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Asymptotics of a class of Weil–Petersson geodesics
and divergence of Weil–Petersson geodesics

BABAK MODAMI

We show that the strong asymptotic class of Weil–Petersson geodesic rays with narrow
end invariant and bounded annular coefficients is determined by the forward ending
laminations of the geodesic rays. This generalizes the recurrent ending lamination
theorem of Brock, Masur and Minsky. As an application we provide a symbolic
condition for divergence of Weil–Petersson geodesic rays in the moduli space.

30F60, 32G15; 37D40

1 Introduction

The Weil–Petersson (WP) metric is a Riemannian metric on the moduli space of
Riemann surfaces. Over the last decade various aspects of the geometry and dynamics
of the metric have been studied; however, in comparison with the Teichmüller metric —
the most well-studied metric on the moduli space — much less is known about this
metric. The WP metric is incomplete, with sectional curvatures asymptotic to 0 and
�1 in the completion. These features in particular prevent applying some of the
standard techniques to study the global geometry and dynamics of the metric, for
example the shadow lemma for constructing geodesic rays with specific behavior. WP
geodesic rays are not necessarily visible (Jeffrey Brock, private communication). The
Weil–Petersson geodesic flow is not uniformly hyperbolic. Also, currently Markov
partitions are not available for coding of the WP geodesic flow.

Brock, Masur and Minsky [4], in analogy with the vertical geodesic lamination of a
Teichmüller geodesic, introduced a notion of ending lamination for Weil–Petersson
geodesic rays. They conjectured that ending laminations, or a modification of them,
can be used to parametrize the visual boundary of the WP metric and also the stable
and unstable foliations of the WP geodesic flow. Furthermore, it is conjectured that
end invariants and the associated subsurface coefficients provide a kind of symbolic
coding for Weil–Petersson geodesics in the moduli space.

Further, Brock, Masur and Minsky [4; 5] explored several aspects of the mentioned
conjectures. Significantly, they proved that the forward ending lamination determines
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the strong asymptotic class of recurrent WP geodesic rays to the thick part of the
moduli space. Moreover, they showed that bounded combinatorics of end invariants
is equivalent to co-boundedness of the geodesic; the geodesic projects to a compact
subset of the moduli space. These results have dynamical consequences, among which
are the topological transitivity of the Weil–Petersson geodesic flow on the moduli space
and unboundedness of the topological entropy of the WP flow.

In [15] we considered WP geodesics with narrow end invariants, end invariants with a
certain constraint on subsurfaces with a big subsurface coefficient (see Definition 2.3),
and constructed examples of closed WP geodesics in the thin parts of the moduli space
as well as divergent WP geodesic rays with minimal filling ending laminations.

We prove the following result:

Theorem 1.1 (Narrow ending lamination theorem) The strong asymptotic class of
a WP geodesic ray with narrow end invariant and bounded annular coefficients is
determined by its forward ending lamination.

The strong asymptotic class of a geodesic ray r is the set of all the rays r 0 with
d.r.t/; r 0.t//! 0 as t!1. The class of WP geodesic rays with narrow end invariant
and bounded annular coefficients contains geodesic rays which are not recurrent to any
compact subset of the moduli space (divergent rays); see [15, Section 8]. Heuristically,
these geodesic rays avoid all asymptotic flats in the WP metric and exhibit features
of geodesics in manifolds with negative sectional curvatures which are bounded away
from 0. This theorem is a generalization of the following result from [4].

Theorem 1.2 (Recurrent ending lamination theorem) The strong asymptotic class of
a WP geodesic ray recurrent to a compact subset of the moduli space is determined by
its forward ending lamination.

These theorems address the parametrization of the visual boundary of the WP metric
and characterization of the stable and unstable foliations of the WP geodesic flow using
laminations.

For the proof of Theorem 1.1 we use the control of the length functions along WP
geodesics developed in [15] and ruled surfaces as in [4]. The new ingredient here is
the strict uniform contraction property of the nearest point projection to WP geodesic
segments close to the thick part of a stratum which is not the product of lower complexity
strata; see Section 5, in particular Theorems 5.1 and 5.14. The contraction property
is proved using some of Wolpert’s estimates on the WP metric, the WP Levi-Civita
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covariant derivatives and sectional curvatures in the thin part of the Teichmüller space
and compactness arguments.

For WP geodesic rays with prescribed itinerary, as in Theorem 3.1, using the contraction
property we can guarantee the existence of regions with a definite negative total
curvature on ruled surfaces with one side on the ray with prescribed itinerary; see
Section 4 and the proof of Theorem 6.2.

A geodesic ray r in a metric space is visible if for any other geodesic ray r 0 there
is an infinite geodesic (strongly) asymptotic to r in the forward time and (strongly)
asymptotic to r 0 in the backward time. In a complete Riemannian manifold with
negative sectional curvatures bounded away from 0 every geodesic ray is visible. For
the notion of visibility and some of its dynamical consequences see Eberlein [9]. In the
regions with a definite negative total curvature as above we are able to pick up enough
negative curvature on the ruled surface so that, using a variation of the Gauss–Bonnet
formula, asymptotic convergence to the ray with prescribed itinerary is guaranteed
(Theorem 6.2). Using a similar technique we overcome the difficulty caused by the
fact that the sectional curvatures of the WP metric are not bounded away from 0 in the
thin part of the Teichmüller space, and we prove visibility of the class of geodesic rays
with narrow end invariant and bounded annular coefficients in Theorem 6.5.

Finally, as an application of our ending lamination theorem we prove a symbolic
condition in terms of subsurface coefficients for divergence of WP geodesic rays in the
moduli space:

Theorem 6.7 (Divergence condition) Let A;R;R0 > 0. Let .��; �C/ be an A–
narrow pair on a Riemann surface S with R0–bounded annular coefficients, and suppose
that dS .��; �C/�R . Then a WP geodesic ray with end invariant .��; �C/ is divergent
in the moduli space M.S/.
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in the course of this work. I would also like to thank Scott Wolpert for several
communications related to this work.
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2 Background

Notation 2.1 Let f; gW X ! R�0 be two functions. Let K � 1 and C � 0 be two
constants. We write f �K;C g if

1

K
g.x/�C � f .x/�Kg.x/CC for every x 2X:
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2.1 Curve complexes and hierarchy paths

Let S D Sg;b be a finite-type, closed, orientable surface with genus g and b punctures
or boundary components. Define the complexity of S by �.S/ D 3g � 3C b . A
subsurface of S is an embedded, closed subsurface of S with non-peripheral boundary
curves.

The curve complex of the surface S , denoted by C.S/, is a flag complex which serves
to organize isotopy classes of simple closed curves on a surface. The complex is defined
as follows: When �.S/ > 1, each vertex of the complex is the isotopy class of an
essential simple closed curve, with an edge between each pair of isotopy classes with
disjoint representatives on S . In the same fashion there is a k–simplex corresponding
to any set of k C 1 pairwise disjoint simple closed curves on S . When �.S/ D 1,
S is S0;4 or S1;1 . The definition of the curve complex is the same, except that there
is an edge between any pair of isotopy classes of curves with representatives with
intersection number 1 in the case of S1;1 and 2 in the case of S0;4 .

When Y � S is an annulus with essential core curve the definition is slightly different.
Let zY be the annular cover of S to which Y lifts homeomorphically. There is a
natural compactification of zY to a closed annulus yY which is obtained from the
compactification of the Poincaré disk (the universal cover of S ) by the closed disk.
A vertex of C.Y / is associated to an arc connecting the two boundary components
of yY modulo isotopies that fix the endpoints (isotopy classes of arcs relative to the
boundary). There is an edge between two vertices which have representatives with
disjoint interiors.

We equip the curve complex with a distance by making each simplex Euclidean with
side lengths 1, and denote the distance by dS D dC.S/ . One can easily verify that the
curve complex of any annular subsurface is quasi-isometric to Z. Moreover, Masur and
Minsky in their seminal work [12] proved that the curve complex of S is ı–hyperbolic,
with ı depending only on the topological type of S .

A multi-curve on the surface S is a collection of pairwise disjoint curves. Let � and �
be two multi-curves. We say that � and � overlap, and write � t � , if there are curves
˛ 2 � and ˇ 2 � that intersect each other essentially (ie cannot be realized as disjoint
curves on S ).

Laminations Fix a complete finite-area hyperbolic metric on S . A geodesic lam-
ination on S is a closed subset of S consisting of complete, simple geodesics. In
particular, C0.S/� GL.S/. Geodesic laminations provide a natural completion for the
curve complex and Teichmüller space.
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Each geodesic lamination can be equipped with a transverse measure [16]. The pair of
a lamination and a transverse measure is called a measured geodesic lamination. We
denote the space of measured geodesic laminations equipped with the weak� topology
by ML.S/. RC acts on ML.S/ by rescaling measures; each equivalence class is
called a projective measured lamination. We denote the quotient space by PML.S/.

Recall that the curve complex of S is Gromov hyperbolic. By a result of Klarreich [11]
the Gromov boundary of the curve complex is identified with the ending laminations
space EL.S/. The space EL.S/ is the image of projective measured laminations
with minimal filling support in GL.S/ under the measure-forgetting map. Moreover,
EL.S/ is equipped with the topology induced from the topology of PML.S/ via the
measure-forgetting map.

Pants decomposition and markings A pants decomposition P on S is a maximal
set of pairwise disjoint curves on S . A (partial) marking � is obtained from a pants
decomposition P by adding transversal curves to (some) all of the curves in the pants
decomposition. We call P the base of � and denote it by base.�/. The set of all pants
decompositions can be turned into a metric graph which is called the pants graph. For
this purpose we put a length-one edge between any two pants decompositions which
differ by an elementary move. Similarly, the markings can be turned into a metric
graph called the marking graph. For more detail see [13].

Subsurface coefficient An essential subsurface Y � S is a compact, connected
subsurface of S whose boundary consists of essential curves in S or boundary curves
of S , and which is not a 3–holed sphere. In this paper we do not distinguish between
a subsurface and its isotopy class.

Let Y � S be an essential subsurface. We define the subsurface projection map

�Y W GL.S/! PC0.Y /;

where PC0.Y / is the power set of C0.Y / as follows: Equip S with a complete hy-
perbolic metric and realize all curves and laminations geodesically. Let � 2 GL.S/.
Suppose that Y is a non-annular subsurface. If �\Y D∅, then define �Y .�/D∅.
Otherwise, consider the set of arcs with endpoints on @Y or at cusps in the intersection
locus � \ Y . Identify all of the curves and arcs that are isotopic. Through these
isotopies the endpoints of arcs are allowed to move within @Y . The projection �Y .�/
is the union of the boundary curves of a regular neighborhood of a[ @Y , where a is
an arc we obtained above, and all the closed curves we obtained above.

For an annulus Y , the subsurface projection is the set of component arcs of the lift
of � to yY (the compactification of the annular cover of S to which Y lifts homeomor-
phically) that connect the two boundaries of yY . For more detail see [13, Section 2].
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The projection of a multi-curve � to a subsurface Y is the union of the projections
�Y .˛/ of all ˛ 2 � . Let � be a partial marking. If Y is an annular subsurface with
core curve ˛ 2 base.�/, then �Y .�/ is the set of transversal curves of ˛ . Otherwise,
�Y .�/D �Y .base.�//.

The Y subsurface coefficient of two laminations or (partial) markings � and �0 is
defined by

(2-1) dY .�; �
0/DminfdY .;  0/ W  2 �Y .�/;  0 2 �Y .�0/g:

Note that the subsurface coefficients are an analogue of continued fraction expansions
of real numbers. We use subsurface coefficients to study geodesics on moduli spaces,
similar to the role of continued fraction expansion in the study of geodesics on the
modular surface.

We denote by diamY .�/ the diameter of �Y .�/ viewed as a subset of C.Y /. The
following lemma is a straightforward consequence of [13, Lemma 2.3].

Lemma 2.2 Let � be a (partial) marking on a surface S . For any essential subsurface
Y � S we have

diamY .�/� 2:

The hierarchy paths introduced by Masur and Minsky [13] comprise a transitive family
of quasi-geodesics in the pants graph of a surface with quantifiers depending only on the
topological type of the surface. These quasi-geodesics are constructed from hierarchies
of geodesics in subsurfaces of the surface. The main feature of hierarchy paths is that
their properties are encoded in their endpoints and the associated subsurface coefficients.
For a list of the properties of hierarchy paths see [5; 15].

Let .��; �C/ be a pair of (partial) markings or laminations. Let �W Œm; n�! P.S/,
where Œm; n��Z[f˙1g, be a hierarchy path with �.m/D �� and �.n/D �C . An
important property of the hierarchy path is the following: There are subsurfaces Y called
component domains; corresponding to each component domain there is a connected
subinterval JY � Œm; n� such that @Y � �.i/ for all i 2 JY . Moreover, there is a
constant M1 > 0 depending only on the topological type of the surface so that any
subsurface Y with dY .��; �C/ >M1 is a component domain.

Using the machinery of hierarchies Masur and Minsky [13] established the following
quasi-distance formula: given A�M1 , there exist constants K � 1 and C � 0 such
that for any P;Q 2 P.S/ we have

(2-2) d.P;Q/�K;C
X
Y�S

non-annular

fdY .P;Q/gA:
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Here the cutoff function f � gAW R!RC is defined by

fagA D

�
a if a � A;
0 if a < A:

We call A the threshold constant and K and C the corresponding multiplicative and
additive constants.

In the following we define two constraints on subsurface coefficients which would be
used in this paper.

Definition 2.3 (Narrow pair) Let A > 0. An A–narrow pair of (partial) markings or
laminations .��; �C/ is a pair such that, for an essential subsurface Z , if

dZ.�
�; �C/ > A;

then Z is large, ie each connected component of SnZ is an annulus or a three-holed
sphere. In [15] we proved that any hierarchy path between a narrow pair is stable in
the pants graph.

Definition 2.4 (Bounded combinatorics) Given R;R0 > 0. Let �W Œm; n�! P.S/

be a hierarchy path. Let i; j 2 Œm; n�. We say that � has non-annular .R;R0/–bounded
combinatorics over Œi; j �� JZ if

dY .�.i/; �.j //�R

for every essential non-annular subsurface Y �Z , and if

d .�.i/; �.j //�R
0

for every  2 C0.Z/.

2.2 Weil–Petersson metric

Let S be a surface with only punctures (no boundary curves). A point in the Teichmüller
space of the surface S , denote by Teich.S/, is a complete finite-area hyperbolic surface
equipped with a diffeomorphism hW S ! x . The diffeomorphism h is a marking of x .
Two marked surfaces h1W S ! x1 and h2W S ! x2 define the same point in Teich.S/
if and only if h2 ı h�11 W x1! x2 is isotopic to an isometry. The moduli space of S ,
denoted by M.S/, is the quotient of Teich.S/ by the action of the mapping class
group of S , denoted by Mod.S/, on Teich.S/ by precomposition (re-marking).

The �–thick part of the Teichmüller space consists of all x 2 Teich.S/ with injectivity
radius inj.x/ > � . The �–thin part consists of all x with inj.x/ < � . Suppose that � is
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small enough that the collar lemma (see [6, Section 4.1]) implies that there is no pair of
intersecting closed geodesics of length less than or equal to � on a complete hyperbolic
surface. Given a multi-curve � we define the open regions in Teichmüller space

U�.�/ WD fx 2 Teich.S/ W `˛.x/ < � 8˛ 2 �g;

U�;�0.�/ WD fx 2 Teich.S/ W `˛.x/ < � 8˛ 2 � and ` .x/ > �0 8 … �g:

For a comprehensive introduction to the Weil–Petersson metric and its properties we
refer the reader to [20; 18]. Here we only recall some of the properties of the metric
which are important for us. The Weil–Petersson (WP) metric is a Riemannian metric
with negative sectional curvatures on the Teichmüller space. The metric is incomplete
due to possibility of pinching curves along paths with finite WP length. However, there
is a unique WP geodesic between any two points in the Teichmüller space, so the metric
is geodesically convex. The WP sectional curvatures are negative and asymptotic to
both 0 and �1 in the completion. The completion is a CAT.0/ metric. The metric is
invariant under the action of Mod.S/ and descends under the natural orbifold cover to
a metric on M.S/.

