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Categorified slN invariants of colored rational tangles

PAUL WEDRICH

We use categorical skew Howe duality to find recursion rules that compute categori-
fied slN invariants of rational tangles colored by exterior powers of the standard
representation. Further, we offer a geometric interpretation of these rules which
suggests a connection to Floer theory. Along the way we make progress towards
two conjectures about the colored HOMFLY homology of rational links and discuss
consequences for the corresponding decategorified invariants.

57M25, 81R50; 57R58

1 Introduction and statement of results

Reshetikhin and Turaev [43] define invariants of framed oriented tangles (and thus also
knots and links) with components labeled (“colored”) by irreducible representations of
a semi-simple Lie algebra. Starting from the work of Khovanov [21] and Khovanov
and Rozansky [27] on the case of slN with the standard representation, much of the
slN package of Reshetikhin–Turaev invariants has been categorified using a variety of
different methods; for a recent survey see eg Turner [48]. The best-studied case is the
one of fundamental (minuscule) slN representations, ie the exterior powers ƒk of the
standard representation.

On the decategorified level it is well-known that slN Reshetikhin–Turaev invariants
stabilize for N !1 and hence can be interpreted as specializations of two-variable
HOMFLY-type invariants via setting aD qN . Khovanov–Rozansky HOMFLY homol-
ogy [28; 22] is a categorification of the HOMFLY polynomial [12] and an extension to
colored HOMFLY homology with respect to labelings ƒk was developed by Mackaay,
Stošić and Vaz [36] and proved to be a link invariant by Webster and Williamson [49].

Colored HOMFLY homology is poorly understood even for the simplest non-trivial
knots and links. A good starting point for understanding link homologies are rational
knots and links, which have been proven to have particularly simple uncolored slN and
HOMFLY homologies; they are essentially determined by decategorified invariants.
This paper is guided by two conjectures about the colored HOMFLY homology of
rational knots and links.
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428 Paul Wedrich

Conjecture 1.1 (Changing color on unknot components only shifts q–grading) Let L

be a rational two-component link with components colored by a fixed color ƒj and a
variable color ƒi and let HPj .L; ƒ

i/ 2NŒa˙1; t˙1; q�1� ŒŒq�� be the Hilbert–Poincaré
series of the ƒi–reduced .ƒi ; ƒj /–colored HOMFLY homology of L, where powers
of t indicate homological degree.

Then there exist rational functions Fj .L/ 2NŒa˙1; s˙1; t˙1�.q/ such that

HPj .L; ƒ
i/D Fj .L/.a; s D qi�j ; t; q/

for all i � j , after expanding the right-hand side into a power series in q .

Conjecture 1.1 is due to Stošić (private communication).

Conjecture 1.2 (Homologies of higher colors are like powers of uncolored homology)
Let L be a rational knot or link. There exists a corrected Q–grading on reduced triply
graded ƒj –colored HOMFLY homology with Poincaré polynomials zPj .L/.a;Q; t/,
such that

zPj .L/.a;Q; t/D . zP1.L/.a;Q; t//
j :

In particular, the ordinary Poincaré polynomials Pj .L/.a; q; t/ of ƒj –colored HOM-
FLY homology satisfy

Pj .L/.a; 1; t/D .P1.L/.a; 1; t//
j :

This is a special case of the “refined exponential growth” conjecture of Gorsky, Gukov
and Stošić [19; 18], where a similar behavior is conjectured for rational knots and
torus knots in the more general setting of labelings by rectangular Young diagrams.
Moreover, there the correction Q of the standard q–grading results from comparing
two alternative homological gradings.

While we cannot prove these conjectures for rational knots and links, we make progress
towards them by establishing related results for categorified slN invariants of colored
rational tangles. Rational tangles T .p; q/ are built recursively, starting from a trivial
two-strand tangle, by planar composition with crossings on the top and on the right,
according to the continued fraction expansion of p=q . All rational links are closures
of rational tangles. We give an example:

The tangle T .7; 2/ associated to 7
2
D Œ3; 2� is:

Using the categorical skew Howe duality framework developed by Cautis, Kamnitzer
and Licata [6; 7] we study categorified slN invariants of rational tangles with strands
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Categorified slN invariants of colored rational tangles 429

labeled by exterior powers of the standard representation. These invariants take values
in a homotopy 2–category of chain complexes over categories that depend on the colors
on the strands of the tangle; see Section 2.5. In Section 3 we demonstrate that for fixed
colors ƒi and ƒj these invariants can be written as complexes with chain spaces being
direct sums of grading shifts of a finite number of basic objects represented by webs
(MOY graphs). We use results of Cautis [6] to compute explicit twist rules that describe
how the invariant of a rational tangle changes under composing with a crossing on the
top or on the right. The following example illustrates twist rules in the special case of
Bar-Natan’s geometric version of Khovanov homology for tangles [2].

Example 1.3 The Khovanov homology of a positive rational tangle can be computed
recursively by using the following twist rules, which describe what happens to a
generator of a chain space under tensoring with a crossing complex. We write top and
right twists as operators T and R:

T . / D D 0! qt�1
! ! 0;

T . / D D 0! qt�1
! ! 0 � 0! q2t�1

! 0! 0;

R. / D D 0! ! q�1t ! 0 � 0! 0! q�2t ! 0;

R. / D D 0! ! q�1t ! 0:

Here all possible non-trivial differentials are given by saddle cobordisms, and compared
to [2] we use slightly different grading conventions that are more compatible with the
colored slN case treated in this paper.

To be more precise, a priori the rules in this example only compute the chain spaces
and the component of the differential coming from the last added crossing. To get
the full information about the complex that is the tangle invariant, one would need to
compute the induced differentials coming from previous crossings.

Definition 1.4 The colored HOMFLY complex of a colored rational tangle T is the
chain complex representing the categorified Reshetikhin–Turaev slN invariant of T

that is obtained recursively by applying the twist rules from Section 3.3 term-wise and
computing the induced differentials.

In the general case of an slN colored HOMFLY complex we find it difficult to compute
induced differentials and thus restrict our attention to counting the number and grading
shifts of basic objects in its chain spaces. The correct data structure is, therefore, the
following modified notion of Poincaré polynomial.
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Definition 1.5 The Poincaré polynomial PN
i;j .T / of the .ƒi ; ƒj /–colored HOMFLY

complex of a rational tangle T with i � j is an element of NŒq˙1; t˙1�hX0; : : : ;Xj i,
the free NŒq˙1; t˙1�–module (over a semiring) spanned by basic objects Xk . It is
the formal sum of the basic objects Xk appearing in the chain spaces of the complex,
weighted by powers of t and q , indicating shifts in homological and q–grading,
respectively. The basic objects Xk of weight k are introduced in Definition 3.1.

Example 1.6 Bar-Natan’s complex for the .2; k/ torus tangle T .k; 1/ is (with the
grading convention introduced above)

q2k�1t�k
! � � � ! q3t�2

! qt�1
! :

The Poincaré polynomial of this complex is C

kP
iD1

q2i�1t�i .

The twist rules for the case of colored slN invariants of rational tangles, which we
compute in Section 3.3, stabilize in an obvious way for large N and exhibit a very
simple dependence on the higher color i , thus immediately implying the following
theorem.

Theorem 1.7 The slN colored HOMFLY complexes of a positive rational tangle T

colored by representations ƒi and ƒj , with N � i � j , depend essentially only on j

up to shifts in q–grading. More precisely, there exist elements

Pj .T / 2NŒa˙1; q˙1; s˙1; t˙1�hX0; : : :Xj i

such that
PN

i;j .T /D Pj .T /.aD qN ; q; s D qi�j ; t/:

We thus sometimes consider a and s as two additional gradings of basic objects in the
colored HOMFLY complex.

In Section 5 we show that in the decategorified setting a statement similar to Theorem 1.7
holds for any link with an unknot component:

Proposition 1.8 Let L0 D L[U be a link with an unknot component U and some
fixed coloring on the components of L. Then there exists P st.L0;U /2ZŒa˙1; r˙1�.q/

such that, for any i 2N , P st.L0;U /.a; r D qi ; q/ is the colored HOMFLY polynomial
of L with color ƒi on U , reduced with respect to ƒi . We call P st.L0;U / the color-
stable HOMFLY polynomial of L0 with respect to the unknot component U .
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Categorified slN invariants of colored rational tangles 431

In Section 4 we propose a geometric algorithm for computing the colored HOMFLY
complex of a colored rational tangle, which is very similar to Bigelow’s geometric
model for the Jones polynomial [3]. The basis for this geometric algorithm is a special
planar diagram P of the tangle in the plane C , displaying only one strand ˛ . In the case
of colors ƒi and ƒj with i � j we establish a bijection between the generators of the
colored HOMFLY complex and intersections of Symj .˛/ with certain half-dimensional
submanifolds Vh in Symj .C/. We further expect that in this picture differentials are
realized as discs connecting intersection points with boundary on Vh and Symj .˛/.
Their gradings are determined by graded intersection numbers with certain divisors
in Symj .C/. In particular, using the language from Conjecture 1.2, we identify the
difference between the original q–grading and the corrected Q–grading as coming
from intersections of such discs with the big diagonal in Symj .C/.

The diagram P for the tangle T .2nC 1; 1/ is given by:

A

B1

B2
BnC1

BnC2

B2nC1

In the case of colors .ƒ1; ƒ1/ the generators of the colored HOMFLY complex are
in bijection with the set fA;B1; : : : ;B2nC1g. In the case of Bar-Natan’s version
of Khovanov homology for tangles, A and Bj are generators of type and
respectively.

In Theorem 4.5 we prove that this geometric model observes the twist rules from
Section 3.3 and, hence, correctly computes the Poincaré polynomial of the colored
rational tangle. As a corollary we get the following theorem.

Theorem 1.9 The generators of the .ƒi ; ƒj /–colored HOMFLY complex of a rational
tangle with i � j are in bijection with certain j –tuples of generators of the .ƒi ; ƒ1/–
colored HOMFLY complex. The a–, s– and t–gradings of these j –tuples are additive,
ie they are the sums of the a–, s– and t–gradings of the components. The q–grading,
on the other hand, splits into an additive component Q and a non-additive component
q�Q. With respect to these gradings, colored HOMFLY complexes satisfy an analogue
of Conjecture 1.2.

There are obvious structural similarities between our geometric set-up and various Floer-
theoretic constructions. In particular we want to mention Manolescu’s interpretation [37]
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of Seidel–Smith symplectic Khovanov homology [46] in terms of Bigelow’s model for
the Jones polynomial [3]; see also Section 4.5. It is an interesting question whether it
is possible to phrase our geometric algorithm in completely symplectic language and
hence give an A–model realization of slN link homologies for colored rational tangles.
In the meantime we present a connection to link Floer homology that follows from the
geometric model for the colored HOMFLY complex:

Corollary 1.10 Let T be a rational tangle whose denominator closure is a two-
component link L. Then the .ƒi ; ƒ1/–colored HOMFLY complex of T computes the
link Floer homology of L.

In the final section we compare the invariants described in this paper with (multivariable)
link invariants arising from Lie superalgebras slmjn , as defined by Geer and Patureau-
Mirand [14; 15], which satisfy very interesting color-stability properties.

Structure of this paper Section 2 is a review of technology developed by Cautis,
Kamnitzer, Licata and Morrison in [6; 9] and related papers. In Section 3 we compute
the twist rules that recursively determine the Poincaré polynomials of colored ratio-
nal tangles and, thus, prove Theorem 1.7. Section 4 introduces a graphical method
of computing the colored HOMFLY complexes of rational tangles, which proves
Theorem 1.9 and suggests a Floer-theoretic interpretation. Section 5 contains proofs of
Proposition 1.8 and Corollary 1.10 and makes contact with multivariable link invariants
from Lie superalgebras.
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2 Categorified quantum link invariants via categorical skew
Howe duality

In this section we set up the framework in which our calculations take place.
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2.1 Reshetikhin–Turaev tangle invariants

Definition 2.1 A tangle is an embedding of pairs .T; @T / ! .D2 � I;D2 � @I/,
where T is the disjoint union of a finite number of oriented arcs and circles, I is the
interval Œ�1; 1� and D2 is the unit disc in C . The ends of the arcs lying on D2�f�1g

and D2 � f1g are called bottom and top ends, respectively. A tangle diagram is a
generic projection of the tangle onto I � I , sending D2 � f˙1g to I � f˙1g.

