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Classifying spaces of twisted loop groups

THOMAS J BAIRD

We study the classifying space of a twisted loop group L�G , where G is a compact
Lie group and � is an automorphism of G of finite order modulo inner automor-
phisms. Equivalently, we study the � –twisted adjoint action of G on itself. We
derive a formula for the cohomology ring H�.BL�G/ and explicitly carry out the
calculation for all automorphisms of simple Lie groups. More generally, we derive a
formula for the equivariant cohomology of compact Lie group actions with constant
rank stabilizers.

22E67; 57S15

1 Introduction

Let G be a compact connected Lie group and let � 2 Aut.G/ be an automorphism of
G . The twisted loop group L�G is the topological group L�G of continuous paths
 W I!G satisfying  .1/D�. .0//, with point wise multiplication and compact-open
topology. In the special case that � is the identity automorphism, L�G is the usual
(continuous) loop group LG .1 The main result of this paper is a formula for the
cohomology ring of the classifying space H�.BL�G/.

The isomorphism type of L�G depends only on the outer automorphism Œ� �2Out.G/D
Aut.G/= Inn.G/ represented by � ; see Section 4. If G is semisimple, then the outer
automorphism group Out.G/ is naturally isomorphic to the automorphism group of
the Dynkin diagram of G , so Out.G/ is finite.

Theorem 1.1 Let G be a semisimple compact connected Lie group with Weyl
group W and let � 2 Aut.G/ be an automorphism with corresponding outer auto-
morphism Œ� � 2 Out.G/. Let G� denote the subgroup of elements fixed by � , with
identity component G�

0
. Then the inclusion of G�

0
� G induces an injection in

cohomology
H�.BL�GIF / ,!H�.BLG�

0 IF /

1We work with continuous loops throughout, but by work of Palais [8, Theorem 13.14] the homotopy
type of BL�G is unchanged if we work for C k loops for k � 0 or Lk

p loops for k > 1=p
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for coefficient fields F of characteristic coprime to the order of W , the order of Œ� �,
and to the number of path components of G� . The image of the injection is the ring of
invariants

H�.BL�GIF /ŠH�.BLG�
0 IF /

W�

under an action by a subgroup W� � W . Specifically, W� D NG.T
� /=T is the

quotient of the normalizer of a maximal torus T � �G�
0

by a maximal torus T �G .

In many cases (see Section 6), W� acts via outer automorphisms of G�
0

, which are
well understand. Classifying spaces of untwisted loop groups are also well understood
(see Proposition 7.2) so Theorem 1.1 enables explicit calculation of H�.BL�GIF /

whenever the hypotheses hold. We carry out this calculation for all automorphisms of
compact connected simple Lie groups in Section 7.

More generally, we derive a formula in Proposition 4.1 for H�.BL�GIF / if G

is compact connected and � is conjugate to an automorphism of finite order. The
proof uses the following model of BL�G . Denote by GAd�

the left G –space whose
underlying space is the group manifold G and with twisted adjoint action

Ad� W G �GAd�
!GAd�

; Ad� .g/.x/D gx�.g�1/:

The classifying space BL�G is homotopy equivalent to the homotopy quotient EG�G

GAd�
; see Lemma 4.2.

If � has order n, then form the compact semi-direct product Zn Ë G by the rule
.a;g/ � .b; h/D .aC b; ��b.g/h/. The G –space GAd�

is identified with the standard
adjoint action of G Š f0g � G on the path component f1g � G . By a result of
de Siebenthal [11, last theorem of Chapter II], the stabilizers Gp of this action all have
the same rank; this permits us to apply the following result which may be of more
general interest.

Theorem 1.2 Let G be a compact connected Lie group and X a compact connected
Hausdorff G –space with constant rank stabilizers. Choose any p 2X and let Tp �G

be a maximal torus in the stabilizer Gp of p . Then the inclusions NG.Tp/� G and
X Tp �X induce an isomorphism in equivariant cohomology

H�G.X /ŠH�NG.Tp/
.X Tp /

for coefficient fields of characteristic coprime to order of the Weyl group of G .

The proof of Theorem 1.2 is a straightforward generalization of the special case proven
in Baird [2, Theorem 3.3] where the stabilizers Gp were assumed to have rank equal
to that of G .
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Classifying spaces of twisted loop groups 213

Twisted loop groups have been studied in relation to the representation theory of affine
Lie algebras by Pressley and Segal [9], Mohrdieck and Wendt [7] and Wendt [13], and
in relation to Wess–Zumino–Witten theory by Stanciu [12]. We introduced a special
class of twisted loop groups — called real loop groups [3] — in the course of calculating
Z2 –Betti numbers of moduli spaces of real vector bundles over a real curve. The results
of the current paper will be applied in future work to study the cohomology of these
moduli spaces in odd characteristic.