The Weil–Petersson completion of the Teichmüller space Teich.S/ is the disjoint
union of �–strata denoted by S.�/, where � is a multi-curve. S.�/ consists of
nodal Riemann surfaces at � . Equivalently, each point in S.�/ is a marked complete
hyperbolic surface with a pair of cusps for each curve in � . The WP completion of the
Teichmüller space descends to the Deligne–Mumford compactification of the moduli
space M.S/ via the action of the mapping class group. M.S/ is the union of finitely
many strata. Each stratum is the quotient of the strata of Teich.S/ which are identified
by the natural extension of the action of Mod.S/ to the completion.

The WP metric has the following non-refraction property: given points x; y 2Teich.S/,
the interior of the unique geodesic connecting x and y is in the smallest stratum
(with respect to inclusion of strata) that contains x and y . The following strengthened
version of Wolpert’s geodesic limit theorem (see [17] and [5]), proved in [15, Section 4],
provides a limiting picture for a sequence of bounded-length WP geodesic segments in
the Teichmüller space. We need this result for compactness arguments in Section 5.

Theorem 2.5 (Geodesic limits) Given T > 0, let �nW Œ0; T �! Teich.S/ be a se-
quence of WP geodesic segments parametrized by arc-length. After possibly passing to
a subsequence, there are a partition 0D t0 < � � �< tkC1 D T of Œ0; T �, possibly empty
multi-curves �0; : : : ; �kC1 , a multi-curve y� � �i \ �iC1 for i D 0; 1; : : : ; k , and a
piece-wise geodesic

y�W Œ0; T �! Teich.S/

with the following properties:
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(1) y�..ti ; tiC1//� S.y�/ for i D 0; : : : ; k .

(2) y�.ti / 2 S.�i / for i D 1; : : : ; k .

(3) Given a multi-curve � , denote by tw.�/ the subgroup of Mod.S/ generated
by positive Dehn twists about the curves in � . There are elements  n of the
mapping class group for each n2N so that either  n� I or  n is an unbounded
sequence, and elements Ti;n 2 tw.�i � y�/ for i D 1; : : : ; kC 1 and any n 2N
so that the following holds: For any t 2 Œ0; t1�,  n.�n.t//! y�.t/ as n!1.
For each i D 1; : : : ; k and each n 2N , let 'i;n D Ti;n ı � � � ıT1;n ı n . Then for
any t 2 Œti ; tiC1�, 'i;n.�n.t//! y�.t/, as n!1.

2.3 End invariants

There exists a constant LS (Bers constant) depending only on the topological type of
the surface S with the property that any complete finite-area hyperbolic metric on S
has a pants decomposition (Bers pants decomposition) such that the length of every
curve in P is at most LS ; see [6, Section 5]. A Bers curve is a curve in a Bers pants
decomposition. A Bers marking is a (partial) marking obtained from a Bers pants
decomposition by adding transversal curves with representatives of minimal length.
Given a point x 2 Teich.S/, suppose that x 2 S.�/. A Bers pants decomposition
of x , denoted by Q.x/, is the union of Bers pants decompositions of the connected
components of Sn� and the multi-curve � . A Bers marking of x , denoted by �.x/,
is obtained from Q.x/ with no transversal for curves in � .

By Brock’s quasi-isometry theorem [3] the coarse map

QW Teich.S/! P.S/

which assigns to x 2 Teich.S/ a Bers pants decomposition of x is a quasi-isometry
with constants KWP � 1 and CWP � 0 depending only on the topological type of S .

Definition 2.6 (Ending measured lamination) The weak� limit in ML.S/ of any
infinite sequence of weighted, distinct Bers curves along a WP geodesic ray r is an
ending measured lamination of r .

For any ˛ 2 C0.S/, the ˛–length function assigns to a point x 2 Teich.S/ the length
of the geodesic representative of ˛ on the hyperbolic surface x . This notion of length
function has a natural extension to the space of measured laminations ML.S/. Let
L 2ML.S/. We denote the value of the L–length function at a point x by `L.x/.

Wolpert proved the following convexity property for length functions along WP
geodesics:
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Theorem 2.7 [20, Section 3] Let g be a WP geodesic. For any ˛ 2 C0.S/, `˛.g.t//
is a convex function. Similarly, for any L 2ML.S/, `L.g.t// is a convex function.

In [5] the following notion of ending lamination for WP geodesic rays is introduced. Its
existence relies on the convexity of length functions along WP geodesics and properties
of CAT.0/ spaces. Let r W Œ0; a/! Teich.S/ be a WP geodesic ray.

Definition 2.8 (Ending lamination) The union of pinching curves along a WP geo-
desic ray r and the geodesic laminations arising as supports of all ending measured
laminations of r is the ending lamination of r , where a pinching curve of r is a curve ˛
such that `˛.r.t//! 0 as t ! a .

Definition 2.9 (End invariant of Weil–Petersson geodesics) To each open end of
a geodesic gW .a; b/! Teich.S/ (we assume that 0 2 .a; b/) we associate an end
invariant, which is a partial marking or a lamination. If the forward trajectory gjŒ0;b/
can be extended to b such that g.b/ 2 Teich.S/ then the forward end invariant �C.g/
is any Bers marking �.g.b// (there are finitely many of them). Otherwise, �C.g/ is
the ending lamination of the forward trajectory ray gjŒ0;b/ which was defined above.
We define the backward end invariant ��.g/ similarly by considering the backward
trajectory gjŒ0;a/ . We call the pair .��; �C/ the end invariant of g .

We recall two important properties of the ending measured laminations proved in [4,
Section 2].

Lemma 2.10 (Decreasing of length along WP geodesic rays) Let L be any ending
measured lamination of a WP geodesic ray r . Then `L.r.t// is a decreasing function.

Lemma 2.11 Let rn! r be a convergent sequence of rays in the WP visual sphere
at x . Then if Ln is any sequence of ending measured laminations or weighted pinching
curves for rn , any representative L 2ML.S/ of the limit of the projective classes ŒLn�
in PML.S/ has bounded length along the ray r .

Let �C be a measurable geodesic lamination. Suppose that there is a collection
of pairwise disjoint subsurfaces Za , a D 1; : : : ; m, with �.Za/ � 1 so that any
simple closed curve in Sn

Sm
aD1Za is isotopic to a boundary curve of one of the

subsurfacesZa , and moreover that �a , the restriction of �C to Za , is minimal and
fills Za . For each a D 1; : : : ; m, let La be a measured lamination supported on �a .
Let an 2 C.Za/ be a sequence of curves such that the projective classes Œan � converge
to ŒLa� in PML.Za/ as n!1. For each n 2N , let Qn be a pants decomposition
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that contains f@Za; an g
m
aD1 . Let cn be the maximally nodal hyperbolic surface at Qn .

Let Œx; cn� be the WP geodesic segment connecting a base point x in the interior of
the Teichmüller space to cn . Denote the parametrization of Œx; cn� by arc-length by rn .
In [15, Section 8] we proved the following result:

Lemma 2.12 (Infinite ray) After possibly passing to a subsequence, the geodesic
segments rn converge to an infinite ray r in the visual sphere of the WP metric at x .
Moreover, the length of each measured lamination La , aD 1; : : : ; m, and each curve
˛ 2 @Za is bounded along r .

Let .��; �C/ be a narrow pair. The narrow condition implies that there is at most
one subsurface Y with �.Y /� 1 such that the restriction of �C to Y is minimal and
fills Y . Suppose that such a component exists. Let � be a hierarchy between ��

and �C . There is an N 2N so that for all n 2N we have

@Y � �.nCN/:

Note that if Y D S then this statement vacuously holds. For each n 2N , let Qn D
�.nCN/ and n be a curve in �Y .Qn/. After possibly passing to a subsequence,
the projective classes of the curves n converge to the projective class of a measured
geodesic lamination supported on �0 . Let x 2 Teich.S/ be a point with a Bers marking
�� . Let cn be the maximally nodal hyperbolic surface at Qn . As before, let r be the
limit of the geodesic segments Œx; cn� after possibly passing to a subsequence. In [15,
Section 8] we proved:

Lemma 2.13 The forward ending lamination of r contains �0 .

3 Combinatorial control

Let gW Œa; b�!Teich.S/ be a WP geodesic with A–narrow end invariant .��; �C/. Let
�W Œm; n�!P.S/ be a hierarchy path between �� and �C . In [15, Section 5] we proved
that a hierarchy path with narrow endpoints is d–stable, where d W R�1�R�0!R�0

is the quantifier function of the stability, which depends only on A. Thus Q.g/ and �
D–fellow-travel each other, where D depends only on A and the topological type of S .
Moreover, since both Q.g/ and � are quasi-geodesics with quantifiers depending only
on the topological type of the surface S , there is a coarse parameter map N from
Œm; n� to Œa; b� such that

(3-1) jN.i/�N.j /j �K;C ji � j j;

where the constants K � 1 and C � 0 depend only on A; see [15, Section 5.3].
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The following theorem from [15, Section 8] provides us a WP geodesic ray with a
prescribed itinerary in the Teichmüller space.

Theorem 3.1 (Infinite ray with prescribed itinerary) Given A;R;R0 > 0, there are
constants xw D xw.A;R;R0; �/ and x� D x�.A;R0/ with the following properties.

Let .��; �C/ be an A–narrow pair. Let � be a hierarchy path between �� and �C . Let
r�˙ W Œ0;1/! Teich.S/ be the infinite WP geodesic ray as in Lemma 2.13. Suppose
that a large component domain Z of � has .R;R0/–bounded combinatorics over an
interval Œm0; n0� � JZ with n0 �m0 > 2 xw . Let a0 2 N.m0C xw/ and b0 2 N.n0 � xw/.
Then for every t 2 Œa0; b0� we have

(1) ` .r�˙.t// > x� for every  … @Z , and

(2) `˛.r�˙.t//� � for every ˛ 2 @Z .

Moreover, if Z1 and Z2 are subsurfaces as above, n01 <m
0
2 implies that b01 < a

0
2 .

3.1 Bounding annular coefficients

Let r�˙ W Œ0;1/! Teich.S/ be a WP geodesic ray with prescribed itinerary where the
end invariant .��; �C/ is A–narrow and has R0–bounded annular coefficients. The
goal of this section is to prove Lemma 3.6, which shows that over any long enough
subinterval of Œ0;1/ there is a subinterval of definite length over which r�˙ is in some
region U of the Teichmüller space (the regions U were defined in Section 2.2). This
combinatorial control will be used in Section 5.

First we recall two properties of hierarchy paths which will be used in this section. For
an extended list of properties of hierarchy paths see [15, Section 2; 5, Section 2].

Theorem 3.2 There exist positive constants M2 and M3 depending only on the
topological type of S with the following properties. Let �W Œm; n� ! P.S/ be a
hierarchy path between partial markings or laminations �� and �C . Let Z be a
component domain of � and let JZ D Œj�; jC�. Then:

(1) dZ.�.i/; �.j
�// � M2 for any i � j� and dZ.�.i/; �.jC// � M2 for any

i � jC .

(2) (No backtracking) Let i; j; k 2 Œm; n� with i � j � k . Then, for any subsurface
Y � S ,

dY .�.i/; �.k//CM3 � dY .�.i/; �.j //C dY .�.j /; �.k//:
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Lemma 3.3 Given an increasing function F W R�0 ! R�0 , there is an L > 0, de-
pending only on F and the topological type of S , with the following property. Let
�W Œm; n�! P.S/ be a hierarchy path. Suppose that a subinterval Œm0; n0�� Œm; n� has
the property that for any subsurface Z and any R>0, if Z has non-annular R–bounded
combinatorics over a subinterval Œk; l�� Œm0; n0�, then dZ.�.l/; �.k//� F.R/. Then
we have that n0�m0 � L.

Proof Let �.S/ be the complexity of the surface S . For each i D 0; 1; : : : ; �.S/,
define the constant

(3-2) xi DmaxfdY .�.m0/; �.n0// W Y � S is non-annular and �.Y /� ig:

Note that for i D 0, the set on the right-hand side is empty and we define x0 D 0.

Claim 3.4 Let i 2 f1; : : : ; �.S/g. For any essential subsurface Z � S with �.Z/D i
we have

dZ.�.m
0/; �.n0//� F.xi�1/C 2M2C 4:

The proof of the claim is by contradiction. Suppose that the claim does not hold. Then
there is a non-annular subsurface Z with �.Z/D i such that

(3-3) dZ.�.m
0/; �.n0// > F.xi�1/C 2M2C 4:

Claim 3.5 Suppose that (3-3) holds. Then JZ \ Œm0; n0�¤∅.

Let JZ D Œj�; jC�. To get a contradiction, suppose that the claim does not hold. Then
we have that Œj�; jC�\ Œm0; n0�D∅. This implies that either n0 < j� or jC <m0 .

First suppose that n0 < j� . Then by Theorem 3.2(1) we have dZ.�.n0/; �.j�//�M2 .
Moreover, since m0 < n0 < j� , by Theorem 3.2(1) we have dZ.�.m0/; �.j�//�M2 .
The last two inequalities combined with the triangle inequality give us

dZ.�.m
0/; �.n0//� 2M2C diamZ.�.j�//� 2M2C 2;

where the second inequality above follows from Lemma 2.2. But this contradicts the
bound (3-3) we assumed to hold.

Now suppose that m0>jC . Then by Theorem 3.2(1) we have dZ.�.m0/; �.jC//�M2 .
Moreover, since n0 >m0 > jC , by Theorem 3.2(1) we have dZ.�.n0/; �.jC//�M2 .
The last two inequalities combined with the triangle inequality imply that

dZ.�.m
0/; �.n0//� 2M2C 2;

which again contradicts the bound (3-3). This finishes the proof of Claim 3.5.
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By Claim 3.5 we have that JZ \ Œm0; n0�¤∅. Define the interval

Œk; l�D JZ \ Œm
0; n0�:

We proceed to show that

(3-4) dZ.�.k/; �.l//� F.xi�1/:

If Œm0; n0�� JZ then Œk; l�D Œm0; n0�, and (3-4) follows immediately from the bound
(3-3).

If Œk; l�D Œj�; n0�, then by the triangle inequality and Lemma 2.2 we have

dZ.�.m
0/; �.j�//C dZ.�.j

�/; �.n0//� dZ.�.m
0/; �.n0//� diamZ.�.j�//

� dZ.�.m
0/; �.n0//� 2:

Moreover, m0 < j� , so by Theorem 3.2(1) we have

dZ.�.m
0/; �.j�//�M2:

Now the above two inequalities and the bound (3-3) together imply that the inequality

dZ.�.j
�/; �.n0//� F.xi�1/CM2

holds, from which the bound (3-4) follows.

If Œk; l�D Œm0; jC�, then as above we can get the bound

d.�.m0/; �.jC//� F.xi�1/CM2;

which gives us the bound (3-4).

Finally, if JZ � Œm0; n0�, then Theorem 3.2(1) implies that

dZ.�.m
0/; �.j�//�M2;

dZ.�.n
0/; �.jC//�M2:

The above two inequalities and (3-3) combined with the triangle imply that

dZ.�.j
�/; �.jC//� F.xi�1/;

which is the bound (3-4). This completes the proof of (3-4).

Now by the setup of the constants xi in (3-2) the subsurface Z has non-annular xi�1–
bounded combinatorics over the subinterval Œk; l�� Œm0; n0�, and by (3-4) we have

dZ.�.k/; �.l//� F.xi�1/:
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But this contradicts the assumption of the lemma. Claim 3.4 follows from this con-
tradiction.

By Claim 3.4, for each i 2 f1; : : : ; �.S/g we have

maxfdZ.�.m0/; �.n0// W �.Z/D ig � F.xi�1/C 2M2C 4I

moreover, from the setup of the constants xi in (3-2), it is clear that

xi Dmaxfxi�1;maxfdZ.�.m0/; �.n0// W �.Z/D igg;

so we have the bound

(3-5) xi �maxfxi�1; F .xi�1/C 2M2C 4g:

To simplify the notation we define the function

f .x/Dmaxfx; F.x/C 2M2C 4g:

By (3-5), xi �f .xi�1/. Also we have that x0D0. Then we may inductively show that

(3-6) xi � f
i .0/

for each i 2 f1; : : : ; �.S/g, where f i denotes the i th composition of f with itself.