We consider tangles up to regular isotopies that fix the boundary. This means we identify
tangles that are given by tangle diagrams which differ only by planar isotopy and
Reidemeister moves of type 2 and 3. To emphasize that we do not allow Reidemeister
moves of type 1, we sometimes refer to tangles as framed tangles. In the following, the
arcs and circles of tangles (and hence tangle diagrams) are allowed to carry orientations
and labels (colors).

In [51] Witten gave a physical interpretation of the Jones polynomial and the aD qN

specializations of the HOMFLY polynomial via Chern–Simons theory with gauge
group G D SU.2/ and G D SU.N / respectively. Later, Reshetikhin and Turaev [43]
provided a rigorous mathematical framework for such quantum link invariants using
the representation theory of quantum groups Uq.g/, which are deformations of the
enveloping algebras of the Lie algebras of the gauge groups G . More generally, they
defined invariants of framed tangles T with strands labeled by irreducible representa-
tions of Uq.g/, or equivalently by dominant weights of the semi-simple Lie algebra g.
If the bottom end strands are labeled by �D .�1; : : : ; �n/ and the top end strands by
�D .�1; : : : ; �n0/, they associate to T a map of Uq.g/–representations

 .T /W V� D V�1
˝ � � �˝V�n

! V�1
˝ � � �˝V�n0

D V�;

where V� denotes the irreducible Uq.g/ representation of highest weight �. This map
is an invariant of the framed labeled tangle. The invariant is computed by isotoping T

into generic position, then scanning it from bottom to top and assembling the map from
the maps associated to cups, caps and crossings.

In the case of links L and complex semi-simple Lie algebras g, where the bottom and
top representations are both the trivial Uq.g/ representation C.q/, the map  .L/ is
given by multiplying by  .L/.1/ 2C.q/. We list some prominent instances:

� If gD sl2 and L is labeled by (symmetric powers of) the standard representation,
then  .L/.1/ is the (colored) Jones polynomial of L.

� If gD slN and L is labeled by the standard representation, then  .L/.1/ is the
aD qN specialization of the HOMFLY polynomial of L.
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� If g D slN and L is labeled by some other irreducible representations, then
 .L/.1/ is the aD qN specialization of the corresponding colored HOMFLY
polynomial of L.

2.2 The Uq.slN / representation category and web relations

In this paper we are only interested in the tangle invariants for g D slN D slN .C/
and fundamental representations ƒiV , where V is the standard representation. The
representation category of the quantum group Uq.slN / is well-understood and has a
nice graphical description which ties in nicely with the Reshetikhin–Turaev picture.
We follow the exposition of Cautis, Kamnitzer and Morrison in [9].

Definition 2.2 The free spider category FSp.slN / has as objects finite sequences k

in f1˙; : : : ; .N � 1/˙g and morphisms in Mor.k; l/ are C.q/–linear combinations of
oriented planar graphs, called webs, in the unit square Œ�1; 1�� Œ�1; 1� � R2 , up to
planar isotopy, such that:

� The edges of the web are labeled by elements of the set f1; : : : ;N � 1g.

� The boundary of the web splits into a bottom boundary on Œ�1; 1�� f�1g and a
top boundary on Œ�1; 1�� f1g.

� The sequence of labels and orientations on the bottom and top boundary agree
with the sequences k and l , where jC and j� stand for upward and downward
oriented strands labeled by j .

� The internal vertices are of only these four types:

k l

kC l k l

kC l k

N �k

k

N �k

The latter two bivalent vertices are called tags. In general it does matter on which side
the tag is placed and for now we distinguish these local sub-graphs from their mirror
images. In some formulas we further allow labelings of edges by integers outside
the range of f1; : : : ;N � 1g. Edges labeled by 0 are to be deleted, N –labeled edges
incident to a trivalent vertex get reduced to tags as shown below:

k N �k

N

D

k N �k

N

;
k N �k

N

D

k N �k

N

Any diagram containing a labeling outside the range f0; : : : ;N g is defined to be 0.

Morphisms are composed by vertically stacking graphs and gluing boundary points.
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We further define, for n 2 Z, k 2N , k � jnj:
� Quantum integers Œn� WD qn�q�n

q1�q�1 .

� Quantum factorials Œn�! WD Œ1� Œ2� � � � Œn� if n � 0 and Œn�! WD Œ�1�Œ�2� � � � Œn� if
n� 0.

� Quantum binomial coefficients
�

n
k

�
WD

Œn�Œn�1����Œn�kC1�
Œk�!

.

Note that Œ�n�D�Œn� and Œ�n�!D .�1/nŒn�. Negative quantum integers are only used
in the last relation in the following definition. For the remainder of this paper we only
deal with positive quantum integers.

Definition 2.3 The slN spider category Sp.slN / is the quotient of the free spider
category FSp.slN / by the following local relations on morphisms

k

N �k

D .�1/k.N�k/

k

N �k

(2-1)

kC l

k l

kC l

D

�
kC l

l

�
kC l

kC l k

kC l l

k

D

�
N � k

l

�
k

k

(2-2)

k l m

lCm

kC lCm

D

k l m

kC l

kC lCm

kC l k

N � l

l
D

kC l k

N � l

N � l �k(2-3)

k l

k� s lC s

k� sC r lC s� r

s

r

D

X
t

�
k � l C r � s

t

�
k l

kC r � t l � r C t

k� sC r lC s� r

r � t

s� t

(2-4)

together with the mirror images and arrow reversals of these.

We briefly recall some facts about the representation category of Uq.slN / and col-
lect them in the following lemma. Details can be found in Cautis, Kamnitzer and
Morrison [9].

Lemma 2.4 The representation category of Uq.slN / is a pivotal category and it is
the idempotent completion (Karoubi envelope) of the full subcategory generated by
objects isomorphic to tensor products of fundamental representations, which we denote
by Rep.Uq.slN //.

As a pivotal category Rep.Uq.slN // is generated by up-to-scaling unique intertwiners

Mk;l W ƒ
kV ˝ƒlV !ƒkClV and M 0

k;l W ƒ
kClV !ƒkV ˝ƒlV:
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Theorem 2.5 [9, Theorems 3.2.1 and 3.3.1] There is an equivalence of pivotal
categories �W Sp.slN /! Rep.Uq.slN //, defined on objects by

k D .k
�1

1
; : : : ; k�s

s /! .ƒk1V /�1 ˝ � � �˝ .ƒks V /�s ;

where �k 2 f�1; 1g and W �1 stands for the representation dual to W 1 WDW , and on
generating morphisms by

k l

kC l

! Mk;l and
k l

kC l

! M 0
k;l :

As a by-product, this theorem says that all computations of Reshetikhin–Turaev in-
variants of tangles labeled with fundamental representations can be done in the spider
category of slN . However, this idea is much older and goes back at least to Murakami,
Ohtsuki and Yamada [42]. Thus the morphisms in the slN spider category are also
known as MOY graphs.

Remark 2.6 In [42] tags do not appear and edges labeled by N can be erased
completely. Not distinguishing between the two ways of inserting a tag causes an error
of a factor of ˙1 on the level of tangle invariants. We adopt this convention and hence
work with a smaller category in which the relation

(2-5)
k

N �k

D

k

N �k

holds. This new spider category is equivalent to the projective representation category
Rep.Uq.slN //=˙1 and it will suffice for our purposes.

2.3 Constructing Reshetikhin–Turaev tangle invariants

We now describe the maps used to define Reshetikhin–Turaev tangle invariants.1

Lemma 2.7 Every oriented strand in a web can be inverted at the expense of changing
its label k into the complementary label N � k and introducing two tags.

Proof To see this, we use a relation from (2-2) in the projective slN spider category:

k

k

N �k D

k

k

N �k D

k

N N �k

k

D

�
N � k

N � k

�
k

k

D

k

k

1The maps we present agree with the original Reshetikhin–Turaev maps up to multiplication by
non-zero scalars and powers of q .
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Let T be a tangle in general position labeled by fundamental representations of Uq.slN /.
In order to define the Reshetikhin–Turaev invariant of T , it suffices to define the maps
that correspond to cups, caps and crossings. Via Theorem 2.5 we can present these
maps in terms of linear combinations of webs.

Definition 2.8 (Building blocks for RT invariants) To define the maps associated to
caps and cups, replace each downward-oriented k–strand by an upward-oriented strand
labeled by N � k and place tags on caps and cups, eg

k k

N

!

k N �k

N

DMk;N�k ;
k k

!
k N �k

DM 0
k;N�k :

The maps associated to positive crossings are

k l

l k

7!

lX
rD0

.�1/rC.kC1/lqr

k l

l k

r

if l � k;

k l

l k

7!

kX
rD0

.�1/rC.lC1/kqr

k l

l k

r

if l > k:

The formulas for negative crossings are obtained by replacing q by q�1 . These
formulas are taken from Murakami, Ohtsuki and Yamada [42] with the q–grading
adjusted to our purposes.

Remark 2.9 For Reshetikhin–Turaev invariants of links colored by fundamental
representations of slN there is an algorithm that does not use any tags at all: without
replacing any cups or caps, immediately use the description of the crossing maps to
locally replace all crossings by linear combination of webs. The result is a linear
combination of closed webs which can then be evaluated to elements in the ground ring.
An explicit algorithm for evaluating closed webs that does not use tags is described by
Wu in [52, Corollary 14.8 and proof of Theorem 14.7].

Remark 2.10 Similarly as in the uncolored case, where all involved representations
on the strands are standard, there is a stability in the sequence of colored slN invariants
for varying N . Using this stability, one can define two-variable colored HOMFLY
invariants. However, we have to explain what it means to fix representations on
the strands when dealing with slN invariants of different N . Formally, colored
HOMFLY link invariants can be defined as invariants of oriented links labeled by
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Young diagrams, or equivalently by partitions of integers. These partitions specify
an irreducible representation as highest weight representation in a tensor product of
fundamental representations, independent of N � 0. In particular, a one-part partition
.k/ stands for the k th exterior power of the standard representation. To compute the
colored HOMFLY invariant of a link, pick an N � 0, interpret labels .k/ as ƒkV

and proceed in the same way as when computing the corresponding slN invariant.
However, in doing this treat a D qN as an independent variable and replace every
occurrence of�

N C b

c

�
D

cY
kD1

ŒN C b� kC 1�

Œk�
D

cY
kD1

qNCb�kC1� q�N�bCk�1

qk � q�k

by �
b

c

�
a

WD

cY
kD1

aqb�kC1� a�1q�bCk�1

qk � q�k
:

This recipe still produces invariants of framed colored links and it takes values in
C.q/Œa˙1�, but usually not in CŒa˙1; q˙1�. Nevertheless, these invariants are some-
times called colored HOMFLY polynomials. Similarly, one can define colored HOMFLY
invariants of tangles; see Section 5.2.

2.4 Web relations via skew Howe duality

Quantum skew Howe duality and its categorical analogues are powerful tools for
studying the (2–)representation category of Uq.slN /.

Let X be the weight lattice of slN with simple roots ˛1; : : : ; ˛N�1 and fundamental
weights ƒ1; : : : ; ƒN�1 and the non-degenerate bilinear form h � ; � i given by

h˛i ; j̨ i D 2ıi;j � ıi;jC1� ıi;j�1;

which furthermore satisfies h˛i ; ƒj i D ıij . Denote by Y the root lattice of slN and
YC WD Y ˝Z C .