Notation Given a topological group G and G–space X , we denote by XhG or
EG �G X the Borel construction homotopy quotient.

Acknowledgements I would like to thank Misha Kotchetov for helpful advice about
triality and the referee for pointing towards a gap in a proof appearing in an earlier
draft. This research was supported by an NSERC Discovery Grant.

2 Cohomological principal bundles

We recall some background material from [2]. Let f W X ! Y be a continuous map
between topological spaces X and Y , and let � be a topological group acting freely
on X , such that X !X=� is a principal bundle.

Definition 1 We say .f W X ! Y; �/ is a cohomological principal bundle for the
cohomology theory H� if:

(i) f is a closed surjection.

(ii) f descends through the quotient to a map h:

(1)

X

�
��

f

""

X=�
h
// Y

(iii) H�.h�1.y//ŠH�.pt/ for all y 2 Y .

Let H�.X IF / denote sheaf cohomology of the constant sheaf FX , where F is a field.
The following is a simplification of [2, Corollary 2.4].

Proposition 2.1 Let � be a compact Lie group and let .f W X ! Y; �/ be a cohomo-
logical principal bundle for H�. � ;F /, where X is a paracompact Hausdorff space.
Then H�.Y IF /ŠH�.X=�IF /.
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We also make repeated use of the following.

Theorem 2.2 [2, Theorem 2.2] Let X be a topological space, let � be a finite group
acting on X and let � W X !X=� denote the quotient map onto the orbit space X=� .
If F is a field satisfying gcd.char.F /; #�/D 1, then

(2) ��W H.X=�IF /!H.X IF /�

is an isomorphism, where H.X IF /� denotes the ring of � invariants.

A particular example of Theorem 2.2 is that B� is acyclic for coefficient field F

coprime to the order of � , because H�.B�IF /DH�.E�=�IF /DH�.E�IF /�

and E� is acyclic because it is contractible.

3 Cohomology of G –spaces with constant rank stabilizers

Let G be a compact Lie group and X a left G–space which is compact connected
and Hausdorff. Denote by Gx the stabilizer of a point x 2X and by G0

x the identity
component of Gx . For a given point p 2 X , let Tp denote a maximal torus in the
identity component G0

p of Gp . Define an equivariant map

(3) �W G �X Tp !X; �..g;x//D g �x;

where G acts on G�X Tp by g � .h;x/D .gh;x/. The normalizer N.Tp/DNG.Tp/,
acts on G �X Tp from the right by

(4) .g;x/ � nD .gn; n�1
�x/;

leaving � invariant and commuting with the G action.

Proposition 3.1 Under the hypotheses of Theorem 1.2, the pair .�W G � X Tp !

X;N.Tp// is a cohomological principal bundle.

We begin with a few of lemmas.

Lemma 3.2 Under the hypotheses of Theorem 1.2, given any two points x;y 2 X ,
the maximal tori Tx �G0

x and Ty �G0
y are conjugate in G .

Proof Given p 2 X , the set A D fx 2 X j Tx is conjugate to Tp g is equal to the
image of (3). The fixed point set X Tp is closed in X , hence compact. Since G is
compact, the product G �X Tp is compact, and the image of (3) is compact, hence
closed. Thus A is a closed subset of X .
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Since X is compact and Hausdorff it is completely regular. By a theorem of Gleason
[5, Theorem 3.3], G–orbits in X admit local cross sections. In particular, for every
x 2 X there is an open neighbourhood x 2 U � X such that for every y 2 U , the
stabilizer Gy is a subgroup of a conjugate of Gx . Since Gx and Gy have the same
rank, this implies that Tx and Ty are conjugate. It follows that A is an open subset of
X . Since X is connected, it follows that ADX .

Lemma 3.3 Let G act on X from the left and let x 2X Tp . Then g �x 2X Tp if and
only if g 2N.Tp/G

0
x , where G0

x is the identity component of the stabilizer Gx .

Proof If g �x 2X Tp , then g�1tg �x D x for all t 2 Tp , so

(5) g�1Tpg �Gx :

Since stabilizers have constant rank, both Tp and g�1Tpg are maximal in Gx , so for
some h 2 G0

x , h�1g�1Tpgh D Tp , and thus g 2 N.Tp/G
0
x . The other direction is

clear.

Lemma 3.4 Let .�W G �X Tp ! X;N.Tp// be defined as above. For every x 2 X ,
the orbit space ��1.x/=N.Tp/ŠG0

x=NG0
x
.H /, where H is a maximal torus in G0

x .

