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The algebraic duality resolution at p D 2

AGNÈS BEAUDRY

The goal of this paper is to develop some of the machinery necessary for doing
K.2/–local computations in the stable homotopy category using duality resolutions at
the prime pD 2 . The Morava stabilizer group S2 admits a surjective homomorphism
to Z2 whose kernel we denote by S1

2
. The algebraic duality resolution is a finite

resolution of the trivial Z2ŒŒS1
2��–module Z2 by modules induced from representations

of finite subgroups of S1
2 . Its construction is due to Goerss, Henn, Mahowald and

Rezk. It is an analogue of their finite resolution of the trivial Z3ŒŒG1
2
��–module Z3 at

the prime p D 3 . The construction was never published and it is the main result in
this paper. In the process, we give a detailed description of the structure of Morava
stabilizer group S2 at the prime 2 . We also describe the maps in the algebraic duality
resolution with the precision necessary for explicit computations.

55Q45; 55T99, 55P60

1 Introduction

Fix a prime p and recall that LnS is the Bousfield localization of the sphere spectrum
S with respect to the wedge K.0/ _ � � � _K.n/, where K.m/ is the mth Morava
K–theory at the prime p . The chromatic convergence theorem of Hopkins and Ravenel
[27, Section 8.6] states that the p–local sphere spectrum is the homotopy limit of its
localizations LnS . Further, there is a homotopy pull-back square:

LnS

��

// LK.n/S

��
Ln�1S // Ln�1LK.n/S

In theory, the homotopy groups of S can be recovered from those of its Morava K–
theory localizations LK.n/S . For this reason, computing ��LK.n/S is one of the
central problems in stable homotopy theory. A detailed historical account of chromatic
homotopy theory can be found in Goerss, Henn, Mahowald and Rezk [14, Section 1].

The difficulty of computing ��LK.n/S varies with p and n. The computation of
��LK.1/S is related to K–theory and is now well understood. For n � 3, almost
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3654 Agnès Beaudry

nothing is known, which leaves the case nD 2. For p � 5, ��LK.2/S was computed
by Shimomura and Yabe in [33]. Behrens gives an illuminating reconstruction of their
results in [4]. The case when p D 3 proved much more difficult than the problem for
p � 5. It is now largely understood due to the work of Shimomura, Wang, Goerss,
Henn, Karamanov, Mahowald and Rezk (see Goerss and Henn [12], Goerss, Henn and
Mahowald [13], Goerss, Henn, Mahowald and Rezk [14; 15], Henn, Karamanov and
Mahowald [18] and Shimomura and Wang [32]).

The major breakthrough in understanding the case of n D 2 and p D 3 was the
construction by Goerss, Henn, Mahowald and Rezk [14] of a finite resolution of
the K.2/–local sphere called the duality resolution. The duality resolution comes
in two flavors. The algebraic duality resolution is a finite resolution of the trivial
Z3ŒŒG2��–module Z3 by permutation modules induced from representations of finite
subgroups G of the extended Morava stabilizer group G2 . Its topological counterpart,
the topological duality resolution, is a finite resolution of E

hG2

2
, where E2 denotes

Morava E–theory. It is composed of spectra of the form †kEhG
2

, and realizes the
algebraic duality resolution. Both the algebraic duality resolution and the topological
duality resolution give rise to spectral sequences which can be used to study ��LK.2/S

at p D 3.

The existence of a resolution analogous to that of [14, Theorem 4.1] at the prime
p D 2 was conjectured by Mahowald using the computations of Shimomura [30] and
of Shimomura and Wang [31]. The central result of this paper is its construction, which
is due to Goerss, Henn, Mahowald and Rezk. The author is grateful for their blessing
to record it here.

More precisely, for the norm-one subgroup S1
2

defined in (2.3.6), we construct a
resolution of Z2 by modules which are induced from representations of finite subgroups
of S1

2
. We add a detailed description of the maps in the resolution, which will be

used in later computations. However, we do not construct a full algebraic duality
resolution of Z2 by Z2ŒŒG2��–modules as in [14, Corollary 4.2] (see Remark 1.2.3),
nor do we realize the algebraic resolution topologically as in [14, Section 5]. For work
on the topological realization of the algebraic duality resolution, we refer the reader to
Bobkova’s thesis [6].

The algebraic duality resolution has already proved to be a useful tool for compu-
tations. We use the results of this paper in [3] to compute an associated graded for
H�.S1

2
; .E2/�V .0//, where V .0/ is the mod 2 Moore spectrum. The computations of

[3] play a crucial role in [2], where we prove that the strongest form of the chromatic
splitting conjecture, as stated by Hovey in [21, Conjecture 4.2(v)], cannot hold when
nD p D 2.
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The algebraic duality resolution at p D 2 3655

1.1 Background and notation

As in Goerss, Henn, Mahowald and Rezk [14, page 779], “we unapologetically focus
on the case [p D 2] and nD 2 because this is at the edge of our current knowledge.”

We let K.2/ be Morava K–theory, so that

K.2/� D F2Œv
˙1
2 �

for v2 of degree 6, and whose formal group law is the Honda formal group law of
height two, which we denote by F2 . The Morava stabilizer group S2 is the group of
automorphisms of F2 over F4 . It admits an action of the Galois group Gal.F4=F2/.
The extended Morava stabilizer group G2 is

G2 D S2 Ì Gal.F4=F2/:

By the Goerss–Hopkins–Miller theorem (see Goerss and Hopkins [16]), the group
G2 acts on Morava E–theory E2 by maps of E1–ring spectra and, for X a finite
spectrum,

LK.2/X 'E
hG2

2
^X:

In fact, for any closed subgroup G of G2 , one can form the homotopy fixed point
spectrum EhG

2
; see the work of Hopkins and Devinatz [10] and of Davis [9]. For a

spectrum X , the action of G2 on .E2/� induces an action on

.E2/�X WD ��LK.2/.E2 ^X /:

For a closed subgroup G of G2 and a finite spectrum X, there is a convergent descent
spectral sequence

E
s;t
2
WDH s.G; .E2/tX /H) �t�s.E

hG
2 ^X /:

We describe the most relevant example for this paper here. There is a norm on the
group S2 whose kernel is denoted S1

2
(see Goerss, Henn, Mahowald and Rezk [14,

Section 1.3]). Further,

S2 Š S1
2 Ì Z2:(1.1.1)

Similarly, the norm on S2 induces a norm on G2 . The kernel is denoted G1
2

and

G2 ŠG1
2 Ì Z2:(1.1.2)

Let � be a topological generator of Z2 in G2 and �� be its action on E2 . If X is
finite, there is a fiber sequence

(1.1.3) LK.2/X !E
hG1

2

2
^X

���id
����!E

hG1
2

2
^X:
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For this reason, the spectrum E
hG1

2

2
is often called the half sphere. One approach for

computing ��LK.2/X is to compute the spectral sequence

(1.1.4) H s.G1
2 ; .E2/tX /ŠH s.S1

2; .E2/tX /
Gal.F4=F2/ H) �t�sE

hG1
2

2
^X

and then use the fiber sequence (1.1.3) to pass from ��.E
hG1

2

2
^X / to ��LK.2/X .

Computing the E2 –term of (1.1.4) can be difficult. At the prime 3, the algebraic duality
resolution of Goerss, Henn, Mahowald and Rezk constructed in [14, Theorem 4.1]
gives rise to a first quadrant spectral sequence computing the E2 –term of the analogue
of (1.1.4). One of the most important consequences of this paper is the existence of
such a spectral sequence at the prime p D 2 (Theorem 1.2.4 below).

To state the main results and describe this spectral sequence, we must introduce some
subgroups of S2 . The group S2 has a unique conjugacy class of maximal finite
subgroups of order 24. Fix a representative and call it G24 . The group G24 is
isomorphic to the semidirect product of a quaternion group denoted Q8 and a cyclic
group of order 3 denoted C3 (see Section 2.4); that is,

G24 ŠQ8 Ì C3:

However, there are two conjugacy classes of maximal finite subgroups in S1
2

. If � is
as above (1.1.3), the groups G24 and

G024 WD �G24�
�1

are representatives for the distinct conjugacy classes. The group S2 also contains a
central subgroup C2 of order 2 generated by the automorphism Œ�1�.x/ of the formal
group law F2 of K.2/. Therefore, S1

2
contains a cyclic subgroup

C6 WD C2 �C3:

Choose a generator ! of C3 and an element i in G24 such that G24 is generated by i

and ! . That is,
G24 D hi; !i:

Let j D !i!2 and k D !2j! . The group S2 can be decomposed as a semidirect
product

S2 ŠK Ì G24

for a Poincaré duality group K of dimension 4. Similarly,

S1
2 ŠK1 Ì G24

Algebraic & Geometric Topology, Volume 15 (2015)



The algebraic duality resolution at p D 2 3657

for a Poincaré duality group K1 of dimension 3; see Section 2.5. The homology of
the groups K and K1 play a central role in the construction of the duality resolution;
see Section 3.1.

The group S1
2

is a profinite group and one can define the completed group ring

Z2ŒŒS
1
2��D lim

i;j
Z=.2i/ŒS1

2=Uj �

where fUj g forms a system of open subgroups such that
T

j Uj D feg. For any closed
subgroup G of S1

2
, we let

Z2ŒŒS
1
2=G�� WD Z2ŒŒS

1
2��˝Z2ŒŒG��Z2:

1.2 Statement of the results

The main result of this paper is the following theorem.

Theorem 1.2.1 (Goerss, Henn, Mahowald and Rezk, unpublished) Let Z2 be the
trivial Z2ŒŒS

1
2
��–module. There is an exact sequence of complete left Z2ŒŒS

1
2
��–modules

0! C3

@3
�! C2

@2
�! C1

@1
�! C0! Z2! 0

where

Cp D

8<:
Z2ŒŒS

1
2
=G24�� if p D 0;

Z2ŒŒS
1
2
=C6�� if p D 1; 2;

Z2ŒŒS
1
2
=G0

24
�� if p D 3:

The resolution of Theorem 1.2.1 is called the algebraic duality resolution. The name is
motivated by the fact that the exact sequence of Theorem 1.2.1 exhibits a certain twisted
duality. To make this precise, let Mod.S1

2
/ denote the category of finitely generated left

Z2ŒŒS
1
2
��–modules. As above, let � be a topological generator of Z2 in S2 Š S1

2
Ì Z2 .

For a module M in Mod.S1
2
/, let c�.M / denote the left Z2ŒŒS

1
2
��–module whose

underlying Z2 –module is M, but whose Z2ŒŒS
1
2
��–module structure is twisted by the

element � .

Theorem 1.2.2 (Henn, Karamanov and Mahowald, unpublished) Let

C �p D HomZ2ŒŒS
1
2
��.Cp;Z2ŒŒS

1
2��/:
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There is an isomorphism of complexes of left Z2ŒŒS
1
2
��–modules:

0 // C3

f3

��

@3 // C2

f2

��

@2 // C1

f1

��

@1 // C0

f0

��

// Z2
// 0

0 // c�.C
�
0
/

c� .@
�
1
/
// c�.C

�
1
/

c� .@
�
2
/
// c�.C

�
2
/

c� .@
�
3
/
// c�.C

�
3
/ // Z2

// 0

Remark 1.2.3 The resolution of Theorem 1.2.1 has the following shortcoming: it does
not extend to a resolution of the group G2 or of the group S2 as in [14, Corollary 4.2].
This is due to the fact that (1.1.1) is a nontrivial extension when nD pD 2. For nD 2

and p � 3, S2 Š S1
2
�Zp .

One application of the algebraic duality resolution is given by the following theorem.

Theorem 1.2.4 Let M be a profinite left Z2ŒŒS
1
2
��–module. There is a first quadrant

spectral sequence

E
p;q
1
D Extq

Z2ŒŒS
1
2
��
.Cp;M /H)H pCq.S1

2;M /

with differentials dr W E
p;q
r !E

pCr;q�rC1
r . Further, there are isomorphisms

E
p;q
1
Š

8<:
H q.G24;M / if p D 0;

H q.C6;M / if p D 1; 2;

H q.G0
24
;M / if p D 3:

The spectral sequence of Theorem 1.2.4 is called the algebraic duality resolution
spectral sequence. Its computational appeal is twofold. The E1 –term is composed
of the cohomology of finite groups. Further, it collapses at the E4 –term. The d1

differentials are induced by the maps of the exact sequence in Theorem 1.2.1. In order
to compute the spectral sequence, it is necessary to have a detailed description of these
maps, which we do in Theorem 1.2.6 below.

The following result introduces some important elements in S1
2

.

Theorem 1.2.5 There is an element ˛ in K1 such that S2 is topologically generated
by the elements � , ˛ , i and ! . The group S1

2
is topologically generated by the

elements ˛ , i and ! .

To state the next result, for any element � in G24 , let

˛� D �˛�
�1˛�1:

Let S1
2

be the 2–Sylow subgroup of S1
2

. The group S1
2

admits a decreasing filtration,
denoted Fn=2S1

2
which will be defined in Section 2.2.
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The algebraic duality resolution at p D 2 3659

Theorem 1.2.6 Let e be the canonical generator of Z2ŒŒS
1
2
�� and ep be the canonical

generator of Cp . For a subgroup G of S1
2

, let IG be the kernel of the augmentation
"W Z2ŒŒG��! Z2 . The maps @pW Cp! Cp�1 of Theorem 1.2.1 can be chosen so that:

(a) @1.e1/D .e�˛/e0 .

(b) @2.e2/D‚e1 for an element ‚ in Z2ŒŒS
1
2
��C3 such that

‚� eC˛C i C j C k �˛i � j̨ �˛k mod J ;

where J is the left ideal

J D .IF4=2K1; .IF3=2K1/.IS1
2 /; .IK1/7; 2.IK1/3; 4IK1; 8/:

In particular, ‚� eC˛ modulo .2; .IS1
2
/2/.

