use some features of the
construction later on, we give a detailed explanation. Lemma 7.1 shows that W D Im Q

is a symplectic subspace of H1.F1/, so we can take a symplectic complement W ? .
Any z can therefore be written as wCw0 with w 2W and w0 2W ? . If wD 0 there
is nothing to show. Otherwise, extend w to a symplectic basis for W such that wD x1 .
As B2 has genus at least 2, this basis includes x2 and y2 and, as W D Im Q, we can
select xz and yz in H1.B2/ with Qxz D x2 and Qyz D y2 .

We conclude this subsection by amalgamating the work we have done in the previous
two propositions in order to give a description of ŒF2�.
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Lemma 7.3 Let p2W E ! B2 be a second fibering. The choice of partial section
� W B0!E0 furnishes H2.E/ with the splitting

H2.E/D hŒF1�i˚ .H1.B1/˝H1.F1//˚H2.B1/;

with H1.B1/˝H1.F1/ spanned by the set of †b;z where b and z range in symplectic
bases B and F for H1.B1/ and H1.F1/, respectively, and H2.B1/ is spanned by C , as
in Proposition 5.9. Relative to this splitting of H2.E/ there is the following expression
for ŒF2�:

(11) ŒF2�D .ı� 2de/ŒF1�C dC C
X

b2B;z2F

Q�.b/.Qxz ^Qyz ^ z/† Ob Oz :

Here, ı D iB1
.Px;Py/CQx �Qy �C for any choice of x , y 2 H1.B2/ satisfying

x � y D 1, e D C 2 and d D ŒF1� � ŒF2� (the algebraic intersection of the two fibers).
Also, Ox denotes the symplectic dual of x relative to the chosen symplectic basis.

Proof Suppose V is a free Z–module equipped with a nondegenerate symmet-
ric bilinear pairing h � ; � i. Suppose, moreover, that there exists a generating set
AD fa1; : : : ; ak ; b1; : : : ; bkg with the property that hai ; aj i D hbi ; bj i D 0 for all i

and j , hai ; bj iD 0 for i ¤ j , and hai ; biiD 1. Then any element x 2V is expressible
in the form

(12) x D

kX
iD1

hx; aiibi C

kX
iD1

hx; biiai :

We will apply this to V DH2.E/ with the intersection pairing; in order to do this we
must find a suitable generating set A. Via Proposition 5.9, the space H1.B1/˝H1.F1/

is orthogonal under � to H2.B2/ and to H2.F1/ and, moreover, the collection of †b;z

for .b; z/ 2 B�F is such a generating set on this subspace. We also have ŒF1� �C D 1

as well as .ŒF1�/
2 D 0 and C 2 D e . Therefore, we can take

AD fŒF1�;C � eŒF1�g[ f†b;z j .b; z/ 2 B�Fg:

The only intersection that remains to be computed is ŒF2� � C . As Px � Py D

iB1
.Px;Py/ŒF1�, a direct computation gives

ŒF2� �C D .Px �PyCPx �Qy �Py �QxCQx �Qy/ �C

D Px �Py �C CQx �Qy �C

D iB1
.Px;Py/CQx �Qy �C D ı:

By assumption, ŒF1� � ŒF2�D d , and (10) computes ŒF2� �†b;z . Therefore we may insert
these computations into (12) to obtain (11).
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Rigidity in the Johnson kernel We now assume, as is required for Theorem 1.1,
that the monodromy of p1 is contained in Kg . As noted in the previous section, the
closed Johnson kernel Kg coincides with the kernel of � W Ig!

V3
H=H ; similarly,

the pointed Johnson kernel Kg;� is the kernel of � W Ig;� !
V3

H . We also noted
above that if � ı �W H1.B/!

V3
H=H is identically zero then there is a canonical

lift Q� W H1.B/!
V3

H , namely zero. This furnishes the (co)homology of E with a
canonical splitting in which all cup products in (10) vanish.