Proof We may assume by equivariance that x 2X T . We have isomorphisms of right
N.Tp/–spaces

(6)
��1.x/D f.g;y/ 2G �X Tp j g �y D xg

D f.g�1;g �x/ j g 2N.Tp/G
0
xg ŠG0

xN.Tp/;

where the middle equality follows from the preceding lemma. It follows that

(7) ��1.x/=N.Tp/ŠG0
xN.Tp/=N.Tp/ŠG0

x=NG0
x
.Tp/:

Proof of Proposition 3.1 Since both G and X are compact, it follows that G �X Tp

is compact and thus � is closed. From Lemma 3.2, it follows that every G –orbit in X

must intersect X Tp , so � is surjective. Finally, the homeomorphism ��1.x/=N.Tp/Š

G0
x=NG0

x
.H / from Lemma 3.4 implies that H�.��1.x/=N.Tp/IF / is acyclic over

fields of characteristic coprime to the order of the Weyl group, as explained in [2,
Section 3].

Proof of Theorem 1.2 The map G �N.Tp/X Tp ! X is G–equivariant and a coho-
mology isomorphism, so it induces an isomorphism in equivariant cohomology

H�G.X /ŠH�G.G �N.Tp/X Tp /:
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The action of N.Tp/ on G �X Tp is free and commutes with G , so we also have an
isomorphism

H�G.G �N.Tp/X Tp /ŠH�G�N.Tp/
.G �X Tp /:

Finally, G acts freely on G �X Tp , so we have an isomorphism

H�G�N.Tp/
.G �X Tp /ŠH�N.Tp/

.X Tp /:

4 Formula for compact connected G

Let G be a compact connected Lie group and � 2 Aut.G/. Let G� � G denote
the subgroup of elements fixed by � , and let T � be a maximal torus in (the identity
component of) G� . Let C.T � /D CG.T

� / and N.T � /DNG.T
� / be the centralizer

and normalizer of T � in G respectively. The twisted adjoint action restricts to an
action of N.T � / on C.T � /, which we denote by C.T � /Ad�

. The goal of this section
is to prove the following.

Proposition 4.1 Let G be a compact connected Lie group and � 2Aut.G/ an automor-
phism such that some conjugate g�g�1 has finite order. Then there is a cohomology
isomorphism

H�.BL�G/ŠH�N.T � /.C.T
� /Ad�

/

for coefficient fields coprime to the order of the Weyl group of G .

The following result is not original (it follows implicitly from [13]), but I have not been
able to find a clean statement in the literature.

Lemma 4.2 There is a natural homotopy equivalence BL�G ŠEG �G GAd�
.

Proof Consider the action of L�G on the contractible based path space

PG WDMaps..I; 0/; .G; IdG//

by . � x/.t/ D  .t/x .0/�1 . Since PG is contractible, the homotopy quotient
PGhL� G is a model for BL�G .

The based loop group �G WD f 2L�G j  .0/D  .1/D IdGg acts freely on PG , so
PGhL� G is equivalent to the homotopy quotient of the residual action of L�G=�GŠ

G on PG=�G ŠGAd�
.
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The isomorphism class of L�G depends only on the element of the outer automorphism
group Out.G/D Aut.G/= Inn.A/ represented by � ; see [9, Section 3.7]. Similarly, if
� 0 D Adh ı � represent the same outer automorphism, then the map

GAd�
!GAd�0 ; x 7! xh�1

in an isomorphism of G –spaces. Thus we may assume without loss of generality that
� has finite order.

Lemma 4.3 Let G be a compact connected Lie group. If � 2 Aut.G/ has finite order
then the twisted adjoint action of G on GAd�

has constant rank stabilizers.

Proof If � has order n, then it can be used to construct a semi-direct product Zn ËG .
It is explained in the introduction that the action of G on GAd�

is isomorphic to
standard adjoint action of G D f0g �G on the path component f1g �G ŠGAd�

.

The result now follows from a fundamental property of the adjoint action of discompact
connected Lie groups found at the end of Chapter II of [11].

Proof of Proposition 4.1 By Lemma 4.2 we have H�.BL�G/ Š H�
G
.GAd�

/. By
Lemma 4.3 and Theorem 1.2 we have

H�G.GAd�
/ŠH�N.Tp/

.G
Tp

Ad�
/

for any choice of p 2GAd�
. Choose p D IdG .

The stabilizer of the identity element IdG 2 G under the twisted adjoint action is
exactly the subgroup G� of elements invariant under � . Let T � denote a maximal
torus of G� . The restriction of the twisted adjoint action to T � agrees with the ordinary
adjoint action. It follows that the set of T � –fixed points is precisely the centralizer
C.T � / WD fg 2G j gt D tg; for all t 2 T �g. Then, as desired,

H�N.Tp/
.G

Tp

Ad�
/ŠH�N.T � /.C.T

� /Ad�
/:

Example 1 If � 2 Aut.G/ is the identity, we have T � D T is a maximal torus with
N.T � /DN.T / acting on C.T � /D T by the standard adjoint action. Proposition 4.1
gives us the formula

(8) H�.BLG/DH�G.G/ŠH�N.T /.T /Š .H
�.T /˝H�.BT //W

for coefficients coprime to the order of the Weyl group W DN.T /=T .