Since f is an increasing function and f .0/� 0, we have that

maxff i .0/ W i D 1; 2; : : : ; �.S/g D f �.S/.0/:

Then using the bound (3-6) we see that

maxfxi W i D 1; 2; : : : ; �.S/g � f �.S/.0/:

So by the setup of the constants xi in (3-2) we have

(3-7) dY .�.m
0/; �.n0//� f �.S/.0/

for all non-annular subsurfaces Y �S . Let A1DmaxfM1; f
�.S/.0/g be the threshold

constant in the distance formula (2-2). Let C1 be the additive constant corresponding
to A1 . Then by (3-7) we have

d.�.n0/; �.m0/� C1:

Moreover, � is a .k; c/–quasi-geodesic, where k and c depend only on the topological
type of S , so we obtain the upper bound LD kC1Ckc for n0�m0 . Note that L only
depends on F and the topological type of S . The proof of the lemma is complete.
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Let x� D x�.A;R0/ be the constant from Theorem 3.1.

Lemma 3.6 Given positive constants A; d;R0 and � � x� , there are constants L0 > 0
and xw > 0 with the following properties. Let .��; �C/ be an A–narrow pair with
R0–bounded annular coefficients. Let �W Œm; n�! P.S/ be a hierarchy path between
�� and �C . Let r�˙ W Œa; b/!Teich.S/ be a WP geodesic ray with prescribed itinerary
and end invariant .��; �C/. Then for any subinterval Œm0; n0�� Œm; n� with m0�n0�L0 ,
there are a subinterval Œk; l�� Œm0; n0� and a large component domain Z of � such that
for t� 2N.kC xw/ and tC 2N.l � xw/ (N is the parameter correspondence map) we
have r�˙.t/ 2 U�;x�.@Z/ for every t 2 Œt�; tC�. Moreover, tC� t� � d .

Proof Fix a threshold constant A1 � M1 for the distance formula (2-2) and let
K1; C1 be the corresponding constants. Note that the hierarchy path � is a .k; c/–
quasi-geodesic, where k; c depend only on the topological type of the surface. Let
K2 D K1k and C2 D K1k.C1 C c/. Let K;C be the constants for N from (3-1).
Let M3 be the constant from Theorem 3.2(2). Let xw be the constant from Theorem 3.1.
Define the function

F.x/Dmax
˚
K2
�
2 xw.A; x;R0C 2M3; �/C .Kd CKC/

�
CC2; A

	
:

Now let L0 be the constant from Lemma 3.3 for the function F defined above. For any
subinterval Œm0; n0�� Œm; n� with n0�m0 � L0 , by the contrapositive of Lemma 3.3
there are R > 0, a subsurface Z and an interval Œk; l�� Œm0; n0�\JZ such that

dZ.�.k/; �.l// > F.R/;

and Z has non-annular R–bounded combinatorics over Œk; l�. Since � is A–narrow
and F.R/ � A, the subsurface Z is a large subsurface. Thus for any non-annular
subsurface Y either Y �Z or Y tZ holds. If Y tZ , then since @Z � �.l/; �.k/ we
have dY .�.k/; �.l//�2. If Y �Z , then by the non-annular R–bounded combinatorics
we have dY .�.k/; �.l//�R . Then by the distance formula (2-2) and the fact that Z
has R–bounded combinatorics over Œk; l�, we have

d.�.l/; �.k//�
1

K1
fdZ.�.l/; �.k//gA1 �C1:

As we saw above, dZ.�.k/; �.l// > F.R/, so

d.�.l/; �.k//� k.2 xw.A;R;R0C 2M3; �/C .Kd CKC//C kc:

Moreover, � is a .k; c/–quasi-geodesic, so

k� l > 2 xw.A;R;R0C 2M3; �/CKd CKC:
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Furthermore, by the assumption of the lemma, d .��; �C/ � R0 for any  2 C0.S/.
Then by Theorem 3.2(2),

d .�.k/; �.l//�R
0
C 2M3:

Therefore, Z has .R;R0 C 2M3/–bounded combinatorics over Œk; l�. Set xw D
xw.A;R;R0C 2M3; �/. Then the lemma follows from applying Theorem 3.1 to the
interval Œk; l�.

4 Variation of geodesics

Let X be a geodesically convex negatively curved Riemannian manifold; for example,
the Teichmüller space equipped with the WP metric. Let gW Œa; b�! X be a geodesic
segment, and let � W X ! g be the nearest point projection from X to g . In the
following proposition we collect some important facts about the map � which we need:

Proposition 4.1 Suppose that p is a point in X so that �.p/ is in the interior of
g.Œa; b�/ or is an endpoint g.a/ or g.b/ which is the nearest point to p on a slightly
longer geodesic segment containing g.Œa; b�/. Let � be a geodesic segment connecting
p and �.p/. We have:

(1) The projection map � is continuous at p .

(2) � is orthogonal to g at �.p/.

(3) If p is not on g.Œa; b�/, then � is smooth at p .

(4) The distance function d.p; �.p// is smooth.

Proof Part (1) is [1, Lemma 3.2]. Part (2) follows from [8, Proposition 1.7]. Part (3)
follows from the lemma on the first page of [10]. Part (4) is [10, Theorem 1].

Let g1W Œa; b�! X and g2W Œc; d �! X be two geodesic segments parametrized by
arc-length. Let g1.t/ be a point whose nearest point projection on g2.Œc; d �/ is in the
interior of g2.Œc; d �/. Note that g1 is a smooth path; moreover, by Proposition 4.1(4)
the endpoint of Œg1.t/; �.g1.t//� varies smoothly. Therefore Œg1.t/; �.g1.t//� is a
smooth family of geodesic segments with respect to t 2 Œa; b�. Moreover, since X
is a negatively curved manifold, any two of the geodesic segments Œg1.t/; �.g1.t//�
fellow-travel all the way. Finally, let f W Œa; b�! g2.Œc; d �/ be the reparametrization
of g2 which maps t 2 Œa; b� to �.g1.t//. Then f is smooth.

Let
4D f.t; s/ W t 2 Œa; b� and s 2 Œ0; �.t/�g;
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s0
s

s

a I b

4

t

u

g1.a/D u.a; 0/ g1
g1.b/D u.b; 0/

g2X
Figure 1: The variation of geodesics u is the family of geodesic segments
connecting points of the geodesic segment g1 to their nearest points on the
geodesic segment g2 . We pull back the metric of X via u to the region 4 in
the .t; s/ plane.

where �.t/ is the length of the geodesic segment Œg1.t/; �.g1.t//�. For any t 2 Œa; b�,
let u.t; s/ be the arc-length parametrization of Œg1.t/; g1.�.t//�, where s is the pa-
rameter and u.t; 0/D �.g1.t//. Then since Œg1.t/; g1.�.t//� is a smooth family of
geodesics, the map .t; s/ 7!u.t; s/ defines a smooth map uW 4!X . For any t 2 Œa; b�,

�.t/ WD u.t; s/

is a geodesic parametrized by s . Moreover, by Proposition 4.1(3), for any s > 0, u.t; s/
is a smooth path parametrized by t . Then u is a variation of geodesics Œg1.t/; �.g1.t//�
and @u=@t is a Jacobi field.

For any s , . � ; s/ defines a vertical coordinate line, and for any t , .t; � / defines a
horizontal coordinate line in 4�R2 ; see Figure 1.

We pull back the metric of X to 4 via u. Let the interval I � Œa; b� and s; s0 > 0
with s0 < s be such that I � s �4 and I � s0 �4. The main result of this section is
Lemma 4.5, where we prove that a difference between the length of I � s and I � s0

gives rise to a definite total Gaussian curvature of the region I � Œs0; s��4. For this
purpose, using the Gauss–Bonnet formula, we prove the formula (4-4).

Let kg.t; s/ be the geodesic curvature of the path u. � ; s/ at u.t; s/, where the normal
vector En of the path is the unit vector orthogonal to u which satisfies

hEn.u.t; s//; .@u=@s/.t; s/i< 0:

Theorem 4.2 The pullback metric has the following properties:

(I) Each vertical coordinate line is a geodesic.

(II) Vertical and horizontal coordinate lines intersect each other orthogonally.
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(III) There is a k < 0 such that the Gaussian curvature � is � k .

(IV) The distance between any two vertical coordinate lines is increasing in s , so for
any I � Œa; b� if s � s0 then length.I � s/� length.I � s0/.

(V) The function �kg is non-negative along each horizontal coordinate line.

Proof Part (I) follows from the fact that the path u.t; � / is a geodesic in X . Moreover,
the paths u.t; � / and u. � ; s/ intersect orthogonally in X , so part (II) follows.

The family of geodesic segments Œg1.t/; �.g1.t//�, where t 2 Œa; b�, is a compact
subset of X . Thus the sectional curvatures of the metric of X at any point of u.�/
are bounded above by some k < 0 . Moreover, [7, Exercise II.16, page 104] asserts that
the Gaussian curvature of the ruled surface obtained from a geodesic variation at any
point is less than or equal to the sectional curvature of the tangent plane of the surface
at that point. Therefore part (III) follows.

As we saw above, the sectional curvature of X at any point of u.�/ is bounded above
by k < 0. It is a standard fact that, for u.t; s/ a smooth geodesic variation as above
in a manifold with constant negative sectional curvature k , the length of a Jacobi field
defined by @u=@t is increasing along u.t; s/ as s increases; in fact this follows from
the explicit formula for the Jacobi fields in a constant negative curvature manifold given
in [7, Section II.5]. Then the Rauch comparison theorem for the region in X with
sectional curvatures bounded above by k and a manifold with constant curvature k
implies that the length of the Jacobi field @u=@t is increasing. For more detail about the
Rauch comparison theorem see eg [8, Chapter 1, Section 11]. So we may conclude that

@u

@t

ˇ̌̌
.t;s/
�
@u

@t

ˇ̌̌
.t;s0/

for any t and any s; s0 with s � s0 . Moreover, for any s ,

length.u.I � s//D
Z
I

@u

@t

ˇ̌̌
.t;s/

dt:

Then using the inequality above we have

length.u.I � s//� length.u.I � s0//;

which is part (IV).

Let I D Œa0; b0� be a subinterval of the interval Œa; b�. We may consider u as a variation
of paths ujI�s . Then by the first variation of arc-length formula (see eg [8, page 4])
we have

d

ds
length.I � s/D

D
@u

@s
;
@u

@t

Eˇ̌̌b0
a0
�

Z
I�s

D
@u

@s
;r @u

@t

@u

@t

E
dt:
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By (II) we have that
˝
@u
@t
; @u
@s

˛
� 0, so the first term on the right-hand side of the above

formula is 0. Moreover, by definition, kg WD
˝
@u
@s
;r @u

@t

@u
@t

˛
. Thus we have

(4-1) d

ds
length.u.I � s//D

Z
I�s

�kg.t; s/ dt:

Moreover, by (IV),
d

ds
length.u.I � s//� 0:

Therefore Z
I�s

�kg � 0:

Since I was an arbitrary subinterval of Œa; b�, from the fact that the integral of �kg is
positive over I , we can conclude that the continuous function �kg is a non-negative
function on the interval Œa; b�. This is part (V).

4.1 Gauss–Bonnet formula

For any s > 0, by Theorem 4.2(V), the integral of the function �kg with respect to dt
along the horizontal coordinate line . � ; s/ defines a positive measure ms on . � ; s/.

Suppose that V � W � 4. Let I � V and Œs0; s� � W be subintervals. By the
Gauss–Bonnet formula [7, page 242] for the pullback metric on I � Œs0; s� we have“

I�Œs0;s�

� dAC

Z
@.I�Œs0;s�/

kg dt D 2� �
X
i

�i ;

where the orientations of the boundary curves in the line integral above are shown in
Figure 1. By Theorem 4.2(I) each t � .s0; s/ is a geodesic. The sum above is taken over
the exterior angles at the four corners of I � Œs0; s�. Moreover, by Theorem 4.2(II) each
exterior angle is equal to �

2
, so the exterior angles add up to 2� . Therefore we get

(4-2) �

Z
I�s

kg dt C

Z
I�s0

kg dt C

“
I�Œs0;s�

� dAD 0:

After rearrangement of terms above we have

(4-3)
Z
I�s0

kg dt D

Z
I�s

kg dt C

“
I�Œs0;s�

�� dA:

Claim 4.3 The limit of the left-hand side of (4-3) exists as s0! 0.
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First, by Theorem 4.2(V) for every s0 > 0, kg � 0, so the left-hand side of (4-3) is
non-positive. Thus the right-hand side of (4-3) is non-positive as well. Second, the
first integral on the right-hand side of (4-3) does not depend on s0 . Moreover, by
Theorem 4.2(III), � � 0, so the second integral on the right-hand side is increasing
as s0! 0. Thus the right-hand side is increasing as s0! 0. As a result the left-hand
side is a non-positive function of s0 which increases as s0! 0. Thus the limit of the
left-hand side exists as s0! 0. Furthermore, since the equality holds for every s0 > 0,
it holds at s0 D 0 as well. The claim is proved.

Since Claim 4.3 holds for every subinterval of I , the weak� limit of the measures ms
exists. Denote by m the measure obtained as the weak� limit of the measures ms .
Then taking the limit as s0! 0 in (4-3) we obtain the formula

(4-4)
“
I�Œ0;s�

� dA�

Z
I�0

m�

Z
I�s

kg dt D 0:

Consider the regions in 4 below the horizontal lines; see Figure 1. Define the mea-
sures ms on the horizontal coordinate lines . � ; s/\4 by integrating �kg . Let the
measure m be the limit of the measures ms as s! 0. Then the argument given above
to prove the formula (4-4) gives us the formula

(4-5)
“
4

� dA�

Z
Œa;b��0

mD 2� �
X
i

�i ;

where the sum is taken over the exterior angles of the boundary of the region 4.

4.2 A length versus total curvature estimate

As before, let V �W �4, and also let I � V and Œs; s0��W be subintervals. Then
define

(4-6) �.s; s0/D

(’
I�Œs0;s��� dA�

R
I�s0 kg dt if s0 > 0;’

I�Œ0;s��� dAC
R
I�0m if s0 D 0:

For any s 2W let
ls D length.u.I � s//:

Then ls is positive and by Theorem 4.2(IV) decreases as s! 0, therefore the limit
lims!0 ls exists. We denote l0 D lims!0 ls .

Remark 4.4 Note that l0 is not necessarily equal to length.u.I � 0//.
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Lemma 4.5 For any s; s0 2W with s0 � s , we have

�.s; s0/�
ls � ls0

s� s0
:

Proof First we prove the following integral formula:

(4-7) ls � ls0 D

Z s

s0

dlr

dr
dr

D

Z s

s0

�Z
I�r

�kg dt

�
dr

D

Z s

s0

�“
I�Œs0;r�

�� dAC

Z
I�s0
�kg dt

�
dr:

The first equality is the fundamental theorem of calculus applied to lr as a function
of r . The second equality holds by the first variation of arc-length formula (4-1) for
the orthogonal variation of paths ujI�s . The last equality holds by the Gauss–Bonnet
formula (4-2).

Now suppose that s > 0 and r; s0 2 .0; s� such that r � s0 . By the definition of � in
(4-6), �.s; r/� �.s; s0/. So we haveZ s

s0
�.s; r/ dr �

Z s

s0
�.s; s0/ dr D �.s; s0/.s� s0/;

then using (4-7) we have
ls � ls0 � �.s; s

0/.s� s0/:

This proves the lemma for any s0 > 0.

