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Singular coefficients in the K–theoretic
Farrell–Jones conjecture

GUILLERMO CORTIÑAS

EMANUEL RODRÍGUEZ CIRONE

Let G be a group and let k be a field of characteristic zero. We prove that if the
Farrell–Jones conjecture for the K–theory of RŒG� is satisfied for every smooth
k–algebra R , then it is also satisfied for every commutative k–algebra R .

18F25; 19D55, 55N91

1 Introduction

Let G be a group; a family of subgroups of G is a nonempty family F closed under
conjugation and under taking subgroups. A G–space is a simplicial set together with a
G–action. If F is a family of subgroups of G and f W X ! Y is an equivariant map
of G–spaces, then we say that f is an F –equivalence (resp. an F –fibration) if the
map between fixed point sets

f W XH ! YH

is a weak equivalence (resp. a fibration) for every H 2 F . A G–space X is called
a .G;F/–complex if the stabilizer of every simplex of X is in F . The category of
G–spaces can be equipped with a closed model structure where the weak equivalences
(resp. the fibrations) are the F –equivalences (resp. the F –fibrations); see [3, Section 1].
The .G;F/–complexes are the cofibrant objects in this model structure. By a general
construction of Davis and Lück [7], any functor E from the category Z-Cat of small
Z–linear categories to the category Spt of spectra that sends category equivalences to
weak equivalences of spectra gives rise to an equivariant homology theory of G–spaces
X 7!HG.X;E.R// for each unital ring R . If H �G is a subgroup, then

(1-1) HG
� .G=H;E.R//DE�.RŒH�/

is just E� evaluated at the group ring. The strong isomorphism conjecture for the
quadruple .G;F ; E;R/ asserts that if f W X ! Y is an F –equivalence, then the
induced map HG

� .f;E.R// is an isomorphism. The isomorphism conjecture for the
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130 Guillermo Cortiñas and Emanuel Rodríguez Cirone

quadruple .G;F ; E;R/ asserts that if E.G;F/
�

� pt is a .G;F/–cofibrant replacement
of the point, then the induced map

(1-2) HG
� .E.G;F/; E.R//!E�.RŒG�/

— called the assembly map — is an isomorphism.

A group is called virtually cyclic if it contains a cyclic group of finite index. The
K–theoretic Farrell–Jones conjecture for a group G with coefficients in a ring R is
the isomorphism conjecture for the quadruple .G;Vcyc; K;R/; here Vcyc is the family
of virtually cyclic subgroups of G .

Our main result is the following.

Theorem 1.1 Let F be a family of subgroups of G that contains all the cyclic
subgroups. Let k be a field of characteristic zero and let f W X ! Y be a .G;F/–
equivalence. Suppose that HG.f;K.R// is a weak equivalence for every commutative
smooth k–algebra R . Then HG.f;K.R// is a weak equivalence for every commuta-
tive k–algebra R . In particular, if the (strong) isomorphism conjecture for .G;F ; K;R/
holds for every commutative smooth k–algebra R , then it holds for every commutative
k–algebra R .

Corollary 1.2 Let G be a group. If G satisfies the K–theoretic Farrell–Jones conjec-
ture with coefficients in every commutative smooth Q–algebra R , then it also satisfies
the Farrell–Jones conjecture with coefficients in any commutative Q–algebra.

Next, we sketch the structure of the proof of Theorem 1.1. First, observe that any
commutative k–algebra is a filtering colimit of subalgebras of finite type. Hence, it
suffices to prove the theorem for R of finite type over k , since K–theory commutes with
filtering colimits. Recall that the opposite of the category of commutative k–algebras
of finite type embeds as the full subcategory of affine schemes inside the category Schk
of separated k–schemes of finite type. The K–theory of a scheme S can be defined as
the K–theory of a certain dg-category PerfS . We extend the definition of equivariant
homology so that we can take coefficients in a scheme S2 Schk . It is characterized by

HG
� .G=H;K.S//DK�.PerfS˝ZŒH �/:

Here, ˝ is the tensor product of dg-categories; ZŒH � is considered as a dg-category
with trivial grading and zero differential. When S is affine, we recover the usual
definition of equivariant K–homology; we have

K�.PerfSpecR˝ZŒH �/DK�.RŒH�/:
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Our construction of equivariant K–homology with scheme coefficients gives a functorial
spectrum HG.X;K.S//, covariant in the first variable and contravariant in the second.
Hence, for each G–space X , we have a presheaf of spectra on Schk

S 7!HG.X;K.S//:

Any equivariant map f W X ! Y induces a morphism of presheaves HG.f;K.S//.
Our hypothesis says that for f as in the theorem and S smooth affine, the natural
map HG.f;K.S// is a weak equivalence; we would be done if we could prove that
HG.f;K.S// is a weak equivalence for all S 2 Schk . There is a Grothendieck
topology on Schk , Voevodsky’s cdh topology, with respect to which every scheme
S is locally smooth (here we use that char.k/D 0). Hence, our hypothesis says that
HG.f;K.S// is a local weak equivalence; we want to show that it is a global weak
equivalence. To do this, we need some results from the theory of presheaves of spectra
and Grothendieck topologies. Given a category C with a Grothendieck topology t
there is a model category structure on the category of presheaves of spectra on C where
the weak equivalences are the t –local weak equivalences, and is such that any weak
equivalence between fibrant presheaves is a global weak equivalence. In particular,
any t –local weak equivalence S! T induces a global weak equivalence St ! Tt
between fibrant replacements. Thus, in our case, we have that HG.f;K.S//cdh is a
global equivalence. Let

FHG.X;K.S//D hofiber.HG.X;K.S//!HG.X;K.S//cdh/:

We have a map of fibration sequences:

(1-3)

FHG.X;K.S// //

��

HG.X;K.S//

��

// HG.X;K.S//cdh

o

��

FHG.Y;K.S// // HG.Y;K.S// // HG.Y;K.S//cdh

We know that the rightmost vertical map is a weak equivalence, and we want to show
that the same is true of the vertical map in the middle. By the five lemma, it suffices to
show that the leftmost vertical map is a weak equivalence. There is a similar sequence
with cyclic homology substituted for K–theory, and we prove in Theorem 5.6 that for
every G–space X and every S 2 Schk there is a weak equivalence

(1-4) FHG.X;K.S//
�
�! FHG.X;HC.S//Œ�1�:

Here, the cyclic homology HC is taken over Z.
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We prove in Proposition 6.1 that if F contains all the cyclic subgroups of G and
f W X ! Y is a F –equivalence of G–spaces, then the induced map

(1-5) FHG.X;HC.S//
�
�! FHG.Y;HC.S//

is a weak equivalence for all S 2 Schk . This concludes the proof.

The rest of this paper is organized as follows. At the beginning of Section 2, we recall
some basic notions about presheaves of spectra that we shall need. These include the
notion of descent with respect to the Zariski, Nisnevich and cdh topologies. Each of
these topologies is generated by a class of cartesian squares in Schk

(1-6)

zT

q

��

j
// zS

p

��

T
i
// S

closed under isomorphisms; such a class is called a cd-structure. A presheaf E of
spectra satisfies descent with respect to the square (1-6) if it sends it to a homotopy
cartesian diagram of spectra. If P is a cd-structure, we say that E satisfies descent
with respect to P if it satisfies descent for every square in P . If P is any of the
cd-structures considered in this paper, descent with respect to P is equivalent to
descent with respect to the topology tP generated by P . Towards the end of the
section, we recall some basic notions from the theory of dg-categories, including
the definition of the pretriangulated dg-category PerfS associated to a scheme S.
Section 3 is concerned with descent properties of functors from dg-categories to
spectra that are Morita invariant and localizing (such as, for example, K–theory and
cyclic homology and its variants). We prove in Theorem 3.2 that if E is such a
functor and A is a dg-category over k , then S 7!E.S˝k A/ satisfies descent with
respect to those cartesian squares (1-6) such that i is a regular closed immersion
of pure codimension d and p is the blow-up along i . In Section 4, we introduce
equivariant homology with scheme coefficients. We show in Section 4.2 that any
Morita invariant functor E from dg-categories to spectra gives rise to an equivariant
homology theory of G–spaces HG.X;E.S// with coefficients in S 2 Schk such that
HG.G=H;E.S//

�
�!E.PerfS˝ZŒH �/. In Section 4.3, we construct a functorial

equivariant Chern character HG.X;K.S//!HG.X;HN.S// from equivariant K–
theory to equivariant negative cyclic homology. We write HG.X;K inf.S// for the
homotopy fiber of this character. In Section 5, we use Theorem 3.2 and a result from
[4], which we recall in Theorem 5.4, to prove in Proposition 5.5 that if k is a field of
characteristic zero, then the presheaves HG.X;K inf.‹// and HG.X;HP.‹// satisfy
cdh-descent on Schk ; here HP is periodic cyclic homology. Then we use the latter
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result to prove (1-4) in Theorem 5.6. In Section 6 we prove (1-5) in Proposition 6.1,
and Theorem 1.1, restated as Theorem 6.2.

Remark 1.3 By combining our Corollary 1.2 with results recently announced by
Carlsson and Goldfarb [9], one could conclude that the Farrell–Jones conjecture in
K–theory holds with coefficients in any commutative Q–algebra, for G a torsion-free,
geometrically finite group of finite asymptotic dimension.

Acknowledgements The first author was partially supported by MTM2012-36917-
C03-02. Both authors were supported by CONICET, and partially supported by grants
UBACyT 20020100100386 and PIP 11220110100800.