(c) There are isomorphisms of Z2ŒŒS
1
2
��–modules gpW Cp! Cp and differentials

@0pC1W CpC1! Cp

such that

0 // C3

g3

��

@3 // C2

g2

��

@2 // C1

g1

��

@1 // C0

g0

��

// Z2
// 0

0 // C3

@0
3 // C2

@0
2 // C1

@0
1 // C0

// Z2
// 0

is an isomorphism of complexes. The map @0
3
W C3! C2 is given by

@03.e3/D �.eC i C j C k/.e�˛�1/��1e2:

Theorem 1.2.6 is the key to doing computations using the duality resolution spectral
sequence. The most difficult part of Theorem 1.2.6 is giving a good estimate for
@2W C2! C1 . A detailed description of the map @2 is given in Section 3.4. Though
such precision is not needed for our computations in [3], the hope is that it will be
sufficient for most future computations using the duality resolution spectral sequence.

1.3 Organization of the paper

Section 2 is dedicated to the description of the Morava stabilizer group in the special
case of p D 2 and n D 2. (A more general account of the structure of Sn can be
found in Goerss, Henn, Mahowald and Rezk [14, Section 1].) We begin by recalling
the standard filtration on S2 and defining the norm. This allows us to define the unit
norm subgroup S1

2
and describe its finite subgroups. In particular, we give an explicit

Algebraic & Geometric Topology, Volume 15 (2015)
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choice of maximal finite subgroup G24 in Lemma 2.4.3. In Section 2.5, we introduce
a subgroup K such that S2 Š K Ì G24 and compute the cohomology of K and of
its norm-one subgroup K1 . These results are due to Goerss and Henn but are not
published. We finish the section with a proof of Theorem 1.2.5.

In Section 3, we introduce the finite resolution of the trivial Z2ŒŒS
1
2
��–module Z2 . We

construct the algebraic duality resolution spectral sequence. We describe the duality
properties of the resolution and give a proof of Theorem 1.2.2. We end this section by
giving a detailed description of the maps in the resolution, proving Theorem 1.2.6.

The appendix, contains the results on the cohomology of profinite p–adic analytic
groups used in this paper.
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2 The structure of the Morava stabilizer group

2.1 A presentation of S2

Let F2 be the Honda formal group law of height 2 at the prime 2. It is the 2–typical
formal group law defined over F2 specified by the 2–series

Œ2�F2
.x/D x4:

The ring of endomorphisms of F2 over F4 is isomorphic to the maximal order O2 in
the central division algebra over Q2 of valuation 1

2
, which we denote by

D2 DD.Q2;
1
2
/:

We begin by describing this isomorphism. More details can be found in Ravenel [26,
A2.2; 27, Chapter 4].
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Let W DW .F4/ denote the ring of Witt vectors on F4 . The ring W is isomorphic
to the ring of integers of the unique unramified degree 2 extension of Q2 . It is a
complete local ring with residue field F4 . The Teichmüller character defines a group
homomorphism

� W F�4 !W �:

Let ! be a choice of primitive third root of unity in F�
4

, and identify ! with its
Teichmüller lift �.!/. Given such a choice, there is an isomorphism

W Š Z2Œ!�=.1C!C!
2/:

The Galois group Gal.F4=F2/ is generated by the Frobenius � . It is the Z2 –linear
automorphism of W determined by

!� D !2:

The ring O2 is a noncommutative extension of W . It is given by

O2 ŠW hSi=.S2
D 2; aS D Sa� /

for a in W . Note that any element of O2 can be expressed uniquely as a linear
combination aC bS for a and b in W . The division algebra D2 is given by

D2 ŠO2˝Z2
Q2:

The 2–adic valuation v on Q2 extends uniquely to a valuation v on D2 such that
v.S/D 1

2
. Further, O2Dfx 2D j v.x/� 0g and O�

2
Dfx 2D j v.x/D 0g. Therefore,

any finite subgroup G �D�
2

is contained in O�
2

.

Next, we describe the ring of endomorphisms of F2 and give an explicit isomorphism
End.F2/ Š O2 . A complete proof can be found in Ravenel [26, Section A2]. First,
note that

End.F2/� F4ŒŒx��:

To avoid confusion with the elements W �O2 , let � be a choice of primitive third root
of unity in the field of coefficients F4ŒŒx��. Let S.x/ correspond to the endomorphism

S.x/D x2

so that
Œ2�F2

.x/D x4
D S.S.x//D S2.x/:

Define !i.x/D �ix and 0.x/D 0. Given an element a in W , one can write it uniquely
as aD

P1
iD0 ai2

i where ai in W satisfies the equation

x4
�x D 0:
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That is, ai is in f0; 1; !; !2g. Let 
 DaCbS be an element of O2 . Let aD
P

i�0 a2i2
i

and b D
P

i�0 a2iC12i . Using the fact that S2 D 2, the element 
 can be expressed
uniquely as a power series


 D a0C 2a2C 4a4C � � �C .a1C 2a3C 4a6C � � � /S D
X
i�0

aiS
i :(2.1.1)

One can show that


 .x/D a0.x/CF2
a1.x

2/CF2
a2.x

4/CF2
� � � CF2

ai.x
2i

/CF2
� � �

is a well-defined power series in F4ŒŒx��. This determines a ring isomorphism from O2

to End.F2/.

The Morava stabilizer group S2 is the group of automorphisms of F2 . Thus,

S2 ŠO�2 :

Any element of S2 can be expressed uniquely as a linear combination aCbS for a in
W � and b in W . The center of S2 is given by the Galois invariant elements in W �,

Z.S2/Š Z�2 :

Further, the element ! in W � generates a cyclic group of order 3 in S2 , denoted C3 .
The reduction of W modulo 2 induces an isomorphism C3 Š F�

4
.

The Galois group acts on S2 by

.aC bS/� D a� C b�S:

The extended Morava stabilizer group G2 is defined by

G2 WD S2 Ì Gal.F4=F2/:

2.2 The filtration

In what follows, we use the presentation of S2 induced by the isomorphism S2 ŠO�
2

that was described in Section 2.1. That is,

S2 Š
�
W hSi=.S2

D 2; aS D Sa� /
��

for a in W . As described in Henn [17, Section 3], the group S2 admits the follow-
ing filtration.

Recall from Section 2.1 that there is a valuation v on O2 such that

v.S/D 1
2
:

Algebraic & Geometric Topology, Volume 15 (2015)
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Regard S2 as the units in O2 . For all n� 0, define

Fn=2S2 D fx 2 S2 j v.x� 1/� n=2g:

This filtration corresponds to the filtration of S2 by powers of S ; that is, for n� 1,

Fn=2S2 D f
 2 S2 j 
 D 1C anSn
C � � � g:(2.2.1)

The motivation for indexing the filtration by half integers is that the induced filtration
on Z�

2
� S2 is the usual 2–adic filtration by powers of 2.

Let
grn=2 S2 WD Fn=2S2=F.nC1/=2S2

and
gr S2 D

M
n�0

grn=2 S2:

Define S2 WD F1=2S2 . The group S2 is the 2–Sylow subgroup of S2 . The map
S2! F�

4
which sends 
 to a0 has kernel S2 . It induces an isomorphism

gr0=2 S2 Š F�4 :

Suppose that n> 0 and that 
 is an element of Fn=2S2 , so that


 D 1C anSn
C � � �

for ai as in (2.1.1). Let x
 denote the image of 
 in grn=2 S2 . For n � 1, the map
defined by x
 7! an gives a group isomorphism

grn=2 S2 Š F4:

It follows from these observations that the subgroups Fn=2S2 form a basis of open
neighborhoods for the identity, so that S2 is a profinite topological group.

Given any subgroup G of S2 , the filtration on S2 induces a filtration on G , defined
by Fn=2G D Fn=2S2\G . Let

gr G D
M
n�0

grn=2 G(2.2.2)

be the associated graded for this filtration.

The associated graded gr S2 has the structure of a restricted Lie algebra. The bracket
is induced by the commutator in S2 and the restriction is induced by squaring. In [17,
Lemma 3.1.4], Henn gives an explicit description of the structure of this Lie algebra.
We record this result in the case when p D 2 and nD 2.
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Lemma 2.2.1 (Henn) For n;m> 0, let a 2 Fn=2S2 and b 2 Fm=2S2 . Let xa be the
image of a in grn=2 S2 and xb be the image of b in grm=2 S2 . If Œa; b� denotes the
commutator aba�1b�1 , then

Œa; b�� xaxb2n

Cxa2m
xb 2 gr.nCm/=2 S2:

If P .a/D a2 , then

P .a/�

8<:
xa3 2 gr2=2 S2 if nD 1;

xaCxa2 2 gr4=2 S2 if nD 2;

xa 2 grn=2C1 S2 if n> 2:

2.3 The norm and the subgroups S1
2

and G1
2

The group S2 ŠO�
2

acts on O2 by right multiplication. This gives rise to a represen-
tation �W S2! GL2.W /:

�.aC bS/D

�
a 2b�

b a�

�
:(2.3.1)

The restriction of the determinant to S2 is given by

det.aC bS/D aa� � 2bb� :(2.3.2)

This defines a group homomorphism detW S2! Z�
2

.

Lemma 2.3.1 The determinant detW S2! Z�
2

is surjective.

Before proving this lemma, we introduce elements of S2 that will play a key role in
the remainder of this paper and in future computations. First, let

(2.3.3) � WD 1C 2!:

By Hensel’s lemma, Z2 contains two solutions of f .x/Dx2C7. One of them satisfies
p
�7� 1C 4 mod 8:

This allows us to define

(2.3.4) ˛ WD
1� 2!
p
�7

:

Note that the elements � and ˛ are in W � � S2 .

Proof of Lemma 2.3.1. The group Z�
2

is topologically generated by �1 and 3.
It suffices to show that these values are in the image of the determinant. A direct
computation shows that det.�/D 3 and that det.˛/D�1.
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Definition 2.3.2 The norm N W S2! Z�
2
=f˙1g is the composite

S2
det
�! Z�2 ! Z�2 =f˙1g:

For a prime p and an integer i � 1, let Ui D fx 2 Z�p j x � 1 mod pig. For p D 2,
there is a canonical identification

(2.3.5) Z�2 Š f˙1g �U2:

Therefore, the image of the norm is canonically isomorphic to the group U2 . Further,
the group U2 is noncanonically isomorphic to the additive group Z2 .

The subgroup S1
2

is defined by the short exact sequence

(2.3.6) 1! S1
2! S2

N
�!Z�2 =f˙1g ! 1:

Any element 
 such that N.
 / is a topological generator of Z�
2
=f˙1g determines a

splitting. The element � defined in (2.3.3) is an example. This gives a decomposition

S2 Š S1
2 Ì Z�2 =f˙1g Š S1

2 Ì Z2:(2.3.7)

Note that the group S1
2

is closed in S2 as it is the intersection of the finite index
subgroups which are the kernels of the norm followed by the projections U2! Z=2n

for n� 0.

The norm N extends to a homomorphism

N W G2! Z�2 =f˙1g �Gal.F4=F2/! Z�2 =f˙1g;

where the second map is the projection. The subgroup G1
2

is the kernel of the extended
norm and

G2 ŠG1
2 Ì Z�2 =f˙1g ŠG1

2 Ì Z2:(2.3.8)

We note that there is no splitting which is equivariant with respect to the action of the
Galois group.

The filtration on S2 induces a filtration on S1
2

and

S1
2 WD F1=2S1

2(2.3.9)

is the 2–Sylow subgroup of S1
2

.

Remark 2.3.3 Note that for odd primes p , there is a canonical isomorphism

Z�p Š Cp�1 �U1;
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where Cp�1 is a cyclic group of order p� 1. The exact sequence analogous to (2.3.6)
is given by

1! S1
2! S2! Z�p =Cp�1! 1:

Further, it has a central splitting. Therefore, when p is odd, the Morava stabilizer
group is a product

G2 ŠG1
2 �Z�p =Cp�1 ŠG1

2 �Zp:

There is no central splitting at the prime p D 2 and the extensions (2.3.7) and (2.3.8)
are nontrivial.

We will need the following result in Section 2.5 to prove Theorem 2.5.7.

Lemma 2.3.4 For n� 1,

grn=2 S1
2 D

�
F2 if n is even,
F4 if n is odd:

Proof Let F0=2Z�
2
D Z�

2
and, for n� 2 even,

Fn=2Z�2 D F.n�1/=2Z�2 WD Un=2 D f
 j 
 � 1 mod 2n=2
g:

Let 
 be in S2 . Let n� 2 be even and suppose that 
 has an expansion of the form


 � 1C an�1Sn�1
C anSn mod SnC1:

By (2.3.2),

det.
 /� 1C 2n=2.anC a�n /C an�1a�n�12n�1 mod 2n=2C1;

which is in Fn=2Z�
2

. Therefore, the determinant preserves this filtration. In fact, it
induces short exact sequences of F2 –vector spaces:

0! grn=2 S1
2! grn=2 S2! grn=2 Z�2 ! 0:

The result then follows from the fact that

grn=2 Z�2 D

�
F2 if n is even,
0 if n is odd,

and grn=2 S2 Š .F2/
2 for n� 1.
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2.4 Finite subgroups of S2

In this section, we describe the finite subgroups of S2 that will be used in the
construction of the resolution of Theorem 1.2.1. We also prove that there are two
conjugacy classes of maximal finite subgroups in S1

2
. This will be used in the proof of

Theorem 1.2.1.

Proposition 2.4.1 is a special case of Hewett [19, Theorem 1.4].

Proposition 2.4.1 (Hewett) Any maximal finite nonabelian subgroup of S2 is iso-
morphic to a binary tetrahedral group

G24 ŠQ8 Ì C3:

Here, Q8 is the quaternion group

Q8 Š hi; j j i
2
D j 2; ij i D j i;

and the action of C3 permutes i , j and ij .