We proceed to show that the lemma holds at s0 D 0 as well. For any fixed r < s , by
(4-3) the integrand in the last line of (4-7) does not depend on s0 . So the limit as s0! 0

of the last line of (4-7) is
R s
0 �.0; r/ dr . Thus ls � l0 D

R s
0 �.0; r/ dr . Moreover,

�.s; 0/� �.r; 0/ for s � r by (4-6). So we have

ls � l0 �

Z s

0

�.r; 0/ dr � s�.s; 0/:

Therefore, the lemma holds at s0 D 0 as well. The proof of the lemma is complete.

Remark 4.6 If the variation of geodesics u extends to a variation that contains
g1.Œa; b�/ in its interior, then the second term of �.0; s/ in (4-6) vanishes. The definition
of the measure m and the rather long discussion of this section were meant to handle
the possibility that the variation does not extend, for example when the nearest point
projection onto g1.Œa; b�/ maps a subinterval to a point in the interior of g1.Œa; b�/.
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5 Contraction property of WP geodesic segments

Let X be a geodesically convex, negatively curved Riemannian manifold, for example
the Teichmüller space equipped with the WP metric. Let gW Œ0; T �! X be a geodesic
segment. Let � W X ! g.Œ0; T �/ denote the nearest point projection map to g.Œ0; T �/.
At a point p 2X with �.p/ in the interior of g.Œ0; T �/, the map � is smooth and has a
linear derivative d� W TpX ! T�.p//g (by Proposition 4.1(3)). At a point p 2 X , with
�.p/ equal to either g.0/ or g.T /, only the directional derivatives of � are defined.
We denote the (directional) derivative of � at p by d�pW TpX! Tpg . The main result
of this section is the following uniform (strict) contraction property of WP geodesic
segments in certain regions of the Teichmüller space.

Theorem 5.1 Given � > 0 sufficiently small, x�; T and b positive, there is a ı 2 Œ0; 1/
with the following property. Let � be a possibly empty multi-curve such that the
subsurface Sn� is a large subsurface. Let gW Œ0; T � ! U�;x�.�/ be a geodesic seg-
ment and let Nb.g.Œ0; T �// be the b–neighborhood of g.Œ0; T �/. Then for every
p 2 Teich.S/nNb.g.Œ0; T �// and v 2 Tp Teich.S/, the inequality

kd�p.v/k
2

kvk2
� ı

holds.

Remark 5.2 Compare this theorem with the contraction property of Teichmüller
geodesics which project to the thick part of the moduli space (co-bounded geodesics)
proved by Minsky in [14]. Minsky uses the explicit description of flat surfaces along a
Teichmüller geodesic. But we use various estimates on the WP metric and its derivatives
and a standard Jacobi field argument.

We start by collecting some of Wolpert’s estimates for the Weil–Petersson metric and
WP Levi-Civita covariant derivatives in the thin part of the Teichmüller space.

On a Riemannian manifold the Levi-Civita covariant derivative r (see eg [7, Sec-
tion I.5]) is the unique covariant derivative which is:

� Compatible with the Riemannian metric, ie for any smooth path �.t/ and vector
fields V and W along � , d

dt
hV;W i D hr P�V;W iC hV;r P�W i.

� Torsion-free, ie for any two vector fields V and W , rVW �rW V D ŒV;W �.
Here Œ � ; � � denotes the Lie bracket of vector fields.
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Given a multi-curve � and c0 > 0, let f�˛; J �˛; grad `ˇ g˛2�;ˇ2& be the short and
relative length frame field in the region

Uc0.�/D fx 2 Teich.S/ W `˛.x/� c0 for every ˛ 2 �g

introduced by Wolpert in [18]. Here & is a marking on the surface Sn� , �˛Dgrad `1=2˛
and grad `ˇ are vector fields, and J is the almost complex structure of the Teichmüller
space.

Recall the completion stratum S.�/ corresponding to pinching the curves in the multi-
curve � from Section 2.2.

Proposition 5.3 We have the following estimates:

(1) h�˛; �˛0i D O.`
3=2
˛ `

3=2
˛0 / for every ˛; ˛0 2 � such that ˛ ¤ ˛0 , and k�˛k2 D

‚.1/ for every ˛ 2 � .

(2) h�˛; J �˛0i D 0 for every ˛; ˛0 2 � .

(3) hgrad `ˇ ; �˛i DO.`
3=2
˛ / for every ˛ 2 � and ˇ 2 & .

(4) hgrad `ˇ ; J �˛i D 0 for every ˛ 2 � and ˇ 2 & .

Moreover, for every ˇ; ˇ0 2 & , hgrad `ˇ ; grad `ˇ 0i is continuous in a neighborhood of
the �–stratum S.�/� Teich.S/. Here the constant of the O notation and the constants
of the ‚ notation are uniform for `˛ � c0 .

The estimates of the above proposition are established in [18, Lemmas 3.12 and 4.2].
See also [18, Theorem 4.3 and Corollaries 4.3 and 4.4] where Wolpert puts these
estimates together to get expansions for the WP metric near completion strata.

Note that the WP metric is the real part of a Hermitian metric on the Teichmüller
space. Therefore hV;W iD hJV; JW i, where J is the almost complex structure of the
Teichmüller space with the property that J 2 D�I . Thus estimates for the remaining
pairings of the vector fields of the short and relative length frame field follow from the
ones listed in the above proposition.

Proposition 5.4 [19, Theorem 3.4] We have

rV �˛ D 3`
�1=2
˛ hJ�˛; V iJ�˛CO.`

3=2
˛ /;

where the constant of the O notation is uniform for `˛ � c0 .
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Proposition 5.5 We have

r�˛ grad `ˇ DO.`
1=2
˛ / and rJ�˛ grad `ˇ DO.`

1=2
˛ /:

Moreover, rgrad `ˇ0 grad `ˇ is continuous in a neighborhood of S.�/� Teich.S/. Here
the constant of the O notation is uniform for `˛ � c0 .

The estimates of this proposition are from [19, Proposition 4.6]. We also need the
following estimates for the WP sectional curvatures. Let V;U be two vector fields.
Recall that the sectional curvature is defined by

�.U; V /D
hR.U; V /V; U i

jU ^V j2
;

where jU ^V j2 D kU k2kV k2� hU; V i2 .

Proposition 5.6 [22, Theorem 21] Let � be a multi-curve and P be a pants decom-
position, so that � � P . The diagonal curvature evaluations for ˛ 2 � satisfy

hR.�˛; J �˛/J�˛; �˛i D 3.16�`
3
˛/
�1
CO.`˛/

and all of the remaining curvature evaluations are continuous in a neighborhood of
S.�/� Teich.S/.

In this proposition, evaluations of the Riemann curvature tensor are in the frame
f�˛; J �˛g˛2P (not the short and relative length frame). Moreover, Wolpert uses the
convention that on S.�/ the evaluations of the Riemann curvature tensor˝

R
�
.J /�˛; .J /�ˇ

�
.J /� ; .J /�ı

˛
vanish in these situations:

� ˛ 2 � and at least one of ˇ;  and ı is distinct from ˛ .

� ˛; ˇ; ; ı 2 P � � and not all of them lie on the same component of a Riemann
surface with nodes represented in S.�/.

Define the bundles

N� D spanf�˛; J �˛g˛2� and P� D spanfgradˇ gˇ2&

over Uc0.�/. Any vector field V on the Teichmüller space has a decomposition as
V D VN CVP , where VN is a section of N� and VP is a section of P� .

We proceed by proving two lemmas which elaborate the asymptotic product form of
the WP metric.
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Lemma 5.7 Let � � c0 . Let p 2 U�.�/ and v;w 2 Tp Teich.S/ be two vectors with
kvk2 � 1 and kwk2 � 1. Let

v D
X
˛2�

a˛�˛C b˛J�˛C
X
ˇ2&

cˇ grad `ˇ :

Then:

(i) For any ˛ 2 � and ˇ 2 & the coefficients a˛; b˛ and cˇ are O.1/.

(ii) Suppose that v 2 P� and w 2N� . Then hv;wijp! 0 as �! 0.

(iii) The inequalities kvk2 � 1
2
kvN k

2 and kvk2 � 1
2
kvP k

2 hold.

Proof Denote by U�.�/ the closure of U�.�/ in Teich.S/. The short and relative
length frame field f�˛; J �˛; grad `ˇ g˛2�;ˇ2& on the region U�.�/ extends to a frame
field on U�.�/. Moreover, the frame field is invariant under the action of the mapping
class group, so projects to a frame field

F WD fEi ; E
0
i ; Fj giD1;:::;j� j;jD1;:::;j& j

on M.S/. Since the WP metric is also invariant under the action of the mapping class
group, the inner product of any two vectors in the frame is preserved. Thus, by the
estimates of Proposition 5.3 we have

kEik
2
D‚.1/; kE 0ik

2
D‚.1/; hEi ; E

0
i 0i D 0 if i ¤ i 0;

hEi ; Fj i DO.�
3=2/; hFj ; E

0
i i D 0; hFj ; Fj 0i D‚.1/:

Note that the constant of the O notation and the constants of the ‚ notation depend
only on c0 .

Denote by yp the projection of the point p to M.S/. For any frame at T ypM.S/, the
square of the lengths of the vectors of the frame and the inner product of any two
of them together determine a point in R2j� jCj& j �R.

2j�jCj&j
2 / , and vice versa. So the

set of frames at yp are parametrized by R2j� jCj& j �R.
2j�jCj&j

2 / . The bounds above
determine a compact subset K. yp/� R2j� jCj& j �R.

2j�jCj&j
2 / . Moreover, the frame F

at yp is in K. yp/. Denote the projection of U�.�/ to M.S/ by U�.�/^ , which is a
compact subset of M.S/. So the frame field F is in a compact subset of the extension
of the frame bundle of the moduli space to the completion of the moduli space.

Denote the unit disk bundle of the moduli space by DM.S/. The short and relative
length frame field provides a bundle extension for the tangent bundle of Teich.S/
and M.S/ to their WP completions [18]. Denote the extension of DM.S/ to the
completion by DM.S/. The vector v projects to a vector in DU�.�/^ . Note that
each of the functions a˛ , b˛ and cˇ , where ˛ 2 � and ˇ 2 & , descends to a function
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on the compact set K.U�.�/^/�DU�.�/^ . Therefore, each one of these functions is
bounded on U�.�/. Part (i) is proved.

Since v 2P� , we have vD
P
˛2� a˛�˛Cb˛J�˛ . Moreover, since w 2N� , we have

w D
P
ˇ2& c

0
ˇ

grad `ˇ . Expanding hv;wi we get

hv;wi D
X

˛2�;ˇ2&

a˛c
0
ˇ h�˛; grad `ˇ iC b˛c

0
ˇ hJ�˛; grad `ˇ i:

By part (i) all of the coefficients in this sum are O.1/. Moreover, by Proposition 5.3
all of the pairings in the sum above are O.�/. So each term in the sum above goes to 0
as �! 0. Part (ii) is established.

Now consider

(5-1) kvk2 D kvN k
2
CkvP k

2
C 2hvN ; vP i:

We have vP =kvP k 2 P� and vN =kvN k 2N� , and moreover
vP =kvP k2 D 1 andvN =kvN k2 D 1. Then by part (ii), for � sufficiently small,D

vN
kvN k

;
vP
kvP k

E
�
1

4
:

If kvN k2 � kvP k2 , then

jhvN ; vP ij �
1
4
kvN kkvP k �

1
4
kvN k

2:

Substituting this inequality into (5-1) and dropping the non-negative term kvP k2 on
the right-hand side, we get

kvk2 � kvN k
2
�
1
2
kvN k

2
D

1
2
kvN k

2:

If kvP k2 � kvN k2 , then by the exact same argument we get kvk2 � 1
2
kvP k

2 , which
again implies that kvk2 � 1

2
kvN k

2 . This finishes the proof of part (iii).

Lemma 5.8 Given a multi-curve � and T > 0, let �W Œ0; T � ! U�.�/ be a WP
geodesic segment parametrized by arc-length. Let

P� D
X
˛2�

a˛�˛C b˛J�˛C
X
ˇ2&

cˇ grad `ˇ :

Then for every ˛ 2 � we have that a˛! 0 and b˛! 0 as �! 0.

Proof We show that for any ˛ 2 � we have that a˛ ! 0 as �! 0. The proof that
b˛! 0 as �! 0 is similar.
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Define the constant

ƒDminfk�˛.x/k2 Wx is in the c0–thin part of the Teichmüller space and ˛2C0.S/g:

Note that ƒ> 0 by the estimate for k�˛k2 in Proposition 5.3. To get a contradiction,
suppose that the above statement does not hold. Then there are a sequence �n! 0, a
sequence of WP geodesic segments parametrized by arc-length �nW Œ0; T �! U�n.�/,
and a sequence of times tn 2 Œ0; T � so that, for some u > 0,

an �
3u

ƒ
;

where an is the coefficient of �˛ in the expansion of P�n as in the statement of the
lemma. After applying elements of the mapping class group (re-marking), we may
assume that the geodesic segments �n are in a compact region of the completion of
the Teichmüller space. Then by the estimates in Proposition 5.3, for any ˛; ˛0 2 � and
ˇ 2 & , we have

h�˛; �˛0i DO.�
3
n/ for ˛ ¤ ˛0; h�˛; J �˛0i D 0 and h�˛; grad `ˇ i DO.�

3=2
n /:

So we have that

k�˛k
2an D h�˛; P�n.tn/iCO.�

3=2
n /:

Thus, for all n sufficiently large we have that

(5-2) h P�n.tn/; �˛i
2
� 3uCO.�3=2n /� 2u:

For each n 2N , define the function

Fn.t/D hP�n.t/; �˛i
2
ChP�n.t/; J �˛i

2:

By the formula at the end of [21, Section 5.2], dFn=dt DO.`
3=2
˛ /, where the constant

of the O notation depends only on an upper bound for `˛ . For all n sufficiently large
we have �n.Œ0; T �/� U�n.�/, so `˛.�.t//� �n for all t 2 Œ0; T �. Moreover, �n! 0.
Then for any n large enough, ˇ̌̌

dFn
dt

ˇ̌̌
�

u

2T
:

Let t 2 Œ0; T �. Using the fundamental theorem of calculus and the above inequality we
get jFn.t/�Fn.tn/j � 1

2
u. By (5-2), Fn.tn/� 2u. Thus we may conclude that

(5-3) Fn.t/�
3
2
u

for every t 2 Œ0; T �.
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The formula from Proposition 5.4 for the WP covariant derivative and a straightforward
calculation using properties of the Levi-Civita covariant derivative give us

R̀
˛.�n.t//D 2h P�n.t/; �˛i

2
C 6h P�n.t/; J �˛i

2
CO.�3=2n /:

Moreover,
2h P�n; �˛i

2
C 6h P�n; J �˛i

2
� 2Fn.t/:

Then, since 2Fn.t/� 3u for all n sufficiently large by (5-3), we obtain that

(5-4) R̀
˛.�n.t//� u

for every t 2 Œ0; T �.

Claim 5.9 For all n sufficiently large we have that

(5-5) max
t2Œ0;T �

`˛.�n.t//�
1
16
uT 2:

Let tmin;n 2 Œ0; T � be such that

`˛.�n.tmin;n//D min
t2Œ0;T �

`˛.�n.t//:

If there is a t 2 Œ0; T � such that

`˛.�n.t//� `˛.�n.tmin;n//�
1
16
uT 2;

then since `˛.�n.tmin;n//� 0 we get the desired lower bound in (5-5). Otherwise,

`˛.�n.t//� `˛.�n.tmin;n// <
1
16
uT 2

for every t 2 Œ0; T �. Moreover, `˛.�n.t//� 0 for every t 2 Œ0; T �. Note that either the
interval Œ0; tmin;n� or Œtmin;n; T � has length greater than or equal 1

2
T . Then the mean

value theorem for the interval with length at least 1
2
T implies that there is t�n 2 Œ0; T �

such that j P̀˛.t�n /j<
1
8
uT . Let t 2 Œ0; T �. Integrating both sides of the inequality (5-4)

from t�n to t and using the bound j P̀˛.t�n /j<
1
8
uT we have

`˛.�n.t//� `˛.�n.t
�
n //�

1
2
u.t � t�n /

2
�
1
8
uT .t � t�n /:

Let t 0n 2 Œ0; T � be such that jt 0n � t
�
n j D

1
2
T . At t 0n , the right-hand side of the above

inequality is either 1
16
uT 2 or 3

16
uT 2 . Then since `˛.�n.t�n // � 0, from the above

inequality, we get
`˛.�n.t

0
n//�

1
16
uT 2:

So we again have the lower bound (5-5). The proof of the claim is complete.
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The lower bound (5-5) for all n sufficiently large contradicts the fact that �n.Œ0; T �/ (by
the assumption that �n! 0) is a sequence of geodesic segments that converge to the
�–stratum where the ˛–length function is identically 0. This contradiction completes
the proof of that a˛! 0 as �! 0.