Remark 1 If G is abelian, then N.T � /D C.T � /DG , so Proposition 4.1 offers no
improvement over Lemma 4.2. The formula is more interesting in the opposite extreme
when G is semisimple, which is the subject of Theorem 1.1.
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5 Proof of Theorem 1.1

Assume throughout this section that G is a compact connected semisimple Lie group,
and that cohomology is taken with coefficient field F of characteristic p coprime to
the orders of the Weyl group WG DNG.T /=T , of Œ� �, and of �0.G

� /.

Lemma 5.1 Let T � be a maximal torus in G�
0

and C.T � / the centralizer of T �

in G . Then:
(a) C.T � /D T is a maximal torus in G and T � DG�

0
\T .

(b) The restriction of � to T preserves a Weyl chamber, and thus has finite order
equal to that of the outer automorphism Œ� � 2 Out.G/.

Proof This is mostly just a restatement of [11, Chapter II, Section 3, Proposition 2].
The only addition is that �T has order equal to Œ� �. This follows because if Œ� � has
order n, then �n is an inner automorphism that preserves a Weyl chamber of T and
thus must restrict to the identity map on T .

The twisted adjoint action restricts to the standard adjoint action for the subgroup
NG�

0
.T � /�NG.T

� / acting on the subspace T � � T , so these inclusions give rise to
morphism in equivariant cohomology, which by Proposition 4.1 fits into a commutative
diagram

(9)

H�.BL�G/

Š

��

// H�.BLG�
0
/

Š

��

H�
NG.T � /

.TAd�
/ // H�

NG�
0
.T � /

.T �
Ad/

where the top arrow is the subject of Theorem 1.1.

Since C.T � /�NG.T
� /�NG.C.T

� //, it follows from Lemma 5.1 that

T �NG.T
� /�NG.T /:

Define W� WDNG.T
� /=T . Then W� �WG DNG.T /=T is a finite group of order

coprime to p . By Theorem 2.2, there is a natural isomorphism

H�NG.T � /.TAd�
/ŠH�T .TAd�

/W� :

The Weyl group WG�
0
WDNG�

0
.T � /=T � acts faithfully on T � by the adjoint action, so

the inclusion NG�
0
.T � / ,!NG.T

� / descends to an injection WG�
0
,!W� . It follows

from Lagrange’s theorem that the order of WG�
0

is coprime to p . We gain a natural
isomorphism

H�NG�
0
.T � /.T

�
Ad/ŠH�T � .T

�
Ad/

WG�
0 :
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These natural isomorphisms permit us to replace (9) with the commuting diagram

(10)

H�.BL�G/ //

Š

��

H�.BLG�
0
/

Š
��

H�
T
.TAd�

/W� // H�
T � .T

�
Ad/

WG�
0 :

Lemma 5.2 The inclusion T ��T induces an isomorphism in equivariant cohomology

H�T .TAd�
/ŠH�T � .T

�
Ad/:

Proof The action of T � on T �
Ad is trivial, so the homotopy quotient is the product

BT � �T � and the equivariant cohomology ring is

H�T � .T
�

Ad/ŠH�.BT � /˝H�.T � /:

The twisted adjoint action of t 2 T on x 2 TAd�

Ad� .t/.x/D tx�.t/�1
D t�.t/�1x

is simply translation by t�.t/�1 . Consequently, T acts on TAd�
with constant stabilizer

G� \T .

Choose a complementary subtorus T 0 so that T D T � �T 0 . Then the factor T � acts
trivially on TAd�

, so the homotopy quotient satisfies

.TAd�
/hT Š BT �

� .TAd�
/hT 0 ;

where in the second factor we consider the restricted action of T 0 on TAd�
which has

constant stabilizer T 0\G� . It follows that the projection map onto the orbit space

.TAd�
/hT 0 ! TAd�

=T 0 D TAd�
=T

has homotopy fibre B.T 0\G� /.

Observe that the induced homomorphism T 0 \G� ! �0.G
� / is injective, because

T 0\G�
0
D T 0\T � D fIdGg. In particular, the order of T 0\G� divides the order of

�0.G
� /, so B.T 0\G� / is acyclic over the field F and

H�T .TAd�
/ŠH�.BT � /˝H�T 0.TAd�

/ŠH�.BT � /˝H�.TAd�
=T /:

The result now follows from Lemma 5.3.

Lemma 5.3 The map �W T � ! TAd�
=T obtained by composing inclusion and quo-

tient maps is a covering map of finite degree coprime to p . In particular, � induces a
cohomology isomorphism in characteristic p .
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Proof Let n be the order of � jT . By Lemma 5.1 n is coprime to p .