In order to prove the main result of this section, we will compute ŒF2� and see that
it is “as simple as possible” in the coordinates coming from p1 , the fibering with
monodromy in Kg . This will be accomplished via Lemma 7.3. Per our choice of lift Q� ,
the terms expressed via the Johnson homomorphism all vanish, so that

ŒF2�D aŒF1�C dC

for some a 2 Z. The coefficient a is determined by ŒF2� � C or, equivalently, by
ı D iB2

.Px;Py/ (by Proposition 5.9(3), Qx �Qy �C D 0). This can be determined
from Lemma 7.2.

Lemma 7.4 Let E be a 4–manifold with two fiberings as a surface bundle over a
surface, p1W E!B1 and p2W E!B2 . Define the projection P W H1.B2/!H1.B1/.
Suppose that the monodromy for the bundle structure associated to p1 lies in Kg .
Then P � 0 and, consequently ı D 0.

Proof Returning to (9), in the Johnson kernel setting ŒF2��†b;z and Q�.b/.Qx^Qy^z/

are both zero for all x , y and z . Taking z to be any element satisfying iF1
.Qy; z/¤ 0

and iF1
.Qx; z/D 0, (9) simplifies to iB1

.Px; b/D 0. Since this is true for all b , we
conclude that Px D 0 and, since any x 2H1.B2/ has a suitable y such that (9) holds,
we conclude that P � 0 and ı D 0, as claimed.

With this in hand, we can apply Lemma 7.3 (recalling from Proposition 5.9(3) that eD0)
to see that ŒF2� is as simple as possible:

(13) ŒF2�D dC:

As was noted following the statement of Proposition 3.1, ŒF2� must be a primitive class,
so d D˙1. We conclude that d D 1 (as d � 0 by Proposition 4.1). We record this
fact for later reference:

Lemma 7.5 Let p1W E ! B1 be a surface bundle over a surface with monodromy
in Kg . Suppose there is a second fibering p2W E! B2 . Then

deg.p1 �p2/D 1:
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Proposition 4.1 asserts the equality of deg.p1 �p2/ with deg.p2jF1
W F1! B2/ and

deg.p1jF2
W F2! B1/. Consequently,

deg.p2jF1
W F1! B2/D deg.p1jF2

W F2! B1/D 1:

Remark 7.6 Observe that Lemma 7.5 supplies a proof of the missing assertion
.1/D) .3/ in Proposition 2.2, namely that, if E is a surface bundle over a surface
with monodromy in the Johnson kernel, then any second fibering necessarily yields a
bi-projection with nonzero degree. Of course, the assertion that any of the conditions
(1)–(3) of Proposition 2.2 are equivalent to the bundle E being a product is the content
of Theorem 1.1.

Cohomology: Splittings coming from multisections In order to complete the proof
of Theorem 1.1, we will combine the work we have done above with an analysis of
what the (co)homology of E looks like with respect to the coordinates coming from
the second fibering (where the monodromy need not be contained in Ig ). The most
convenient setting for this portion of the argument is in the cohomology ring, so we
pause briefly to establish some preliminaries.

Most of what we have established vis-à-vis the intersection pairing on H�.E/ is directly
portable to the setting of the cup product in cohomology. In particular, the maps

p�i W H
�.Bi/!H�.E/

for i D 1, 2, are injections. We let �i 2H 2.Bi/ be an integral generator compatible
with the chosen orientations; it is easy to see that p�i .�i/ is Poincaré dual to ŒFi �.
Relative to a choice of splitting

H 1.E/D p�1H 1.B1/˚H 1.F1/;

there are the projection maps P W H 1.B2/! H 1.B1/ and QW H 1.B2/! H 1.F1/,
and Lemma 7.4 carries over to show that P � 0. We can also transport our analysis of
the intersection form on H�.E/. In the cohomological setting, we have proved:

Proposition 7.7 Let F1 ! E ! B1 be a surface bundle over a surface with mon-
odromy in the Johnson kernel Kg . Then E is an integral cohomology B1 �F1 , ie
there exists a canonical isomorphism

H�.E/�H�.B1/˝H�.F1/

as graded rings.

We now continue with the proof of Theorem 1.1.
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Lemma 7.8 Suppose that the genus of B2 is strictly smaller than that of F1 . Then
there exist classes x , y 2H 1.E/ annihilating p�

2
H 1B2 (ie x ^ p�

2
zD y ^ p�

2
zD 0

for all z 2H 1.B/), such that x ^ y Dˆ1 , where ˆ1 2H 2.F1/ is a generator.