Definition 2.11 The quantum group Uq.slN / of slN is the C.q/–algebra with gen-
erators Ei ;Fi ;Ki for i D 1; : : : ;N � 1 and the relations

KiKj DKj Ki ; ŒEi ;Fj �D ıij
Ki �K�1

i

q� q�1
;

Kj EiK
�1
j D qh˛i ; j̨ i; Kj FiK

�1
j D q�h˛i ; j̨ i;

Œ2�EiEj Ei DE2
i Ej CEj E2

i if ji � j j D 1; ŒEi ;Ej �D 0 if ji � j j> 1;
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and similarly for Fs. If �D
P

liƒi 2 Zhƒ1; : : : ; ƒN�1i is an integral weight, then
we write K� for the product K

l1

1
� � �K

lN�1

N�1
.

Uq.slN / is a deformation of the universal enveloping algebra of slN . We now recall
the Beilinson–Lusztig–MacPherson idempotent modification PU .slN / of Uq.slN /.

Definition 2.12 The idempotent version PU .slN / of the quantum group of slN is
defined by adjoining orthogonal idempotents 1� for integral slN –weights � 2 X to
Uq.slN /, subject to the relations

K�1� D 1�K� D qh�;�i1�; Ei1� D 1�C˛i
Ei ; Fi1� D 1��˛i

Fi :

Alternatively, PU .slN / can be considered as a C.q/–linear category with

� objects given by integral weights � 2X , and

� morphisms generated by Ei1� 2 Hom.�; �C˛i/ and Fi1� 2 Hom.�; ��˛i/,
where 1� denotes the identity morphism of �.

Of special importance to categorification is the ZŒq˙1�–subalgebra A PU .slN / of PU .slN /,
which is generated by divided powers E

.k/
i WDEk

i =Œk�! and F
.k/
i WD Fk

i =Œk�!.

There exist several variants of the following theorem in the literature. For a more
thorough treatment we refer to Cautis, Kamnitzer and Morrison [6; 9]. Let Cs

q and CN
q

be the standard representations of Uq.sls/ and Uq.slN /, respectively, and denote by ƒ
the appropriate q–deformed exterior algebra functor. Then we have:

Theorem 2.13 (Quantum skew Howe duality) The algebra ƒ.Cs
q ˝CN

q / carries
commuting actions of Uq.sls/ and Uq.slN / that constitute a Howe pair. That is, for
any M 2N ,

EndUq.slN /ƒ
M .Cs

q˝CN
q / is generated by Uq.sls/;

EndUq.sls/ƒ
M .Cs

q˝CN
q / is generated by Uq.slN /:

Moreover, ƒ.Cs
q˝CN

q / splits into Uq.sls/ weight spaces as

ƒM .Cs
q˝CN

q /Š
M

i1C���CisDM

ƒi1.CN
q /˝ � � �˝ƒ

is .CN
q /;

where the summands on the right-hand side are weight spaces V .�/ associated to
weights �D

Ps�1
jD1.ijC1� ij / j̨ , and Chevalley generators act as follows:

� � � ˝ƒik .CN
q /˝ƒ

ikC1.CN
q /˝ � � � � � � ˝ƒik�1.CN

q /˝ƒ
ikC1C1.CN

q /˝ � � � :...............................................................................................

Fk

................................................................................... ............
Ek
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From the Uq.sls/–action on ƒM .Cs
q˝CN

q / we immediately get a map

1�0A PU .sls/1�! HomUq.slN /.V .�/;V .�
0//:

The weight spaces V .�/ are exactly the possible (co-)domains for the Reshetikhin–
Turaev invariants of tangles with at most s top and bottom boundary points and a
labeling by fundamental representations. Furthermore, the basic building blocks of
these invariants — the maps associated to crossings, caps and cups — are in the image
of the above map and hence can be lifted to A PU .sls/. This is due to Cautis, Kamnitzer
and Licata [7].

We now provide a dictionary to translate between the two descriptions of maps of
Uq.slN / representations, given by the action of A PU .sls/ on ƒM .Cs

q˝CN
q / on the

one hand and by webs on the other hand. In doing this we omit the weight space
idempotents 1� and the subscript r of E.k/

r and F .k/r from the notation.

The action of Chevalley generators E DE.1/ and F DF .1/ and divided powers E.k/

and F .k/ can be written in the following way:

E.k/
7!

i j

i�k j Ck

k
and F .k/ 7!

i j

iCk j �k

k

The crossing formulas can be written in terms of Es and Fs. For example, in the case
l � k we have

(2-6)

k l

l k

7!

lX
rD0

.�1/rC.kC1/lqr

k l

l k

r

D

lX
rD0

.�1/rC.kC1/lqr E.k�lCr/F .r/:

Caps and cups can be described as:

(2-7)
k N �k

N

7!

k N �k

0 N

D 1N E.k/
Š 1�N F .N�k/

D

k N �k

N 0

(2-8) k N �k
7!

0 N

k N �k

DF .k/1N ŠE.N�k/1�N D

N 0

k N �k

Here an issue has to be addressed. The two supposedly isomorphic ways of writing caps
and cups as divided powers of E or F have different domain or target. This problem
is solved by showing that all weight spaces ƒi1.CN

q /˝� � �˝ƒ
is .CN

q / are canonically
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isomorphic to the weight space where all tensor factors ƒ0.CN
q / are permuted to the

left and all factors ƒN .CN
q / are permuted to the right. The isomorphism is realized

by braiding the 0– and N –labeled strands (which are indicated by dotted lines) to the
outside, using the standard crossing formula. The isomorphism is canonical because it
does not depend on how the braiding is realized, as long as all involved crossings have
at least a 0– or N –colored strand in them. This is [6, Lemma 7.1].

This realization of Reshetikhin–Turaev tangle invariants as images of elements of
A PUq.sls/ under the skew Howe map has the great advantage that many relations
necessary for regular isotopy invariance already hold in the quantum group; see [6,
Section 7]. In fact, quantum skew Howe duality is the main ingredient in the proof that
characterizes the representation category of Uq.slN / as the slN spider category, as
given by Cautis, Kamnitzer and Licata [9]. We summarize the situation:

Theorem 2.14 [6, Sections 6–7] The maps associated to projections of framed
oriented tangles colored with irreducible Uq.slN /–representations via the Uq.sls/–
action on the Uq.slN /–representation ƒ.Cs

q˝CN
q /, for a suitable s 2N , are invariants

of such tangles and agree with the maps defined by Reshetikhin and Turaev up to non-
zero scalars and powers of q .

2.5 Categorification

Simulating skew Howe duality on a categorical level is an attractive approach to defin-
ing categorified Reshetikhin–Turaev invariants, because one can get many necessary
relations for the invariance proof from the categorified quantum group in a similar
way as one gets relations of the Uq.slN / representation category from the ordinary
quantum group. Categorified quantum groups were defined and studied by Lauda in
the case of sl2 (see [29; 30] and the survey [31]) and Khovanov and Lauda for the slN
case (see [23; 25; 24]).

Once one knows categorified quantum groups, it is another problem to define what it
means to have an action of a categorified quantum group that categorifies a quantum
group representation, eg the Uq.sls/ representation ƒ.Cs

q˝CN
q /. Yet another problem

is to show that such categorical actions exist at all. We follow Cautis’ approach from
[5; 6] where he addresses the latter two problems. He axiomatically defines what it
means to have a .g; �/–action on a 2–category that is the categorical analogue of a
Uq.g/–action. This is a fairly minimal definition and because it does not mention a
priori the full higher representation-theoretic structure of the categorified quantum
group, existence of such actions is easier to check in practice. However, in [5] Cautis
shows that a .sls; �/–action always extends to a categorical sls–action in the stronger
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sense of Khovanov and Lauda [24]. This guarantees that 2–categories with .sls; �/–
actions satisfy a number of further relations which allow the construction of categorical
tangle and link invariants via a categorical analogue of skew Howe duality. To keep
the exposition compact, we only present Cautis’ definition of a .sls; �/–action and the
additional relations necessary for the definition of categorical tangle and link invariants.

We want to mention that there also exists a categorification of skew Howe duality in
a strong sense due to Ehrig and Stroppel [11]. It consists of commuting 2–actions of
quantum groups on derived categories of abelian categories with Koszul self-duality
intertwining the actions. Furthermore, the involved categories restrict to the ones used
in the Mazorchuk–Stroppel construction of slN link homology [39].

In the following definition we allow the case s D1, in which we assume that the Lie
algebra sl1 has roots and fundamental weights indexed by Z; X still denotes the
weight lattice of sls .

Definition 2.15 [6, Section 2.2] A .g; �/–action consists of a target graded, additive,
C–linear idempotent complete 2–category K with

(1) objects indexed by � 2X ,

(2) 1–morphisms including Ei1� D 1�C˛i
Ei and Fi1�C˛i

D 1�Fi , where 1� is
the identity 1–morphism of �, and

(3) 2–morphisms including a linear map YC! Hom.1�; 1�h2i/ for each � 2X .

Here hli is the auto-equivalence given by shifting grading down by l . By abuse of
notation we denote by � the image of � 2 YC under such a map.

These data are required to satisfy the following relations:

(i) Hom.1�; 1�hli/ is zero if l < 0 and one-dimensional if l D 0 and 1� ¤ 0.
Moreover, the space of maps between any two 1–morphisms is finite-dimensional.

(ii) Ei and Fi are left and right adjoints of each other up to shifts:
(a) .Ei1�/R Š 1�Fihh�; ˛iiC 1i.
(b) .Ei1�/L Š 1�Fih�h�; ˛ii � 1i.

(iii) We have

EiFi1� Š FiEi1�
M
Œh�;˛i i�

1� if h�; ˛ii � 0;

FiEi1� ŠEiFi1�
M

Œ�h�;˛i i�

1� if h�; ˛ii � 0;

where
L

p.q/B for p.q/ D
P

i2Z aiq
i 2 ZŒq˙1� means

L
i2Z.Bh�ii/˚ai ,

and we contract A˚ p̊.q/B to A p̊.q/B .
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(iv) If i ¤ j then Fj Ei1� ŠEiFj 1� .

(v) If h�; ˛ii � 0 then the map .I�I/ 2 Hom.Ei1�Fi ;Ei1�Fih2i/ induces an
isomorphism between h�; ˛ii C 1 (resp. zero) of the h�; ˛ii C 2 summands
1�C˛i

when h�; ˛ii ¤ 0 (resp. h�; ˛ii D 0).

If h�; ˛ii � 0, the same holds for .I�I/ 2 Hom.Fi1�Ei ;Fi1�Eih2i/.

(vi) If ˛ D ˛i or ˛ D ˛i C j̨ for some roots with h˛i ; j̨ i D �1 then 1�Cr˛ D 0

for r � 0 or r � 0.

(vii) Suppose i ¤ j and � 2 X . If 1�C˛i
and 1�C j̨

are non-zero then 1� and
1�C˛iC j̨

are also non-zero.

In [5] Cautis proves that a .g; �/–action carries an action of the quiver Hecke algebras
and, in the case of gD sls , such an action extends to a categorical sls–action in the
sense of Khovanov and Lauda [24]. As a consequence, K also contains the divided
powers E

.r/
i or F

.r/
i , which are adjoint 1–morphisms up to shifts:

(ix) .E
.r/
i 1�/R Š 1�F

.r/
i hr.h�; ˛iiC r/i.

(x) .E
.r/
i 1�/L Š 1�F

.r/
i h�r.h�; ˛iiC r/i.