Corollary 5.10 Let � � c0 . Let � be a WP geodesic segment in U�.�/. Then for �
sufficiently small, 1

2
kP�P k

2 � kP�k2 � kP�P k
2 .

Proof We have kP�k2 D kP�P k2CkP�N k2C 2h P�P ; P�N i. Let

P� D
X
˛2�

a˛�˛C b˛J�˛C
X
ˇ2&

cˇ grad `ˇ :

Then

kP�N k
2
D

X
˛;˛02�

a˛a˛0h�˛; �˛0iC 2a˛b˛0h�˛; J �˛0iC b˛b˛0hJ�˛; J �˛0i:

By Proposition 5.3 all of the inner products in the above sum are either 0, O.1/ or
O.�3/, where the constants of the O notations depend only on c0 . Moreover, by
Lemma 5.8, a˛ and b˛ go to 0 as �! 0. Thus kP�N k2! 0 as �! 0. Furthermore,
by Lemma 5.7(ii), h P�P ; P�N i ! 0 as � ! 0. So for � sufficiently small we have
1
2
kP�P k

2 � kP�k2 . The inequality kP�k2 � kP�P k2 is part (iii) of Lemma 5.7.

Let � be a smooth path and V be a vector field along � . We denote r P�V by V 0 and
r P�
r P�
V by V 00 . The following lemma shows that the bundle N� is almost parallel

near the �–stratum.

Lemma 5.11 Let � � c0 . Given a multi-curve � and v > 0, let �W Œ0; T �! U�.�/ be
a smooth curve and V a vector field along � with kV k2 � v . Thenˇ̌

k.V 0/N k�k.VN /
0
k
ˇ̌
! 0

as �! 0.

Proof Let
V D

X
˛2�

a˛�˛C b˛J�˛C
X
ˇ2&

cˇ grad `ˇ ;

P� D
X
˛2�

d˛�˛C e˛J�˛C
X
ˇ2&

fˇ grad `ˇ :
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Expanding V 0N and .VN /0 , we get

.V 0/N � .VN /
0
D

�X
ˇ2&

cˇr P� grad `ˇ C Pcˇ grad `ˇ

�
N

D

�X
ˇ2&

cˇr P� grad `ˇ

�
N

D

X
ˇ2&;˛2�

.cˇd˛r�˛ grad `ˇ C cˇe˛rJ�˛ grad `ˇ /N

C

X
ˇ;ˇ 02&

.cˇfˇ 0rgrad `ˇ0 grad `ˇ /N :

By Proposition 5.5,

cˇd˛r�˛ grad `ˇ D cˇd˛O.`
1=2
˛ / and cˇe˛rJ�˛ grad `ˇ D cˇe˛O.`

1=2
˛ /:

So each one of the terms in the first sum after the second equality above goes to 0 as
�! 0. The vector fields grad `ˇ and grad `ˇ 0 are tangent to the stratum S.�/ and so
is rgrad `ˇ0 grad `ˇ . Therefore, by the continuity of the covariant derivatives as stated
in Proposition 5.5,

.cˇfˇ 0rgrad `ˇ0 grad `ˇ /N ! 0

as �! 0. So we may conclude that all of the terms after the last equality above go
to 0 as �! 0. So k.V 0/N � .VN /0k! 0 as �! 0. Furthermore,ˇ̌

k.V 0/N k�k.VN /
0
k
ˇ̌
� k.V 0/N � .VN /

0
k;

hence
ˇ̌
k.V 0/N k�k.VN /

0k
ˇ̌
! 0 as �! 0.

Proof of Theorem 5.1 We start with some results in the general setting of a geodesi-
cally convex negatively curved Riemannian manifold X . Let p 2 X and let �.p/
be the nearest point to p on g.Œ0; T �/. Let �W Œ0; s1�! X be the geodesic segment
parametrized by arc-length with �.0/D �.p/ and �.s1/D p . We have the following
two situations:

(A) �.p/ is in the interior of g.Œ0; T �/ or is an endpoint of g.Œ0; T �/ and is the
nearest point to p on a slightly longer geodesic segment containing g.Œ0; T �/ in
its interior.

(B) �.p/ is one of the endpoints g.0/ or g.T / and is not the nearest point to p on
any geodesic segment containing g.Œ0; T �/ in its interior.

Suppose that (B) holds. We claim that there is an open ball centered at p which is
mapped by the nearest point projection to one of the endpoints. Otherwise, there is a
sequence of points pn!p so that �.pn/ is the nearest point to pn on a slightly longer
geodesic segment containing g.Œ0; T �/. But then continuity of the projection when
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points are projected to the interior of a geodesic segment (Proposition 4.1(1)) implies
that �.p/ is the nearest point to p on a slightly longer geodesic segment containing
g.Œ0; T �/. This contradicts the assumption (B).

Now the existence of a ball centered at p which is mapped by the nearest point
projection to one of the endpoints implies that d�p D 0. Thus kd�p.v/k2=kvk2 < ı
for any ı 2 Œ0; 1/.

The rest of the proof is devoted to showing that kd�p.v/k2=kvk2 < ı for some
ı 2 Œ0; 1/, assuming (A). First we reformulate the inequality in terms of Jacobi fields
along the geodesic segments � connecting a point p to its nearest point �.p/ on g .
This reformulation will be convenient to work with. A vector field J.s/ WD J.�.s//
along �.s/ is a Jacobi field if it satisfies the Jacobi equation

(5-6) J 00CR.J; P�/ P� D 0;

where R. � ; � / � denotes the Riemann curvature operator. Moreover, P� denotes the
derivative of � with respect to s . Also J 0 Dr P�J and J 00 Dr P�r P�J .

Let us first characterize the map d� W TX ! Tg in terms of Jacobi fields. Given
v 2 TpX , let �W Œ��; ��! X be a smooth path passing through p with �.0/D p and
P�.0/ D v . Then the family of geodesics connecting each point �.t/ to �.�.t//, the
nearest point to �.t/ on g , defines a variation of geodesics

uW f.t; s/ W t 2 Œ��;C��; s 2 Œ0; s1�g ! X ;

where for each t , u.t; s/ is the geodesic connecting �.t/ to �.�.t//. Denote the
geodesic connecting p to �.p/ by �.s/ WD u.0; s/, where s 2 Œ0; s1�. The vector field
@u
@t

is a Jacobi field. Let J.s/ WD @u
@t

ˇ̌
.0;s/

for every s 2 Œ0; s1�. Then J.s1/D v and
J.0/D d�.v/.

Lemma 5.12 Let J be a Jacobi field as above. Then we have

(5-7) d

ds
kJ k2jsD0 D 0:

Proof A straightforward calculation shows that

d

ds
kJ k2jsD0 D 2hJ

0.0/; J.0/i:
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So we only need to verify that hJ.0/; J 0.0/i D 0. Note that P�.s/ D @u
@s

ˇ̌
.0;s/

and
J.s/D @u

@t

ˇ̌
.0;s/

. Now we have

hJ.0/; J 0.0/i D
D
@u

@t
;r @u

@s

@u

@t

Eˇ̌̌
sD0
D

D
@u

@t
;r @u

@t

@u

@s

Eˇ̌̌
sD0

D�

D
r @u
@t

@u

@t
;
@u

@s

Eˇ̌̌
sD0
D�

D
rf Pgf Pg;

@u

@s

Eˇ̌̌
sD0

D�

D
f Pg.f / Pg;

@u

@s

Eˇ̌̌
sD0
D 0:

The second equality above follows because r is torsion-free and
�
@u
@s
; @u
@t

�
D 0. To get

the third equality note that, by the compatibility of the Levi-Civita covariant derivative
and the Riemannian metric, we have

d

dt

D
@u

@t
;
@u

@s

E
D

D
r @u
@t

@u

@t
;
@u

@s

E
C

D
r @u
@t

@u

@t
;
@u

@s

E
:

We also have that
˝
@u
@t
; @u
@s

˛ˇ̌
sD0
D 0 for every t , and hence d

dt

˝
@u
@t
; @u
@s

˛
D 0. Then the

equality follows from the above equality. In the fourth equality we replace @u
@t

ˇ̌
sD0

by f Pg , where f W Œ��;C�� ! R is a function. The fifth equality follows from a
straightforward calculation using the fact that r Pg Pg D 0 for the geodesic g . The last
equality holds because @u

@t

ˇ̌
sD0
D f Pg and

˝
@u
@t
; @u
@s

˛ˇ̌
sD0
D 0 for all t .

Using the Jacobi equation (5-6), for any s 2 Œ0; s1� we have

(5-8)
1

2

d2

ds2
kJ k2 D kJ 0k2� �.s/j P� ^J j2;

where �.s/D �. P�.s/; J.s// is the sectional curvature of the span of P�.s/ and J.s/ and

j P� ^J j2 D kJ k2kP�k2� hJ; P�i2:

Lemma 5.13 Given a Jacobi field J , we have:

(i) d
ds
kJ.s/k2 � 0 for every s 2 Œ0; s1�.

(ii) kJ.s/k2 is non-decreasing on the interval Œ0; s1�.

(iii) hJ.s/; P�.s/i is a linear function.

Proof By (5-8) and the fact that � � 0 we have that

d2

ds2
kJ k2 � 0:

Thus d
ds
kJ k2 is a non-decreasing function of s . Furthermore, by (5-7),

d

ds
kJ k2jsD0 D 0:
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Therefore we have that d
ds
kJ k2 � 0. Part (i) is proved. Part (ii) follows from part (i).

We proceed to prove part (iii). A straightforward calculation using the Jacobi equation
(5-6) gives us

d2

ds2
hJ; P�i D hR.J; P�/ P�; P�i D 0:

This implies that hJ.s/; P�.s/i is linear, because its second derivative is identically 0.
Part (iii) is proved.

Given b � 0, denote the closed b–neighborhood of g.Œ0; T �/� X by N b.g.Œ0; T �//.
Denote the boundary of N b.g.Œ0; T �// by @N b.g.Œ0; T �//. Since X is negatively
curved, the nearest point projection map � W X ! @N b.g.Œ0; T �// is 1–Lipschitz. This
follows from the growth of the norm of Jacobi fields given in the proof of part (IV)
of Theorem 4.2. Furthermore, the projection of a point p 2 X to g.Œ0; T �/ may be
obtained by first projecting p on @N b.g.Œ0; T �// and then projecting the projected
point to g.Œ0; T �/. So we only need to prove the strict contraction of the nearest point
projection map for the points of @N b.g.Œ0; T �//.

Now we return to the setting of the Teichmüller space equipped with the WP metric.
Recall that g.Œ0; T �/ � U�;x�.�/. Let p 2 @N b.g.Œ0; T �// and let � be the geodesic
segment connecting p to �.p/. Given a unit vector v 2 TpX (kvk2 D 1), as we saw
earlier, there is a Jacobi field J along � with J.b/ D v and J.0/ D d�.v/. Then
kd�p.v/k

2=kvk2 D kJ.0/k2 . In Theorem 5.14 below we show that there is a ı > 0
so that kJ.0/k2 � ı < 1. This completes the proof of the theorem.

Theorem 5.14 Given x� > 0, and b; b0 > 0 sufficiently small with b � b0 , there is a
constant ı D ı.x�; b; b0/ with the following property. Let � > 0 be sufficiently small.
Let � be a multi-curve such that Sn� is a large subsurface. Let g.Œ0; T �/�U�;x�.�/ be
a geodesic segment. Let p 2 @N b.g.Œ0; T �// and suppose that the nearest point �.p/
to p on g.Œ0; T �/ is as in (A) in the proof of Theorem 5.1. Let v 2 TpX and let � be a
geodesic connecting p to �.p/. Finally, let J be a Jacobi field we set up in the proof
of Theorem 5.1. Then

(5-9) kJ.b0/k2 � ı:

Moreover, ı decreases as b0! 0.

Proof First we sketch the proof. Suppose that a neighborhood of a stratum S.y�/,
where y� � � , is foliated with totally geodesic leaves with negative sectional curvatures
bounded away from 0. If both the geodesic � connecting p to �.p/ and J are tangent
to the leaves of the foliation over an interval E , then �.J; P�/ is negative over E and
we obtain a negative upper bound for the second term on the right-hand side of (5-8).
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Otherwise, J would vary over E , so that we may obtain a lower bound for kJ 0k
and therefore for the first term on the right-hand side of (5-8). Having these bounds,
integrating both sides of the equation (5-8), we obtain an upper bound for kJ.b0/k2 .

We do not quite have the above picture in the WP setting. However, a modification
of the above argument, as is outlined below, would give us the bound. As we see
in Claims 5.15 and 5.16 below, there is an �0 > 0 so that for any u < �0 there exist
an interval E and a multi-curve y� � � of definite length such that �.t/ 2 Uu;�0.y�/.
Moreover, instead of the totally geodesic foliation with negatively curved leaves near
the stratum we have the decomposition of the tangent bundle of the Teichmüller space

T Teich.S/D Py� CNy� :

If the Py� component of J.s/ has a definite length over E , then using compactness
arguments we establish a negative upper bound for the sectional curvature of the span
of P�.s/ and J.s/ over a subinterval of E . This provides a negative upper bound for
the second term on the right-hand side of (5-8). Note that the sectional curvatures
are bounded away from 0 in the thick part of the y�–stratum (y� is a non-separating
multi-curve) and Py� is almost tangent to the level manifolds of the functions .`1=2˛ /˛2y� ,
which define a foliation in a neighborhood of S.y�/. This is Case 1 below.

If the Py� component of J.s/ does not have a definite length over E , then since
J.0/ 2 Py�;�.0/ (the normal component of J.0/ is 0), the normal component of J
varies over E which gives rise to a lower bound for the integral of k.JN /0k on a
subinterval of E . Furthermore, by Lemma 5.11 the bundle Ny� is almost parallel, so
we may obtain a lower bound for the integral of kJ 0k2 . This provides a lower bound
for kJ 0k2 and consequently the first term on the right-hand side of (5-8). Having
these bounds, integrating both sides of the equation (5-8) we get the desired bound for
kJ.b0/k2 . This is Case 2 below.

We proceed with the proof of the theorem following the above sketch. The following two
claims provide us a thick-thin decomposition for a portion of the geodesic segment � .

Claim 5.15 For any x� > 0, there are h; �0 > 0 with the following properties. Suppose
that � is a geodesic segment in the h–neighborhood of the x�–thick part of S.�/. Then
`ˇ .�.t// > �

0 for any ˇ … � .

Passing to the quotient and using the fact that there are finitely many disjoint strata
in the completion of the moduli space M.S/, there is a lower bound for the distance
between S.�/ and S.�/ for any two multi-curves � and � with � t � . Moreover, the
x�–thick part of the �–stratum is compact and does not contain any point in S.�/nS.�/.
So there is a lower bound for the distance between the x�–thick part of the �–stratum
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and any point in a �–stratum, where � ¨ � . Therefore, there is a lower bound for the
distance between the x�–thick part of S.�/ and any �–stratum with � t � or � ¨ � only
depending on x� . This means that there is an h> 0 such that the h–neighborhood of the
x�–thick part of S.�/ only intersects the strata of multi-curves � 0 � � . Now suppose
that � is in the h–neighborhood of the x�–thick part of S.�/. Then a compactness
argument shows that there is a lower bound �0 > � for the length of every curve ˇ … �
along � . The claim is proved.

In the rest of the proof assume that b � 1
2
h.