As explained in the proof of Lemma 5.2, the twisted adjoint action of t 2 T on TAd�

is simply translation by t�.t/�1 . The orbit space TAd�
=T may thus be identified with

the coset space T=H where H WD ft�.t/�1 j t 2 T g, and � can be identified with the
corresponding group homomorphism

�0W T �
! T=H:

Since �0 is a homomorphism between tori of equal rank, it is enough to show that
ker.�0/D T � \H has finite order dividing a power of n.

Suppose that t 2H \T � . Then both t D �.t/ and t D s�.s/�1 for some s 2 T . Thus

tn
D t�.t/�2.t/ � � � �n�1.t/D .s�.s/�1/ � � � .�n�1.s/�n.s/�1/D s�n.s/�1

D IdT ;

so ker.�0/ is a subgroup of Tn WD ft 2T j tnD IdT g, which is a group of order nrank.T / .
The result follows by Lagrange’s theorem.

Next, we want to understand the W� and WG�
0

actions. Observe that the residual
WG�

0
–action on the homotopy quotient .TAd/hT � D BT � � T � acts diagonally in

the standard way on each factor, so the action extends to W� D NG.T
� /=T in the

standard way.

Lemma 5.4 The isomorphism H�
T � .T

�
Ad/ Š H�

T
.TAd�

/ defined in Lemma 5.2 is
W� –equivariant with respect to the actions defined above.

Proof Both actions are diagonal with respect to the Kunneth factorizations defined in
the proof of Lemma 5.2:

H�T � .T
�

Ad/ŠH�.BT � /˝H�.T � /;

H�T .TAd�
/ŠH�.BT � /˝H�.TAd�

=T /:

The action on the first factors are the same, since the group T � acts trivially in both
cases. It remains to consider action on the second factors are equivariant with respect
to the isomorphism H�.T � /ŠH�.TAd�

=T / from Lemma 5.3.

Let �W T �
Ad! TAd�

=T be the covering map, n 2NG.T
� /, and x 2 T �

Ad . Then

� ıAd.n/.x/D �.nxn�1/D Œnxn�1�

while
Ad� .n/ ı�.x/D Œnx�.n�1/�D Œnxn�1n�.n�1/�:

The two maps � ıAd.n/ and Ad� .n/ ı� agree up to translation by n�.n�1/ 2 T , so
they are homotopic and define the same map on cohomology.
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Proof of Theorem 1.1 Consider again the diagram (10). It follows from Lemma 5.2
that the horizontal arrows are injective, and from Lemma 5.4 that the image of the
bottom arrow is equal to

H�T � .T
�

Ad/
W� �H�T � .T

�
Ad/

WG�
0 :

6 Simplifying the calculations

It can be tricky to apply Theorem 1.1 directly, because it requires an explicit under-
standing of W� and its action on H�.BLG�

0
/. Fortunately, matters simplify under

certain conditions.

Throughout this section let G be a compact connected Lie group, let � 2 Aut.G/
be an automorphism, and let T �G be a maximal torus containing a maximal torus
T � � G�

0
. There is a natural action of Aut.G�

0
/ on BLG�

0
. By a result of Segal

[10, Section 3], inner automorphisms act by isotopy, so we obtain a natural action of
Out.G�

0
/ on H�.BLG�

0
/.

Proposition 6.1 Suppose that the adjoint action of W� on T � consists of transfor-
mations that extend to automorphisms of G�

0
. Then the W� –action on H�.BLG�

0
/

factors through the Out.G�
0
/–action.

Proof The injection H�.BLG�
0
/ ,! H�

T � .T
� / in (10) is equivariant with respect

to automorphisms of G�
0

which preserve T � . Thus if every transformation of T �

extends, it follows that

H�.BLG�
0 /

W� DH�.BLG�
0 /
�

for some subset � � Out.G�
0
/. An automorphism of a maximal torus extends to at

most one outer automorphism of its compact connected Lie group, so � is the image
of a well-defined homomorphism W� ! Out.G�

0
/.

Remark 2 The W� –action on T � doesn’t always extend to automorphisms of G�
0

.
For example, let G D SU.3/ and � D Adg , where

g D

0@1 0 0

0 �1 0

0 0 �1

1A :
Then T � D T , so W� DW Š S3 , but the W –action does not extend to G� Š U.2/

because it does not preserve its root system.
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We can use root systems to check whether the W� –action extends to G�
0

. Let g, g� ,
t, and t� denote the complexified Lie algebras of G , G�

0
, T , and T � respectively.

The root system ˆ� t� is simply the set of weights of the t–module g=t under the
adjoint action. Similarly, the root system of ˆ� � .t� /� is the set of weights of the
t� –module g�=t� . The inclusion t� ,! t determines a projection map � W t�! .t� /� .
The natural injection of t� –modules, g�=t� � g=t, implies that ˆ� � �.ˆ/.