The following relations in K then follow from work of Khovanov, Lauda, Mackaay
and Stošić [26, Theorem 5.2.8 and Theorem 5.1.1]:

(xi) We have

E
.a/
i F

.b/
i 1� Š

M
j�0

M
Œh�;˛i iCa�b

j
�

F
.b�j/
i E

.a�j/
i 1� if h�; ˛iiC a� b � 0;

F
.b/
i E

.a/
i 1� Š

M
j�0

M
Œ�h�;˛i i�aCb

j
�

E
.a�j/
i F

.b�j/
i 1� if h�; ˛iiC a� b � 0:

(xii) E.a/E.b/ Š
�
aCb

a

�
E.aCb/ , and analogously for the F s.

The definition of categorical knot and tangle invariants is now very similar to the
construction of Reshetikhin–Turaev invariants via quantum skew Howe duality. The
main ingredient is an .sls; �/–action on a 2–category K which is a lift of the Uq.sls/–
action on ƒ.Cs

q˝CN
q /. We now explain what this means.

Definition 2.16 Let M be a weight module of Uq.sls/, or equivalently a PU .sls/–
module. Then we can consider M as a C.q/–linear category as follows:
� Objects: weight spaces M� D 1�M 1� indexed by � 2X .
� Morphisms: Hom.M�;M�/ is given by the image of 1� PU .sls/1� under the

action.
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Let K be a 2–category with a .sls; �/–action. Then we form the Grothendieck category
K.K/ as follows:

� Objects: the same as K.

� Morphisms: split Grothendieck groups of morphism categories of K, tensored
with C.q/.

Here the split Grothendieck group K.C / of an additive, C–linear category C is the
free abelian group generated by isomorphism classes of objects of C modulo the
relations ŒA� D ŒB1�C ŒB2� for all triples A Š B1˚B2 of objects. If C is graded,
K.C / can be regarded as a ZŒq˙1�–module with the autoequivalence h�1i acting by
multiplication by q .

We say the .sls; �/–action on K lifts the PU .sls/–action on M if its Grothendieck
category is isomorphic to M considered as a C.q/–linear category. In particular, this
means that the non-zero objects in K are in bijection with the non-zero weight spaces
of M and that via K. � / the 1–morphisms Ei and Fi in K are sent to the images of
Ei and Fi in End.M / under the PU .sls/–action.

From now on we assume that K is a 2–category with a .sls; �/–action that lifts the
PU .sls/–action on ƒ.Cs

q˝CN
q /. As Cautis explains in [6], this is sufficient to define

categorical link invariants that lift the Reshetikhin–Turaev invariants. For the definition
of categorical tangle invariants we further require that the objects of K are categories
themselves — with 1–morphisms and 2–morphisms in K acting as functors and natural
transformations, respectively, such that on K–theory we recover ƒ.Cs

q˝CN
q /. This

means that the Grothendieck groups of the objects �, tensored with C.q/, are isomor-
phic as vector spaces to the weight spaces ƒ.Cs

q˝CN
q /� and the 1–morphisms in K

decategorify to the corresponding linear maps between weight spaces that come from
the PU .sls/–action on ƒ.Cs

q˝CN
q /.

The categorified invariants considered in this paper live in Komb.K/, the bounded
homotopy 2–category of K.

Definition 2.17 Let K be as above. Then Komb.K/, the bounded homotopy 2–
category of K, consists of:

� Objects: the same as in K.

� 1–morphisms: bounded complexes of 1–morphisms in K with differentials built
out of 2–morphisms in K.

� 2–morphisms: chain maps built out of 2–morphisms in K between bounded
complexes of 1–morphisms, with homotopy equivalent chain maps identified.
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Komb.K/ is Z˚Z–graded, the second Z–grading being of homological nature. For
the homological grading shift, denoted by Œl � in [6], we write the coefficient t�l and
for a q–grading shift hki we write q�k .

Given a projection of a framed oriented tangle T colored by irreducible Uq.slN /

representations and supposing that the Reshetikhin–Turaev invariant of T is a map
V .�/! V .�0/, the categorified invariant is a chain complex with chain spaces built out
of 1–morphisms in Mor.�; �0/ in K and with differentials built out of 2–morphisms
in–K. Different tangle projections produce different complexes; however, they are
chain homotopy equivalent via chain maps built out of 2–morphisms.

We now describe the construction of the complex associated to a tangle projection.
Again we prepare the tangle diagram by replacing downward-oriented strands by
upward-oriented strands of complementary labeling and mark all critical points for the
height function by tags.

Caps and cups can be described via (2-7) and (2-8) by the 1–morphisms replacing the
divided powers in the quantum group. The main difference to the decategorified setting
is that crossings do not get replaced by linear combination of webs as in (2-6), but by
(grading-shifted) complexes, eg

k l

l k

7! qk�lE.k/F .l/! � � � ! q1E.k�lC1/F .1/!E.k�l/ if l � k:

The differential in the first complex is given by the following composition of 2–
morphisms:

qr E.k�lCr/F .r/1l�k ! qk�lC3r�2E.k�lCr�1/E1l�k�2r FF .r�1/1l�k

Š qr�1E.k�lCr�1/EERF .r�1/1l�k

! qr�1E.k�lCr�1/F .r�1/1l�k :

Here the first map is inclusion into the lowest q–grading summand and the last map is
adjunction. The differential in the second complex is similar. In fact, the maps in the
differential are unique as grading-preserving maps up to non-zero scalar multiple; see
[6, Lemma 4.3]. These complexes are versions of the Chuang–Rouquier (or Rickard)
complex [10].

As usual for link homology theories, planar composition of diagrams translates into
taking formal tensor products of complexes under the replacement described above.
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Cautis, Kamnitzer and Licata prove in [8] that the complexes associated to positive
crossings are invertible in the homotopy category. An inspection of their proof (Proposi-
tion 5.4) shows that the inverse is the left (or right) adjoint of this complex. Informally
speaking this means interchanging Es and Fs and inverting both the homological and
the q–grading. The differentials in the resulting complex are again uniquely determined
up to non-zero scalar multiple. In order to get invariance under Reidemeister moves
of type 2, the inverse complex is used to replace negative crossings. Since taking
the mirror image of tangle diagrams or webs also interchanges positive and negative
crossings and Es and Fs, we have:

Proposition 2.18 The complexes assigned to a tangle diagram and its mirror image
have chain spaces that differ by interchanging Es and Fs and inverting all gradings.

This matches well with the crossing formulas in the decategorified setting. Finally we
get the categorified analogue of Theorem 2.14:

Theorem 2.19 [6, Proposition 7.9] The complex associated to a framed oriented
tangle diagram colored by fundamental representations via categorical skew Howe
duality, as described above, is an invariant of the tangle in the homotopy 2–category
Komb.K/.

Proof The proof is similar to the proof in the decategorified setting via skew Howe
duality; see [6, Proposition 7.4].

Remark 2.20 Cautis uses this setup to define categorifications of Reshetikhin–Turaev
invariants for labelings by arbitrary irreducible representations. Every irreducible
representation W of Uq.slN / is the highest weight irreducible summand in some
ƒi1.CN

q /˝ � � � ˝ƒ
il .CN

q /. The main idea is to replace a strand labeled by W by
l parallel strands labeled by ƒi1 ; : : : ; ƒil and to include a highest weight projector,
also called a clasp, somewhere along the cable. Following ideas of Rozansky [45],
Cautis shows that clasps can be realized as infinite twists in the cable. For details see
[6, Sections 5–6].

In this paper, we are only interested in invariants of links colored by fundamental
representations and thus we can get away with working with bounded complexes. In
the more general case one allows complexes to be infinite in one direction and makes
additional assumptions on the asymptotic behavior of the q–grading.
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2.6 Link homology

To get from the categorified colored slN invariant of a link that lives in a homotopy
2–category to computationally useful link invariants, an additional step is necessary.
We recall that the categorified colored slN invariant of a link L is a complex ‰.L/ of
endomorphisms of the highest weight object �h which corresponds to the sequence
.0; : : : ; 0;N; : : : ;N / of labels on the vertical strands under the skew Howe map. Ap-
plying the functor Hom.1�h

; � / to this complex gives a complex of finite-dimensional
graded vector spaces with grading-preserving differentials whose homology is the
required bi-graded link invariant.

In computational practice, however, it is better to find a complex isomorphic to ‰.L/
whose terms are grading shifts of the identity 1–morphism 1�h

. For chain spaces this is
equivalent to evaluating a closed web to an element of the ground ring. We demonstrate
this in Section 5. That the relations in K, imposed by the existence of a categorical
slN –action, are sufficient to simplify the complex follows from the proof of the main
theorem of Cautis, Kamnitzer and Morrison in [9], which is called Theorem 2.5 here.
An example of a computation simplifying chain spaces and differentials can be found
in Cautis [6, Section 10].

If the categorical 2–representation moreover satisfies that Hom.1�h
; 1�h

/ is one-
dimensional and concentrated in q–grading 0, then the resulting link homology theory
is completely determined by the defining relations of the categorified quantum group;
see Cautis [6, Section 7.5] and Lauda, Queffelec and Rose [32, Section 4B]. Otherwise
one can get deformed theories as in Lee [34], Gornik [17], and Rose and Wedrich [44].

3 The colored HOMFLY complexes of rational tangles

In this section we use categorical skew Howe duality to compute explicit twist rules
that determine the chain spaces of the colored HOMFLY complexes of positive rational
tangles labeled by fundamental representations of slN .

3.1 Rational tangles

All two-strand tangles that we consider have boundary points lying on the corners of
the unit square in R2 , which we denote by NE, SE, SW and NW. Such tangles can
be vertically stacked and horizontally composed by gluing N� to S� and �E to �W
labeled boundary points of the respective tangles. Consider the special two-strand
tangle T .1; 1/ that is given by a single crossing with the SW–NE strand lying on top.
One can act on two-strand tangles by stacking T .1; 1/ on top or by composing with
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T .1; 1/ on the right; we refer to these operations as top twist and right twist respectively.
The two trivial tangles consisting of the obvious crossing-less matchings in N–S and
W–E directions are called T .0; 1/ and T .1; 0/.

The closure of the set containing the trivial tangles T .0; 1/ and T .1; 0/ under the
operations of top and right twisting is known as the set of positive rational tangles.
Positive rational tangles are either trivial or can be described by a sequence of positive
natural numbers Œa1; : : : ; ar � which describes the construction process: start with
T .1; 0/ and add ar top twists, then add ar�1 right twists, then again ar�2 top twists
and so on. We can label such a tangle by the rational number p=q > 1 with

p

q
D a1C

1

a2C
1

: : :C 1
ar

D Œa1; a2; : : : ; ar �:

More generally, a rational tangle is defined to be a proper embedding of two arcs ˛1; ˛2

in a three-ball B3 with ends of the arcs lying on the boundary of B3 , such that there
is a homeomorphism of pairs

.B3; ˛1 t˛2/! .D2
� I; fx;yg � I/:

It is well-known that all rational tangles are equivalent (up to isotopy) to a (possibly
trivial) rotation of either a positive rational tangle, as described above, or the mir-
ror image of a positive rational tangle. For a proof of this fact see Kauffman and
Lambropoulou [20]. We restrict our attention to positive rational tangles.

We consider positive rational tangles with additional data. Both arcs of the tangle are
equipped with an orientation and a labeling by a fundamental representation ƒk of
Uq.slN / for which we only record the natural number k . If we start with an orientation
and a labeling on T .0; 1/ or T .1; 0/, this induces compatible data on tangles obtained
by adding top and right twists. Unless explicitly stated otherwise we assume that the
SW boundary point of a tangle is incoming and the corresponding strand is labeled by
the color i while the other strand is labeled by a color j with i � j . Clearly this is
preserved by adding top or right twists.

3.2 Objects in the chain complex

We now introduce basic webs that appear as objects in the colored HOMFLY complex
of a positive rational tangle.