Claim 5.16 There is an e > 0 with the following property. Let �W Œ0; b�! Teich.S/
be the geodesic segment connecting a point p 2 @N b.g.Œ0; T �// to the nearest point
to p on g.Œ0; T �/. For any u < �0 , there is a multi-curve y� � � (possibly empty) and
an interval E � Œ0; b� with jEj D e such that �.t/ 2 Uu.y�/ for any t 2E .

Since g.Œ0; T �/� U�;x�.�/, the geodesic segment g.Œ0; T �/ converges into the x�–thick
part of S.�/ as � ! 0. Thus for � sufficiently small g.Œ0; T �/ is contained in the
1
2
h–neighborhood of the x�–thick part of S.�/. N h.g.Œ0; T �// is geodesically convex,

and the points �.0/; �.b/ lie in N h.g.Œ0; T �//. So �.Œ0; b�/ � N h.g.Œ0; T �//, and
therefore �.Œ0; b�/ is in the h–neighborhood of the x�–thick part of S.�/.

Given t 2 Œ0; b�, let �t be the maximal subset of � (possibly empty) such that
`˛.�.t// < u for any ˛ 2 �t . Since �.Œ0; b�/ is in the h–neighborhood of the x�–
thick part of S.�/, by Claim 5.15, we have that `˛.�.t// > �0 for any ˛ … � . Then
since u� �0 we may conclude that �t � � .

By the convexity of length functions along WP geodesics (Theorem 2.7), for any
� 0 � � the set of times t 2 Œ0; b� such that �t D � 0 is an interval. Moreover, the
number of multi-curves � 0 � � is 2j� j � 2�.S/ , where �.S/D 3g� 3C n. By these
two observations there is a possibly empty multi-curve y� � � and an interval E of
length at least eD b=2�.S/ such that �t D y� for every t 2E . Note that e only depends
on b and x� . The proof of the claim is complete.

Any vector in TpX has a decomposition into a component tangent to � and a component
orthogonal to � . We are in the situation that h P�; Pgij�.p/D 0 and d�pW TpX ! T�.p/g

is a linear map; see (A). The linear map d� maps any vector tangent to � to 02T�.p/g .
Thus by the linearity of d� we only need to prove (5-9) for vectors v with hv; P�.b/iD0.
Let v be such a vector, and suppose that kvk2 D 1. Let J be a Jacobi field with
J.0/D d�.v/ and J.b/D v . Then since h P�.b/; J.b/i D 0 and h P�.0/; J.0/i D 0, by
Lemma 5.13(ii), for every s 2 Œ0; b� we have

(5-10) hJ.s/; P�.s/i D 0:
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Let s 2 Œ0; b�. By Lemma 5.13(i), kJ.s/k2 is a non-decreasing function of s . Then by
continuity of kJ.s/k2 we have kJ.s/k2 � 1. Fix a constant !0 < 1. If kJ.0/k2 � !0 ,
then for ı D .1C !0/=2 and any b; b0 sufficiently small the bound (5-9) holds by
continuity of kJ.s/k2 . Moreover, the fact that kJ.s/k2 is non-decreasing in s implies
that ı is non-increasing as b0 ! 0. So in the rest of the proof we will assume
that kJ.0/k2 � !0 . Then using the fact that kJ.s/k2 is non-decreasing, we have
kJ.s/k2 � !0 . We record the upper and lower bounds for kJ.s/k2 :

(5-11) !0 � kJ.s/k
2
� 1:

The geodesic g.Œ0; T �/ is contained in U�.�/ so, by Corollary 5.10, k PgP k2 � 1
2
k Pgk2 .

Then since J.0/D kJ.0/k Pg , by (5-11), we have kJP .0/k2 � 1
2
!0 .

For u sufficiently small, let E be the interval from Claim 5.16. We will consider the
following two cases depending on the behavior of the function kJP .s/k2 on E , and
in each case verify that the inequality (5-9) holds.

Case 1 We have

(5-12) kJP .s/k
2
�
1
4
!0

for every s 2E .

We prove that the inequality (5-9) holds using the following lemma:

Lemma 5.17 There exist a closed subinterval E 0 �E and k0 < 0 such that for every
s 2E 0 we have �. P�.s/; J.s//� k0 .

Let the interval E 0 D Œc; d � and k0 < 0 be from Lemma 5.17. Let s 2 Œc; d �. Then
by the lemma we have that

�.s/D �. P�.s/; J.s//� k0:

Moreover, Œc; d �� Œ0; b�, so by (5-10), hJ.s/; P�.s/i D 0, and by (5-11), kJ.s/k2 �!0 .
Thus we have that

jJ ^ P�j2 D kJ k2kP�k2� hJ; P�i � !0:

Using the above two inequalities we obtain

(5-13) ��.s/jJ ^ P�j2 � �k0!0 > 0:

Moreover, by (5-8),

1

2

d2

ds2
kJ.s/k2 D kJ 0.s/k2� �.s/jJ.s/^ P�.s/j2;
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then by the inequality (5-13) we have

d2

ds2
kJ.s/k2 � �2k0!0 > 0:

Suppose that b0 � jE 0j. Then b0 � d . Integrating both sides of the above inequality
over the interval Œb0; s� (s > b0 ) twice, we have

d

ds
kJ.s/k2�

d

ds
kJ.b0/k2 � �2k0!0.s� b

0/:

Moreover, by Lemma 5.13(iii), d
ds
kJ.s/k2 � 0. So we get

d

ds
kJ.s/k2 � �2k0!0.s� b

0/:

Now, integrating both sides of the above inequality from b0 to d , we get

(5-14) kJ.d/k2 � kJ.b0/k2� k0!0.s� b
0/2
ˇ̌d
b0
D kJ.b0/k2� k0!0.d � b

0/2:

Moreover, by Lemma 5.13(i), kJ.s/k2 is non-decreasing, so

kJ.b/k2 � kJ.d/k2 and kJ.b0/k2 � kJ.0/k2:

Then from (5-14) we may deduce that

1D kJ.b/k2 � kJ.0/k2� 2k0!0.b� b
0/2:

Consequently, for ı D 1C k0!0.b� b0/2 , (5-9) holds. Here choosing b sufficiently
small we can guarantee that ı > 0. Furthermore, note that since k0 < 0, the number
ı is less than 1 and decreases as b0! 0.

We finish Case 1 by proving Lemma 5.17.

Proof of Lemma 5.17 The proof of the lemma is by contradiction. Suppose that the
lemma does not hold. Then there exist a sequence of points pn 2 @N b.g.Œ0; T �// and
geodesic segments �nW Œ0; b�! Teich.S/ connecting pn to the nearest point to pn on
g.Œ0; T �/, and intervals En � Œ0; b� as in Claim 5.16, so that for any sequence of times
sn 2 In we have

(5-15) �. P�n.sn/; Jn.sn//! 0

as n!1, where Jn is a Jacobi field along the geodesic segment �n which satisfies
(5-10), (5-11) and (5-12).

Note that jEnj � b=2�.S/ for each n 2 N . So after trimming the intervals En and
reparametrizing the geodesic segments �njEn we may assume that En �E .
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Claim 5.18 There exist u0>0, a sequence un! 0 as n!1, a possibly empty multi-
curve y� � y� and a closed subinterval E 0 �E so that �n.t/ 2Uun;u0.y�/ for any t 2E 0 .

The proof is by contradiction. Apply Theorem 2.5 to the geodesic segments �n and
let the partition t0 < � � �< tkC1 , multi-curves �i for i D 0; : : : ; kC 1, multi-curve y�
and the piece-wise geodesic y� be as in the theorem. Let 0 � j � k and let E 0 be a
closed subinterval of .tj ; tjC1/. Then

� there is u00>0 so that for any t 2E 0 and any ˛ 2 y��y� we have `˛.y�.t//> 2u00 ;

� for any ˛ 2 y� and any t 2E 0 we have `˛.y�.t//D 0.

Let the elements  n of the mapping class group be as in Theorem 2.5. The geodesic
segments �n are in N b.g.Œ0; T �//, which is a compact subset of Teich.S/. These two
facts imply that  n � I . Moreover, by Claim 5.16, `˛.�.t// > �0 for any ˛ … y� , so
for each i D 1; : : : ; k we have �i � y� . Similarly y� � y� . For i D 1; : : : ; k and any
n 2N , let Ti;n and 'i;n be as in Theorem 2.5. Recall that each Ti;n is an element of
tw.y�/. Thus each 'i;n is the composition of I and powers of positive Dehn twists
about curves in y� . So applying each 'i;n to a point in the Teichmüller space does
not change the isotopy class and length of any curve ˛ 2 y� . Let E 0 � .tj ; tjC1/ be
as above. By Theorem 2.5(3), for any t 2E 0 we have 'j;n.�n.t//! y�.t/ as n!1.
Then since 'j;n does not change the length and isotopy class of curves in y� , it follows
from the continuity of length functions and the two bullets above, respectively, that

� `˛.�n.t// > u
00 for any ˛ 2 y� and t 2E 0 ;

� there is a sequence un! 0 as n!1 so that `˛.�n.t// < un for any ˛ 2 y�
and t 2E 0 .

Also, since E 0 �E , as we mentioned before, by Claim 5.16, we have `˛.�n.t// > �0

for any ˛ … y� and t 2E 0 .

Thus the claim holds for the interval E 0 � E , the multi-curve y� , the constant u0 D
minf�0; u00g, and the sequence un .

The geodesic segments �n.E 0/ are in N b.g.Œ0; T �//, which is a compact subset of
Teich.S/. Then by Claim 5.18, after possibly passing to a subsequence, the geodesic
segments �n.E 0/ converge to the u0–thick part of S.y�/.

First suppose that y� ¤∅. Let sn 2E 0 and the points �n.sn/ converge to a point p as
n!1. The vectors P�n.sn/ converge to a vector v 2 Tp Teich.S/ with kvk2 D 1 and
the vectors Jn.sn/ converge to a vector w 2 Tp Teich.S/ with kwk2 � !0 . Moreover,
hv;wi D 0. So span.v; w/ is a nondegenerate plane at p in the u0–thick part of the
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Teichmüller space. There is an upper bound k1 < 0 for the sectional curvatures in this
region. Thus, for n sufficiently large,

�. P�n.sn/; Jn.sn// <
1
2
k1 < 0:

But this contradicts the assumption that (5-15) holds.

Remark 5.19 The upper bound for the sectional curvatures in the thick part of the
moduli space follows from the fact that the Weil–Petersson metric is defined on the
moduli space and the thick part of the moduli space is compact.

In the rest of the proof of the lemma we assume that y� ¤∅. Since y� is a non-separating
multi-curve, the stratum S.y�/ is not a product of lower-complexity strata. Then all of
the sectional curvatures of the stratum S.y�/ are bounded above by some k2 < 0 in the
u0–thick part of the stratum.

Let sn 2E 0 and the points �n.sn/ converge to the point p as n!1. In what follows
for simplicity of notation we often drop reference to the point �n.sn/. For example,
we write �˛ instead of �˛.�n.sn//. Let

P�n.sn/D
X
˛2y�

a˛;n�˛C b˛;nJ�˛C
X
ˇ2&

cˇ;n grad `ˇ ;

Jn.sn/D
X
˛2y�

d˛;n�˛C e˛;nJ�˛C
X
ˇ2&

fˇ;n grad `ˇ :

Since �n.sn/ 2 Uun.y�/ and kP�nk2 D 1, by Lemma 5.7(i), the coefficients a˛;n; b˛;n
and cˇ;n are O.1/. Similarly, since kJnk2 � 1, the coefficients d˛;n; e˛;n and fˇ;n
are O.1/, where the constant of O notation depends only on an upper bound for u0

and the un .

We have the following bounds for the terms in the expansion of hR. P�n; Jn/Jn; P�ni:

� For any ˛ 2 y� , the four terms

a2˛;ne
2
˛;nhR.�˛; J �˛/J�˛; �˛i;

b2˛;nd
2
˛;nhR.J�˛; �˛/�˛; J �˛i;

a˛;ne˛;nd˛;nb˛;nhR.�˛; J �˛/�˛; J �˛i;

a˛;ne˛;nd˛;nb˛;nhR.J�˛; �˛/J�˛; �˛i

add up to a non-positive number for all n sufficiently large.
� For any ˛ 2 y� , any term which is a multiple of hR..J /�˛; � / � ; � i except the

ones in the first bullet above is either 0 or has arbitrarily small absolute value
for all n sufficiently large.
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Proof of the first bullet point For each n, hR.�˛; J �˛/J�˛; �˛i is evaluated at the
point �n.sn/, which converges to the point p in the u0–thick part of S.y�/. Then by
the limit of the diagonal terms in Proposition 5.6,

hR.�˛; J �˛/J�˛; �˛i ! �1

as n!1. By the symmetries of the Riemann curvature tensor (see eg [7, Section II.1])
we have

hR.J�˛; �˛/�˛; J �˛i D hR.�˛; J �˛/J�˛; �˛i;

hR.J�˛; �˛/J�˛; �˛i D hR.�˛; J �˛/�˛; J �˛i D �hR.�˛; J �˛/J�˛; �˛i:

Then the four terms in the first bullet add up to

.a˛;ne˛;n� b˛;nd˛;n/
2R.�˛; J �˛/J�˛; �˛i:

Now since
hR.�˛; J �˛/J�˛; �˛i ! �1

as n!1, the sum of the four terms above is non-positive for all n sufficiently large.

Proof of the second bullet point By the symmetries of the Riemann curvature tensor,
any evaluation of the Riemann curvature tensor with three or four arguments equal to
�˛ or J�˛ vanishes. For example, hR.�˛; J �˛/�˛; �˛i D 0. So the terms which are
multiples of them also vanish. The only evaluation of the Riemann curvature tensor
with two �˛ and J�˛ which are not in the first bullet are hR.J�˛; J �˛/�˛; �˛i and
hR.�˛; �˛/J�˛; J �˛i, which are 0. So their multiples also vanish. The rest of the
terms converge to 0 as n ! 1 by the bounds on the coefficients we established
above and the convergence statement in Proposition 5.6 (see also the paragraph after
Proposition 5.6 about the convention for the evaluations of the curvature tensor). Thus
these terms have arbitrarily small absolute value.

Now using the symmetries of the Riemann curvature tensor and the bounds in the above
two bullets, each term of the expansion of hR. P�n; Jn/Jn; P�ni with one component �˛
or J�˛ (˛ 2 y� ) is either non-positive or has arbitrarily small absolute value when n
is sufficiently large. The rest of the terms in the expansion of hR. P�n; Jn/Jn; P�ni add
up to hR.. P�n/P ; .Jn/P /.Jn/P ; . P�n/P i.

We proceed to show that there is a k3 < 0 such that

(5-16) hR.. P�n/P ; .Jn/P /.Jn/P ; . P�n/P i � k3

for all n sufficiently large.
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We have kJnk2� 1, so k.Jn/P k2� 2 by Lemma 5.7(iii). By this inequality and (5-12)
we have

1
4
!0 � k.Jn/P k

2
� 2:

So, after possibly passing to a subsequence, .Jn/P converges to a nonzero vector v
with 1

4
!0 � kvk

2 � 2.

Moreover, 1� k. P�n/P k2 � 2 for n sufficiently large by Corollary 5.10. So the vectors
. P�n/P converge to a nonzero vector w with 1� kwk2 � 2.

Now we consider

(5-17) h.Jn/N ; . P�n/N iC h.Jn/P ; . P�n/N i

C h.Jn/N ; . P�n/P iC h.Jn/P ; . P�n/P i D hJn; P�ni � 0:

Since �n.E 0/� Uun.y�/ and un! 0, we have a˛;n! 0 and b˛;n! 0 by Lemma 5.8.
Therefore k. P�n/N k2 ! 0 as n ! 1. Furthermore, since kJnk2 � 1, we have
k.Jn/N k

2 �
1
2

and k.Jn/P k2 � 1
2

for all n sufficiently large by Lemma 5.7(iii).
So by the Cauchy–Schwarz inequality, the first term and the second term of the sum
in (5-17) go to 0 as n!1. We also have that kJnk2 � 1, so k.Jn/P k2 � 2 and
k.Jn/N k

2 � 2 by Lemma 5.7(iii). Then by Lemma 5.7(ii) the third term of the sum in
(5-17) goes to 0 as n!1. Having these bounds, from (5-17) we may conclude that

h.Jn/P ; . P�n/P i ! 0

as n!1. Therefore hv;wi D 0.