2 Preliminaries

2.1 cd-structures

Let k be a field. Let Schk be the category of separated k–schemes of finite type and let

(2-1)

zT

q

��

j
// zS

p

��

T
i
// S

be a cartesian square in Schk . We say that the cartesian square (2-1) is Nisnevich if i is
an open immersion and p is an étale morphism that induces an isomorphism between
the reduced schemes

(2-2) . zS� zT/red
'
�! .S�T/red:

A Zariski square is a Nisnevich square such that both i and p are open immersions; in
this case, condition (2-2) means that SD i.T/[p. zS/. We say that the cartesian square
(2-1) is a regular blow-up if i is a regular closed embedding of pure codimension
d and zS is the blowup of S along T. In general, a cartesian square (2-1) is an
abstract blow-up if i is a closed immersion and p is a proper morphism that induces
an isomorphism . zS� zT/! .S�T/. A cd-structure on a small category C is a set P
of commutative squares in C that is closed under isomorphisms. A category C with a
cd-structure P has an associated Grothendieck topology tP ; see [23, Section 2] for
details. The Zariski and the Nisnevich topologies in Schk are the topologies generated
by the Zariski and the Nisnevich squares, respectively. The cdh topology is the topology
on Schk generated by the combined cd-structure which consists of the Nisnevich
squares and the abstract blow-up squares.
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134 Guillermo Cortiñas and Emanuel Rodríguez Cirone

2.2 Presheaves of spectra and descent

Let C be a small category. The category SptC
op

of presheaves of spectra has a model
structure, called the global injective model structure, in which weak equivalences
and cofibrations are defined objectwise and fibrations are defined by the right lifting
property. If C is equipped with a Grothendieck topology t we can endow SptC

op
with

a different model structure, as we proceed to explain. Let at denote the associated
sheaf functor from the category of presheaves of abelian groups on C to the category
of sheaves of abelian groups on .C; t /. A t –local weak equivalence is a morphism
E! F that induces an isomorphism at��E! at��F on the associated sheaves of
stable homotopy groups. The t –local injective fibrations are defined by the right lifting
property with respect to those morphisms that are (objectwise) cofibrations and t –local
weak equivalences. The classes of (objectwise) cofibrations, t –local injective fibrations
and t –local weak equivalences satisfy the axioms for a model structure on SptC

op
(see

[12, Theorem 3.24]), which we will call the t –local injective model structure.

Let E be a presheaf of spectra on C and let (2-1) be a diagram in C . We say that E
has descent for the square (2-1) if the diagram

(2-3)

E.zT/ E. zS/oo

E.T/

OO

E.S/

OO

oo

is homotopy cartesian. Given a cd-structure P on C , we say that E has descent for
P if it has descent for every square in P . Suppose that P is complete, regular and
bounded in the sense of Voevodsky; see [23, Definitions 2.3, 2.10 and 2.22]. For
example, the Zariski, Nisnevich and combined cd-structures on Schk have all these
properties; see [24, Theorem 2.2]. Give C the topology t D tP generated by P , and let
E 7!Et be a functorial fibrant replacement for the t –local injective model structure
in SptC

op
. Let E be a presheaf of spectra on C . Then E has descent for P if and only

if the natural map E!Et is a global weak equivalence; see [4, Theorem 3.4]. If this
is the case we say that E has descent for t (or t –descent).

2.3 dg-categories

In this subsection we follow Keller [14]. A k–category is a category A whose hom-sets
are k–modules and in which composition is k–bilinear. A dg-category (over k ) is a
k–category A whose hom-sets are dg k–modules and in which the morphisms

A.y; z/˝A.x; y/!A.x; z/
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induced by composition are morphisms of dg k–modules; see [14, Section 2.1] for
details.

Let C.k/ be the category of dg k–modules and morphisms of dg k–modules. We
consider C.k/ as a closed symmetric monoidal category with the usual tensor product of
dg k–modules and the structure we proceed to describe. Let E and F be dg k–modules.
The symmetry isomorphism E˝F ' F ˝E is given by v˝w$ .�1/pqw˝ v for
v 2Ep and w 2 F q . The internal hom Hom.E; F / has components

Hom.E; F /p D
Y
q2Z

homk.E
q; F qCp/

and differential d.f / D dF ı f � .�1/pf ı dE for homogeneous f of degree p .
With these definitions, a dg-category over k is the same as a C.k/–category in the
sense of Kelly; see [15, Section 1.2].

There is a dg-category Cdg.k/ whose objects are dg k–modules and whose hom-sets
are given by the internal hom in C.k/; see [14, Section 2.2].

Let A and B be dg-categories over k . A dg-functor F W A! B is a functor such that
the functions F.x; y/W A.x; y/! B.F.x/; F.y// are morphisms of dg k–modules.
Equivalently, a dg-functor is a C.k/–functor in the sense of [15, Section 1.2]. We will
write dgCatk for the category of small dg-categories over k and dg-functors. There
is a symmetric tensor product ˝k that makes dgCatk into a symmetric monoidal
category; see [14, Section 2.3].