Definition 3.1 The first two rows in Figure 1 show our notation for the basic webs that
arise in the colored HOMFLY complex of a positive rational tangle labeled by funda-
mental representations ƒi and ƒj with i � j . The six variants UP;UPs;OP;OPs;RI
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and RIs correspond to the six possible patterns of boundary data. The first two
arguments, eg i and j in UPŒi; j ; k�, refer to the colors on the boundary and the third
is an index k , which we call the weight of the web. These webs form bases for the
vector spaces of webs with matching boundary data, although we do not immediately
use this fact. In intermediate steps we will also use the more general web UPŒi; j ; k; l �
and the operation � 7! . � /r that rotates webs by � around the vertical axis, as shown
in Figure 1.

UPŒi; j ; k� D

i j

i j

k

UPsŒi; j ; k� D

i j

j i

k

OPŒi; j ; k� D

i j

i j
k

OPsŒi; j ; k� D

i i

j j
k

RIŒi; j ; k� D

i i

j j
k

RIsŒi; j ; k� D

i j

j i
k

UPŒi; j ; k; l � D

i jk

l

Rotation: G 7!

0B@ G

1CA
r

D G

Figure 1

In Lemma 2.7 we have seen that two adjacent tags cancel. This shows that the operation
of adding a tag close to the end of a strand in a web is an involution and we consider
webs that are related by such tag additions as isomorphic. Because we work in the
projective setting, it does not matter on which side the tag is placed. Furthermore,
the relations (2-3) in the spider category say that tags slide past trivalent vertices. In
particular, we obtain isomorphisms between the special webs introduced above.

Lemma 3.2 In the projective Uq.slN / representation category we have:

OPsŒi; j ; k�Š UPŒN � i; i; i � j C k; k�r :(3-1)

RIŒi; j ; k�Š UPŒi;N � i;N � j � i C k; k�:(3-2)

OPŒi; j ; k�Š UPŒN � j ; i; k�r :(3-3)

RIsŒi; j ; k�Š UPsŒN � j ; i; k�r :(3-4)

OPsŒi; j ; k�Š RIŒN � i; j ; k�r :(3-5)

Algebraic & Geometric Topology, Volume 16 (2016)



450 Paul Wedrich

Proof For (3-1) we compute:

OPsŒi; j ; k�Š
i N � i

j j
k

D

i N � i

j j
k

Š

i N � i

j N � j
k

DUPŒN�i; i; i�jCk; k�r :

The other cases are very similar.

3.3 Computation of the twist rules

In order to determine the Poincaré polynomial associated to a colored positive rational
tangle (or alternatively the chain spaces in the colored HOMFLY complex), we compute
the result of applying a top or right twist to one of the basic webs from Definition 3.1.
It turns out that the dependence of these twist rules on N � 0 and i for i � j can
be hidden by introducing the variables aD qN and s D qi�j . Furthermore, we omit
global grading shifts in the formulation of the twist rules.

Definition 3.3 The quantum binomial coefficient
�

h
k

�
is a Laurent polynomial in q

that is supported in degrees �k.h� k/ up to k.h� k/. We thus define the variants�
h

k

�C
WD qk.h�k/

�
h

k

�
and

�
h

k

��
WD q�k.h�k/

�
h

k

�
;

which have lowest and highest degree 0, respectively.

The following proposition relies heavily on results of Cautis [6, Section 4] that describe
how (generalizations of) crossing complexes can absorb Es and Fs. To be more precise,
the result of composing a crossing complex with a divided power 1–morphism is a
complex � or � 0 which again has chain spaces that are products of Es and Fs and
q–grading-preserving differentials that are uniquely determined up to a non-zero scalar.
However, in general they are not invertible in the homotopy 2–category.

Proposition 3.4 Adding top twists to UPŒi; j ; k�, UPsŒi; j ; k� and OPsŒi; j ; k� has
the following effect on the level of Poincaré polynomials:

TUPŒi; j ; k�Š
jX

hDk

t�hskqk2Ch

�
h

k

�C
UPsŒi; j ; h�:(3-6)

TUPsŒi; j ; k�Š
jX

hDk

t�hshqk2Ch

�
h

k

�C
UPŒi; j ; h�:(3-7)

TOPsŒi; j ; k�Š
jX

hDk

t�haksh�kqk.k�2j/Ch

�
h

k

�C
RIŒi; j ; h�:(3-8)
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Proof For the first isomorphism we just translate into Cautis’ notation and apply [6,
Proposition 4.5]:

TUPŒi; j ; k�D 1i�j�i�j 1j�iE
.k/F .k/

Š t�kqk.i�jCkC1/1i�j�i�jCk1j�i�2kF .k/

Š

j�kX
rD0

t�.kCr/qk.i�jCkC1/Cr.kC1/1i�j E.i�jCkCr/F .r/F .k/1j�i :

After replacing F .r/F .k/ by�
r C k

k

�
F .rCk/

D q�kr

�
r C k

k

�C
F .rCk/

via relation (xii) and re-parametrizing the summation, this yields (3-6). Next, we
compute

TUPsŒi; j ; k�D 1j�i�
0
i�j 1i�j E.i�jCk/F .k/

Š 1j�i�
0
i�j 1i�j F .k/1i�jC2kE.i�jCk/

Š t�kqk.i�jCkC1/1j�iE
.k/1j�i�2k�

0
i�jC2k1i�jC2kE.i�jCk/

Š t�kqk.i�jCkC1/1j�iE
.k/1j�i�2k�

0
k1j�i

D

j�kX
rD0

t�.kCr/q.kCr/.i�jCkC1/1j�iE
.k/E.r/F .kCr/1j�i

Š

jX
hDk

t�hqh.i�j/qk2Ch

�
h

k

�C
E.h/F .h/1j�i ;

which gives (3-7). Here we have used relations (xi), [6, Corollary 4.6 and Proposi-
tion 4.5] and relation (xii).

For (3-8) we first use isomorphism (3-1) together with the fact that tags slide through
crossing complexes. Then we apply [6, Corollary 4.6 and Proposition 4.5] and finally
isomorphism (3-2) and relation (xii):

TOPsŒi; j ; k�

Š TUPŒN � i; i; i � j C k; k�r

D 12j�N �
0
N�2j F .k/E.i�jCk/1N�2i

Š t�kqk.N�2jCkC1/12j�N E.k/12j�N�2k�
0
N�2jC2kE.i�jCk/1N�2i

Š t�kqk.N�2jCkC1/12j�N E.k/12j�N�2k�
0
N�j�iCk1N�2i
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D

jX
hDk

t�hakq.h�k/.i�j/qk.k�2j/Ch

�
h

k

�C
12j�N E.h/F .N�j�iCh/1N�2i

Š

jX
hDk

t�hakq.h�k/.i�j/qk.k�2j/Ch

�
h

k

�C
RIŒi; j ; h�:

Corollary 3.5 Adding top twists to OPŒi; j ; k�, RIŒi; j ; k� and RIsŒi; j ; k� has the
following effect on the level of Poincaré polynomials:

TOPŒi; j ; k�Š
jX

hDk

t�haks�kqk.k�2j/Ch

�
h

k

�C
RIsŒi; j ; h�:(3-9)

TRIŒi; j ; k�Š
jX

hDk

t�hahsk�hqk2Ch.1�2j/

�
h

k

�C
OPsŒi; j ; h�:(3-10)

TRIsŒi; j ; k�Š
jX

hDk

t�hahs�hqk2Ch.1�2j/

�
h

k

�C
OPŒi; j ; h�:(3-11)

Proof For (3-9):

TOPŒi; j ; k�Š TUPŒN � j ; i; k�r

Š

iX
hDk

t�hqk.N�i�j/qk2Ch

�
h

k

�C
UPsŒN � j ; i; h�r

Š

iX
hDk

t�hakq�k.i�j/qk.k�2j/Ch

�
h

k

�C
RIsŒi; j ; h�:

Here we have used isomorphism (3-3) and (3-4) and (3-6). The sum gets truncated
because UPsŒN � j ; i; h�r Š 0Š RIsŒi; j ; h� for h> j .

For (3-10):

TRIŒi; j ; k�Š TOPsŒN � i; j ; k�r

D

jX
hDk

t�hahq.k�h/.i�j/qk2Ch.1�2j/

�
h

k

�C
RIŒN � i; j ; h�r

Š

jX
hDk

t�hahq.k�h/.i�j/qk2Ch.1�2j/

�
h

k

�C
OPsŒi; j ; h�:

Here we have used isomorphism (3-5) and (3-8).
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For (3-11):

TRIsŒi; j ; k�Š TUPsŒN � j ; i; k�r

Š

iX
hDk

t�hqh.N�j�i/qk2Ch

�
h

k

�C
UPŒN � j ; i; h�r

Š

iX
hDk

t�hahq�h.i�j/qk2Ch.1�2j/

�
h

k

�C
OPŒi; j ; h�:

Here we have used isomorphisms (3-4) and (3-3) from Lemma 3.2 and (3-7). The sum
gets truncated because UPŒN � j ; i; h�r Š 0Š OPŒi; j ; h� for h> j .

Corollary 3.6 We compute the right twist rules by reflecting top twist rules:

RUPŒi; j ; k�Š
kX

hD0

t�hahsk�hqk.2j�k/Ch.1�2j/

�
j � h

k � h

��
OPŒi; j ; h�:(3-12)

RUPsŒi; j ; k�Š
kX

hD0

t�hahs�hqk.2j�k/Ch.1�2j/

�
j � h

k � h

��
OPsŒi; j ; h�:(3-13)

ROPŒi; j ; k�Š
kX

hD0

t�haksh�kq�k2Ch

�
j � h

k � h

��
UPŒi; j ; h�:(3-14)

ROPsŒi; j ; k�Š
kX

hD0

t�haks�kq�k2Ch

�
j � h

k � h

��
UPsŒi; j ; h�:(3-15)

RRIŒi; j ; k�Š
kX

hD0

t�hskq�k.k�2j/Ch

�
j � h

k � h

��
RIsŒi; j ; h�:(3-16)

RRIsŒi; j ; k�Š
kX

hD0

t�hshq�k.k�2j/Ch

�
j � h

k � h

��
RIŒi; j ; h�:(3-17)

Proof Note that after reflecting across the plane spanned by the SW–NE diagonal
and the normal to the blackboard, the problem of adding a right twist transforms
into adding a top twist to the reflected web. Proposition 2.18 extends to the case of
complexes associated to knotted webs and thus under reflection t , q , a and s get
replaced by their inverses and UP.s/Œi; j ; k� and RI.s/Œi; j ; j�k� as well as OPŒi; j ; k�
and OPsŒi; j ; j � k� are interchanged.
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Remark 3.7 An essential feature of these rules is that their dependence on N and
the higher color i can be hidden by introducing aD qN and s D qi�j . This proves
Theorem 1.7.

4 A geometric model for the colored HOMFLY complex of a
rational tangle

In this section we introduce a geometric algorithm for computing the chain spaces
in the colored HOMFLY complex of a positive rational tangle T .p; q/ labeled with
fundamental slN representations ƒi and ƒj with i � j .

4.1 The geometric setup

We start by drawing a picture that resembles a 2–bridge diagram of the denominator
closure of the tangle. Let � 2 f1;�1g be the parity of the length of the continued
fraction expansion of p=q and par.p/ 2 f1;�1g the parity of p .

Draw the intervals Œ�2;�1� and Œ1; 2� on the real axis in C on a piece of paper, partition
them into p parts of equal size and mark the divisions between the parts by small
vertical line segments. For both divided intervals, number the 2p endpoints of line
segments by 0; : : : ; 2p� 1 2 Z=.2p/, starting from the points 1 and �1 respectively
and proceeding clockwise or anticlockwise, depending on � D �1. Next, draw an
arc ˛ starting at the 0–labeled point x D � par.p/� , then proceeding to the point
labeled q on the other interval, intersecting the interval transversely, proceeding to
the point labeled 2q and so on until it hits the set f�2;�1; 1; 2g again. We require ˛
to have no self-intersections and the minimal possible number of intersections with
the two intervals. Further, we fix the picture uniquely up to isotopy by requiring that
˛ has no intersections with the interval .�1;�2� on the real axis if � D�1 and no
intersections with the interval Œ2;1/ on the real axis if � D 1.