Our next goal is to prove that there are two conjugacy classes of maximal finite
subgroups in S1

2
. To do this, we will need some preliminary results. Note that the

classification of conjugacy classes of maximal finite subgroups of S2 is addressed in
Hewett [20] and in Bujard [8]. According to Bujard [8, Remark 1.36], Hewett’s [20,
Theorem 5.3] is incorrect. However, [8, Theorem 1.35] in the case nD p D 2 is also
stated incorrectly. A correct statement can be found in [8, Theorem 4.30]. To avoid
confusion, we restate the results we need.

Proposition 2.4.2 (Bujard) There is a unique conjugacy class of groups isomorphic
to Q8 , and one of groups isomorphic to G24 , in S2 .

Proof For Q8 , this is [8, Lemma 1.25]. For G24 , this is [8, Theorem 1.28].

It will be useful to have explicit choices of subgroups Q8 and G24 . The proof of the
following lemma is a direct computation.

Lemma 2.4.3 (Henn) Let

i WD
1

1C2!
.1�˛S/:

Define j D !i!2 and k D !2i! D ij . The elements i and j generate a quaternion
subgroup of S2 , denoted Q8 . The elements i and ! generate a subgroup isomorphic
to G24 . Further, in D2 ,

! D�
1C i C j C k

2
:
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For H a subgroup of G , let NG.H / be the normalizer of H in G . Let CG.H / be the
centralizer of H in G . Note that the element 1C i in D�

2
is in ND�

2
.Q8/. Since the

valuation v.1C i/D 1
2

, the restriction of the valuation to the normalizer is surjective.
Therefore, there is an exact sequence

1!NS2
.Q8/!ND�

2
.Q8/!

1
2
Z! 0:

Since D2 ŠQ2.i; j /, it follows by the Skolem–Noether theorem that Aut.Q8/ can
be realized by inner conjugation in D�

2
. There is an exact sequence

1! CD�
2
.Q8/!ND�

2
.Q8/! Aut.Q8/! 0:

The next proposition describes which of these automorphisms can be realized by
conjugation in S2 .

Proposition 2.4.4 (Henn) The subgroup of Aut.Q8/ that can be realized by conju-
gation by an element of S2 is isomorphic to the alternating group A4 . It is generated
by conjugation by the elements i , j and ! .

Proof The group Aut.Q8/ is isomorphic to the symmetric group S4 . One verifies by
a direct computation that conjugation by i , j and ! generates a subgroup of Aut.Q8/

isomorphic to A4 . Let OutS2
.Q8/ be the group of automorphisms of Q8 that can be

realized by conjugation in S2 . Since CD�
2
.Q8/ŠQ�

2
and CS2

.Q8/Š Z�
2

, there is a
commutative diagram

Z�
2

��

// Q�
2

��

v // Z

��

NS2
.Q8/

��

// ND�
2
.Q8/

��

v // 1
2
Z

��
OutS2

.Q8/ // S4
// Z=2

where the columns and rows are short exact. Therefore, OutS2
.Q8/ŠA4 .

Lemma 2.4.5 Let G24 DQ8 Ì C3 . The normalizer of Q8 in S2 is given by

NS2
.Q8/Š U2 �G24:

Proof By Proposition 2.4.4, there is a short exact sequence

1! CS2
.Q8/!NS2

.Q8/!A4! 1:
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The centralizer is the subgroup Z�
2
Š C2 �U2 of S2 . Since G24 is defined by the

extension
1! C2!G24!A4! 1;

and the elements of U2 are in the centralizer of G24 , it follows that NS2
.Q8/ is

isomorphic to U2 �G24 .

Since the image of the norm is torsion free, any finite subgroup G of S2 is contained in
the kernel S1

2
. Therefore, S1

2
has the same maximal finite subgroups as S2 . However,

there are more conjugacy classes in S1
2

.

Proposition 2.4.6 There are two conjugacy classes of maximal finite subgroups in
S1

2
. One is the conjugacy class of G24 defined in Lemma 2.4.3. The other is �G24�

�1 ,
where � is any element such that N.�/ is a topological generator of U2 .

Proof Let Z�
2
� S2 be the center. Define

S0
2 WD S1

2 �U2;

where U2 is as in (2.3.5). The restriction of the determinant to U2 surjects onto .Z�
2
/2 .

Therefore, there is an exact sequence

1! S0
2! S2! Z�2 =

�
f˙1g; .Z�2 /

2
�
! 1;

and S2=S
0
2
Š Z=2. If N.�/ is a topological generator for Z�

2
=f˙1g, then � is a

representative for the nontrivial coset in S2=S
0
2

.

By Proposition 2.4.2, there is a unique conjugacy class of subgroups isomorphic to G24

in S2 . Since conjugation by any element of the center Z�
2

is trivial, any two conjugacy
classes in S1

2
differ by conjugation by an element of S2=S

0
2
Š Z=2. Therefore, there

are at most two conjugacy classes.

Next, we show that the conjugacy classes of G24 and �G24�
�1 are distinct in S1

2
.

Conjugation acts on the 2–Sylow subgroups; hence, it suffices to prove the claim for
the subgroup Q8 of G24 . Suppose that there exists an element 
 in S1

2
such that

�Q8�
�1
D 
Q8


�1:

This would imply that 
�1� is in NS2
.Q8/. By Lemma 2.4.5, 
�1� is a product z�

for z in U2 and � in G24 . This implies that � D 
 z� . However, 
 z� is in S0
2

. This
is a contradiction, since the residue class of � in S2=S

0
2

is nontrivial. Therefore, G24

and �G24�
�1 represent distinct conjugacy classes in S1

2
.
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A choice for � is the element � defined in (2.3.3). For the remainder of this paper,
G0

24
will denote

G024 WD �G24�
�1;(2.4.1)

so that G24 and G0
24

are representatives for the two conjugacy classes of maximal
finite subgroups in S1

2
.

2.5 The Poincaré duality subgroups

In this section, we introduce the subgroups K and K1 and we describe their continuous
cohomology rings H�.K;F2/ and H�.K1;F2/ as G24 –modules. The author learned
the results of this section from Paul Goerss and Hans-Werner Henn. We refer the reader
to the appendix for details on the cohomology of a profinite group.

Let K be the closure of the subgroup of S2 generated by ˛ (as defined in (2.3.4)) and
F3=2S2 . That is,

K D h˛;F3=2S2i:

Proposition 2.5.1 The subgroup K is normal in S2 . Further, S2 Š K Ì Q8 and
S2 ŠK Ì G24 .

Proof There is an isomorphism S2 Š S2 Ì C3 and ˛ commutes with the group C3 .
Further, for any element 
 in S2 , it follows from Lemma 2.2.1 that the commutator
Œ
; ˛� is in F3=2S2 . Since S2 Š S2 Ì C3 , and F3=2S2 is normal, K is also normal.
The quotient S2=K is a group of order 8 generated by the image of the elements i and
j defined in Lemma 2.4.3. The inclusion of Q8 followed by the projection to S2=K

is an isomorphism. This defines a splitting. Similarly, the group S2=K is a group of
order 24 generated by the image of ! and i , and this defines a splitting.

Corollary 2.5.2 If K1 is the kernel of the norm restricted to K , then S1
2
ŠK1 ÌG24 .

Proof The elements ˛ and � are in the group K since ˛�1� is in F3=2S2 . Therefore,
the norm restricted to K is surjective and S1

2
=K1 Š S2=K .

Our next goal is to compute the group cohomology of K and K1 . We will need a few
preliminary results.

Proposition 2.5.3 Any open subgroup of S2 or of S1
2

is a profinite 2–adic ana-
lytic group.
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Proof According to Dixon, Du Sautoy, Mann and Segal [11, Theorem 8.1], a topolog-
ical group is 2–adic analytic if and only if it has an open subgroup which is a finitely
generated powerful pro-2 group. (By [11, Definition 3.1], a pro-2 group H is powerful
if the quotient H=H 4 is abelian, where H 4 D hh4 j h 2 H i.) By Lemma 2.2.1, if
n� 3, then Fn=2S2 is topologically generated by any finite set of elements that surjects
onto Fn=2S2=F.nC2/=2S2 . Further, the image of P2W Fn=2S2!F.nC4/=2S2 is dense
by Lemma 2.2.1. If n� 4, then

ŒFn=2S2;Fn=2S2�� F.2n/=2S2 � F.nC4/=2S2:

This implies that Fn=2S2 is powerful for n � 4. Since any open subgroup G of S2

contains Fn=2S2 for some large n, it is a profinite 2–adic analytic group.

The proof for open subgroups of S1
2

is similar, using Fn=2S1
2

instead of Fn=2S2 .

By Proposition 2.5.3, open subgroups of S2 and S1
2

are compact 2–adic analytic
groups. This motivates our use of the following definition, which can be found in
Symonds and Weigel [35, Section 4].

Definition 2.5.4 Let G be a compact p–adic analytic group. Then G is a Poincaré
duality group of dimension n if G has cohomological dimension n and

H s.G;Zp ŒŒG��/Š

�
Zp if s D n;

0 if s ¤ n

as abelian groups. The right Zp ŒŒG��–module H n.G;Zp ŒŒG��/ is denoted Dp.G/ and
called the compact dualizing module. If the action of Zp ŒŒG�� on Dp.G/ is trivial, the
group G is called orientable.

Remark 2.5.5 For a Poincaré duality group G of dimension n, one can show that
Hn.G;Dp.G// is isomorphic to Zp ; see Symonds and Weigel [35, Theorem 4.4.3].
Given a choice of generator ŒG� for Hn.G;Dp.G//, the cap product induces a natural
isomorphism

H n��.G;�/
\ŒG�
���!H�.G;Dp.G/˝Zp

�/:

The following observations are useful to compute Dp.G/. Let �Dp.G/W G! Z�p be
the representation associated to the action of G on Dp.G/. Let L.G/ be the Qp –Lie
algebra associated to G , as defined in Lazard [24, Definition V.2.4.2.5]. The right
conjugation action of G on itself induces a natural right action on L.G/, and thus a
homomorphism AdW G ! Aut.L.G//. By [35, Corollary 5.2.5], if G is p–torsion
free,

�Dp.G/.g/D det.Ad.g//:
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Proposition 2.5.6 If an open subgroup U of Sn is a Poincaré duality group, then it
is orientable.

Proof This is the argument given by Strickland in the proof of [34, Proposition 5].
For any open subgroup U of Sn , L.U / is isomorphic to the central division algebra
Dn over Qp of valuation 1=n. For g in U, the action Ad.g/ is given by conjugation
in Dn , which has determinant one.

The next result relies on Lazard’s theory of groups which are équi-p–valué. We refer
the reader who is unfamiliar with the theory of Lazard to Huber, Kings and Naumann
[22, Section 2] for an overview of the terminology.

Theorem 2.5.7 For n � 3, the group Fn=2S2 is a Poincaré duality group of dimen-
sion 4. The continuous group cohomology H�.Fn=2S2;F2/ is the exterior algebra
generated by

H 1.Fn=2S2;F2/Š HomF2
.grn=2 S2˚ gr.nC1/=2 S2;F2/Š F4

2 :

Similarly, Fn=2S1
2

is a Poincaré duality group of dimension 3 and H�.Fn=2S1
2
;F2/ is

the exterior algebra generated by

H 1.Fn=2S1
2 ;F2/D HomF2

.grn=2 S1
2 ˚ gr.nC1/=2 S1

2 ;F2/Š F3
2 :

Proof We define a filtration wW Fn=2S2 ! R�C [ f1g in the sense of Lazard [24,
Definition II.1.1.1]. Let w.1/D1. For k � 0 and x 2F.nC2k/=2S2nF.nC2kC2/=2S2 ,
let w.x/D .nC 2k/=2. With this filtration, Fn=2S2 is équi-p–valué of rank 4 in the
sense of Lazard [24, V.2.2.7], with gr Fn=2S2 generated by

Fn=2S2=F.nC2/=2S2 Š grn=2 S2˚ gr.nC1/=2 S2:

To verify that w is a filtration and that Fn=2S2 is équi-p–valué with respect to w , one
uses the formulas of Lemma 2.2.1, noting that the squaring map

P W F.nC2k/=2S2=F.nC2kC2/=2S2! F.nC2kC2/=2S2=F.nC2kC4/=2S2

is an isomorphism if and only if n� 3. The result then follows from [24, Proposition
V.2.5.7.1], which states that H�.Fn=2S2;F2/ is an exterior algebra on the F2 –linear
dual of

Fn=2S2=P .Fn=2S2/Š Fn=2S2=F.nC2/=2S2 Š F2
4 Š F4

2 :

According to Symonds and Weigel [35, Theorem 5.1.5], this also implies that Fn=2S2

is a Poincaré duality group of dimension 4 (note that in [35], the authors imply in
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the third footnote that they use the terms uniformly powerful pro-p and équi-p–valué
interchangeably.)

To prove the second claim, we use the same filtration, Fn=2S1
2

. By Lemma 2.3.4,

Fn=2S1
2=F.nC2/=2S1

2 Š F4˚F2 Š F3
2 :

Recall that we use the convention that

˛� D Œ�; ˛�D �˛�
�1˛�1:

The following congruences will be used in the computations of this section:

i � 1CS mod S2; j � 1C!2S mod S2;

�1� 1CS2 mod S4; ˛ � 1C!S2 mod S4;

˛i � 1CS3 mod S4; j̨ � 1C!2S3 mod S4;

˛2
� 1CS4 mod S5; ˛� � 1C!S4 mod S5:

They are obtained by a direct computation using the definitions of � , ˛ , i and j ,
which were given in (2.3.3), (2.3.4) and Lemma 2.4.3.