Corollary 6.2 If the automorphism groups of �.ˆ/ and ˆ� coincide, then W� acts
on H�.BLG�

0
/ via Out.G�

0
/.

Proof Since compact Lie groups can be constructed functorially from their root system
and weight lattice, it will suffice to prove that the action of W� on T � preserves the
root system ˆ� .

The action of W� on t is a restriction of the standard Weyl group action, so it clearly
preserves the root system ˆ� t� . The projection map � W t�! .t� /� is W� –equivariant,
so W� also preserves �.ˆ/. Since by hypothesis, the automorphisms of �.ˆ/ and
ˆ� coincide, W� must also preserve ˆ� .

A sufficient condition for the hypothesis of Corollary 6.2 to hold is that �.ˆ/Dˆ� .
We have an easy-to-check criterion for this.

Corollary 6.3 The automorphism � induces a permutation of the root system ˆ of
.G;T /. If the number of � –orbits in ˆ is equal to the number of roots in ˆ� , then
W� acts on H�.BLG�

0
/ via Out.G�

0
/.

Proof Because we have an inclusion ˆ� � �.ˆ/, it suffices to show that �.ˆ/ has
cardinality equal to ˆ� . Since any two roots in ˆ lying in the same � –orbit are sent
to the same element of �.ˆ/, the result follows.

Remark 3 We know from Lemma 5.1 that � preserves a Weyl chamber of T . Hence it
also preserves a set positive roots for ˆ and thus the action of � on roots is determined
by an automorphism of the Dynkin diagram. We will use this point of view to count
orbits in concrete examples in the following section.

7 Examples

In this section, we compute H�.BL�GIF / in several examples, including all auto-
morphisms of simple Lie groups. By the following argument, it makes little difference
which finite cover of the adjoint group we work with.
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Proposition 7.1 Let �W G!G0 be a surjective homomorphism of compact connected
Lie groups with finite kernel K , and let � 2 Aut.G/ descend to � 0 2 Aut.G0/. Then
the induced map on twisted loop groups determines a cohomology isomorphism

H�.BL�G/ŠH�.BL� 0G0/

for coefficient fields of characteristic coprime to the order of K .

Proof For any G0–space X , we may compose with � to make X into a G–space
and resulting map of homotopy quotient

EG �G X !EG0 �G0 X

has homotopy fibre BK . Since BK is acyclic over the coefficient field F , this means
that H�

G
.X /ŠH�

G0.X / for any G0–space X and in particular

H�G.G
0
Ad�0

/ŠH�G0.G
0
Ad�0

/:

The map � is also a covering map with deck transformation group K acting transitively
on the fibres. The transfer map determines an isomorphism

H�.G/K ŠH�.G0/

for fields of characteristic coprime to #K . Since the deck transformations are isotopies
of G , they act trivially on cohomology and � is a cohomology isomorphism

H�.G/
�
ŠH�.G0/;

and similarly for equivariant cohomology

H�G.GAd�
/
�
ŠH�G.G

0
Ad�

/:

7A Untwisted loop groups

The following proposition is well known (see, for example, Kuribayashi, Mimura,
Nishimoto [6, Theorem 1.2]), but I include a proof both for convenience and because I
have not found a statement of the result in this generality in the literature.

Proposition 7.2 Let G be a compact connected Lie group. For any field F of charac-
teristic p such that H�.GIZ/ is p–torsion free, we have

(11) H�.BLGIF /ŠH�.G/˝H�.BG/Šƒ.x1; : : : ;xr /˝F Œy1; : : : ;yr �;

where r equals the rank of G and the degrees of the generators are independent of F .
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Remark 4 A sufficient condition for H�.GIZ/ to be p–torsion free is for p to be
coprime to the order of the Weyl group of G . We refer to Borel [4] for the degrees of
the generators for various simple groups G .

Proof Under the hypotheses above, we have isomorphisms

H�.GIF /Šƒ.x1; : : : ;xr /;

an exterior algebra where r and the odd degrees deg.xi/ are independent of p , and

H�.BGIF /Š F Œy1; : : : ;yr �

such that deg.yi/D deg.xi/C 1; see [4, Section 9].

The classifying space BLG DEG �G GAd , fits into a fibration sequence

G
i
! BLG! BG

which has Serre spectral sequence E2 D H�.BGIF / ˝ H�.GIF / converging to
H�.BLGIF /. This spectral sequence is known to collapse for F DQ (see [2], for
example) and thus by the universal coefficient theorem must collapse for all F under
consideration, proving that (11) holds as an isomorphism of H�.BGIF /–modules.
Since H�.GIF / D ƒ.x1; : : : ;xr / is free as a supercommutative algebra, we can
upgrade (11) to an algebra isomorphism using the Leray–Hirsch theorem to lift the
generators of x1; : : : ;xr via the surjection i�W H�.BLGIF /!H�.GIF /.