Next we draw the imaginary axis, labeled lp , and a parallel of it labeled lq that intersects
one of the intervals Œ1; 2� and Œ�2;�1� on the real axis, depending on � D�1, and has
the minimal possible number of intersections with the arc ˛ . The two vertical lines lp
and lq then have p and q intersections with ˛ , respectively. We call these intersections
with the left or right vertical left and right primary intersections. Figure 2 shows the
case p

q
D

5
2

and how this picture can be interpreted as a projection of the tangle.

The diagrams we draw are essentially 2–bridge diagrams of the denominator closure
of the positive rational tangle, with one over-bridge erased. We distinguish the cases
according to � and par.p/ and choose a more complicated way of relating the drawing
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5
! D

Figure 2

to the rational p=q in order to get a simpler relation between the drawing and the
continued fraction expansion of p=q . We explain this in the following lemma, whose
proof is left to the reader.

Lemma 4.1 The picture can inductively be constructed in the following way. Start
with the trivial diagram. For a top twist, bend the left vertical towards the right one, then
flip over the left-hand side of the diagram into the middle to straighten the left vertical
again. For a right twist, do the analogue for the right vertical. The trivial diagram and a
top twist are illustrated below:

Trivial: Top twist: ! D

Definition 4.2 We begin the computation of the colored HOMFLY complex by starting
with UPŒi; j ; 0� or OPŒi; j ; 0�, depending on the orientation of the tangle, and then
applying a sequence of top and right twists. In these two cases we label the three
distinguished points by XC , X� and Y as in the following figures:

Start configuration for UP: Y X� XC Start configuration for OP: Y XC X�

Corollary 4.3 Via the interpretation of top and right twisting as bending verticals, the
six permutations of the labels XC;X� and Y that arise in tangle diagrams correspond
to the six types of webs introduced above. This is shown in Figure 3.

UP Y X� XC UPs X� Y XC

OP Y XC X�

RIs XC Y X� RI XCX� Y

OPs X�XC Y

......................................................................... ............
.....................................................................................

T

..................................................................................
.

............
................................

................................
...................
............R

................................................................................. ...........
.
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................................

.............................

T ................................................................................. ............
.............................................................................................

R

................................
................................

..................
............
.................................................................................

.
............ T

........................................................................ ...........
.

................................
....................................

................
R

Figure 3
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4.2 The main theorem

Definition 4.4 In order to find the generators of weight h for the colored HOMFLY
complex with respect to colors i and j in the geometric picture, we replace the left
vertical by h parallel copies and the right vertical by j �h parallel copies. We call the
first kind of parallels, w1; : : : ; wh , the weighted verticals and the others, u1; : : :uj�h ,
unweighted verticals.

Theorem 4.5 The generators of weight h in the colored HOMFLY complex with
respect to colors i and j are in bijection with j –tuples

.x1; : : : ;xj / 2 .w1\˛/� � � � � .wh\˛/� .u1\˛/� � � � � .uj�h\˛/

of intersections points of verticals with ˛ . To find the relative gradings of these
generators, it is sufficient to determine:

(1) The grading difference of two generators with equal weight that differ only in
one coordinate.

(2) For each h, the grading difference of some special generators of weights h and
h� 1.

By iteration, rule (1) determines the relative gradings of all generators of the same
weight. Rule (2) then fixes the relative gradings between weight groups.

Ad (1) The following determines the grading difference between two generators
of weight h that differ only in one coordinate. Let xx D .x1; : : : ;xk ; : : : ;xj / and
xx0 D .x1; : : : ;x

0
k
; : : : ;xj / be the two generators with xk ¤ x0

k
. Let ˛0 be the segment

of ˛ starting at xk and ending at x0
k

, ˇ the segment of the k th vertical starting at xk

and ending at x0
k

and D the domain enclosed by ˛0 and ˇ in R2 . D is a singular
2–chain, ie a formal sum of closed discs with multiplicities in Z determined by the
winding of �ˇ˛0 around interior points. In particular, D can be written as a Z–linear
combination of simple discs which we define to be the closures of bounded path-
components of the complement of the union of ˛ with one vertical, equipped with the
standard orientation. The grading difference between xx and xx0 is the product of two
terms:

� (Additive part Q) The graded intersection number of D with the set of distin-
guished points fXC;X�;Y g, where non-empty intersections with a simple disc
Ds count as

Ds �X
C
D

a2

tq4j�2s2
; Ds �X

�
D

q2s2

t
; Ds �Y D

q2

t
:
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� (Non-additive part q �Q) The graded intersection number of D with the
other intersection points fx1; : : : ;xk�1;xkC1; : : :xj g, with a simple disc Ds

contributing

Ds �xr D

8<:
q4 if xr 2Dıs ;

q2 if xr 2 @Ds;

1 else:

Ad (2) The following determines the grading shift between two generators of weight
h and h � 1 that agree outside the hth coordinate and whose hth coordinates are
related by sliding the hth vertical (which is the innermost vertical) from the weighted
to the unweighted side. We can think of this sliding as a geometric realization of the
differential tying together the two generators. The grading of this differential depends
on which distinguished point the vertical crosses while sliding:

Vertical sliding across

8<:
Y

X�

XC
as in

8<:
UPs and RIs
UP and RI
OP and OPs

causes shift by

8<:
t=q;

t=qs;

tq2j�1s=a:

If two generators are related by sliding over the innermost vertical, we say that the
generators are related by a simple slide.

The proof of this theorem occupies the rest of this section and is split into several
lemmata. Then Theorem 1.9 follows immediately from the fact that the a–, s–, t– and
Q–gradings are additive.

Lemma 4.6 The grading differences stated in the theorem define a Z4–grading on
generators with shifts denoted by powers of a, q , t and s .

Proof While rule (2) does not cause any ambiguities, there are several ways to compute
the grading difference of two generators of equal weight by repeated application of
rule (1). We need to check that all of these ways yield the same result. This is easily
seen for the additive part. It remains to check the non-additive part.

Consider first the case of generators that differ in exactly two coordinates, say xx D
.x1;x2; : : : / and xy D .y1;y2; : : : /, where the two domains D1 and D2 connecting
x1 to y1 and x2 to y2 , respectively, are simple discs, possibly with the opposite
orientation. We need to check that the non-additive part of the grading that we get
from D2 ıD1W xx ! .y1;x2; : : : /! xy is the same as the one from D1 ıD2W xx !

.x1;y2; : : : /! xy . It is sufficient to consider the non-additive component that comes
from intersections with the first two coordinates, since all other contributions will be
equal a priori. If D1\D2 D∅, then there are no non-additive grading shifts and we
are done. Otherwise we distinguish two groups of cases, depending on whether the
simple discs are of shape D or D:
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(1) D1 and D2 intersect and are both of shape D (or of shape D). If x2;y2 2D1

or x1;y1 2D2 , then both ways of composing D1 and D2 produce non-additive
grading shifts at different intersection points, but of equal value q˙2 or q˙4 .
Otherwise there are no non-additive shifts at all

(2) D1 and D2 intersect and one is of shape D while the other one is of shape D.
Here we have three different cases, which are easily checked:
� One disc Di contains both intersection points xj ;yj (which are linked by

the other disc Dj ) as interior points.
� One disc Di contains xj ;yj , exactly one in its interior, the other one on its

boundary.
� D1 contains exactly one of x2;y2 and D2 contains exactly one of x1;y1 .

In the general case of weight-h generators that might differ in several coordinates,
every way of getting from one generator to the other by transforming one coordinate at
a time can be described as a sequence of changes via simple discs. By the previous
argument, we can permute these changes and cancel redundant pairs of inverse changes
without altering the grading shift. This way one can reach a unique reduced expression
which consists of the minimal number of changes via simple discs and which is ordered
by the indices of the coordinates in which the changes take place.

It is clear that our graphical method of calculating the chain spaces in the colored
HOMFLY complex produces only one generator in the case of the trivial tangle. With
this as the start of an induction proof it suffices to show that the geometric algorithm
observes the twist rules from Section 3.3.

To prepare some notation for the following definition, we look at a top twist applied to
a diagram P1 , producing a diagram P2 . If we only draw the verticals lp and lq for the
moment, we can distinguish three sets of primary intersections: L1 , the intersections
with the left vertical in P1 ; R, the intersections with the right vertical in P1 ; and
L2 DL1 tR0 , the set of intersections with the left vertical in P2 . Note that R0 is in
bijection with R and R also labels the intersections with the right vertical in P2 .

Generators .x1; : : : ;xj / 2 .w1\˛/� � � � � .wh\˛/� .u1\˛/� � � � � .uj�h\˛/ of
the colored HOMFLY complex have an equivalent description by .x0

1
; : : : ;x0j / with

x0
1
; : : : ;x0

h
being left primary intersections and x0

hC1
; : : : ;x0j right primary intersec-

tions, where the order remembers the order in which these primary intersections are
placed on parallels of the two verticals.

Definition 4.7 (Top twist case) Let xx D .x0
1
; : : : ;x0j / be a generator of the colored

HOMFLY complex of P2 , which is obtained from P1 by a top twist. Partition the
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left primary intersections x0
1
; : : : ;x0

h
into two subsequences according to whether they

belong to L1 or R0 . Next, reverse the subsequence in L1 to get l , concatenate it
with the sequence r1 in R corresponding to the sequence in R0 and finally append
the sequence r2 D x0

hC1
; : : : ;x0j . The sequence l � r1 � r2 represents a generator for the

complex of P1 and we call it the parent of its child xx . The definition of the relation
between child and parent is analogous in the case of a right twist.

One can think of the top twisting process as bending over the left verticals towards the
right and allowing them to steal verticals and intersection points from the right verticals.
Similarly, in a right twist, the right verticals bend over to the left and steal verticals and
intersection points from the left verticals. The twist rules describe how a generator —
the parent — in P1 gives rise to several generators — its children — in P2 .

The relative gradings of generators in P2 are influenced by three factors in the geometric
picture, which we will treat in this order:

(1) How the new verticals that are stolen from the other side get sorted in between
the old verticals. This corresponds to the quantum binomial coefficients in the
twist rules.

(2) How many verticals are stolen. This corresponds to the coefficients depending
on h� k in the twist rules.

(3) The weight of the parent in P1 . This corresponds to coefficients depending on k

in the twist rules.

Lemma 4.8 The generators corresponding to the possible ways of sorting h�k stolen
verticals (with intersections) in between k existing verticals have relative q–gradings as
described by the quantum binomial coefficient

�
h
k

�
. In the picture with bent verticals,

the lowest q–grading configuration has all intersection points as far right as possible and
the highest q–grading configuration has all intersection points as far left as possible.

Proof We first look at the relevant region where the weighted verticals are bent over.
The figure below shows a typical situation. If we assume that it is the result of a top
twist, then we see a generator represented by a tuple .: : : ;A;B;C;D; : : : / on the
left-hand side.

To prove the statement of the lemma, it suffices to show that if an intersection B on
the left of the bend and an intersection C on the right of the bend, lying on adjacent
verticals, swap verticals such that C moves left, this causes a grading shift of q2 . The
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result of such a swap is shown on the right-hand side of the figure. If it is the result of
a top twist, the generator is represented by the tuple .: : : ;A;C;B;D; : : : /.

A

C

D

B
!

A

C

D

B

We distinguish three cases, two of which have two sub-cases each, depending on which
domain (E or F ) outside the local picture determines relative gradings of generators
in the local picture:

Z

E F
D

�
q�2E�1

F
Z

E F
D

�
ZE�1

q2ZF
Z

E F
D

�
E�1

q2F
Z

E F
D q2

Z

E F

Z

E F
D

�
q2E

F�1 Z

E F
D

�
q4ZE

q2ZF�1 Z

E F
D

�
q4E

q2F�1 Z

E F
D q2

Z

E F

Z D q2Z Z D q2
Z

Lemma 4.9 The simple slides in the geometric picture induce the grading shifts
required by the twist rules.