Definition 2.5.8 Let

˛0 D ˛; ˛1 D ˛i ; ˛2 D j̨ ; ˛3 D ˛
2; ˛4 D ˛�;

and let xs in HomF2
.gr S2;F2/ be the function dual to the image of ˛s in gr S2 . The

action of conjugation by an element � on an element g is denoted by ��.g/.

Remark 2.5.9 The action of conjugation by � can be computed using Lemma 2.2.1
and the formula

Œ�; 
 �
 D ��.
 /:

Corollary 2.5.10 The continuous group cohomology H�.F3=2S2;F2/ is the exterior
algebra generated by

H 1.F3=2S2;F2/Š F2fx1;x2;x3;x4g

for xs as in Definition 2.5.8. The action of ˛ on H 1.F3=2S2;F2/ is trivial.

Similarly, H�.F3=2S1
2
;F2/ is the exterior algebra generated by

H 1.F3=2S1
2 ;F2/Š F2fx1;x2;x3g

with a trivial action by ˛ .
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Proof By Theorem 2.5.7, H�.F3=2S2;F2/ is an exterior algebra generated by the F2 –
linear dual of F3=2S2=F5=2S2 . This group is generated by the image of ˛1 , ˛2 , ˛3 and
˛4 of Definition 2.5.8. Therefore, H�.F3=2S2;F2/ is the exterior algebra generated by
F2fx1;x2;x3;x4g. Since ˛ is in F2=2S2 , if g is in F3=2S2 , the commutator Œ˛;g� is
in F5=2S2 . Using Remark 2.5.9, we conclude that the action of ˛ on H 1.F3=2S2;F2/

is trivial.

The second claim follows in the same way from the fact that F3=2S1
2
=F5=2S1

2
is

generated by the image of ˛1 , ˛2 and ˛3 .

Lemma 2.5.11 For ˛i as defined in Definition 2.5.8, and x̨i its image in H1.K;Z2/,
there is an isomorphism

H1.K;Z2/Š Z=4fx̨0g˚Z=2fx̨1; x̨2g˚Z2fx̨4g;

where 2x̨0 is the image of ˛3 D ˛
2 . Similarly,

H1.K
1;Z2/Š Z=4fx̨0g˚Z=2fx̨1; x̨2g:

The conjugation action of Q8 on K factors through the quotient of Q8 by the central
subgroup C2 . The induced action on H1.K;Z2/ is trivial on x̨4 . On the other
generators, it is given by

i�.x̨0/D x̨0C x̨1; j�.x̨0/D x̨0C x̨2;

i�.x̨1/D x̨1; j�.x̨1/D x̨1C 2x̨0;

i�.x̨2/D x̨2C 2x̨0; j�.x̨2/D x̨2:

Hence, H1.K
1;Z2/ is generated by the image of ˛ as a G24 –module.

Proof First, we prove that the group ŒK;K� is dense in F5=2S1
2

. Note that K is
contained in F2=2S2 . Let a and b be in K . For xa and xb as in Lemma 2.2.1,

Œa; b�D xaxb4
Cxa4xb 2 gr4=2 S2:

Since xa and xb are in F4 and x4 D x for all x in F4 , this implies that Œa; b�D 0 in
gr4=2 S2 . Therefore, Œa; b� 2 F5=2S2 .

Since the norm is multiplicative, the elements of ŒK;K� have norm one. Hence, ŒK;K�
is contained in F5=2S1

2
. Further, the map from ŒK;K� to F5=2S1

2
=F7=2S1

2
induced

by the inclusion is surjective. Indeed, F5=2S1
2
=F7=2S1

2
is generated by the images of

the elements Œ˛; Œi; ˛��, Œ˛; Œj ; ˛�� and ŒŒi; ˛�; Œj ; ˛��, all of which are in ŒK1;K1�. By
Corollary 2.5.10, this implies that the composite

ŒK1;K1� ,! ŒK;K�!H1.F5=2S1
2 ;F2/
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is surjective. According to Behrens and Lawson [5, Theorem 2.1], it then follows from
results of Koch and Serre that ŒK1;K1� and ŒK;K� are dense in F5=2S1

2
. Therefore,

ŒK1;K1�D ŒK;K�D F5=2S1
2 :

Hence, H1.K;Z2/ Š K=F5=2S1
2

and H1.K
1;Z2/ Š K1=F5=2S1

2
. Since ˛ and �

are in K , the norm N W K ! Z�
2
=f˙1g is split surjective. The image of ˛4 D ˛�

generates Z�
2
=f˙1g Š Z2 . Therefore,

H1.K;Z2/ŠH1.K
1;Z2/˚Z2fx̨4g:

Finally, H1.K
1;Z2/ is generated by the image of ˛0 D ˛ , ˛1 D ˛i and ˛2 D j̨ .

Since ˛i and j̨ are in F3=2S2 , it follows from Lemma 2.2.1 that ˛2
i and ˛2

j are in

F5=2S2 D ŒK1;K1�:

Therefore, the images of ˛i and j̨ have order 2 in K1=ŒK1;K1�. Finally, ˛2�1CS4

modulo S5 , so that the image of ˛ has order 4 in K1=ŒK1;K1�. We conclude that

H1.K
1;Z2/Š Z=4fx̨0g˚Z=2fx̨1; x̨2g:

The action of Q8 by conjugation factors through C2 D f˙1g since C2 is in the center
of S2 . The action of the generators i and j is computed using Remark 2.5.9 and the
following relations, which hold modulo S5 :

Œi; ˛�� ˛i ; Œi; ˛i �� 1; Œi; j̨ �� ˛
2; Œi; ˛��� 1;

Œj ; ˛�� j̨ ; Œj ; ˛i �� ˛
2; Œj ; j̨ �� 1; Œj ; ˛��� 1:

These relations are obtained from Lemma 2.2.1.

Corollary 2.5.12 The group K is an orientable Poincaré duality group of dimension
4 and the group K1 is an orientable Poincaré duality group of dimension 3.

Proof It is a theorem of Serre [29, Section 1] that the cohomological dimension of
a p–torsion free profinite group G is equal to the cohomological dimension of any
of its open subgroups. The group K is a 2–group, and by Lemma 2.2.1, the squaring
operation P on K has a trivial kernel. Therefore, K is torsion free. The group F3=2S2

is an open subgroup of K . Hence, the cohomological dimension of K is equal to
the cohomological dimension of F3=2S2 , so that K has cohomological dimension
4. Similarly, K1 has cohomological dimension 3 since it contains F3=2S1

2
as an

open subgroup. According to Symonds and Weigel [35, Proposition 4.4.1], a profinite
group G of finite cohomological dimension is a Poincaré duality group if and only if it
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contains an open subgroup which is a Poincaré duality group. Therefore, both K and
K1 are Poincaré duality groups.

Since K is an open subgroup of S2 , it follows from Proposition 2.5.6 that it is orientable.
It remains to prove that K1 is orientable. Let Z�

2
be the center of S2 . Let U2 � Z�

2

be as in (2.3.5). The group H DK1 �U2 is an open subgroup of S2 , and hence H

is orientable. Further, L.H /Š L.K1/˚L.U2/, and the action of H preserves the
summands. Recall from Remark 2.5.5 that the representation �D2.H /W H ! Z�

2
is

given by the determinant of the adjoint action of H on L.H /. For g in H,

det.Ad.g//D det.Ad.g/jL.K 1// det.Ad.g/jL.U2//:

Since U2 is abelian, det.Ad.g/jL.U2//D 1. It follows from the orientability of H that
det.Ad.g/jL.K 1//D 1. In particular, this holds for any g in K1, and the representation
�D2.K 1/ is trivial.

Theorem 2.5.13 (Goerss and Henn, unpublished) As an F2 –algebra,

H�.K;F2/Š F2Œx0;x1;x2;x4�=.x
2
0 ;x

2
1 Cx0x1;x

2
2 Cx0x2;x

2
4/;

where xs has degree one and is as in Definition 2.5.8. Further,

H�.K1;F2/Š F2Œx0;x1;x2�=.x
2
0 ;x

2
1 Cx0x1;x

2
2 Cx0x2/:

The conjugation action of Q8 factors through Q8=C2 Š C2 �C2 . It is trivial on x0

and x4 . On x1 and x2 , it is described by

i�.x1/D x0Cx1; j�.x1/D x1;

i�.x2/D x2; j�.x2/D x0Cx2;

so that the induced representation on H 1.K1;F2/ is isomorphic to the augmentation
ideal I.Q8=C2/, and H 2.K1;F2/ is isomorphic to the coaugmentation ideal I.Q8=C2/

�.

Proof The spectral sequence for the group extension

1! F3=2S2!K! Z=2fx̨0g ! 1

has E2 –term given by
F2Œx0�˝E.x1;x2;x3;x4/:

It follows from Lemma 2.5.11 and Lemma A.1.5 of the appendix that x2
0
D 0. Since

x3 is the function dual to the image of ˛2 in gr S2 , we have that d2.x3/D x2
0

. Using
the isomorphism H 1.K;F2/Š Hom.K;F2/ and Lemma 2.5.11, one computes that

H 1.K;F2/Š F2fx0;x1;x2;x4g:

Algebraic & Geometric Topology, Volume 15 (2015)



The algebraic duality resolution at p D 2 3677

Hence, dr .xi/D0 for i¤3. All other differentials are determined by these differentials,
and

E3 ŠE1 ŠE.x0;x1;x2;x4/:

Similarly, the E2 –term for the extension

1! F3=2S1
2!K1

! Z=2fx̨0g ! 1

is given by F2Œx0�˝E.x1;x2;x3/, and E3 ŠE1 ŠE.x0;x1;x2/.

Now we determine the multiplicative extensions. First, note that it follows from
Lemma A.1.5 that x2

4
D 0 since x4 is dual to a class that lifts to the free class x̨4 in

H1.K;Z2/. Similarly, x2
1

and x2
2

are nonzero since they lift to 2–torsion classes x̨1
and x̨2 in H1.K;Z2/. Therefore, x2

1
and x2

2
are linear combinations of x0x1 and

x0x2 . We will show that x2
1
D x0x1 . The proof that x2

2
D x0x2 is similar.

Let N be the closure of the normal subgroup of K1 generated by F6=2K1 , ˛2 and
j̨ . That is,

N D hF6=2K1; ˛2; j̨ i:

Since ŒK1;F3=2K1� � F6=2K1 , and Œ˛; j̨ � D ˛
2
j , the group K1=N is a group of

order 8 generated by the image a of ˛ and the image b of ˛i . The order of a is 2

and the order of b is 4. Further, since Œ˛; ˛i �D ˛
2
i , the group K1=N is isomorphic to

the dihedral group D8 . Now, note that

H1.D8;F2/Š F2fa; bg:

It is proved in Adem and Milgram [1, Chapter IV, Theorem 2.7] that

H�.D8;F2/Š F2Œx;y; w�=.xy/;

where x is the function dual to a and y is the function dual to aC b . Changing the
basis of H1.D8;F2/ from ha; aC bi to ha; bi sends the basis hx;yi of H 1.D8;F2/

to the basis hy0;y1i D hxCy;yi. We obtain the following presentation

H�.K1=N;F2/Š F2Œy0;y1; w�=.y
2
1 Cy0y1/:

The projection induces a map

f W H�.K1=N;F2/!H�.K1;F2/

with f .y0/D x0 and f .y1/D x1 . Therefore, x2
1
Cx0x1 D 0 in H 2.K1=N;F2/.

The action of Q8 follows from Lemma 2.5.11. The isomorphism between the repre-
sentation H 1.K1;F2/ and the representation I.Q8=C2/ defined by

0! I.Q8=C2/! F2ŒQ8=C2�
"
�! F2! 0
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is given by sending x0 to the invariant eC iCj C ij , x1 to eCj and x2 to eC i .

The following description of the integral homology of K1 will be used heavily in the
proof of Theorem 1.2.1.

Corollary 2.5.14 (Goerss and Henn, unpublished) The integral homology of K1 is
given by

Hn.K
1;Z2/D

8<:
Z2 if nD 0; 3;

Z=4˚ .Z=2/2 if nD 1;

0 if nD 2:

Proof The result for nD 1 is Lemma 2.5.11. The homology H�.K
1;F2/ is dual to

H�.K1;F2/, computed in Theorem 2.5.13. The groups Hn.K
1;Z2/ for nD 2; 3 are

computed from the long exact sequence associated to

0! Z2
2
�! Z2! F2! 0;

using the fact that Hn.K
1;F2/ and H1.K

1;Z2/ are known.

We finish this section by proving Theorem 1.2.5.

Proof of Theorem 1.2.5 Since S2 Š S2 Ì C3 and ! generates C3 , it suffices to
show that S2 is generated by � , ˛ , i and j D !i!�1 . Further, according to Behrens
and Lawson [5, Theorem 2.1], it suffices to prove that the inclusion h�; ˛; i; j i ! S2

induces a surjective map
H1.S2;F2/Š S2=S

�
2
;

where S�
2

is the group S2
2
ŒS2;S2�. The claim then follows from the isomorphism

S2 ŠK Ì Q8 , the surjectivity of the map

h�; ˛; ˛i ; j̨ i !K=K�

and the fact that i and j generate Q8 . The argument for S1
2

is similar.

3 The algebraic duality resolution

This section is devoted to the construction of the algebraic duality resolution and the
description of its properties. We refer the reader to the appendix for background on the
cohomology of profinite groups.
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3.1 The resolution

From now on, we fix p D 2. The goal of this section is to prove Theorem 1.2.1,
which was stated in Section 1.2, and is restated as Theorem 3.1.7 below. The proof
is broken into a series of results given in Lemma 3.1.1, Lemma 3.1.2, Lemma 3.1.3
and Theorem 3.1.6. All results in this section are due to Goerss, Henn, Mahowald
and Rezk.