7B SU.n/ with entry-wise complex conjugation

Let � 2 Aut.SU.n// denote matrix entry-wise complex conjugation. For n � 3,
Œ� � generates the outer automorphism group Out.SU.n//Š Z2 . The fixed point set
SU.n/� D SO.n/. Observe that �.A/�1 D AT where AT denotes the transpose, so
the twisted adjoint action is

(12) Ad� .A/.X /DAX�.A/�1
DAXAT ;

which may be interpreted as a change of basis operation for a bilinear form (see
Remark 6).

Proposition 7.3 For coefficient fields F coprime to n!, the inclusion SO.n/ ,!SU.n/
determines an isomorphism

H�.BL� SU.n/IF /ŠH�.BL SO.n/IF /Z2 ;

where Z2 acts on SO.n/ by an orientation reversing change of basis.

Algebraic & Geometric Topology, Volume 16 (2016)



Classifying spaces of twisted loop groups 225

Proof For nD 1; 2, we have T � DG�
0

, so Proposition 6.1 applies immediately. For
n� 3, we must study the action of � on the root system ˆ of SU.n/ in order to apply
Corollary 6.2. The roots of SU.n/ are ei � ej for i; j 2 f1; : : : ; ng, i ¤ j , and the
automorphism induces the involution of root

�.ei � ej /D enC1�j � enC1�i :

Since � has order two, the projection map satisfies

�.x/D
xC �.x/

2
:

For i < .nC 1/=2, define

Ei D�EnC1�i D
1
2
.ei � enC1�i/:

If n is even, then for i ¤ j

�.ei � ej /D

�
˙Ei ˙Ej if i C j ¤ nC 1;

˙2Ei if i C j D nC 1;

which is exactly the root system Cn=2 . If n is odd, then for i ¤ j

�.ei � ej /D

8̂̂̂<̂
ˆ̂:
˙Ei ˙Ej if i C j ¤ nC 1 and nC1

2
62 fi; j g;

˙Ei if j D nC1
2
;

˙Ej if i D nC1
2
;

˙2Ei if i C j D nC 1;

which has the same automorphism group as C.n�1/=2 . In both cases, the root system
ˆ� of SO.n/ is the complement of f˙2Ei j i D 1; : : : ; Œn=2�g in �.ˆ/ and the auto-
morphism group ˆ� agrees with that of �.ˆ/ (both being equal to the automorphism
group of the root lattice of SO.n/). It follows from Corollary 6.2 that the W� –action
on H�.BL SO.n// is induced by outer automorphisms of SO.n/.

If n is odd, the outer automorphism group of SO.n/ is trivial, so by Theorem 1.1

H�.BL� SU.n//ŠH�.BL SO.n//:

Moreover, an orientation reversing change of basis must be an inner automorphism of
SO.n/, hence also of L SO.n/, thus it acts by an isotopy of BL SO.n/ [10, Section 3],
so Z2 acts trivially on cohomology and the result follows.

In case n is even, the outer automorphism group of SO.n/ is Z2 and is generated by
orientation reversing change of basis. Let P 2O.n/ be an orientation reversing change
of basis matrix. Then iP 2 SU.n/ and for any X 2 SO.n/,

PXP�1
D .iP /X.iP /�1:
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Thus the change of basis is induced by conjugation by an element of SU.n/; the result
now follows from Theorem 1.1

The twisted action (12) extends naturally to a twisted action of U.n/ on U.n/.

Proposition 7.4 The standard inclusion SU.n/ ,! U.n/ induces a cohomology iso-
morphism

H�.BL�U.n/IF /ŠH�.BL� SU.n/IF /

for coefficient fields F of characteristic coprime to both 2 and n.

Proof Consider the surjective group homomorphism

�W U.1/�SU.n/! U.n/; .�;A/ 7! �A;

which has finite kernel Zn . The homomorphism is equivariant with respect to entry-wise
complex conjugation, so by Proposition 7.1.

H�U.1/�SU.n/..U.1/�SU.n//Ad�
/ŠH�U.n/.U.n/Ad�

/:

Moreover, we have isomorphisms

H�U.1/�SU.n/..U.1/�SU.n//Ad�
/ŠH�U.1/.U.1/Ad�

/˝H�SU.n/.SU.n/Ad�
/

ŠH�.BZ2/˝H�SU.n/.SU.n/Ad�
/

ŠH�SU.n/.SU.n/Ad�
/

because the twisted U.1/–action on U.1/Ad�
is transitive with stabilizer Z2 , and BZ2

is acyclic over F .