Every dg-category A has an associated category H 0.A/ (resp. Z0.A/) that has the
same objects as A and whose hom-sets are given by zero cohomology modules (resp.
zero cycle modules)

homH0.A/.x; y/DH
0A.x; y/ (resp. homZ0.A/.x; y/DZ

0A.x; y/).

The category H 0.A/ is called the homotopy category of A. A dg-functor F W A!B is
a quasiequivalence if it induces an equivalence of categories H 0.F /W H 0.A/!H 0.B/
and F.x; y/ is a quasi-isomorphism for every pair .x; y/ of objects of A.

Let A be a dg-category. A right A–module is a dg-functor M W Aop! Cdg.k/; here,
Aop is the opposite dg-category; see [14, Section 2.2]. We define C.A/ to be the
category whose objects are the right A–modules and whose hom-sets homC.A/.M;N /

consist of the morphisms of functors 'W M ! N such that 'x W Mx ! Nx is a
morphism of dg k–modules for every object x of A. A morphism ' 2 homC.A/.M;N /

is a quasi-isomorphism if the morphisms 'x W Mx ! Nx induce isomorphisms in
cohomology for every object x of A. The category C.A/ has a model structure for
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which the weak equivalences are the quasi-isomorphisms; see [14, Theorem 3.2]. The
derived category D.A/ is by definition the category HoC.A/.

A dg-functor A!B is a Morita equivalence if the restriction functor D.B/!D.A/ is
an equivalence of categories; see [14, Section 4.6]. For example, every quasiequivalence
is a Morita equivalence.

2.4 Pretriangulated dg-categories

Let A be a dg-category. The category C.A/ has a natural C.k/–enrichment into a dg-
category Cdg.A/; see [15, Section 2.2]. There is a Yoneda dg-functor Y W A!Cdg.A/
that is fully faithful; see [15, Section 2.4]. A dg-category A is pretriangulated if
the image of the functor Z0.Y /W Z0.A/! C.A/ is closed under shifts and cones
of morphisms of A–modules; see [14, Section 4.5]. This notion of pretriangulated
dg-category is the same as Keller’s notion of exact dg-category in [13, Section 2.1] and
Drinfeld’s notion of strongly pretriangulated dg-category in [8, Section 2.4].

The homotopy category H 0Cdg.A/ is a triangulated category in a natural way. The
Yoneda dg-functor induces a fully faithful functor H 0.A/ ! H 0Cdg.A/. If A is
pretriangulated, the image of this functor is closed under shifts and cones. Thus, H 0.A/
inherits a triangulated structure from H 0Cdg.A/. Any dg-functor F W A! B between
pretriangulated dg-categories induces a triangulated functor H 0.F /W H 0.A/!H 0.B/.
Every dg-category A admits a universal dg-functor A! pretr.A/ into a pretriangulated
dg-category (see [14, Section 4.5]), and this dg-functor is a Morita equivalence. More-
over, the dg-functor pretr.A/!Cdg.A/ induced by the Yoneda dg-functor A!Cdg.A/
is fully faithful. For example, if R is a k–algebra considered as a dg-category with only
one object, then Cdg.R/ is the dg-category of cochain complexes of right R–modules
described in [14, Section 2.2], and pretr.R/ identifies with its full subcategory of
strictly bounded complexes of finitely generated free R–modules.

Write T � for the idempotent completion (see [1, Theorem 1.5]) of a triangulated
category T . Let F W A! B be a dg-functor with A nonempty. Then F is a Morita
equivalence if and only if H 0.F / is fully faithful and H 0.pretr.F //� is essentially
surjective; see [20, Section 5].

2.5 dg-enhancement of schemes

A dg-enhancement of a triangulated category T is a pretriangulated dg-category T
such that H 0.T / is triangle equivalent to T . It is possible to construct a presheaf
of dg-categories Perf‹W Schop

k
! dgCatk that gives a functorial dg-enhancement of

the derived category Dperf.S/ of perfect complexes on a scheme S 2 Schk ; see, for
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example, [4, Example 2.7] and [18]. We proceed to describe briefly the idea of such a
construction. First consider a dg-category PerfS whose objects are a certain class of
perfect complexes of OS–modules and whose dg k–modules of morphisms are given by
the internal hom of cochain complexes; in both references the strict perfect complexes
of free OS–modules are objects of PerfS . Then let AcS be the full subcategory of
PerfS whose objects are the acyclic complexes and define PerfS to be the Drinfeld
quotient PerfS=AcS ; see [8, Section 3.1].