Let G24 be the maximal finite subgroup of S2 defined in Lemma 2.4.3. Recall that
G0

24
D �G24�

�1 for � D 1C 2! in S2 . It was shown in Proposition 2.4.6 that there
are two conjugacy classes of maximal finite subgroups in S1

2
, and that G24 and G0

24

are representatives. Recall that C2 D f˙1g is the subgroup generated by Œ�1�.x/ and
C6 D C2 � C3 . The group K1 is the Poincaré duality subgroup of S1

2
which was

defined in Section 2.5.

Lemma 3.1.1 Let C0 D Z2ŒŒS
1
2
=G24�� with canonical generator e0 . Let "W C0! Z2

be the augmentation

"W Z2ŒŒS
1
2=G24��! Z2˝Z2ŒŒS

1
2
��Z2ŒŒS

1
2��˝Z2ŒG24�Z2 Š Z2:

Let N0 be defined by the short exact sequence

(3.1.1) 0!N0! C0
"
�! Z2! 0:

Then N0 is the left Z2ŒŒS
1
2
��–submodule of C0 generated by .e�˛/e0 , for e the unit

in S1
2

and ˛ as defined in (2.3.4).

Proof Since S1
2
ŠK1 Ì G24 , C0 Š Z2ŒŒK

1�� as a Z2ŒŒK
1��–module. Therefore, N0

is isomorphic to the augmentation ideal IK1. Lemma A.1.4 of the appendix implies
that H1.K

1;Z2/ Š H0.K
1;N0/, where an isomorphism sends the image of g in

K1=ŒK1;K1� to the image of e�g in IK1=.IK1/2 . It was shown in Lemma 2.5.11
that K1=ŒK1;K1� is generated by ˛ as a G24 –module. This implies that, as a G24 –
module, H0.K

1;N0/ is generated by the image of .e � ˛/e0 . Therefore, the map
F W Z2ŒŒS

1
2
��!N0 defined by F.
 /D 
 .e�˛/e0 induces a surjective map

F2˝Z2ŒŒK 1�� F W F2˝Z2ŒŒK 1��Z2ŒŒS
1
2��! F2˝Z2ŒŒK 1��N0:

By Lemma A.1.3 of the appendix, F itself is surjective, and .e�˛/e0 generates N0

as a Z2ŒŒS
1
2
��–module.

Lemma 3.1.2 Let N0 be as in Lemma 3.1.1. Let C1 D Z2ŒŒS
1
2
=C6�� with canonical

generator e1 . There is a map @1W C1!N0 defined by

(3.1.2) @1.
 e1/D 
 .e�˛/e0
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for 
 in Z2ŒŒS
1
2
��. Further, let N1 be defined by the short exact sequence

(3.1.3) 0!N1! C1

@1
�!N0! 0;

and let ‚0 in Z2ŒŒS
1
2
�� be any element such that ‚0e1 is in the kernel of @1 and

‚0e1 � .3C i C j C k/e1 mod .4; IK1/:

Then ‚0e1 generates N1 over S1
2

.

Proof The element ˛ satisfies �˛ D ˛� for � 2 C6 . Therefore, the map @1 given by
(3.1.2) is well defined.

Let N1 be the kernel of @1 . Note that Z2ŒŒS
1
2
=C6��Š Z2ŒŒK

1��4 as Z2ŒŒK
1��–modules,

generated by e1 , ie1 , je1 and ke1 . Therefore, there is an isomorphism of G24 –
modules

H0.K
1;C1/Š Z2ŒG24=C6�:

As Z2ŒŒK
1��–modules, H0.K

1;C1/ŠZ4
2

generated by the image of the classes e1 , ie1 ,
je1 and ke1 . Since N0 Š IK1 , Lemma A.1.4 of the appendix and Corollary 2.5.14
imply that

H1.K
1;N0/ŠH2.K

1;Z2/D 0:

Therefore, the long exact sequence on cohomology gives rise to a short exact sequence

0!H0.K
1;N1/!H0.K

1;C1/!H0.K
1;N0/! 0:

By Lemma A.1.4 of the appendix and Lemma 2.5.11,

H0.K
1;N0/ŠH1.K

1;Z2/Š Z=4˚ .Z=2/2;

which is all torsion. Thus, we can identify H0.K
1;N1/ with a free submodule of

H0.K
1;C1/. Further, it must have rank 4 over Z2 . This can be made explicit

as follows.

The map H0.K
1; @1/ sends the residue class of �e1 to that of �.e� ˛/e0 . For � in

G24 , ��1e0 D e0 , hence �.e�˛/e0 D .e� ��.˛//e0 , where ��.˛/D �˛��1 . Again,
using the boundary isomorphism H1.K

1;Z2/ŠH0.K
1;N0/ of Lemma A.1.4, the

formulas of Lemma 2.5.11 together with the fact that k D ij can be used to compute

@1.e1/� x̨; @1.ie1/� x̨C x̨i ; @1.je1/� x̨C x̨j ; @1.ke1/� 3x̨ C x̨i C x̨j :

Here, xa is the image of a in H1.K
1;Z2/. As ˛ generates a group isomorphic to Z=4,

and ˛i and j̨ both generate groups isomorphic to Z=2, a set of Z2 generators for
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the kernel of H0.K
1; @1/ is given by the elements

f1 D�4e1; f2 D 2.i � e/e1; f3 D 2.j � e/e1; f4 D .k � i � j � e/e1:

Let
f D .3eC i C j C k/e1 2H0.K

1;N1/:

Then f generates H0.K
1;N1/Š Z2ŒG24=C6� as a G24 –module. Indeed, using the

fact that G24=C6 ŠQ8=C2 , one computes

f1 D 1=3.i C j C k � 5/f; f2 D if �f; f3 D jf �f; f4 D�k.f Cf1/:

(Note that �� denotes .�1/�� for the coefficient �1 in Z2 , as opposed to the generator
of the central C2 in Q8 .)

Next, we show that if
f 0 � f mod .4; IK1/;

then f 0 also generates H0.K
1;N1/ as a G24 –module. To do this, note that Z2ŒQ8=C2�

is a complete local ring with maximal ideal mD .2; IQ8=C2/. Hence, any element
congruent to 1 modulo m is invertible. Therefore, if f 0 D f C �f for � in m, then
f 0 is also a generator. However, for a in H0.K1;C1/,

4ae1 D a1
3
..e� i/C .e� j /C .e� k/C 2e/f:

Hence, a1
3
..e � i/C .e � j /C .e � k/C 2e/ is in m. Therefore, 4H0.K1;C1/ is

contained in mf .

Let ‚0 in Z2ŒŒS
1
2
�� be such that

‚0e1 � .3C i C j C k/e1 mod .4; IK1/:

Let F W Z2ŒŒS
1
2
��!N1 be the map defined by F.
 /D 
‚0e1 . It induces a surjective

map
F2˝Z2ŒŒK 1�� F W F2˝Z2ŒŒK 1��Z2ŒŒS

1
2��! F2˝Z2ŒŒK 1��N1:

By Lemma A.1.3 of the appendix, F itself is surjective, and ‚0e1 generates N1 as a
Z2ŒŒS

1
2
��–module.

Define trC3
W Z2ŒŒS

1
2
��! Z2ŒŒS

1
2
�� to be the Z2 –linear map induced by

(3.1.4) trC3
.g/D gC!g!�1

C!�1g!

for g in S1
2

and ! our chosen generator of C3 .

Lemma 3.1.3 Let C2 D Z2ŒŒS
1
2
=C6�� with canonical generator e2 . Let ‚ in Z2ŒŒS

1
2
��

satisfy:
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(1) �‚D‚� for � in C6 ,

(2) ‚e1 is in the kernel of @1W C1! C0 ,

(3) ‚e1 � .3C i C j C k/e1 modulo .4; IK1/.

Then the map of Z2ŒŒS
1
2
��–modules @2W C2! C1 defined by

(3.1.5) @2.
 e2/D 
‚e2

surjects onto N1 D ker.@1/. Further, if N2 is defined by the exact sequence

(3.1.6) 0!N2! C2

@2
�!N1! 0;

then N2 Š Z2ŒŒK
1�� as Z2ŒŒK

1��–modules.

Proof Choose an element ‚0 which generates N1 as in Lemma 3.1.2. Recall that
C6 Š C2 �C3 and that C2 is in the center of S2 . Therefore, for trC3

as defined by
(3.1.4),

‚D 1
3

trC3
.‚0/

satisfies properties (1), (2) and (3). The map @2 given by (3.1.5) is well defined and
surjects onto N1 by Lemma A.1.3.

Let N2 � C2 be the kernel of @2 as in the statement of the result. The map @2 induces
an isomorphism H0.K

1;C2/ŠH0.K
1;N1/. Hence, for all n,

Hn.K
1;N2/ŠHnC1.K

1;N1/ŠHnC2.K
1;N0/ŠHnC3.K

1;Z2/:

This implies:

Hn.K
1;N2/Š

�
Z2 if nD 0;

0 if n> 0:

Choose an element e0 in N2 such that e0 reduces to a generator of Z2 in H0.K
1;N2/.

Define �W Z2ŒŒK
1��!N2 by �.k/D ke0 . Then

TorZ2ŒŒK
1��

0
.F2; �/

is an isomorphism, and
TorZ2ŒŒK

1��
1

.F2; �/

is surjective. By Lemma A.1.3 of the appendix, � is an isomorphism of Z2ŒŒK
1��–

modules.
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Splicing the exact sequences (3.1.1), (3.1.3) and (3.1.6) gives an exact sequence

(3.1.7) 0!N2! C2! C1! C0! Z2! 0;

which is a free resolution of Z2 as a trivial Z2ŒŒK
1��–module. The next goal is to

find an isomorphism N2ŠZ2ŒŒS
1
2
=G0

24
��, where G0

24
D �G24�

�1 represents the other
conjugacy class of maximal finite subgroups in S1

2
. To prove this, we will need a few

results. Before stating these, we introduce some notation.

Let G be a subgroup of S2 which contains the central subgroup C2 . We define

PG WDG=C2:

We let

A4 WD PG24;(3.1.8)

A04 WD PG024:(3.1.9)

The choice of notation is justified by the fact that both of these groups are isomorphic
to the alternating group on four letters. Note also that, since C2 is central, PC6 Š C3

and PS1
2
ŠK1 Ì A4 . Therefore, for any G which contains C2 ,

Z2ŒŒS
1
2=G��Š Z2ŒŒPS1

2=PG��

as Z2ŒŒS
1
2
��–modules. To prove that N2 Š Z2ŒŒS

1
2
=G0

24
��, it will thus be sufficient to

prove that

N2 Š Z2ŒŒPS1
2=A

0
4��

as Z2ŒŒPS1
2
��–modules.

We showed in Corollary 2.5.12 that K1 is a Poincaré duality group (see Definition 2.5.4).
Further, there is an isomorphism of Z2ŒŒK

1��–modules

Z2ŒŒPS1
2=A

0
4��Š Z2ŒŒK

1��:

Hence,

H n.K1;Z2ŒŒPS1
2=A

0
4��/Š

�
Z2 if nD 3;

0 otherwise:
(3.1.10)

Lemma 3.1.4 The inclusion �W K1! PS1
2

induces an isomorphism

��W H 3.PS1
2;Z2ŒŒPS1

2=A
0
4��/!H 3.K1;Z2ŒŒPS1

2=A
0
4��/:
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Proof The action of A4 on H 3.K1;Z2ŒŒPS1
2
=A0

4
��/ is trivial. This follows from the

fact that there are no nontrivial one-dimensional representations of A4 . Indeed,

Hom.A4;Gl1.Z2//DH 1.A4;Z
�
2 /:

and H 1.A4;Z
�
2
/D 0. Since PS1

2
ŠK1 Ì A4 , there is a spectral sequence

H p.A4;H
q.K1;Z2ŒŒPS1

2=A
0
4��//H)H pCq.PS1

2;Z2ŒŒPS1
2=A

0
4��/:

Because the action of A4 on H 3.K1;Z2ŒŒPS1
2
=A0

4
��/ is trivial, (3.1.10) implies that

the edge homomorphism

H 3.PS1
2;Z2ŒŒPS1

2=A
0
4��/!H 0.A4;H

3.K1;Z2ŒŒPS1
2=A

0
4��//

induced by the inclusion �W K1! PS1
2

is an isomorphism.

Lemma 3.1.5 There are surjections

�W HomZ2ŒŒPS1
2
��.N2;Z2ŒŒPS1

2=A
0
4��/!H 3.PS1

2;Z2ŒŒPS1
2=A

0
4��/;

�0W HomZ2ŒŒK 1��.N2;Z2ŒŒPS1
2=A

0
4��/!H 3.K1;Z2ŒŒPS1

2=A
0
4��/

making the following diagram commute

(3.1.11)

HomZ2ŒŒPS1
2
��.N2; Z2ŒŒPS1

2
=A0

4
��/

��

��

� // H 3.PS1
2
;Z2ŒŒPS1

2
=A0

4
��/

��

��
HomZ2ŒŒK 1��.N2;Z2ŒŒPS1

2
=A0

4
��/

�0 // H 3.K1;Z2ŒŒPS1
2
=A0

4
��/

where �� is the map induced by the inclusion �W K1! PS1
2

.