Proof First note that it is sufficient to check this for simple slides between lowest
q–grading configurations in the case of top twists and between highest q–grading
configurations in the case of right twists. In writing the twist rules, we have renormalized
the quantum binomial coefficient such that this relevant grading is 0. Given this, it is
straightforward to check that simple slides induce the same grading shifts as described
by the twist rules. For example, in

TUPŒi; j ; k�Š
jX

hDk

t�hskqk2Ch

�
h

k

�C
UPsŒi; j ; h�

we see the dependence on h is in a shift of q=t when passing from a weight-.h�1/

generator to the weight-h generator which is related by a simple slide, as expected for
generators of type UPs.

So far we have shown that the geometric algorithm accurately reproduces the relative
gradings between the children of each parent. It remains to understand the relative
gradings between children of different parents.
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Definition 4.10 Each parent has a distinguished child that we call its clone. If the
parent is represented by the sequences l; r of left and right primary intersections, then
the clone is the child that is represented by the reverse of l concatenated with r . It is
the child that arises by stealing zero verticals.

Lemma 4.11 Clones of equal weight have the same relative gradings as their parents.

Proof Clones of equal weight have parents of equal weight. Their relative grading
is computed by domains in P1 which survive the twisting to P2 . The same domains
thus compute the same relative gradings between clones.

Combining the statement of the lemma with previous results we see that the geometric
algorithm correctly computes the relative gradings between all children of parents of a
certain weight. The last step in the proof of the main theorem is, therefore, to find the
geometrically determined relative gradings of a set of children of parents of all possible
weights and compare them with the twist rules.

Lemma 4.12 Let p0 be an arbitrary weight-0 parent and c0 its clone. Write pk for
the weight-k parent that is related to p0 by simple slides and ck for its clone. Then
the geometric algorithm correctly computes the relative gradings of the generators
c0; : : : ; cj .

Proof We choose temporary absolute gradings on the complexes associated to P1

and P2 and align them by requiring that passing from p0 to its clone c0 shifts grading
by the amount described by the twist rules. We then check for each of the twelve cases
(corresponding to the twelve rules) inductively on k that the known shift from pk�1

to ck�1 together with rules (1) and (2) from the statement of Theorem 4.5 correctly
compute the shift from pk to ck . We give two examples, one for a top twist and one
for a right twist, and omit ten very similar cases.

Case TUP TUPŒi; j ; k�Š
jX

hDk

t�hskqk2Ch

�
h

k

�C
UPsŒi; j ; h�:

In this case the parent is pk D UPŒi; j ; k� and the clone is the summand for hD k on
the right-hand side of the twist rule above. In Figure 4 we have drawn the parents pk�1

and pk in the first row, their clones ck�1 and ck on the left and right in the second row,
and intermediate diagrams, computing the grading shift from ck�1 to ck , in the middle.
Green dots on thick verticals represent tuples of intersections on tuples of verticals
with size written above. The lower left shift comes from sliding the thin vertical to
the left. The central lower shift comes from re-ordering the bent verticals. The lower
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right shift comes from the small disc containing X� . The left vertical and the upper
central grading shifts are known and the right vertical grading shift is determined by the
commutativity of the diagram. It agrees with the shift described by the rule for TUP.

Y X�

k�1 j �kC1

Y X�

k j �k

X� Y

k�1 1 j �k

X� Y

k�1 1 j �k

X� Y

k�1 1 j �k

X� Y

k j �k



qs
t

.......................................................
.....
.......
.....

qk.k�1/sk�1

t.k�1/

..................................................................... ............

q
t

..................................................................... ............
q2.k�1/

..................................................................... ............

q2s2

t

.......................................................
.....
.......
.....

q.kC1/ksk

tk

Figure 4

Case ROP For this situation see Figure 5. The known shift is on the right vertical
arrow, the new shift is on the left vertical arrow and it is correctly computed by
commutativity of the diagram.

XC X�

k j �k

XC X�

k�1 j �kC1

X�XC

k�1 1 j �k

X� XC

k�1 1 j �k

X� XC

k�1 1 j �k

X� XC

k�1 j �kC1



tq2j�1s
a

.......................................................
.....
.......
.....

akq�k2Ck

tk

..................................................................... ............

t
qs

..................................................................... ............
q2.k�j/

..................................................................... ............

tq4j�2s2

a2

.......................................................
.....
.......
.....

ak�1q�.k�1/2Ck�1

tk�1

Figure 5

4.3 Differentials

We have mentioned in Section 2.5 that the differentials in the crossing complex are
essentially uniquely determined as the composition of an inclusion and the adjunction
between Es and Fs. The same holds for all complexes in the twist rules of Section 3.3
by [6, Lemma 4.3]. The colored HOMFLY complexes are simplifications of tensor
products of crossing complexes. In our approach, these simplifications are computed
iteratively by adding a crossing at a time via the twist rules.
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It follows from the proof of Theorem 4.5 that the component of the differential coming
from the last crossing added corresponds to sliding the innermost vertical from left to
right, as described in the statement of the theorem. However, this has to be understood
as a differential that ties together the groups of generators that differ only by re-ordering
verticals as in Lemma 4.8. The actual differential between generators then can be
computed as a composition of an inclusion, the differential on groups of generators
and a projection.

The differentials coming from previous crossings can be identified with oppositely
oriented simple discs in the picture, with boundary on ˛ and verticals and containing
one of the points XC , X� and Y . As before, these differentials map between groups of
generators that are related by re-ordering verticals. We have only managed to compute
these differentials explicitly in simple cases, but we expect that there are essentially
only three types of morphisms involved, which depend on the special point XC , X�

or Y that is contained in the corresponding simple disc.

4.4 Examples

In this section we give two example computations. First, to demonstrate the geometric
algorithm we compute the chain groups in the colored HOMFLY complex of the rational
tangle T .3; 1/ with respect to colors .ƒi ; ƒ2/ with i � 2.

Second, we compute the Poincaré polynomial of the slN link homology of the .ƒi ; ƒj /–
colored Hopf link with i > j , reduced with respect to ƒi .

Example 4.13 The following figure shows the intersection points used for generators
of weight 0, 1 and 2 in the colored HOMFLY complex of the rational tangle T .3; 1/:

X� Y XC

D1
D2

X� Y XC

D

A

B

C

X� Y XC

A1

B1

C1

A2

B2

C2

The generators of the colored HOMFLY complex of this tangle are pairs of intersection
points, one taken from each vertical. Here we have 13 generators, which are shown in
Figure 6 together with the expected differentials between them. Vertical and horizontal
arrows indicate differentials coming from the first and second crossings, respectively,
which correspond to the oppositely oriented simple discs containing the special points Y

and X� . The diagonal arrows represent the differential coming from the last crossing;
in the geometric picture this corresponds to sliding a left vertical to the right across Y .
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Figure 6

We apply the rules of Theorem 4.5 in order to find the relative gradings of these
generators. The non-additive part of the q–grading comes from re-ordering verticals, as
shown in Lemma 4.8. For example, there is a shift of q2 from C1A2 to A1C2 . In the
figure we have written the lower q–grading configurations C1A2 , B1A2 and C1B2

below the corresponding other configurations.

The additive part of the grading can be read off from the type of arrows in the figure.
Vertical, horizontal and diagonal arrows induce grading shifts of t=q2 , t=q2s2 and t=q ,
respectively. Here one has to be careful about identifying the generators between
which the simple disc determines the grading shift without non-additive component.
For example, in the lowest row in the figure the left arrow induces a shift of t=q2s2

between C1C2 and A1C2 while the right arrow induces a shift of equal magnitude
between C1A2 and A1A2 .

If we normalize the invariant by requiring D1D2 to lie in grading a0q0s0t0 , then
the other generators have gradings as shown in Table 1. The non-additive part of the
grading is written in bold font.

D A2 C2 B2

A1 q=t q2=t2 q2q4s2=t3 q2q6s2=t4

C1 q3s2=t2 q4s2=t3 q2q6s4=t4 q2q8s4=t5

B1 q5s2=t3 q6s2=t4 q4q8s4=t5 q4q10s4=t6

Table 1

Example 4.14 As a second example we compute the Poincaré polynomial of the slN
link homology of the .ƒi ; ƒj /–colored Hopf link with i > j , reduced with respect
to ƒi . We first consider the colored HOMFLY complex of the tangle T .2; 1/ but
suppress grading shifts.
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Figure 7

The k th row from the bottom in the left diagram in Figure 7 is the complex TUPsŒi; j ; k�.
One way to compute the ƒi–reduced slN link homology of the colored Hopf link
would be to close off the j –colored strand in all webs in the colored HOMFLY complex
on the left side of Figure 7, replace each of these webs with the isomorphic direct sum
of copies of the i–colored strand UPŒi; 0; 0�, compute the induced differentials and
apply Gaussian elimination to cancel all null-homotopic summands. However, it is
much easier to do this one row at a time. For this we close off the j –colored strand in
the knotted webs TUPsŒi; j ; k� in the complex shown in the right column in Figure 7
to get a complex of knotted webs ClTUPsŒi; j ; k�. For each of the knotted webs in this
chain complex, the following isomorphisms hold up to grading shifts:2

ClTUPsŒi; j ; k�D

i

j

j

i

k

Š

i

j

i

k

Š

i

kj �k

i

Š

i

k

j �k

i

Š

�
N � i

k

��
i

j � k

�
i

i

D

�
N � i

k

��
i

j � k

�
UPŒi; 0; 0�:

Thus, each of the complexes ClTUPsŒi; j ; k� is homotopy equivalent to a complex
concentrated in one homological degree only. We next replace each row in the (closed-
off) colored HOMFLY complex by the corresponding 1–term complex computed above.
So far we have disregarded grading shifts, but from the decategorified invariant it is

2Here we assume that the categorical tangle invariants extend to invariants of knotted webs. This is
known for the matrix factorization construction (see Wu [52]) and is expected to extend to the general
setting via the uniqueness results of Cautis [6].
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easy to work out that the remaining terms are concentrated in the highest homological
grading in each row (see Figure 8) and that all differentials thus must be trivial.
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Figure 8

Tracking the q–grading through the above computation or comparing with the decate-
gorified invariant proves the following proposition.

Proposition 4.15 The Poincaré polynomial of slN link homology of the .ƒi ; ƒj /–
colored Hopf link with i > j , reduced with respect to ƒi , is, up to multiplication by a
monomial,

PN
i;j .Hopf; ƒi/D

jX
kD0

t�2kqk.2CN /

�
N � i

k

��
i

j � k

�
:

4.5 Comparison with Bigelow’s and Manolescu’s constructions

In this section we explain similarities between the geometric picture described in
Section 4 and Bigelow’s geometric model for the Jones polynomial [3] (see also earlier
work of Lawrence [33]) and Manolescu’s extension [37] to a model for the genera-
tors of a chain complex computing Seidel–Smith homology (symplectic Khovanov
homology) [46].