Let R be a commutative k–algebra of finite type and let SD SpecR . Consider R as
a dg-category over k with only one object; there is a dg-functor R! PerfS that sends
the unique object of R to the OS–module OS concentrated in degree zero. Composing
this with the dg-functor PerfS! PerfS we get a dg-functor �W R! PerfS , which is
a Morita equivalence as we proceed to explain. As explained above, the dg-category
pretr.R/ can be identified with the full subcategory of PerfS whose objects are strict
perfect complexes of free OS–modules. The dg-functor � equals the composition

R! pretr.R/! PerfS! PerfS:

The morphism R ! pretr.R/ is a Morita equivalence. Write � for the composite
pretr.R/! PerfS . The functor H 0.�/ is fully faithful and identifies H 0.pretr.R//
with the full subcategory of Dperf.S/ whose objects are the strict perfect complexes of
free OS–modules. Moreover, the functor

H 0.pretr.�//� W H 0.pretr.R//� !H 0.PerfS/� ' Dperf.S/

is an equivalence since any perfect complex is quasi-isomorphic to a strict perfect com-
plex (see [22, Proposition 2.3.1 (d)]) and any strict perfect complex is a direct summand
of a strict perfect complex of free R–modules. Thus, � is a Morita equivalence.

3 Descent properties of Morita invariant and localizing func-
tors

A functor EW dgCatk ! Spt is Morita invariant if it sends Morita equivalences to
weak equivalences of spectra. A functor EW dgCatk ! Spt is localizing if it sends
short exact sequences of dg-categories (see [14, Section 4.6]) to homotopy fibration
sequences of spectra.

Examples of Morita invariant and localizing functors are nonconnective algebraic
K–theory K (see [19, Section 3.2.32]) as well as Hochschild, cyclic, negative cyclic
and periodic cyclic homology, denoted HH , HC , HN and HP (see [13, Section 2.4]).
These functors recover the classical invariants for schemes when applied to PerfS .
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Throughout this paper, cyclic homology and its variants are taken over Z. By a result
of Thomason, K–theory has descent for Nisnevich squares and for regular blow-up
squares; see [22, Theorem 8.1]. By [4, Theorem 2.10], the same happens to cyclic
homology. We recall the following generalization of these results, which is the particular
case for dg-categories and schemes over a field of a general result of Tabuada, valid
over any commutative ground ring.

Theorem 3.1 [21, Theorem 3.1] Let k be a field, EW dgCatk ! Spt a Morita
invariant and localizing functor, and A a dg-category over k . Consider the functor
F W Schop

k
! Spt given by S 7!E.PerfS˝k A/. Then F has Nisnevich descent.

In the same vein we have the following result.

Theorem 3.2 Let k be a field, EW dgCatk ! Spt a Morita invariant and localizing
functor and A a dg-category. Consider the functor F W Schop

k
! Spt given by S 7!

E.PerfS˝k A/. Then F has descent for regular blow-up squares.

Proof Let (2-1) be a regular blow-up. Assume that i is a regular embedding of
pure codimension d . We consider the filtration of Dperf. zS/ (resp. Dperf.zT/) by the
triangulated subcategories Dlperf.

zS/ (resp. Dlperf.
zT/) defined in [4, Section 1]. Let

Perf zS be the pretriangulated dg-category constructed in Section 2.5. For lD0; : : : ; d�
1 let Perf lzS be the full dg-subcategory of Perf zS of objects that lie in Dlperf.

zS/. The
dg-categories Perf lzS give a filtration of Dperf. zS/ by pretriangulated dg-categories;
moreover,

H 0.Perf l
zS
/D Dlperf.

zS/:

In the same way, we construct a filtration of PerfzT . There is a commutative diagram
of dg-categories as follows.

PerfS Perf0
zS

Perf1
zS

� � � Perfd�1
zS
D Perf zS

PerfT Perf0
zT

Perf1
zT

� � � Perfd�1
zT
D PerfzT

p�

j�

q�

j� j� j�

To prove the theorem we must show that after tensoring this diagram with A and then
applying E , the outer square is homotopy cocartesian. The dg-functor p�W PerfS!
Perf0

zS
(resp. q�W PerfT ! Perf0

zT
) induces an equivalence upon taking H 0 by [4,

Lemma 1.4]; thus, it is a Morita equivalence. The dg-functor

j �W Perf lC1
zS
=Perf l

zS
! Perf lC1T =Perf lT .l D 0; : : : ; d � 2/
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induces an equivalence upon taking H 0 by [4, Proposition 1.5]; thus it is a Morita
equivalence. The result follows from these observations and the fact that tensoring with
A preserves Morita equivalences and short exact sequences of dg-categories; see [8,
Proposition 1.6.3].

4 Equivariant homology theories

4.1 Equivariant homology

Let G be a group. We will write SSetG for the category of G–spaces and equivariant
maps. Let Or.G/ be the category whose objects are the cosets G=H and whose
morphisms are the homomorphisms of G–sets. Let Grpd be the category of small
groupoids. Let GG W G–Sets!Grpd be the functor that sends a G–set to its transport
groupoid. By definition, we have obGG.U / D U and homGG.U /.x; y/ D fg 2 G j

gx D yg. Let F W Grpd! Spt be a functor that sends equivalences of categories to
weak equivalences of spectra. As explained in [16, Proposition 157], F gives rise to a
equivariant homology theory putting

HG.X; F / WD

Z G=H2Or.G/
mapG.G=H;X/˝F.G

G.G=H//

for all X 2 SSetG . In the formula above, ˝ stands for the simplicial action in the
simplicial closed model category of spectra: for Y 2 SSet and E 2 Spt the spectrum
Y ˝E is obtained by degreewise application of the functor YC^‹. The following
lemmas will be used several times.