Proof Let Bp D Cp for 0 � p < 3 and B3 D N2 . Resolving Bp by projective
Z2ŒŒPS1

2
��–modules gives rise to spectral sequences

E
p;q
1
Š Extq

Z2ŒŒPS1
2
��
.Bp;Z2ŒŒPS1

2=A
0
4��/H)H pCq.PS1

2;Z2ŒŒPS1
2=A

0
4��/

and
F

p;q
1
Š Extq

Z2ŒŒK 1��
.Bp;Z2ŒŒPS1

2=A
0
4��/H)H pCq.K1;Z2ŒŒPS1

2=A
0
4��/:

These are first quadrant cohomology spectral sequences, with differentials

dr W E
p;q
r !EpCr;q�rC1

r
and

dr W F
p;q
r ! FpCr;q�rC1

r :
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Further, �W K1! PS1
2

induces a map of spectral sequences

��W Ep;q
r ! Fp;q

r :

Let � be the edge homomorphism

�W E
3;0
1
!H 3.PS1

2;Z2ŒŒPS1
2=A

0
4��/;

and let �0 be the edge homomorphism

�0W F
3;0
1
!H 3.K1;Z2ŒŒPS1

2=A
0
4��/:

First, note that since the modules Bp are projective Z2ŒŒK
1��–modules, F

p;q
r collapses

with F
p;q
1 D 0 for q > 0 so that

F3;0
1 !H 3.K1

IZ2ŒŒPS1
2=A

0
4��/

is surjective. Hence, �0 is surjective.

In order to show that � is surjective, it is sufficient to show that E
3�q;q
1

D 0 for q > 0.
For q D 1 and q D 2, this follows from the fact that Z2ŒŒPS1

2
=C3�� is a projective

Z2ŒŒPS1
2
��–module. Hence, if q > 0, then

Extq
Z2ŒŒPS1

2
��
.Z2ŒŒPS1

2=C3��;Z2ŒŒPS1
2=A

0
4��/D 0:

It remains to show that

E
0;3
1
D Ext3

Z2ŒŒPS1
2
��
.B0;Z2ŒŒPS1

2=A
0
4��/

is zero, where B0 D Z2ŒŒPS1
2
=A4��.

Let V Š C2 �C2 be the 2–Sylow subgroup of A4 . Then

E
0;3
1
D Ext3

Z2ŒŒPS1
2
��
.B0;Z2ŒŒPS1

2=A
0
4��/ŠH 3.A4;Z2ŒŒPS1

2=A
0
4��/

ŠH 3.V;Z2ŒŒPS1
2=A

0
4��/

C3 :

Let Gn D PFn=2S1
2

Ì A0
4

and Xn D PS1
2
=Gn . The profinite A4 –set PS1

2
=A0

4
is

isomorphic to the inverse limit of the finite A4 –sets Xn . There is an exact sequence

0! lim 1H 2.V;Z2ŒXn�/!H 3.V;Z2ŒŒPS1
2=A

0
4��/! lim

n
H 3.V;Z2ŒXn�/! 0:

Since the groups H 2.V;Z2ŒXn�/ are finite, the Mittag–Leffler condition is satisfied
and lim 1H 2.V;Z2ŒXn�/D 0. Hence,

H 3.V;Z2ŒŒPS1
2=A

0
4��/Š lim

n
H 3.V;Z2ŒXn�/:
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We will show that there is an integer N such that H 3.V;Z2ŒXn�/D 0 for all n�N .
This implies that H 3.V;Z2ŒŒPS1

2
=A0

4
��/ is zero, so that E

0;3
1
D 0.

Note that

H 3.V;Z2ŒXn�/Š
M

x2V nXn=Gn

H 3.V;Z2ŒV =Vx �/Š
M

x2V nXn=Gn

H 3.Vx;Z2/

for Vx Dfg 2 V j gxGnD xGng. If the inclusion Vx � V is an equality, then x�1Vx

is a subgroup of Gn . We show that there exists an integer N such that, for all n�N ,
there is no element x in PS1

2
such that x�1Vx�Gn . This implies that, for n�N , for

all choices of coset representatives x 2 V nXn=Gn , the group Vx is either trivial or it
has order 2. In both cases, H 3.Vx;Z2/D 0. Hence, for n�N , H 3.V;Z2ŒXn�/D 0.

Suppose that there is a sequence of integers nm and elements xnm
such that x�1

nm
V xnm

�

Gnm
. Since PS1

2
is compact, we can choose the sequence .xnm

/ to converge to some
element y . The groups Gn are closed and nested, so the continuity of the group
multiplication implies that y�1Vy �Gn for all n 2N . Therefore,

y�1Vy �
\
n

Gn DA04;

and hence y�1Vy D V 0 , where V 0 is the 2–Sylow subgroup of A0
4

. However, it
follows from Proposition 2.4.6 that V and V 0 are not conjugate in PS1

2
. Therefore,

such a sequence cannot exist, and there must be some integer N such that, for all
n�N , there is no x in PS1

2
such that x�1Vx �Gn .

Theorem 3.1.6 There is an isomorphism of left Z2ŒŒS
1
2
��–modules

�W Z2ŒŒS
1
2=G024��!N2;

where G0
24
D �G24�

�1.

Proof It suffices to construct an isomorphism 'W N2 ! Z2ŒŒPS1
2
=PG0

24
�� of left

Z2ŒŒPS1
2
��–modules. The result then follows by letting � D '�1 , considered as a map

of Z2ŒŒS
1
2
��–modules.

Recall from Corollary 2.5.12 that K1 is an orientable Poincaré duality group of
dimension 3, as in Definition 2.5.4. That is, the compact dualizing module D2.K

1/

is isomorphic to the trivial Z2ŒŒK
1��–module Z2 and H3.K

1;Z2/ Š Z2 . Choose a
generator ŒK1� of H3.K

1;Z2/. As in Remark 2.5.5, there is a natural isomorphism

H 3��.K1;�/
\ŒK 1�
����!H�.K

1;�/:
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Let
�W H3.K

1;Z2/! Z2˝Z2ŒŒK 1��N2

be the edge homomorphism for the homology spectral sequence obtained from (3.1.7).
Define

evW HomZ2
.Z2˝Z2ŒŒK 1��N2;Z2˝Z2ŒŒK 1��Z2ŒŒPS1

2=A
0
4��/!H0.K

1;Z2ŒŒPS1
2=A

0
4��/

by
ev.f /D f .�.ŒK1�//:

Let �W K1 ! PS1
2

be the inclusion. Let � and �0 be the edge homomorphisms of
Lemma 3.1.5. We obtain the following commutative diagram:

HomZ2ŒŒPS1
2
��.N2;Z2ŒŒPS1

2
=A0

4
��/

� //

��

��

H 3.PS1
2
;Z2ŒŒPS1

2
=A0

4
��/

��

��
HomZ2ŒŒK 1��.N2;Z2ŒŒPS1

2
=A0

4
��/

�0 //

Z2˝Z2ŒŒK
1��
�

��

H 3.K1;Z2ŒŒPS1
2
=A0

4
��/

\ŒK 1�
��

HomZ2
.Z2˝Z2ŒŒK 1��N2;Z2˝Z2ŒŒK 1��Z2ŒŒPS1

2
=A0

4
��/

ev // H0.K
1;Z2ŒŒPS1

2
=A0

4
��/

Since \ŒK1� ı �0 is surjective, so is the map ev. Both N2 and Z2ŒŒPS1
2
=A0

4
�� are free

of rank one over Z2ŒŒK
1��. Hence, Z2˝Z2ŒŒK 1�� N2 and Z2˝Z2ŒŒK 1�� Z2ŒŒPS1

2
=A0

4
��

are abstractly isomorphic to Z2 . Since ev is a surjective group homomorphism from
Z2 to itself, it is an isomorphism. It follows from Lemma A.1.3 that any element of
HomZ2ŒŒK 1��.N2;Z2ŒŒPS1

2
=A0

4
��/ that becomes a unit after applying Z2˝Z2ŒŒK 1��� is

an isomorphism. By Lemma 3.1.5, the composite \ŒK1�ı��ı� is surjective. Therefore,
we can choose ' in HomZ2ŒŒPS1

2
��.N2;Z2ŒŒPS1

2
=A0

4
��/ such that \ŒK1� ı �� ı�.'/ is a

generator of H0.K
1;Z2ŒŒPS1

2
=A0

4
��/. Then ��.'/ in HomZ2ŒŒK 1��.N2;Z2ŒŒPS1

2
=A0

4
��/

is an isomorphism, and hence ' must be an isomorphism.

Combining the previous results, we can finally prove Theorem 1.2.1. We restate it here
for convenience.

Theorem 3.1.7 Let Z2 be the trivial Z2ŒŒS
1
2
��–module. There is an exact sequence of

complete Z2ŒŒS
1
2
��–modules

0! C3

@3
�! C2

@2
�! C1

@1
�! C0

"
�! Z2! 0;

where C0ŠZ2ŒŒS
1
2
=G24�� and C1ŠC2ŠZ2ŒŒS

1
2
=C6�� and C3DZ2ŒŒS

1
2
=G0

24
��. Further,

this is a free resolution of the trivial Z2ŒŒK
1��–module Z2 .
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Proof Let
C3 WD Z2ŒŒS

1
2=G024��:

Let �W C3 ! N2 be the isomorphism of Theorem 3.1.6. Let @3W C3 ! C2 be the
isomorphism � followed by the inclusion of N2 in C2 . This gives an exact sequence

(3.1.12) 0! C3! C2

@2
�!N1! 0:

Splicing the exact sequences of (3.1.1), (3.1.3) and (3.1.12) finishes the proof.

The exact sequence of Theorem 3.1.7 is called the algebraic duality resolution. The
duality properties it satisfies will be described in Section 3.3.

3.2 The algebraic duality resolution spectral sequence

The algebraic duality resolution gives rise to a spectral sequence called the algebraic
duality resolution spectral sequence, which we describe here. The following result is a
refinement of Theorem 1.2.4, which was stated in Section 1.2. We define

Q08 WD �Q8�
�1:

We also let V be the 2–Sylow subgroup of A4 and V 0 be the 2–Sylow subgroup of
A0

4
, where A4 Š PG24 and A0

4
D PG0

24
as defined in (3.1.8) and (3.1.9).

Theorem 3.2.1 Let M be a profinite Z2ŒŒS
1
2
��–module. There is a first quadrant

spectral sequence

E
p;q
1
D Extq

Z2ŒŒS
1
2
��
.Cp;M /H)H pCq.S1

2;M /

with differentials dr W E
p;q
r !E

pCr;q�rC1
r . Further,

E
p;q
1
Š

8<:
H q.G24;M / if p D 0;

H q.C6;M / if p D 1; 2;

H q.G0
24
;M / if p D 3:

Similarly, there are first quadrant spectral sequences

E
p;q
1
D ExtqZ2ŒŒG��

.Cp;M /H)H pCq.G;M /;

where G is S1
2

, PS1
2

or PS1
2

. The E1 –term is

E
p;q
1
Š

8<:
H p.Q8IM / if q D 0;

H p.C2IM / if q D 1; 2;

H p.Q0
8
IM / if q D 3
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when G is S1
2

,

E
p;q
1
Š

8<:
H p.A4IM / if q D 0;

H p.C3IM / if q D 1; 2;

H p.A0
4
IM / if q D 3

when G is PS1
2

and

E
p;q
1
Š

8<:
H p.V IM / if q D 0;

H p.fegIM / if q D 1; 2;

H p.V 0IM / if q D 3

when G is PS1
2

.

Proof There are two equivalent constructions. First, recall that the algebraic duality
resolution is spliced from the exact sequences

0!Ni! Ci!Ni�1! 0;(3.2.1)

with C3 DN2 and N�1 D Z2 . The exact couple

Ext.N�;M /
ı� // Ext.N��1;M /

r�vv
Ext.C�;M /

i�

gg

gives rise to the algebraic duality resolution spectral sequence.

Alternatively, one can resolve each C� ! Z2 into a double complex of projective
finitely generated Z2ŒŒS

1
2
��–modules. The total complex Tot.Pp;q/ for p � 0 is a

projective resolution of Z2 as a Z2ŒŒS
1
2
��–module. The homology of the double complex

HomZ2ŒŒS
1
2
��.Tot.Pp;q/;M / is

ExtpCq

Z2ŒŒS
1
2
��
.Z2;M /ŠH pCq.S1

2;M /:

The identification of the E1 –term follows from Shapiro’s Lemma A.1.2 of the appendix.
Indeed, any finite subgroup H of S1

2
is closed. Further, since S1

2
Š S1

2
Ì C3 ,

Extq
Z2ŒŒS

1
2
��
.Z2ŒŒS

1
2��˝Z2ŒH �Z2;M /Š

�
Extq

Z2ŒŒS
1
2
��
.Z2ŒŒS

1
2 ��˝Z2ŒSyl2.H /�Z2;M /

�C3

Š
�
ExtqZ2ŒSyl2.H /�

.Z2;M /
�C3
ŠH q.H;M /:

For the groups S1
2

, PS2 and PS1
2

, one applies the same construction, keeping the
following isomorphisms in mind. Let H � S1

2
be a finite subgroup which contains C6
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and let PH DH=C2 . There are isomorphisms

Z2ŒŒS
1
2=H ��Š Z2ŒŒPS1

2��˝Z2ŒPH �Z2 Š Z2ŒŒPS1
2=PH ��

and
Z2ŒŒS

1
2=H ��Š Z2ŒŒPS1

2 ��˝Z2ŒSyl2.PH /�Z2 Š Z2ŒŒPS1
2=Syl2.PH /��

as Z2ŒŒPS1
2
�� and Z2ŒŒPS1

2
��–modules, respectively.

3.3 The duality

The algebraic duality resolution of Theorem 3.1.7 owes its name to the fact that it
satisfies a certain twisted duality. This duality is crucial for computations as it allows
us to understand the map @3W C3! C2 .