Proof The cohomological formulation of Lemma 7.4 shows that

p�2H 1.B2/�H 1.F1/:

By (the cohomological reformulation of) Lemma 7.1, p�
2
H 1.B2/ is in fact a symplectic

subspace of H 1.F /, so there exists a symplectic complement. We can then take the
desired x and y to be suitable elements of this complement.

To finish the proof of Theorem 1.1, we will examine where x and y must live, relative
to coordinates on H�.E/ coming from the fibering p2 . At this point, the results of
Section 6 come into play. In particular, (8) endows H 1.E;Q/ with a splitting

H 1.E;Q/D Im p�˚ ker y��:

For the remainder of the proof, we will assume that all of our cohomology groups have
rational coefficients.

Lemma 7.9 Let pW E! B be any surface bundle over a surface with multisection � .
Suppose that there exists x 2H 1.E/ annihilating p�H 1.B/. Then x 2 ker y�� .

Proof Write
x D vCp�b

with v 2 ker y�� and b 2H 1.B/. If b¤ 0, then there exists c 2H 1.B/ with b^ c¤ 0.
On the one hand, x ^ p�c D 0, by assumption. On the other, letting ŒB� 2 H2.B/

denote the fundamental class, we have by Proposition 6.4 that

hx ^ p�c; y��ŒB�i D h.vCp�b/ ^ p�c; y��ŒB�i

D hv ^ p�c; y��ŒB�iC hp
�.b ^ c/; y��ŒB�i

D 0Chy��p�.b ^ c/; ŒB�i

D hb ^ c; ŒB�i ¤ 0;

since v 2 ker y�� . In this case we have reached a contradiction, so b D 0 as desired.

Lemma 7.10 Let F1!E!B1 be a surface bundle over a surface with monodromy
in Kg and suppose there is a second fibering p2W E! B2 . Let g denote the genus
of F1 and h denote the genus of B2 . Then g D h.
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Proof We have already established (see Lemma 7.5) that

deg.p2jF1
/D 1:

As p2 has positive degree, we conclude immediately that g� h. Suppose g> h. Then
there exist classes x , y 2H 1.E/ as in the statement of Lemma 7.8. We will make
use of the existence of a multisection � of p2W E! B2 so that, by Lemma 7.9, we
must have x , y 2 ker y�� . So, by Proposition 6.4,

hx ^ y; y��ŒB2�i D 0:

In the notation of Proposition 7.7, both p�
2
H 1.B2/ and the classes x and y are

contained in H 1.F1/ and, as the image of

^W 2̂H 1.F1/!H 2.F1/

is one-dimensional (since F1 is a surface), we conclude that x ^ y D p�
2
.�2/, where

�2 2H2.B2/ is a generator. So, then

hx ^ y; y��ŒB2�i D hp
�
2 .�2/; y�

�ŒB2�i D h�2; ŒB2�i D 1:

This is a contradiction; necessarily g D h.

This shows that p2jF1
is a map of degree one between surfaces of the same genus and

thus, as is well known,
.p2/�W �1F1! �1B2

must be an isomorphism.

End of proof of Theorem 1.1 At this point, we turn to an analysis of the fundamental
group. Via the long exact sequence in homotopy for a fibration, there is an exact
sequence

1! �1Fi! �1E! �1Bi! 1

for i D 1, 2. Consequently, the kernel of

.p1 �p2/�W �1E! �1B1 ��1B2

is given by �1F1 \ �1F2 . On the other hand, this is also the kernel of the cross-
projection

�1F1! �1B2;

which was just shown to be an isomorphism. We conclude that .p1 � p2/� is an
isomorphism.
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The monodromy of the bundle E can be read off from the fundamental group as
the map �1B1! Out.�1F1/�Mod.†g/ (the latter isomorphism coming from the
theorem of Dehn, Nielsen, and Baer). Since �1E is a product, this map is trivial. The
correspondence (1) then shows that E , being a surface bundle with trivial monodromy,
is diffeomorphic to B1 �B2 . This completes the proof of Theorem 1.1.
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