Lemma 4.1 Let F;F 0W Grpd! Spt be functors and let F ! F 0 be an objectwise
weak equivalence. Then the map HG.X; F /!HG.X; F 0/ is a weak equivalence of
spectra for all X 2 SSetG .

Proof It follows from [7, Lemma 4.6].

Lemma 4.2 Let I be a small category and let F W I �Grpd! Spt be a functor. Let
EW Grpd! Spt be given by E.G/D hocolimi2I F.i;G/. Let X 2 SSetG . Then there
is an isomorphism of spectra

hocolim
i2I

HG.X; F.i; ‹//'HG.X;E/:

In particular, HG.X; ‹/ preserves (objectwise) homotopy fibration sequences and
homotopy cartesian squares of spectra.
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Proof The last assertion follows from the first one using Lemma 4.1 because ho-
motopy fibration sequences and homotopy cartesian squares of spectra are homotopy
colimits (they are homotopy cofibration sequences and homotopy cocartesian squares,
respectively). The first assertion follows from Fubini’s theorem for coends and from
the fact that tensoring with a simplicial set in a simplicial model category commutes
with the integral sign since it is a left adjoint.

4.2 Equivariant K–theory and cyclic homology

Let k be a field of characteristic zero. Let EW dgCatQ! Spt be a Morita invariant
functor.

To every scheme S 2 Schk we associate a functor ESW Grpd! Spt putting

ES.G/ WDE.PerfS˝Q QŒG�/:

Because of Morita invariance, ES sends equivalences of categories to weak equiva-
lences of spectra. Hence, ES gives rise to an equivariant homology HG.‹; E.S//.
Note that the assignment S 7! ES is contravariantly functorial, so a morphism of
schemes induces a morphism between the corresponding homologies. In this way, we
obtain equivariant homologies HG.‹;K.S//, HG.‹;HC.S//, HG.‹;HN.S// and
HG.‹;HP.S//.

To every ring R we associate a functor ERW Grpd! Spt putting

ER.G/ WDE.RŒG�/:

Because of Morita invariance, ER sends equivalences of categories to weak equiva-
lences of spectra. Then ER gives rise to an equivariant homology HG.‹; E.R//. Note
that the assignment R 7!ER is covariantly functorial.

Remark 4.3 Let S D SpecR be an affine scheme and let �W R ! PerfS be the
dg-functor described in Section 2.5. For every groupoid G , the morphism

RŒG�DR˝Q QŒG�
�˝1
�! PerfS˝Q QŒG�

is a Morita equivalence, and we get a weak equivalence ER.G/
�
�!ES.G/ by Morita

invariance. By Lemma 4.1, we get HG.X;E.R//
�
�!HG.X;E.S// for all X 2

SSetG .

Remark 4.4 Let SD SpecR be an affine scheme. Let G be a group and let G=H 2
OrG . Recall that homGG.G=H/.H;H/DH . If we consider H as groupoid with only
one object �, there is an equivalence of categories H ! GG.G=H/ that sends � to the

Algebraic & Geometric Topology, Volume 16 (2016)



Singular coefficients in the K–theoretic Farrell–Jones conjecture 141

coset H 2G=H . This equivalence induces a k–linear functor RŒH�!RŒGG.G=H/�,
which is also a category equivalence and, in particular, a quasiequivalence. By Morita
invariance and Remark 4.3, we get a weak equivalence

(4-1) E.RŒH�/
�
�!ES.GG.G=H//:

Note that this weak equivalence is natural in E but not in G=H .

4.3 Equivariant Chern character and infinitesimal K–theory

Let A be a (not necessarily commutative) k–algebra. The infinitesimal K–theory
K inf.A/ is the homotopy fiber of the Chern character K.A/! HN.A/. In this section
we define a natural Chern character KS.G/!HNS.G/ that coincides with the classical
one when S is affine and G D GG.G=H/; see Remark 4.4.

Let EW dgCatQ! Spt be a functor. For each S 2 Schk define Eaff
S W Grpd! Spt

by Eaff
S .G/ WD ESpecOS.S/.G/. The morphism S! SpecOS.S/ induces a natural

transformation Eaff
S ! ES . Now fix a groupoid G . We have presheaves of spectra

E‹.G/ and Eaff
‹
.G/ on Schk . The natural map Eaff

‹
.G/! E‹.G/ is a Zariski local

weak equivalence because both presheaves coincide on affine schemes.

By Morita invariance, we have Kaff
S .G/

�
�!K.OS.S/˝Q QŒG�/ and HNaff

S .G/
�
�!

HN.OS.S/˝Q QŒG�/ naturally in S and in G . Then the Chern character for Z–linear
categories [3, (8.1.6)] induces a natural transformation chaff

W Kaff
‹
.G/ ! HNaff

‹
.G/.