Let Mod.S1
2
/ denote the category of finitely generated left Z2ŒŒS

1
2
��–modules. Let

� D 1C 2! in S2 be as defined in (2.3.3). For M in Mod.S1
2
/, let c�.M / denote

the left Z2ŒŒS
1
2
��–module whose underlying Z2 –module is M , but for which the action

of 
 in S1
2

on an element m in c�.M / is given by


 �mD �
��1m:

If �W M !N is a morphism of left Z2ŒŒS
1
2
��–modules, let c�.�/W c�.M /! c�.N /

be given by
c�.�/.m/D �.m/:

Then c� W Mod.S1
2
/!Mod.S1

2
/ is a functor. In fact, c� is an involution, since �2D�3

is in the center of S2 . We can now prove Theorem 1.2.2, which is restated here for
convenience.

Theorem 3.3.1 (Henn, Karamanov and Mahowald, unpublished) There exists an
isomorphism of complexes of left Z2ŒŒS

1
2
��–modules:

0 // C3

f3

��

@3 // C2

f2

��

@2 // C1

f1

��

@1 // C0

f0

��

" // Z2
// 0

0 // c�.C
�
0
/

c� .@
�
1
/
// c�.C

�
1
/

c� .@
�
2
/
// c�.C

�
2
/

c� .@
�
3
/
// c�.C

�
3
/
x" // Z2

// 0

Proof The proof is similar to the proof of Henn, Karamanov, Mahowald [18, Proposi-
tion 3.8]. Let C �p D HomZ2ŒŒS

1
2
��.Cp;Z2ŒŒS

1
2
��/ and @�p D HomZ2ŒŒS

1
2
��.@p;Z2ŒŒS

1
2
��/ be
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the Z2ŒŒS
1
2
��–duals of Cp and @p in the sense of Equation (A.1.1). The resolution of

Theorem 3.1.7 gives rise to a complex

0! C �0
@�

1
�! C �1

@�
2
�! C �2

@�
3
�! C �3 ! 0:(3.3.1)

Because K1 has finite index in S1
2

, the induced and coinduced modules of Z2ŒŒK
1��

are isomorphic; see Symonds and Weigel [35, Section 3.3]. Therefore

HomZ2ŒŒS
1
2
��.Cp;Z2ŒŒS

1
2��/Š HomZ2ŒŒK 1��.Cp;Z2ŒŒK

1��/

and the homology of the complex (3.3.1) is H n.K1;Z2ŒŒK
1��/. By Corollary 2.5.12,

H n.K1;Z2ŒŒK
1��/ is 0 for n ¤ 3 and Z2 for n D 3. Further, the action of G24 on

H 3.K1;Z2ŒŒK
1��/Š Z2 is trivial, as there are no nontrivial one dimensional 2–adic

representations of G24 . Hence, (3.3.1) is a resolution of Z2 as a trivial Z2ŒŒS
1
2
��–

module.

The module C �p is of the form Z2ŒŒS
1
2
=H �� via the isomorphism t defined in (A.1.2).

Let x" be the augmentation

x"W C �3 ! Z2:

Because the augmentation "W Z2ŒŒK
1��! Z2 induces an isomorphism

HomZ2ŒŒK 1��.Z2;Z2/Š HomZ2ŒŒK 1��.Z2ŒŒK
1��;Z2/;

one can choose an isomorphism H 3.K;Z2ŒŒK
1��/!Z2 making the following diagram

commute:

C �
3

x"
��

// H 3.K1;Z2ŒŒK
1��/

xx
Z2

Therefore, the dual resolution is given by

0! C �0
@�

1
�! C �1

@�
2
�! C �2

@�
3
�! C �3

x"
�! Z2! 0:

Take the image of this resolution in Mod.S1
2
/ under the involution c� . Let e�

3
be the

canonical generator of c�.C
�
3
/. The map f0W C0! c�.C

�
3
/ defined by

f0.e0/D e�3
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is an isomorphism of Z2ŒŒS
1
2
��–modules, and the following diagram is commutative:

C0

f0

��

"
// Z2

// 0

c�.C
�
3
/

x"
// Z2

// 0

Therefore, f0 induces an isomorphism ker "Š ker x". As both

C2

@2
�! C1

@1
�! ker "

and

c�.C
�
2 /

c� .@
�
2
/

����! C �3
c� .@

�
3
/

����! ker x"

are the beginning of projective resolutions of ker " and ker x" as Z2ŒŒPS1
2
��–modules,

f0 lifts to a chain map:

0 // C3

f3

��

@3
// C2

f2

��

@2
// C1

f1

��

@1
// ker "

f0

��

// 0

0 // c�.C
�
0
/

c� .@
�
1
/
// c�.C

�
1
/

c� .@
�
2
/
// c�.C

�
2
/

c� .@
�
3
/
// ker x" // 0

Let PS1
2
D S1

2
=C2 , where S1

2
denotes the 2–Sylow subgroup of S1

2
. By construction,

f0 is an isomorphism, which implies that F2˝Z2ŒŒPS1
2
�� f1 and F2˝Z2ŒŒPS1

2
�� f2 are

isomorphisms. As Cp and c�.C �p / are projective Z2ŒŒPS1
2
��–modules for p D 1; 2,

Lemma A.1.3 of the appendix implies that f1 and f2 are isomorphisms. Finally, f3

must be an isomorphism by the five lemma.

3.4 A description of the maps

This section is dedicated to proving the statements in Theorem 1.2.6. The first statement
of Theorem 1.2.6 is that

@1.e1/D .e�˛/e0:

This was shown in Theorem 3.1.7. In this section, we prove the remaining statements
of that theorem.

The following result provides a description of the maps @3W C3! C2 and proves the
last part of Theorem 1.2.6. It is a consequence of Theorem 3.3.1.
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Theorem 3.4.1 There are isomorphisms of Z2ŒŒS
1
2
��–modules gpW Cp! Cp and dif-

ferentials
@0pC1W CpC1! Cp

such that

0 // C3

g3

��

@3 // C2

g2

��

@2 // C1

g1

��

@1 // C0

g0

��

" // Z2
// 0

0 // C3

@0
3 // C2

@0
2 // C1

@0
1 // C0

" // Z2
// 0

(3.4.1)

is an isomorphism of complexes. The map @0
3
W C3! C2 is given by

@03.e3/D �.eC i C j C k/.e�˛�1/��1e2:(3.4.2)

Proof We will construct a commutative diagram:

0 // C3

f3

��

@3 // C2

f2

��

@2 // C1

f1

��

@1 // C0

f0

��

" // Z2
// 0

0 // c�.C
�
0
/

q3

��

c� .@
�
1
/
// c�.C

�
1
/

q2

��

c� .@
�
2
/
// c�.C

�
2
/

q1

��

c� .@
�
3
/
// c�.C

�
3
/

q0

��

x" // Z2
// 0

0 // C3

@0
3 // C2

@0
2 // C1

@0
1 // C0

" // Z2
// 0

The maps gp will be the composites of the vertical maps. First, let e�p 2 c�.C �p / be
the canonical generator. Define isomorphisms qpW c�.M

�
3�p

/!Mp by

qp.e
�
3�p/D ep:

Define gpW Cp! Cp by
gp D qpfp

and @0
pC1
W CpC1! Cp by

@0pC1 D qpc�.@
�
3�p/q

�1
pC1:

By construction, (3.4.1) is commutative.

In order to compute @0
3

, it is necessary to understand @�
1

. By definition,

@�1.e
�
0 /.e1/D e�0 ..e�˛/e1/D .e�˛/

X
h2G24

h:
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However,

.e�˛/
X

h2G24

hD .e�˛/
X

h2C6

h.eC i�1
C j�1

C k�1/

D

X
h2C6

h.e�˛/.eC i�1
C j�1

C k�1/

D ..eC i C j C k/.e�˛�1/e�1 /.e1/:

Hence,

@�1.e
�
0 /D .eC i C j C k/.e�˛�1/e�1 :

A diagram chase shows that @0
3

is given by (3.4.2).

The maps @1W C1 ! C0 and @3W C3 ! C2 now have explicit descriptions up to
isomorphisms. The map @2W C2 ! C1 is harder to describe. Theorem 3.4.5 and
Corollary 3.4.6 below give an estimate for this map. These are technical results which
will be used in our computations in [3]. Note that Theorem 3.1.7, Theorem 3.4.1 and
Corollary 3.4.6 below prove Theorem 1.2.6, which was stated in Section 1.2.

Recall that

˛� D Œ�; ˛�D �˛�
�1˛�1:

We will need the following result to describe the element ‚ of Lemma 3.1.3.

Lemma 3.4.2 Let n � 2 and x be in IFn=2K1 . There exist h0 , h1 and h2 in
Z2ŒŒFn=2K1�� such that

x D

�
h0.e�˛

2m�1

/C h1.e�˛
2m�1

i /C h2.e�˛
2m�1

j / if nD 2m;

h0.e�˛
2m

/C h1.e�˛
2m�1

i /C h2.e�˛
2m�1

j / if nD 2mC 1:
(3.4.3)

Proof Define a map of Z2ŒŒFn=2K1��–modules

pW

2M
iD0

Z2ŒŒFn=2K1��i! IFn=2K1

by sending .h0; h1; h2/ to the element given by (3.4.3). It is sufficient to show that the
map induced by p surjects onto

H1.Fn=2K1;F2/Š F2˝Z2ŒŒFn=2K 1�� IFn=2K1:
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By Lemma 2.2.1, H1.Fn=2K1;F2/ is generated by the classes

˛2m�1

; ˛2m�1

i ; ˛2m�1

j if nD 2m,

˛2m

; ˛2m�1

i ; ˛2m�1

j if nD 2mC 1.

Therefore, F2˝Z2ŒŒFn=2K 1�� p is surjective, and hence so is p .

The ideal
I D ..IK1/7; 2.IK1/3; 4.IK1/; 8/

will play a crucial role in the following estimates.

Corollary 3.4.3 Let e0 be the canonical generator of C0 and g be in F8=2K1. There
exists h in Z2ŒŒS

1
2
�� such that .e�g/e0 D h.e�˛/e0 with h� 0 mod I .

Proof By Lemma 3.4.2, there exist h0 , h1 and h2 in Z2ŒŒF8=2K1�� such that

e�g D h0.e�˛
8/C h1.e�˛

8
i /C h2.e�˛

8
j /:

Since

.e�x8/D

� 7X
sD0

xs

�
.e�x/;

this implies that

e�g D h0

� 7X
sD0

˛s

�
.e�˛/C h1

� 7X
sD0

˛s
i

�
.e�˛i/C h2

� 7X
sD0

˛s
j

�
.e� j̨ /:

Let

hD h0

� 7X
sD0

˛s

�
C h1

� 7X
sD0

˛s
i

�
.i �˛i/C h2

� 7X
sD0

˛s
j

�
.j � j̨ /:

If � 2G24 , then �e0 D e0 . Hence,

.� �˛� /.e�˛/e0 D .e�˛� /e0:

Using this fact, one verifies that .e�g/e0 D h.e�˛/e0 . Further,

7X
sD0

xs
� .1�x/7C 2x4.x� 1/3C 4x2.x� 1/ mod .8/:

Since ˛ , ˛i and j̨ are in K1 and K1 is a normal subgroup, this implies that

h� 0 mod ..IK1/7; 2.IK1/3; 4.IK1/; 8/:

Algebraic & Geometric Topology, Volume 15 (2015)



3696 Agnès Beaudry

We will use the following result.

Lemma 3.4.4 The element ˛i j̨˛k is in F4=2K1 . The element ˛i j̨˛k˛
2 is in

F8=2K1 .

Proof Let T D ˛S in O2 Š End.F2/. Then T 2 D�2, and aT D Ta� for a in W .
As defined in (2.3.4) and Lemma 2.4.3, we have

˛ D
1
p
�7
.1� 2!/; i D�1

3
.1C 2!/.1�T /;

j D�1
3
.1C 2!/.1�!2T /; k D�1

3
.1C 2!/.1�!T /:

Further,

˛�1
D�

1
p
�7
.1� 2!2/:

We use the fact that 1
3

and 1p
�7

are in Z.S2/. We also use the fact ��1 D �� for
� D i , j and k and the fact that S4 D 4 and S8 D 16.

First, note that

i˛ D�
1

3
p
�7
.1C 2!/.1�T /.1� 2!/

D�
1

3
p
�7
.1C 2!/..1� 2!/� .1� 2!2/T /

D�
1

3
p
�7
..5C 4!/C .1� 4!/T /:

Further,

i�1˛�1
D�

1

3
p
�7
.1C 2!/.1�T /.1� 2!2/

D�
1

3
p
�7
.1C 2!/..1� 2!2/� .1� 2!/T /

D�
1

3
p
�7
..�1C 4!/� .5C 4!/T /:

Therefore,

˛i D i˛i�1˛�1
D�

1
63
..5C 4!/C .1� 4!/T /..�1C 4!/� .5C 4!/T /

� 13C .2C 8!/T mod S8:

Using the fact that j̨ D !˛i!
2 and ˛k D !

2˛i! , this implies that

j̨ � 13C!2.2C 8!/T mod S8; ˛k � 13C!.2C 8!/T mod S8:
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Hence,

˛i j̨ � .13C .2C 8!/T /.13C!2.2C 8!/T /

�
�
9C!2.10C 8!/T C .10C 8!/T C .2C 8!/.!.2C 8!2//T 2

�
� 9C 8!C .8C 14!/T mod S8;

so that

˛i j̨˛k � .9C 8!C .8C14!/T /.13C!.2C8!/T /

� .5C 8!C .8C6!/T C .9C8!/!.2C8!/T C .8C14!/!2.2C8!2/T 2/

� 13C 8! mod S8:

This shows that ˛i j̨˛k � 1 modulo S4 . Finally, note that

˛i j̨˛k˛
2
� .13C 8!/

�
1
p
�7
.1� 2!/

�2
��

1
7
.13C 8!/.1� 2!/2 ��9

7

� 1 mod S8;

which shows that ˛i j̨˛k˛
2 is in F8=2K1 .