As we saw above, the evaluations of the Riemann curvature tensor

hR.. P�n/P ; .Jn/P /.Jn/P ; . P�n/P i

converge to hR.v;w/w; vi as n!1. The vectors v and w are based at the point p
in the u0–thick part of the y�–stratum where all of the sectional curvatures of the stratum
are bounded above by some k2 < 0. Moreover, as we saw above, kvk2 � 2, kwk2 � 2
and hv;wi D 0, so

jv^wj2 D kvk2kwk2� hv;wi2 � 4:

Then
hR.v;w/w; vi D �.v; w/jv^wj2 � 4k2:

Therefore, (5-16) holds for k3 D 3k2 < 0.

The two bullets above and (5-16) show that, for all n sufficiently large,

hR. P�n; Jn/Jn; P�ni
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is the sum of terms which are either negative or have arbitrary small absolute value
and the term

hR.. P�n/P ; .Jn/P /.Jn/P ; . P�n/P i � k3 < 0:

Thus hR. P�n; Jn/Jn; P�ni � 1
2
k3 for all n sufficiently large. Moreover, kP�nk2 � 1,

kJnk
2 �

1
2
!0 and h P�n; Jni � 0, so j P�n ^Jnj2 � 1

2
!0 . Thus

�. P�n.sn/; Jn.sn//�
k3

!0
< 0:

But this contradicts the assumption (5-15). The proof of the lemma is complete.

Remark 5.20 An explicit upper bound in terms of the systole of the Riemann surface
representing the point in the Teichmüller space where the curvature tensor and sectional
curvatures are evaluated is not available; see the introduction of [22]. So in the preceding
lemma we used compactness arguments to deduce the bounds on sectional curvatures.

Case 2 We have kJP .s/k2 � 1
4
!0 for some s 2E .

Let
s0 Dmin

˚
s W s 2E and kJP .s/k2 � 1

4
!0
	
:

Note that since kJP .0/k2 � !0 , and kJP .s/k2 is a continuous function of s , we have
s0 > 0. We prove that the inequality (5-9) holds using the following lemma:

Lemma 5.21 There is a ˆ> 0, depending only on !0 and b , such thatZ s

0

kJ 0k2 ds > ˆ

for every s � s0 .

The negative curvature of the WP metric and (5-8) imply that

1

2

d2

ds2
kJ.s/k2 � kJ 0.s/k2:

Integrating both sides of this inequality on the interval Œ0; s�, we get

d

ds
kJ.s/k2�

d

ds
kJ k2jsD0 � 2

Z s

0

kJ 0k2 ds:

By (5-7), d
ds
kJ k2jsD0 D 0, so from the above inequality we obtain

d

ds
kJ.s/k2 � 2

Z s

0

kJ 0k2ds:
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Moreover,
R s
0 kJ

0k2 ds �ˆ for every s � s0 by Lemma 5.21. Therefore

(5-18) d

ds
kJ.s/k2 � 2ˆ:

Now suppose that b0 � s0 . Then, integrating both sides of the inequality (5-18) on the
interval Œb0; b�, we get

kJ.b/k2 � kJ.b0/k2C 2ˆ.b� b0/:

Moreover, we have that kJ.b/k2 D 1, so

1� kJ.b0/k2C 2ˆ.b� b0/:

Consequently, for ı D 1 � 2ˆ.b � b0/, (5-9) holds. Note that since !0 < 1, we
have ˆ < 1=65b (see the proof of Lemma 5.21 for the value of ˆ) and then ı > 0.
Furthermore, note that ı < 1 and that ı decreases as b0! 0.

We finish Case 2 by proving Lemma 5.21.

Proof of Lemma 5.21 By (5-11) we have that kJ.s0/k2 � !0 . Moreover, by the
setup of s0 we have kJP .s0/k2 � 1

4
!0 . Furthermore, by (5-11) we have kJ.s0/k2 � 1.

Then using Lemma 5.7(iii) we may deduce that kJN .s0/k2 � 2 and kJP .s0/k2 � 2.
Thus, by Lemma 5.7(ii),

hJN .s0/; JP .s0/i ! 0

as u! 0. From this limit we conclude that, given q > 0, for � sufficiently small we
have that

(5-19) jhJN .s0/; JP .s0/ij � q:

Now consider the equality

kJ.s0/k
2
D kJN .s0/k

2
CkJP .s0/k

2
C 2hJN .s0/; JP .s0/i:

Then using the bounds we mentioned above we get

(5-20) kJN .s0/k
2
�
3
4
!0� q:

It follows from the way we constructed the Jacobi field J that J.0/D kJ.0/k Pgj�.p/ .
Moreover, g.Œ0; T �/� U�.�/. Also by (5-11), kJ.0/k2 � 1. So by Lemma 5.8, given
q > 0, for � sufficiently small we have

(5-21) kJN .0/k
2
� q:
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Now we have that

(5-22) 1
2
!0 �

Z s0

0

d

ds
kJN k

2 ds �

Z s0

0

2jhJN ; J
0
N ij ds

� 2

�Z s0

0

kJ 0N k
2 ds

�1=2�Z s0

0

kJN k
2 ds

�1=2
� 2

�Z s0

0

kJ 0N k
2 ds

�1=2p
2b:

The first inequality above follows from the fundamental theorem of calculus and
the bounds kJN .s0/k2 � 3

4
!0 � q and kJN .0/k2 � q we established in (5-19) and

(5-20), respectively, where q D 1
8
!0 and u and � are sufficiently small. The second

inequality follows from the compatibility of the Riemannian metric and its Levi-Civita
covariant derivative. The third inequality is the Cauchy–Schwarz inequality. For the
last inequality, note that kJ.s/k2 � 1 for any s 2 Œ0; b� by (5-11). Then Lemma 5.7(iii)
implies that kJN .s/k2 � 2 for u sufficiently small. Furthermore, s0 � b . ThusZ s0

0

kJN k
2 ds � 2b;

giving us the last inequality.

From the bound (5-22) we get

(5-23)
Z s0

0

kJ 0N k
2ds �

!20
32b

:

Moreover, by Lemma 5.7(iii), we have that kJ 0k2 � 1
2
k.J 0/N k

2 . So we have

(5-24)
Z s0

0

kJ 0k2 ds �
1

2

Z s0

0

k.J 0/N k
2 ds

�
1

2

�Z s0

0

kJ 0N k
2 ds�

Z s0

0

kJ 0N k
2
�k.J 0/N k

2 ds

�
:

By (5-11), kJ k2 � 1 along � . Then by Lemma 5.11 we have thatˇ̌
kJ 0N k

2
�k.J 0/N k

2
ˇ̌
! 0

as u! 0. So the last integral in (5-24) goes to 0 as u! 0. Thus, using the bound
(5-23), from (5-24) we may deduce that for u sufficiently small we have

(5-25)
Z s0

0

kJ 0k2 ds �
!20
65b

:
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Let ˆ WD !20=65b . We have that kJ 0k2 � 0, hence for every s � s0 we haveZ s

0

kJ 0k2 ds �

Z s0

0

kJ 0k2 ds �ˆI

the second inequality follows from (5-25). This finishes the proof of the lemma.

Now we can conclude the proof of the theorem. Let ı be the maximum of the ıs
we worked out in Cases 1 and 2, and .1C !0/=2. Then the theorem follows from
the conclusions of Cases 1 and 2 and the discussion before Case 1 about the case
where kJ.0/k2 < !0 . Note that ı depends only on b; b0 and the constants !0 and
k0 . Moreover the choice of k0 depends only on x� (coming from the compactness
argument). Hence ı depends only on b; b0 and x� .

6 Strongly asymptotic rays

In this section we prove Theorem 1.1. Throughout this section the pair .��; �C/ is a
narrow pair, where �C is a lamination as in Section 2.3 and �� is a marking. Our
strategy to prove the theorem is the same as the one in [4, Section 4] for the proof of
the recurrent ending lamination theorem (Theorem 1.2). Let r�˙ be a WP geodesic ray
with prescribed itinerary as in Theorem 3.1, where the end invariant .��; �C/ is narrow
and has bounded annular coefficients. For simplicity, denote r�˙ by r . Suppose that
r 0 is a geodesic ray which is not strongly asymptotic to r and its ending lamination
is contained in �C . In the narrow visibility theorem (Theorem 6.5) we show that
there is a bi-infinite geodesic g strongly asymptotic to the ray r in the forward time
and asymptotic to r 0 in the backward time, ie r is visible. Note that any measured
lamination with bounded length along both r and r 0 has bounded length along g . Let
L be an ending measured lamination of r 0 . By Lemma 2.10, L has bounded length
along r 0 . Moreover, the forward ending lamination of r 0 is �C , so the support of L
is a sublamination of �C . Then Proposition 6.6 implies that L has bounded length
along r too. Consequently L has bounded length along g in both the forward and the
backward time. But this violates the convexity of the length of measured laminations
along WP geodesics (Theorem 2.7). Thus we may conclude that the rays r and r 0

are strongly asymptotic. In other words, the forward ending lamination determines
the strong asymptotic class of rays with narrow end invariant and bounded annular
coefficients.

Definition 6.1 Let X be a metric space. Two geodesic rays r; r 0W Œ0;1/ ! X
parametrized by arc-length are asymptotic if there are positive d and T such that

d.r.t/; r 0.t//� d
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for every t � T . The rays r and r 0 are strongly asymptotic if, for some a � 0,

d.r.t C a/; r 0.t//! 0

as t !1.

Theorem 6.2 (Asymptotic D) strongly asymptotic) Let r�˙ be a WP geodesic ray
with prescribed itinerary with A–narrow end invariant and bounded annular coefficients.
Then any WP geodesic ray r 0 asymptotic to r�˙ is also strongly asymptotic to r�˙ .

Proof For simplicity of notation we denote r�˙ by r . Assume that r and r 0 are
parametrized by arc-length.

By Lemma 3.6, given A; d > 0 and � � x� (where x� is the constant in Lemma 3.6), for
any k2N there is a time interval Œt�

k
; tC
k
� of length at least d and a large subsurface Zk

such that r.Œt�
k
; tC
k
�/� U�;x�.@Zk/. Moreover, tC

k
< t�

kC1
.

Let n 2N . Consider the geodesic segments Œr.0/; r 0.n/� and r.Œ0; n�/ and let

U1;nW 41;n! Teich.S/

be the geodesic variation described at the beginning of Section 4. Similarly, for the
geodesic segments Œr.n/; r 0.n/� and r.Œ0; n�/, let

U2;nW 42;n! Teich.S/

be the geodesic variation described in Section 4. Let 4n D 41;n [42;n and let
UnW 4n! Teich.S/ be the map which restricts to U1;n on 41;n and restricts to U2;n
on 42;n ; see Figure 2.

Let fnW Œ0; Tn�! Teich.S/ be a parametrization of the geodesic segment Œr.0/; r 0.n/�
by arc-length. Let Vk;n � Œ0; Tn� be a subinterval such that �.fn.t// 2 r.Œt�k ; t

C

k
�/ for

any t 2 Vk;n . Let �n.t/ be length of the interval Œfn.t/; �.fn.t//�. Let k; n 2N and
b > 0 be so that b � �n.t/ for every t 2 Vk;n . Let Wk;n � Œ0; b�. Moreover, define
the map

uk;n WD UnjVk;n�Wk;n W Vk;n �Wk;n! Teich.S/:

We denote Vk;n �Wk;n with the metric pulled back through uk;n by �k;n , and call b
the height of �k;n . Recall the measure m introduced after Theorem 4.2 in Section 4.
Let lb;k;n be the length of uk;n.Vk;n�b/. By Theorem 4.2(IV), the length of lk;n;s is
increasing in s and is greater than length.Vk;n � 0/. Then since each interval Œt�

k
; tC
k
�

has length at least d we may choose the interval Vk;n so that

lk;n;b D uk;n.Vk;n � b/� d

for any k; n as above.
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r.0/ r.n/ r

r 0
r 0.n/

Un.4n/

Figure 2: The map UnW 4n!Teich.S/ is a variation of geodesics. The bold
intervals are r.Œt�

k
; tC
k
�/� U�;x�.@Zk/ . The function fnW Œ0; Tn�! Teich.S/

is a parametrization of Œr.0/; r 0.n/� . For k; n , the interval Vk;n is so that
for any t 2 Vk;n , the nearest point to fn.t/ is on r.Œt�

k
; tC
k
�/ . Moreover,

Wk;n � Œ0; b� . The rectangular regions are Un.Vk;n �Wk;n/ .

Lemma 6.3 There is a K0 > 0 depending on b and d so that, for any k; n as above,“
�k;n

�� dAC

Z
Vk;n

m�K0:

Remark 6.4 In [4, Section 4] the recurrence to the thick part of the moduli space
where all of the sectional curvatures are bounded above by a negative constant is used
to produce regions with the above property.

Proof For every b0 2 .0; b� consider the Jacobi field

Jb0;k;n D
@uk;n

@t

ˇ̌̌
uk;n.t;b0/

;

which is tangent to the path uk;n. � ; b0/. For each t 2 Vk;n consider the geodesic
uk;n.t; � /. Let ı be the constant from Theorem 5.14 for the geodesic segments
uk;n.t; � /. Note that since Vk;n is a compact interval we may choose b > 0 uniform
over Vk;n such that Theorem 5.14 holds for b and any b0 � b . Also, given b0 we may
choose ı uniform over Vk;n . Then by the theorem,

kJb0;k;nk
2
� ıkJb;k;nk

2:

Moreover, by Theorem 5.14, ı decreases as b0! 0, so we may choose ı uniform for
all b0 . Integrating both sides of the above inequality over the interval Vk;n and taking
the square root we get

lb0;k;n �
p
ı lb;k;n:
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Now as we defined before Lemma 4.5, let l0;k;nD lims!0 ls;k;n . Then taking the limit
as b0! 0 of both sides of the above inequality we obtain

l0;k;n �
p
ı lb;k;n:

Subtracting both sides of this inequality from lb;k;n we get

lb;k;n� l0;k;n � lb;k;n�
p
ı lb;k;n:

Then since lb;k;n � d for all k; n, from the above inequality we obtain

lb;k;n� l0;k;n � .1�
p
ı/d:

Then Lemma 4.5 guarantees that the lemma holds for K0 D .1�
p
ı/d=b .

We proceed to finish the proof of the theorem by contradiction. Suppose that the
geodesic rays r and r 0 are not strongly asymptotic. Then since the distance function
in a CAT.0/ space is a convex function there are b0 > 0 and T > 0 such that

dWP.r.t/; r
0.t// > b0

for all t � T . Let b D 1
2
b0 . For any n 2N , let Nn be the number of ruled rectangles

�k;n �4n with height b . Then by Lemma 6.3 we have

NnK0 �

NnX
kD1

�“
�k;n

�� dAC

Z
Vk;n

m

�
:

Now note that �� is a positive function and m is a positive measure, and moreoverS
k�k;n �4n . Thus, we have

NnX
kD1

�“
�k;n

�� dAC

Z
Vk;n

m

�
�

“
4n

�� dAC

Z
Œ0;n�

m:

By the formula (4-5), the right-hand side is bounded above by � independent of n.
Thus Nn � �=K0 for all n. On the other hand, the CAT.0/ comparison for 4n shows
that Nn would be made arbitrarily large by increasing n. But this contradicts the
upper bound for Nn we obtained above. The fact that r and r 0 are strongly asymptotic
follows from this contradiction. The proof of the theorem is complete.

Theorem 6.5 (Narrow visibility) Let r�˙ be a WP geodesic ray with prescribed
itinerary, where the end invariant .��; �C/ is narrow and has bounded annular coeffi-
cients. Let r 0 be a WP geodesic ray which is not strongly asymptotic to r . Then there
is a bi-infinite geodesic in Teich.S/ which is strongly asymptotic to r�˙ in the forward
time and asymptotic to r 0 in the backward time. In other words, r�˙ is visible.
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We know that the restriction of �C to a large subsurface Y is in EL.Y /. Suppose that a
measured lamination L 2ML.Y / has bounded length along both r�˙ and r 0 . Then L
has bounded length along g .