Corollary 7.5 Let F be a field of characteristic coprime to n! and let n D 2m or
nD 2mC 1. The standard inclusion of groups

LO.n/ ,!L�U.n/ -L� SU.n/

induces isomorphisms

H�.BLO.n/IF /ŠH�.BL�U.n/IF /ŠH�.BL� SU.n/IF /

Šƒ.x3;x7; : : : ;x4m�1/˝S.y4; : : : ;y4m/;

where the subscripts indicate the degrees of the generators.

Proof The loop group L SO.n/ sits inside LO.n/ as an index-two subgroup, so
H�.BLO.n// Š H�.BL SO.n//Z2 . The result now follows from Propositions 7.4
and 7.3.
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Remark 5 Corollary 7.5 stands in contrast with the formula

H�.BL�U.n/IZ2/ŠH�.BLU.n/IZ2/

Šƒ.x1;x3; : : : ;x2n�1/˝S.y2;y4; : : : ;y2n/

derived by Baird [3].

Remark 6 The twisted action of U.n/ on U.n/ is homotopy equivalent to the change
of basis action of GLn.C/ on the space of (not necessarily symmetric) non-degenerate
bilinear forms on Cn . Thus Corollary 7.5 also calculates the cohomology of the
topological moduli stack of rank n non-degenerate bilinear forms over C .

7C SO.2n/ with orientation reversing change of basis

The Weyl group of SO.2n/ has order 2n�1n!. An orientation reversing change of
basis determines an automorphism � 2 Aut.SO.2n// of order two, which generates
Out.SO.2n// for n� 5. The corresponding twisted loop group L� SO.2n/ can be un-
derstood as the gauge group of orthogonal, orientation preserving gauge transformations
of a non-orientable Rn –bundle over S1 .

Proposition 7.6 The block sum inclusion SO.2n�1/ ,! SO.2n/ induces a cohomol-
ogy isomorphism

H�.BL� SO.2n/IF /ŠH�.BL SO.2n� 1/IF /

Šƒ.x3;x7; : : : ;x4n�5/˝S.y4; : : : ;y4n�4/

for coefficient field F of odd characteristic coprime to n!.

Proof Set
�.A/D PAP�1;

where

P D

�
Id2n�1 0

0 �1

�
:

Then SO.2n/� is isomorphic to O.2n� 1/ by the injection

(13) O.2n� 1/ ,! SO.2n/; B 7!

�
B 0

0 det.B/

�
;

which has identity component isomorphic to SO.2n� 1/.

For nD1, we have SO.2/ŠU.1/ so this case has already been covered by Corollary 7.5.
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For n � 2, the root system of SO.2n/ consists of vectors ˙.ei ˙ ej / for i ¤ j in
f1; : : : ; ng. The involution fixes ei for i < n and sends en to �en . One easily checks
that there are 4

�
n
2

�
�2.n�1/D 2.n�1/2 which equals the number of roots of the fixed

point subgroup SO.2n�1/. Thus by Corollary 6.3, W� –action on H�.BL SO.2n�1//

is induced by outer automorphisms of SO.2n� 1/. The outer automorphism group of
SO.2n� 1/ is trivial, so the result follows by Theorem 1.1.

7D SO.8/ with the triality automorphism

The outer automorphism group of SO.8/ is the permutation group S3 . The order three
automorphisms are represented by the triality automorphisms � , �2 2 Aut.SO.8//
which are related to realization of SO.8/ as orthogonal transformations of the underlying
vector space of the octonions; see Baez [1]. The fixed point set SO.8/� is equal to the
automorphism group of the octonions G2 .

The root system of SO.8/ has 12 positive roots. The triality automorphism determines
six orbits: three of order one and three of order three. Since the root system of G2 has
6 positive roots, Corollary 6.3 implies that W� acts via outer automorphisms of G2 .
Since G2 has trivial outer automorphism group and they Weyl group of SO.8/ has
order 3 � 26 , we conclude the following from Theorem 1.1.

Proposition 7.7 Suppose � 2 Aut.SO.8// is a triality automorphism. We have

H�.BL� SO.8/IF /ŠH�.BL� SO.8/IF /

ŠH�.BL G2IF /Šƒ.x3;x11/˝F Œy4;y12�

for a coefficient field F of characteristic coprime to 6.

7E E6 with involution

The outer automorphism group of a compact, simply connected group of type E6 is
generated by an automorphism � of order two. The induced action on the set of positive
roots has 24 orbits. The fixed point set E�6 is isomorphic to F4 which has 24 positive
roots, so Corollary 6.3 applies. The Weyl group of E6 has order 51840 D 27345.
Since F4 has trivial outer automorphism group, the following proposition follows from
Theorem 1.1.

Proposition 7.8 Suppose � 2Aut.E6/ is not an inner automorphism. Then we have a
cohomology isomorphism

H�.BL� E6IF /ŠH�.BL F4IF /Šƒ.x3;x11;x15;x23/˝F Œy4;y12;y16;y24�

for coefficient fields F of characteristic coprime to 30.
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