Theorem 3.4.5 There exists ‚ in Z2ŒŒS
1
2
�� satisfying the conditions of Lemma 3.1.3

such that

‚� eC˛C i C j C k �˛i � j̨ �˛k

�
1
3

trC3
..e�˛i/.j � j̨ /C .e�˛i j̨ /.k �˛k/C .e�˛i j̨˛k/.eC˛//

modulo I D ..IK1/7; 2.IK1/3; 4.IK1/; 8/, where trC3
is defined by (3.1.4).

Proof We will use the following facts. First, note that

�eq D eq

for � 2G24 and q D 0, or for � 2 C6 and q D 1. This implies that

�.e�˛/e0 D .e�˛�˛/e0:

Since j D !i!�1 and k D !�1i! , it also implies that

!ieq D jeq; !2ieq D keq:

The element ˛ 2W � � S2 commutes with ! . This implies that

!˛ieq D j̨ eq:
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We will use the fact that for � 2G24 ,

.� �˛� /.e�˛/e0 D .e�˛� /e0:

We will also use the identity

e�ghD .e�g/C .e� h/� .e�g/.e� h/:

Let ‚0 D eC i . Then trC3
.‚0/e1 D .3C i C j C k/e1 and

@1.‚0e1/D .eC i/.e�˛/e0

D .e�˛/e0C .e�˛i˛/e0

D 2.e�˛/e0C .e�˛i/e0� .e�˛i/.e�˛/e0

D .e�˛2/e0C .e�˛/
2e0C .e�˛i/e0� .e�˛i/.e�˛/e0:

Let ‚1 D eC i � .e�˛/C .e�˛i/. Then,

@1.‚1e1/D .e�˛
2/e0C .e�˛i/e0:

Therefore,

@1.trC3
.‚1/e1/

D 3.e�˛2/e0C .e�˛i/e0C .e� j̨ /e0C .e�˛k/e0

D 3.e�˛2/e0C .e�˛i/.e� j̨ /e0C .e�˛i j̨ /e0C .e�˛k/e0

D 3.e�˛2/e0C .e�˛i/.e� j̨ /e0C .e�˛i j̨ /.e�˛k/e0C .e�˛i j̨˛k/e0

D 2.e�˛2/e0C .e�˛i/.e� j̨ /e0C .e�˛i j̨ /.e�˛k/e0

C.e�˛i j̨˛k/.e�˛
2/e0C .e�˛i j̨˛k˛

2/e0:

Let

‚2 D trC3

�
eC i � .e�˛/C .e�˛i/

�
� 2.eC˛/

�.e�˛i/.j � j̨ /� .e�˛i j̨ /.k �˛k/� .e�˛i j̨˛k/.eC˛/:

Then ‚2 � 3C i C j C k mod .4; IK1/. Further,

@1.‚2e1/D .e�˛i j̨˛k˛
2/e0:

By Lemma 3.4.4, ˛i j̨˛k˛
2 2 F8=2K1 . By Corollary 3.4.3, there exists h such that

.e�˛i j̨˛k˛
2/e0 D h.e�˛/e0

and h� 0 modulo I , where I D ..IK1/7; 2.IK1/3; 4IK1; 8/. Therefore,

@1..‚2� h/e1/D .e�˛i j̨˛k˛
2/e0� h.e�˛/e0 D 0:
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Define

‚D 1
3

trC3
.‚2� h/:

Then ‚ satisfies the conditions of Lemma 3.1.3. Further,

‚� eC˛C i C j C k �˛i � j̨ �˛k

�
1
3

trC3
..e�˛i/.j � j̨ /C .e�˛i j̨ /.k �˛k/C .e�˛i j̨˛k/.eC˛//

modulo I .

Corollary 3.4.6 Let J D .IF4=2K1; .IF3=2K1/.IS1
2
/; I/. The element ‚ from

Theorem 3.4.5 satisfies

‚� eC˛C i C j C k �˛i � j̨ �˛k mod J ;

and ‚� eC˛ modulo .2; .IS1
2
/2/.

Proof First, note that ˛� 2 F3=2K1 for � 2G24 . Further, by Lemma 3.4.4, ˛i j̨˛k

is in F4=2K1 . Hence, it follows from Theorem 3.4.5 that

‚� eC˛C i C j C k �˛i � j̨ �˛k mod J :

For the second claim, we first prove that J � .2; .IS1
2
/2/. It is clear that

..IF3=2K1/.IS1
2 /; I/� .2; .IS1

2 /
2/:

Further, it follows from Lemma 3.4.2 and the fact that .e�x2k

/� .e�x/2
k

modulo .2/
that

IF4=2K1
� .2; .IS1

2 /
2/:

Therefore, J � .2; .IS1
2
/2/. Hence,

‚� eC˛C i C j C k �˛i � j̨ �˛k mod .2; .IS1
2 /

2/:

Further, .e� i/.e� j /� eC i C j C k modulo .2/ and

e�˛i D i˛..e�˛�1/.e� i�1/� .e� i�1/.e�˛�1//:

Therefore, eC i C j C k and e�˛� are in .2; .IS1
2
/2/. We conclude that

‚� eC˛ mod .2; .IS1
2 /

2/:
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Appendix: Background on profinite groups

We use the terminology of Ribes and Zalesskii [28, Section 5]. Let G be a profinite
p–adic analytic group and fUkg be a system of open normal subgroups of G such thatT

k Uk D feg. The completed group ring of G is

Zp ŒŒG�� WD lim
n;k

Z=.pn/ŒG=Uk �:

The augmentation is the continuous homomorphism of Zp –modules "W Zp ŒŒG��! Zp

defined by ".g/D 1 for g 2G . The augmentation ideal IG is the kernel of ".

A left Zp ŒŒG��–module is a Zp ŒŒG��–module M which is a Hausdorff topological abelian
group with a continuous structure map Zp ŒŒG���M !M. The module M is finitely
generated if it is the closure of the Zp ŒŒG��–module generated by a finite subset of M.
It is discrete if it is the union of its finite Zp ŒŒG��–submodules and profinite if it is the
inverse limit of its finite Zp ŒŒG��–submodule quotients; see [28, Lemma 5.1.1]. The
module M is complete with respect to the IG –adic topology if

M Š lim
n;k

Zp=.p
n/ŒG=Uk �˝ZpŒŒG��M:

It is a theorem of Lazard that Zp ŒŒG�� is Noetherian; see Symonds and Weigel [35, The-
orem 5.1.2]. Finitely generated Zp ŒŒG��–modules are thus both profinite and complete
with respect to the IG –adic topology.

Let M D limi Mi be a profinite Zp ŒŒG��–bimodule and N D limj Nj a profinite left
Zp ŒŒG��–module. Then

M ˝ZpŒŒG��N D lim
i;j

Mi ˝ZpŒŒG��Nj

denotes the completed tensor product, which is itself a profinite left Zp ŒŒG��–module [28,
Section 5.5]. The abelian group of continuous Zp ŒŒG��–homomorphisms is denoted by

HomZpŒŒG��.M;N /:

This is a topological space with the compact open topology. If M is finitely generated,
then it is compact; see [35, Section 3.7].

Lazard also proves in [24, V.3.2.7] that the trivial Zp ŒŒG��–module Zp admits a reso-
lution by finitely generated Zp ŒŒG��–modules. A Zp ŒŒG��–module M which admits a
projective resolution P�!M by finitely generated Zp ŒŒG��–modules is said to be of
type FP1 ; see [35, Section 3.7]. For such M, we let

ExtnZpŒŒG��
.M;N /DH n.HomZpŒŒG��.P�;N //
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and
TorZpŒŒG��

n .M;N /DHn.P�˝ZpŒŒG��N /:

These functors are studied by Symonds and Weigel in [35, Section 3.7]. There are
isomorphisms

H n.G;N /Š ExtnZpŒŒG��
.M;N /;

where H n.G;N / is the cohomology computed with continuous cochains and

Hn.G;N /Š TorZpŒŒG��
n .Zp;N /I

see Neukirch, Schmidt and Wingberg [25, Propositions 5.2.6, 5.2.14] or the discussion
in Kohlhaase [23, Section 3]. Therefore, these functors satisfy the usual properties of
group cohomology; see Ribes and Zalesskii [28, Section 6]. In particular, for ŒG;G�
the commutator subgroup, G� DGp ŒG;G�, and Zp and Fp the trivial modules, we
have

H1.G;Zp/ŠG=ŒG;G�; H1.G;Fp/ŠG=G�;

H 1.G;Zp/Š Hom.G;Zp/; H 1.G;Fp/Š Hom.G;Fp/:

Examples A.1.1 We give examples, which we use in this paper, in [3] and in [2].

(a) The modules
Zp ŒŒG=H �� WD Zp ŒŒG��˝ZpŒH �Zp

for H a finite subgroup of G and Zp the trivial Zp ŒH �–module are finitely
generated, and thus profinite and complete.

(b) The Zp ŒŒG��–dual of a finitely generated Zp ŒŒG��–module M is defined as

M �
WD HomZpŒŒG��.M;Zp ŒŒG��/;(A.1.1)

with the action of g 2G on � 2M � defined by

.g�/.m/D �.m/g�1:

This gives M � the structure of a finitely generated left Zp ŒŒG��–module; see
Symonds and Weigel [35, 3.7.1] and Henn, Karamanov and Mahowald [18,
Section 3.4]. For example, if H � G is a finite subgroup and Œg� denotes the
coset gH, there is a canonical isomorphism

(A.1.2) t W Zp ŒŒG=H ��! Zp ŒŒG=H ���

which sends Œg� to the map Œg��W Zp ŒŒG=H ��! Zp ŒŒG�� defined by

Œg��.Œx�/D x
X
h2H

hg�1:
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We refer the reader to [18, Section 3.4] for a detailed discussion of Zp ŒŒG��–duals.

(c) In the case when GDSn is the p–Sylow subgroup of Sn , an important example
is the continuous Zp ŒŒSn��–module .En/�X D��LK.n/.En^X / for a spectrum
X ; see Goerss, Henn, Mahowald and Rezk [14, Section 2]. In the case when X

is a finite spectrum, .En/�X is profinite, although it is not known if, in general,
it is finitely generated over Zp ŒŒSn��. For a more extensive discussion, see the
work of Kohlhaase in [23].

Lemma A.1.2 (Shapiro’s Lemma) Let G be a profinite p–analytic group and let H

be a closed subgroup. Let M be a Zp ŒŒH ��–module of type FP1 and let N D limi Ni

be a profinite Zp ŒŒG��–module, which is also a Zp ŒŒH ��–module via restriction. Then

Ext�ZpŒŒG��
.Zp ŒŒG��˝ZpŒŒH ��M;N /Š Ext�ZpŒŒH ��.M;N /:

Proof Let P�!M be a projective resolution of M by finitely generated Zp ŒŒH ��–
modules. According to Brumer [7, Lemma 4.5], Zp ŒŒG�� is a projective Zp ŒŒH ��–module.
Hence, the functor Zp ŒŒG��˝ZpŒŒH �� .�/ is exact, and Zp ŒŒG��˝ZpŒŒH ��P� is a projective
resolution of Zp ŒŒG��˝ZpŒŒH ��M by finitely generated Zp ŒŒG��–modules. Finally, note
that

HomZpŒŒG��.Zp ŒŒG��˝ZpŒŒH �� P�;N /Š lim
i

HomZpŒŒG��.Zp ŒŒG��˝ZpŒŒH �� P�;Ni/

Š lim
i

HomZpŒŒH ��.P�;Ni/

Š HomZpŒŒH ��.P�;N /;

where the first isomorphism is proved by Symonds and Weigel [35, (3.7.1)] and the
second follows from Ribes and Zalesskii [28, Proposition 5.5.4(c)].

The following result is Lemma 4.3 of Goerss, Henn, Mahowald and Rezk [14]. It is a
version of Nakayama’s lemma in this setting.

Lemma A.1.3 Let G be a finitely generated profinite p–group. Let M and N be
finitely generated complete Zp ŒŒG��–modules and f W M !N be a map of complete
Zp ŒŒG��–modules. If the induced map

Fp˝ZpŒŒG�� f W Fp˝ZpŒŒG��M ! Fp˝ZpŒŒG��N

is surjective, then so is f . If the map

TorZpŒŒG��
q .Fp; f /W TorZpŒŒG��

q .Fp;M /! TorZpŒŒG��
q .Fp;N /

is an isomorphism for q D 0 and surjective for q D 1, then f is an isomorphism.
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The following is a restatement of some of the results which can be found in Ribes and
Zalesskii [28, Lemma 6.8.6].

Lemma A.1.4 Let G be a profinite group and let IG be the augmentation ideal. For
a profinite Zp ŒŒG��–module M , the boundary map for the short exact sequence

0! IG! Zp ŒŒG��
"
�! Zp! 0

induces an isomorphism

HnC1.G;M /Š TorZpŒŒG��
n .IG;M /:

For the trivial module M D Zp , this isomorphism sends g in G=ŒG;G� to the residue
class of e � g in H0.G; IG/ Š IG=IG2 . Let G� be the subgroup generated by
ŒG;G� and Gp . For M D Fp , it sends g in G=G� to the residue class of e � g in
Fp˝Zp

IG=IG2 .

Finally, we note the following classical result.

Lemma A.1.5 Let G be a profinite 2–analytic group and suppose that H1.G;Z2/Š

G=ŒG;G� is a finitely generated 2–group. Suppose that the residue class of an element
g in G=ŒG;G� generates a summand isomorphic to Z=2k. Let x in H 1.G;Z=2/ Š
Hom.G;Z=2/ be the homomorphism dual to g . Then x2 is nonzero in H 2.G;Z=2/
if and only if k D 1.

Proof This follows from the fact that x in H 1.G;Z=2/ has a nonzero Bockstein in
the long exact sequence associated to the extension of trivial modules

1! Z=2! Z=4! Z=2! 1

if and only if g generates a Z=2 summand.
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