Proof For simplicity we denote r�˙ by r . Let r and r 0 both be parametrized by
arc-length. We may omit finitely many of the intervals Œt�

k
; tC
k
� and assume that there is

b0 > 0 such that for each k the distance between the geodesic segment r.Œt�
k
; tC
k
�/ and

r 0 is at least b0 . The reason is that in a CAT.0/ space the distance between any two
geodesic rays is a convex function, so the distance between r and r 0 is a monotonic
function after some time. Then since the rays r and r 0 are not strongly asymptotic, the
distance function is bounded below.

We briefly recall the setup from Theorem 6.2. For any n 2N , consider the geodesic
segments Œr.0/; r 0.n/� and r.Œ0; n�/, and the variation of geodesics obtained from
geodesic segments connecting a point on Œr.0/; r 0.n/� to its nearest point on r.Œ0; n�/.
Similarly, consider the geodesic segments r.Œ0; n�/ and Œr.n/; r 0.n/� and the variation
of geodesics obtained from the nearest point projection. Let UnW 4n! X be the map
defined by putting together the geodesic variations above. Let fnW Œ0; Tn�! Teich.S/
be a parametrization of Œr.0/; r 0.n/� by arc-length. For each k 2N let Vk;n � Œ0; Tn�
be such that �.fn.t// 2 r.Œt�k ; t

C

k
�/ for any t 2 Vk;n . Suppose that there is a b > 0

so that b � �n.t/ for all t 2 Vk;n . Then let Wk;n � Œ0; b�. We may assume that the
length of all intervals Vk;n is d . Let

uk;n WD UnjVk;n�Wk;n W Vk;n �Wk;n! Teich.S/:

We denote Vk;n � Wk;n with the metric pulled back through uk;n by �k;n . Let
gnW Œan; bn�! Teich.S/ be a parametrization by arc-length of Œr.n/; r 0.n/�.

First we show that, after possibly passing to a subsequence, there are parameters
ytn 2 Œan; bn� so that the points gn.ytn/ converge to a point z 2 Teich.S/.

Let T > 0 be such that d.r.t/; r 0.t// > b0 for every t > T . Let b D 1
2
b0 . We claim

that there is a yk 2N such that uyk;n.�yk;n/\gn ¤∅ for all sufficiently large n.

Let K0 > 0 be the constant in Lemma 6.3, which we proved in the course of the proof
of Theorem 6.2. Let yk; n 2N be so that gn\uyk;n.�yk;n/D∅. Let Nn be the number
of ruled rectangles �k;n �4n with height b . Then since

S
k�k;n ��n , as we saw

in the proof of Theorem 6.2, we have

NnK0 �

“
4n

�� dAC

Z
ŒT;n�

m:

By the formula (4-5) the right-hand side above is bounded above by � independent
of n. Thus Nn � �=K0 for all n sufficiently large. On the other hand, by the CAT.0/
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comparison for 4n , Nn can be made arbitrarily large by increasing n. We may also
assume that n > yk . So for yk sufficiently large we get a contradiction to the upper
bound for Nn above, and the claim follows.

As we saw above, there is an integer yk so that for all n 2 N sufficiently large the
geodesic segment gn and �yk;n intersect. Let the point zn 2�yk;n and the parameter
ytn be so that zn D gn.ytn/. Then since the height of each �yk;n is less than b , all of
the points zn are in the b–neighborhood of r.Œt�

yk
; tC
yk
�/, which is a compact subset of

Teich.S/. Therefore, after possibly passing to a subsequence, we may assume that the
points zn converge to a point z in the b–neighborhood of r.Œt�

yk
; tC
yk
�/.

Now we proceed to show that the geodesic segments gn converge to a geodesic g
passing through z . We reparametrize gn by arc-length such that gn.0/ D zn . Let
t 2 Œ0;1/ and let the integer Nt �1 be such that d.z; r.n//> t for each integer n�Nt .
We show that the sequence fgn.t/g1nDNt is a Cauchy sequence. To see this, let hCn be
the geodesic segment joining z to r.n/, parametrized by arc-length. As is shown in [2,
Section II.8, Lemma 8.3], fhCn .t/g

1
nDNt

is a Cauchy sequence. Furthermore, for each
n�Nt , let gCn D gnjŒ0;bn� be the parametrization of the geodesic segment Œzn; r.n/�.
Then by the CAT.0/ comparison for the triangle with vertices z , zn and r.n/,

d.hCn .t/; g
C
n .t// < d.zn; z/:

Then since zn! z , we have that fgn.t/g1nDNt is a Cauchy sequence. Let t 2 .�1; 0�
and let the integer Nt � 1 be such that d.z; r.n// > �t for each integer n � Nt .
A similar argument to the one above shows that fgn.t/g1nDNt is a Cauchy sequence.
Therefore for each t 2 R the sequence gn.t/ is convergent in Teich.S/. The point-
wise limit of a sequence of parametrized geodesics in a complete CAT.0/ space is a
parametrized geodesic. Moreover, the convergence is as parametrized geodesics. Thus
the geodesics gn converge to a bi-infinite geodesic gW R! Teich.S/ as parametrized
geodesics. See the proof of [2, Section II.8, Proposition 8.2] for more detail. The
geodesic g is the limit of the geodesic segments Œr.n/; r 0.n/�, so gC D gjŒ0;1/ is
asymptotic to r and g� D gjŒ0;�1/ is asymptotic to r 0 . Moreover, by Theorem 6.2,
gC is strongly asymptotic to r . The first assertion of the theorem is proved.

We continue by proving the second assertion of the theorem. First, suppose that the sub-
surface Y is S . In the discussion above for the proof of the first assertion of the theorem,
we may choose b small enough that the closure of the b–neighborhood of the x�–thick
part of the Teichmüller space does not intersect any completion stratum. Each point zn
is in the thick part of the Teichmüller space, and therefore z 2 Teich.S/. Thus the mea-
sured lamination L has bounded length at z . By the assumption of the theorem L has
uniformly bounded length at the points r.n/. So by Theorem 2.7 (convexity of length

Algebraic & Geometric Topology, Volume 16 (2016)



318 Babak Modami

functions) L has uniformly bounded length along the geodesic segments Œz; r.n/�. Then
by continuity of length functions L has bounded length along gC . A similar argument
shows that L has bounded length along g� . Therefore L has bounded length along g .

Now suppose that Y is a proper subsurface of S . Let � be a hierarchy path between
the narrow pair .��; �C/. There is an N 2N such that @Y � �.i CN/ for all i 2N ;
see [13, Section 5]. Then Theorem 3.1 guarantees that, for any k sufficiently large,

r.Œt�k ; t
C

k
�/� U�;x�.@Z/

for some subsurface Z with @Y � @Z . In the discussion for the proof of the first
assertion of the theorem, we may choose b small enough that the b–neighborhood
of U�;x�.@Z/ only intersects �–strata where � � @Z . Then, choosing yk large enough,
each zn is in the b–neighborhood of

r.Œt�
yk
; tC
yk
�/� U�;x�.@Z/:

Thus the limit z of the points zn , after possibly passing to a subsequence, is a point
in a �–stratum where � � @Z (note that � could be empty). Then the non-refraction
property of completion strata [20, Chapter 5, Theorem 5.2] guarantees that g � S.�/.

We claim that � � @Y . To see this, note that the geodesic segments Œr.n/; r 0.n/�, after
possibly passing to a subsequence, converge to g . Thus the points r.n/ converge to a
point in S.�/. Now suppose that there is a curve ˛ 2� with ˛ … @Y . First, ˛ is a pinch-
ing curve of r . Thus, by Definition 2.8, ˛ is a component of the forward ending lamina-
tion of r . Second, since � and @Y are subsets of @Z , ˛ does not overlap @Y . Moreover,
Y is a large subsurface. Thus we have ˛ � Y . But this contradicts our assumption that
the restriction of the forward ending lamination �C of r to Y is minimal filling. To see
this, note that �.Y / > 1, so ˛ does not fill Y . Therefore ˛ is a component of �0 , the
restriction of �C to Y , which contradicts the fact that �0 is minimal. The claim follows.

Now since the support of L is the lamination �0 in the subsurface Y , the above claim
guarantees that none of the pinched curves at z (the curves in � ) intersects L. This
implies that L has bounded length at z . Then an argument similar to what we gave
above, where we assumed that z is in the thick part of the Teichmüller space, implies
that L has bounded length along g . The second assertion of the theorem is proved.

Proposition 6.6 Let r�˙ be a ray with prescribed itinerary where the end invariant
.��; �C/ is narrow and has bounded annular coefficients. Any measured lamination
supported on a sublamination of �C has bounded length along r�˙ .

Proof As in the proof of [4, Lemma 4.5] we consider the ray xr as follows: since
.��; �C/ is a narrow pair, �C has a minimal component �0 that fills a large subsur-
face Y . Let †�0 be the simplex of the projective classes of measures supported on �0 in
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PML.Y /. Let xL 2ML.Y / be a representative of the projective class determined by a
point in the interior of the top-dimensional face of †�0 . Then xL is a linear combination
of all ergodic measures supported on �0 with positive coefficients. Let fngn � C0.Y /
be a sequence of simple closed curves such that the projective classes Œn� converge
to ŒxL�. Let cn be a hyperbolic surface pinched at a pants decomposition that contains
n [ @Y . Let rn be a parametrization of Œx; cn� by arc-length, and let xr be a limit
of the geodesic segments rn , after possibly passing to a subsequence in the visual
sphere of the Teichmüller space at x . By Lemma 2.12, xr is an infinite ray and xL
has bounded length along xr . This implies that any ergodic measure supported on �0

has bounded length along xr . Any measure supported on �0 is a linear combination
of ergodic measures on �0 with non-negative coefficients. So we may conclude that
any measure supported on �0 has bounded length along xr . Moreover, by Lemma 2.12,
every ˛ 2 @Y has bounded length along xr . Any sublamination of �C is the union of �0

and some of the curves in @Y . Therefore, any measure supported on a sublamination
of �C has bounded length along xr .

We proceed to show that r�˙ and xr are strongly asymptotic rays. Denote r�˙ by r .
If r is not strongly asymptotic to xr , then by Theorem 6.5 there is a bi-infinite WP
geodesic g strongly asymptotic to r in the forward time and asymptotic to xr in the
backward time. Let L be any ending measured lamination of r . By Lemma 2.10, L has
bounded length along r . Moreover, L is supported on a sublamination of the forward
ending lamination of r . By Lemma 2.13 the forward lamination of r contains �0 ,
and therefore is a sublamination of �C . Thus, as we saw in the previous paragraph,
L has bounded length along xr . Then, by the second assertion of Theorem 6.5, L has
bounded length along g . But this contradicts the convexity of length functions along
WP geodesics (Theorem 2.7). This contradiction shows that r and xr are in fact strongly
asymptotic. Now, since both r and xr start at x , the convexity of the distance function
between two geodesics in a CAT.0/ space implies that r D xr .

As we saw in the first paragraph of the proof, any measured lamination supported on a
sublamination of �C has bounded length along xr . By the second paragraph, r�˙ D xr ,
thus any measured lamination supported on a sublamination of �C has bounded length
along r , as was desired.

Here we rephrase Theorem 1.1 and prove it.

Theorem 1.1 Let .��; �C/ be a narrow pair with bounded annular coefficients. Any
WP geodesic ray r 0 with forward ending lamination �C is strongly asymptotic to r�˙ .

Proof Denote r�˙ by r . The lamination �C has a minimal component �0 that fills
a large subsurface Y . We show that any other infinite ray r 0 with forward ending
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lamination containing �0 is strongly asymptotic to r . Suppose not. Then by Theorem 6.5
there is a bi-infinite geodesic g strongly asymptotic to r in the forward time and
asymptotic to r 0 in the backward time. Let L be an ending measured lamination
of r 0 . Then by Lemma 2.10 the length of L is bounded along r 0 . Moreover, L is
supported on a sublamination of the forward ending lamination of r 0 , which is �C .
Then Proposition 6.6 implies that L has bounded length along r as well. Then, by the
second assertion of Theorem 6.5, L has bounded length along the bi-infinite geodesic g .
But this contradicts convexity of the L–length function along g (Theorem 2.7). Thus
we conclude that r and r 0 are strongly asymptotic.

As an application of Theorem 1.1 we provide a symbolic condition in terms of subsurface
coefficients for divergence of WP geodesic rays in the moduli space. A geodesic ray is
divergent if it eventually leaves any compact subset of the moduli space. Recall that a
pair .��; �C/ is A–narrow if dZ.��; �C/ > A implies that Z is a large subsurface.

Theorem 6.7 (Divergence condition) Given A;R;R0 > 0, let .��; �C/ be an A–
narrow pair on a Riemann surface S with R0–bounded annular coefficients and suppose
that dS .��; �C/�R . Then a WP geodesic ray in M.S/ with end invariant .��; �C/
is divergent.

Proof Let r�˙ be the infinite ray with prescribed itinerary and end invariant .��; �C/.
For simplicity we denote r�˙ by r . By the narrow condition, the restriction of �C to a
large subsurface Y is minimal and fills Y . Moreover, the condition dS .��; �C/�R
guarantees that Y is a proper subsurface of S . We proceed to show that, given � > 0,
there is a time T > 0 such that `˛.r.T //� � for every ˛ 2 @Y . Let �W Œ0;1�!P.S/

be a hierarchy path between �� and �C . There is an N 2 N such that for any
component domain Z of � satisfying JZ � ŒN;1� we have @Y � @Z ; see [13,
Section 5].

Let � > 0 and set d D 1. It follows from Lemma 3.6 that there are L0 > 0 and xw > 0
with the property that for any subinterval Œm0; n0�� Œ0;1� with n0�m0 >L0 there are
a component domain Z of � and a time T > 0 so that `˛.r.T //� � for all ˛ 2 @Z .
Furthermore, as we saw above, if m0 > N , then @Y � @Z . Thus, for any ˛ 2 @Y ,
`˛.r.T // � � . For each ˛ 2 @Y , the function `˛.r.t//W R�0 ! R�0 is a convex
function; moreover, by Lemma 2.12, `˛ is bounded, thus it is a decreasing function.
Therefore

`˛.r.t//� �

for all t 2 ŒT;1/. Now, choosing � arbitrarily small, we may conclude that the
projection yr of the geodesic ray r to M.S/ is a divergent WP geodesic ray.
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Now, by Theorem 1.1, any geodesic ray r 0 with the forward end invariant �C is strongly
asymptotic to r . As we saw above, yr is divergent in M.S/, which implies that the
projection yr 0 of r 0 to M.S/ is divergent as well.

On any surface S with �.S/ > 1, in [15, Section 7.2] we constructed pairs .��; �C/
where �� is a marking and �C is a minimal filling lamination with the following
properties:

� There is a list of large subsurfaces fZig1iD1 so that for each i , ZiDZi�1\ZiC1 ,
and dZi .�

�; �C/!1 as i !1.

� The remaining subsurface coefficients, including the annular ones, are uniformly
bounded above.

Furthermore, in [15, Section 8] we proved that there is a WP geodesic ray r�˙ with
end invariant .��; �C/ as above and prescribed itinerary so that the projection yr�˙ of
r�˙ to the moduli space is divergent. Here we show that any WP geodesic with end
invariant .��; �C/ is divergent in the moduli space.

Theorem 6.8 Any WP geodesic ray with end invariant .��; �C/ constructed in [15,
Section 7.2] is divergent in M.S/.

Proof Since the only subsurfaces in which the pair .��; �C/ has a big projection
distance are large subsurfaces, the pair is narrow. Moreover, the pair has bounded
annular coefficients. Thus, by Theorem 1.1, any other geodesic ray r 0 with forward
ending lamination �C is strongly asymptotic to r�˙ . Now, since yr�˙ is divergent in
M.S/, the geodesic ray yr 0 is divergent as well.
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