Choose a fibrant replacement functor

�F W F 7! FZar

for the Zariski local injective model structure in the category of presheaves of spectra
on Schk . Consider the following diagram:

K‹.G/

�K

��

Kaff
‹
.G/oo

chaff
//

��

HNaff
‹
.G/ //

��

HN‹.G/

�HN

��

K‹.G/Zar Kaff
‹
.G/Zar

�K
oo

chaff
Zar
// HNaff

‹
.G/Zar

�HN
// HN‹.G/Zar

Note that the presheaves K‹.G/ and HN‹.G/ have Zariski descent by Theorem 3.1.
The morphisms �K , �HN , �K and �HN are global weak equivalences because they are
Zariski local weak equivalences between presheaves that satisfy Zariski descent. These
weak equivalences and the morphism chaff

Zar define a Chern character map chW KS.G/!
HNS.G/. It is clear that this map is natural in G and coincides with the usual Chern
character in the affine case.
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For S 2 Schk , we define K inf
S W Grpd! Spt by

(4-2) K inf
S .G/ WD hofiber.chW KS.G/! HNS.G//:

Because of (4-1), the Chern character defined above coincides with the usual one in
the affine case, and there is a weak equivalence

(4-3) K inf
SpecR.G

G.G=H//
�
�!K inf.RŒH�/;

which is natural in R . The functor K inf
S sends equivalences of categories to weak

equivalences of spectra because both KS and HNS have that property. Thus, K inf
S

gives rise to an equivariant homology theory HG.‹;K inf.S//. By Lemma 4.2, there
is a homotopy fibration sequence

(4-4) HG.X;K inf.S//!HG.X;K.S//!HG.X;HN.S//

for every X 2 SSetG and every S 2 Schk .

5 Descent results for equivariant homologies

Lemma 5.1 Let X 2 SSetG and let E 2 fK;HC;HN;HP; K infg. Then the presheaf
of spectra HG.X;E.‹// has Nisnevich descent and descent for regular blow-up squares
in Schk .

Proof Let E 2 fK;HC;HN;HPg and let (2-1) be a Nisnevich square (resp. a regular
blow-up square). Theorem 3.1 (resp. Theorem 3.2) implies that, for every groupoid G ,
the square

EzT.G/ EzS.G/oo

ET.G/

OO

ES.G/oo

OO

is homotopy cartesian. It follows from Lemma 4.2 that HG.X;E.‹// sends (2-1) into
a homotopy cartesian square of spectra.

In the case of K inf the assertion follows from the corresponding statements for K and
HN and from the homotopy fibration sequence (4-4).

Proposition 5.5 below states that HG.X;E.‹// has cdh-descent on Schk for E 2
fHP; K infg. We first recall some definitions and results. Let Rng be the category of
rings, and let C� Rng be a subcategory.
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Definition 5.2 A Milnor square is a commutative square of rings

A //

��

B

��

A=I // B=J

in which I is an ideal of A, J is an ideal of B and f maps I isomorphically onto
J . Let F W C! Spt be a functor. We say that F satisfies excision if it sends Milnor
squares in C to homotopy cartesian squares of spectra.

The Cuntz–Quillen theorem in [6] establishes excision for HP of Q–algebras. Excision
for infinitesimal K–theory of Q–algebras was proved in [2].

Definition 5.3 A functor F W C! Spt is nilinvariant if, for every ring R 2 C and
every nilpotent ideal I of R , the map F.R/! F.R=I / is a weak equivalence.

Nilinvariance for HP of Q–algebras was proved by Goodwillie in [10, Theorem
II.5.1]. Nilinvariance for K inf follows from another theorem of Goodwillie [11, Main
Theorem].

Let F be a presheaf of spectra on Schk . Assume that F satisfies Zariski descent. We
say that F satisfies excision (resp. is nilinvariant) if R 7!F.SpecR/ satisfies excision
(resp. is nilinvariant) on the category of commutative k–algebras of finite type.

We recall the following criterion for cdh-descent.

Theorem 5.4 [4, Theorem 3.12] Let k be a field of characteristic zero. Let F be a
presheaf of spectra on Schk . Suppose that F satisfies excision, nilinvariance, Nisnevich
descent and descent for regular blow-up squares. Then F has cdh-descent.

Proposition 5.5 Let k be a field of characteristic zero. Let X 2 SSetG and let
E 2 fHP; K infg. Then the presheaf of spectra HG.X;E.‹// has cdh-descent on Schk .

Proof The result will follow from Theorem 5.4. The presheaf HG.X;E.‹// has
Nisnevich descent and descent for regular blow-up squares by Lemma 5.1. Let f W R!
S be a morphism of commutative k–algebras, and let I be an ideal of R that is mapped
isomorphically onto an ideal J of S . Let G=H 2OrG . Then f ŒH�W RŒH�! SŒH�

is a k–algebra morphism and I ŒH� is an ideal of RŒH� that is mapped isomorphically
onto the ideal J ŒH� of SŒH�. The excision results of [6] and [2] imply that the square

E.RŒH�/ //

��

E.SŒH�/

��

E..R=I /ŒH�/ // E..S=J /ŒH�/
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is homotopy cartesian. The equivalences (4-1) and (4-3) imply that the following square
is homotopy cartesian:

ESpecR.GG.G=H// //

��

ESpecS .GG.G=H//

��

ESpecR=I .GG.G=H// // ESpecS=J .GG.G=H//

Excision for HG.X;E.‹// follows from Lemma 4.2. Nilinvariance for HG.X;E.‹//

is proved in a similar way, using the equivalences (4-1) and (4-3) and the nilinvariance
results for HP and K inf due to Goodwillie and cited above ([10, Theorem II.5.1] and
[11, Main Theorem]).

Choose a fibrant replacement functor F 7! Fcdh for the cdh-local injective model
structure in the category of presheaves of spectra on Schk . For a presheaf F let FF

be the homotopy fiber of the natural morphism F ! Fcdh . Then for every S 2 Schk ,
we have a homotopy fibration sequence

(5-1) FF.S/! F.S/! F.S/cdh:

Theorem 5.6 (cf [5, Theorem 1.6]) Let G be a group and X a G–space. Also let
k be a field of characteristic zero and S 2 Schk . Then there is a homotopy fibration
sequence

FHG.X;HC.S//Œ�1�!HG.X;K.S//!HG.X;K.S//cdh:

Proof It follows from Proposition 5.5 by the argument of [5, Theorem 1.6].

6 Isomorphism conjectures

Recall from the introduction the definition of the strong isomorphism conjecture for a
quadruple .G;F ; E;R/. By a result of Lück and Reich [17, Theorem 1.7] the strong
isomorphism conjecture with coefficients in HC.R/ holds for any group G and any
family F containing all cyclic subgroups of G . We shall prove a variant of Lück–
Reich’s result with coefficients in a scheme. We need some notation. Let k be a field
of characteristic zero and let S 2 Schk . Also let G be a group and f W X ! Y an
equivariant map of G–spaces. Then f induces a map of homotopy fibration sequences

(6-1)

FHG.X;HC.S// //

��

HG.X;HC.S//

��

// HG.X;HC.S//cdh

��

FHG.Y;HC.S// // HG.Y;HC.S// // HG.Y;HC.S//cdh
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Proposition 6.1 Let F be a family of subgroups containing all the cyclic subgroups
of G . Assume that f W X ! Y is a .G;F/–equivalence. Then the vertical maps in
(6-1) are weak equivalences.

Proof By [3, Proposition 7.6] the vertical map in the middle of (6-1) is a weak
equivalence for affine S. Hence,

(6-2) HG.X;HC.‹//!HG.Y;HC.‹//

is a Zariski local weak equivalence; by Lemma 5.1 it is a global weak equivalence.
This shows that the vertical map in the middle of (6-1) is a weak equivalence. Similarly,
because the map (6-2) is a Zariski local equivalence, it is also a cdh-local equivalence.
Hence, it induces a global equivalence HG.X;HC.‹//cdh!HG.Y;HC.‹//cdh . This
proves that the rightmost vertical map of (6-1) is a weak equivalence. By the five lemma,
it follows that also the leftmost vertical map is a weak equivalence. This completes the
proof.

We are now ready to prove our main theorem.

Theorem 6.2 Let F be a family of subgroups of G that contains all the cyclic
subgroups. Let k be a field of characteristic zero and let f W X ! Y be a .G;F/–
equivalence. Suppose that HG.f;K.R// is a weak equivalence for every commutative
smooth k–algebra R . Then HG.f;K.R// is a weak equivalence for every commuta-
tive k–algebra R . In particular, if the (strong) isomorphism conjecture for .G;F ; K;R/
holds for every commutative smooth k–algebra R , then it holds for every commutative
k–algebra R .

Proof Because F � Cyc, the map FHG.f;HC.S// is a weak equivalence for all
S 2 Schk , by Proposition 6.1. Because HG.f;K.R// is a weak equivalence for
smooth R , HG.f;K.‹// is a cdh-local weak equivalence. Hence HG.f;K.S//cdh

is a weak equivalence for every S 2 Schk . By Theorem 5.6 and what we have
just proven, HG.f;K.S// is a weak equivalence for every S 2 Schk . In particular
HG.f;K.R// is a weak equivalence for R commutative and of finite type over k .
Because HG.f;K.‹// commutes with filtering colimits up to homotopy, it follows
that HG.f;K.R// is a weak equivalence for every commutative k–algebra R .

Corollary 6.3 Let G be a group. If G satisfies the K–theoretic Farrell–Jones conjec-
ture with coefficients in every commutative smooth Q–algebra R then it also satisfies
the Farrell–Jones conjecture with coefficients in any commutative Q–algebra.
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