Before going into details about the similarities, we want to mention the most visible
differences between the construction in this paper and Bigelow and Manolescu’s
construction. First of all, they work with arbitrary knots and links that are presented
as closures of braids, while our geometric algorithm is (so far) restricted to rational
tangles. Manolescu’s picture computes generators for uncolored (ie ƒ1–colored) sl2
chain complexes and it says very little about differentials. Our picture, on the other
hand, computes invariants for arbitrary fundamental slN representations and at least
some components of the differential can be read off. Note that Bigelow [4] and
Manolescu [38] also have corresponding theories for slN , but whether they are related
to each other as in the sl2 case or to the construction here is unclear.
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We now rephrase our geometric algorithm in the language of [3]. Let

M WDC n fXC;X�;Y g

be C with the three special points XC , X� and Y removed. The weight-h part of the
colored HOMFLY complex of a colored rational tangle can be interpreted as a graded
intersection number of the submanifolds

A WD Symj .˛/ n� and Vh WD w1 � � � �wh �u1 � � � � �uj�h

in Confj .M / WDSymj .M /n�. Here � denotes the appropriate big diagonal. Similarly
as in Bigelow’s setting, the graded intersection number can be described as the algebraic
intersection number of lifts of A and Vh to a covering space specified by a surjective
homomorphism ˆW �1.Confj .M //! Z4 . Relative gradings of intersection points
in this picture can be computed by taking a loop  in Confj .M / that starts at one
intersection point, travels to the second intersection point along A and returns along Vh ,
and the grading difference is ˆ.Œ �/. Such a loop  connecting intersection points
.x1; : : : ;xj / and .y1; : : : ;yj / of A and Vh can be represented by a j –tuple of paths k

starting at xk , proceeding to y�.k/ along ˛ and further to x�.k/ along the �.k/th

vertical, where � 2Sj is a permutation. In this picture, ˆ computes a linear combination
of winding numbers of the paths k around the points XC , X� , Y and around
each other.

The homomorphism ˆ can be constructed in a similar way as in Bigelow [3] and
Manolescu [37] to reproduce exactly the behavior described in Theorem 4.5. As an
example we explain how to count the winding of arcs around XC and around each other.

Example 4.16 Define the two homomorphisms

ˆ1W �1.Confj .M //! �1.Confj .C//D Brj ! Z;

ˆ2W �1.Confj .M //! �1.Confj .C nXC//! �1.ConfjC1.C//D BrjC1! Z:

The first map in each line is induced by inclusion. The second map in the second line
comes from adding the point XC to the unordered j –tuple. The last maps in each
line is the natural abelianization map. Then .ˆ2�ˆ1/=2W �1.Confj .M //! Z is a
homomorphism and it counts the winding of the arcs k around XC , while ˆ1 alone
counts twice the winding of arcs around each other.

An alternative description is that .ˆ2�ˆ1/=2 and ˆ1 count the winding of  around
the divisor XC�Symj�1.C/� Symj .C/ and around the big diagonal �� Symj .C/,
respectively.
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Once one knows how to count winding around the divisors of the special points and
the diagonal, it is easy to assemble the correct ˆW �1.Confj .M //!Z4 . For example,
the contribution coming from winding around the diagonal, which is exactly the non-
additive part q�Q of the q–grading, contributes 2ˆ1 to the q–coordinate of ˆ.

Example 4.17 The main step in the proof of Lemma 4.8 describes a half-twist of arcs
around each other, which causes a shift of q2 .

Example 4.18 An oppositely oriented simple disc intersecting just one other primary
intersection in its interior corresponds to a full twist of arcs around each other and causes
a non-additive q–grading shift of q4 , in agreement with the statement of Theorem 4.5.

Remark 4.19 We require the path  that is used to compute the winding number
around certain divisors to lie in Confj .M /. In particular, the part of  that lies on
Symj .˛/ is required to be disjoint from the diagonal. In the statement of Theorem 4.5
and the interpretation of differentials in the colored HOMFLY complex, on the other
hand, we do use paths  that can have intersections with the diagonal.

The problematic cases are exactly the ones where a simple disc Ds representing a
differential between two generators has an intersection with another primary intersection
along its boundary  D @Ds . Theorem 4.5 tells us there should be a contribution of q2

for each such intersection.

Before we can verify that this contribution comes from winding around the diagonal �,
we have to push  off �. Here (and in the generic case)  only hits the multiplicity-two
part of the diagonal and, hence, we can restrict to the model case Sym2.˛/� Sym2.C/,
where we can explicitly describe the canonical push-off  0 of  . Figure 9 shows the
typical situation of a simple disc Ds (shaded) intersecting another primary intersection
(blue dot) along its boundary.

............................................................................................................................................................................................................................................................................................... ............

Figure 9

Theorem 4.5 tells us that the grading difference of the generators shown on both sides
of the figure consists of a contribution from winding around the special point (red
dot) and a contribution of q2 from the intersection of the simple disc Ds with the
other primary intersection (blue dot). The standard loop  D @Ds is given by moving
the green dot from its position in the left image around the left bend (producing the
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right image) and back along its vertical while keeping the blue dot fixed. The loop 
intersects the diagonal when the two dots coincide.

The canonical push-off  0 , which is disjoint from the diagonal, is given by the following
two arcs. The green dot moves left from its position in the left image and around the
bend to the original position of the blue dot while the blue dot itself moves right (which
produces the right image with colors swapped) and then up along the vertical (which
produces the left image again, but with colors swapped).

By forgetting the special point (red dot), it is easy to see that the arcs representing  0 ,
viewed as a braid in Br2 , are just the braid group generator. Thus ˆ1.

0/ D 1, as
required for the contribution q2 . Also,  0 still winds once around the divisor of the
special point.

5 The color-stable HOMFLY polynomial

This section gives two proofs for Conjecture 1.1 on the decategorified level of polyno-
mial HOMFLY invariants. The first one uses skew Howe duality and tries to stay as
close to the categorified setting as possible. The second proof uses skein theory and
proves Proposition 1.8 for arbitrary links with an unknot component. We define the
color-stable HOMFLY polynomial of a link with an unknot component and prove that
for 2–component links it specializes to the multivariable Alexander polynomial. Finally
we compare the color-stable HOMFLY polynomial with multivariable link invariants
arising from the Lie superalgebras slmjn as described by Geer and Patureau-Mirand [14;
15] and Geer, Patureau-Mirand and Turaev [16].

5.1 First proof

We start by giving a proof for the decategorified Conjecture 1.1 for rational links that
stays as close as possible to the categorified version.

Suppose we are given a .ƒi ; ƒj /–colored rational two-component link that can be
written as the closure of a positive rational tangle with all-upwards boundary orientations.
Then the Poincaré polynomial of this tangle decategorifies by setting t D �1 to a
ZŒa˙1; q˙1; s˙1�–linear combination of webs UPŒi; j ; k�.

The next step is to take the closures of the webs UPŒi; j ; k� and evaluate them to
elements of the ground ring, for example by using relations (2-2) in the slN spider
category. We use this opportunity to demonstrate, as an alternative, the simplification
process described in Section 2.6.
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The closure of UPŒi; j ; k� is the skew Howe image of

E
.j/
3

F
.i/
1

E
.k/
2

F
.k/
2

E
.i/
1

F
.j/
3

1� 2 A PU .sl4/;

where � corresponds to the sequence .N; 0; 0;N /. Using the commutation relations
for Es and Fs and the fact that some weight spaces for the sl4–action are trivial, we
can simplify this expression:3
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In the HOMFLY evaluation we replace
�
NCb

c

�
by�

b

c

�
a
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cY
kD1

aqb�kC1� a�1q�bCk�1

qk � q�k
:

The closure of UPŒi; j ; k� thus evaluates to�
�k

i

�
a

�
j

k
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�
0
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:

In order to get the behavior claimed in Conjecture 1.1 we have to reduce with respect
to the higher color ƒi . On the decategorified level, this just means dividing by

�
0
i

�
a

,
the invariant of the ƒi–colored unknot. We can write the reduced evaluation of the
closure of UPŒi; j ; k� as�

�k

j � k

�
a

�
�i

k

�
a

D

�
�k

j � k

�
a

kY
lD1

as�1q�j�lC1� a�1sqjCl�1

ql � q�l
:

This shows that, in the reduced case, it is not only the coefficients coming from the
grading shifts in the colored HOMFLY complex that depend in a controlled way on the

3For clarity we use as subscript in 1.a;b;c;d/ the sequence .a; b; c; d/ instead of the corresponding
weight � .
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higher color i ; the evaluation of UPŒi; j ; k� does also. More precisely, we have shown
that there exists a three-variable invariant4 of two-component rational links, which
takes values in ZŒa˙1; s˙1�.q/, and for any i � j it specializes to the higher-color
reduction of the .ƒi ; ƒj /–colored HOMFLY polynomial upon setting s D qi�j .

Remark 5.1 The method of computing colored HOMFLY polynomials of 2–bridge
links explained in this subsection in fact provides explicit q–holonomic formulas
in the sense of Garoufalidis [13]. For more details and a Wolfram Mathematica
implementation of this algorithm see Wedrich [50].

5.2 Second proof

A different proof of Conjecture 1.1 on the decategorified level is possible via skein
theory. In fact, this proof works for arbitrary colored links L0 with a ƒi–colored
unknot component U . Let LDL0 nU which we consider to live in a solid torus.

The idea is to compute the colored HOMFLY polynomial of L0 in two steps. First one
evaluates L in the skein of the annulus onto which the solid torus projects. Second
one pairs this again with the ƒi–colored unknot.

Definition 5.2 Let F be an open subset of R2 . Then define S.F / to be the free
ZŒa˙1�.q/–module spanned by closed webs embedded in F , modulo web relations
inside F . S.F / is the HOMFLY skein of F .

If G � F is an inclusion of open subsets of R2 , then there is a canonical homomor-
phism S.G/! S.F / given by interpreting webs as lying in F . The homomorphism
S.F /! S.R2/ is called evaluation and is denoted by h � i.

Examples 5.3 (1) S.R2/ is free of rank 1 over ZŒa˙1�.q/ and is spanned by the
empty diagram.

(2) The skein of the annulus S.A/ has the structure of a commutative algebra, where
multiplication is given by stacking two annuli inside each other.

By projecting a link L lying in F �I onto F and replacing crossings via the formulas
in Section 2.3, L can be regarded as an element of the skein S.F /. Up to multiplication
by a scalar depending on framing, this is well defined.

Lemma 5.4 As a commutative algebra, the skein of the annulus is freely generated
by the set fdj j j 2 Zg, where dj is given by a S jj j–colored longitudinal unknot

4Up to multiplication by a monomial.
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in counterclockwise (clockwise) orientation if j > 0 (j < 0), and d0 is the empty
diagram. Here Sk stands for the one-row Young diagram with k boxes; for slN this
corresponds to the k th symmetric power of the standard representation.

Another free generating set is given by f�j j j 2Zg, where �j is the closure of the jj j–
strand braid �jj j�1 � � � �1 , written in standard braid group generators, with orientation
counterclockwise (clockwise) if j > 0 (j < 0).

Proof The second generating set is due to Turaev [47]. This also shows that S.A/

splits as an algebra into a tensor product S.A/ D S.A/C ˝ S.A/� of isomorphic
algebras which are freely generated by f�j j j 2Ng and f��j j j 2Ng, respectively.
Lukac [35] showed that S.A/˙ are isomorphic to the ring of symmetric functions on
a countably infinite alphabet, with the i th complete (elementary) symmetric function
corresponding to a S i–colored (ƒi–colored) unknot di (ci ) with the appropriate
orientation. See also Aiston [1].

Given an element X of S.A/ and i 2 Z we can get a new element  i.X / of S.A/

by linking X with a meridional ƒi–colored unknot ci .

Lemma 5.5 For i 2 Z there exist algebra homomorphisms ti W S.A/! ZŒa˙1�.q/

given by

ti.X /D
h i.X /i

hcii
:

Proof See Morton and Lukac [41, Sections 1.5 and 1.6].

Recall that we have decomposed L0 into a ƒi–colored unknot U and some remainder L

in a solid torus A� I . By taking a projection of L onto the annulus and applying
the crossing replacement rules, L evaluates to some element of S.A/, which we
denote by �.L/. The colored HOMFLY polynomial of L0 is then h i.�.L//i and
its reduction with respect to color ƒi is ti.�.L//. In order to prove Conjecture 1.1 it
suffices to show that S.A/ has a generating set that behaves well under color shift.

Proposition 5.6 There exist functions pj 2 ZŒa˙1; r˙1�.q/ such that for the generat-
ing set fdj j j 2 Zg we have

ti.dj /D pj .a; r D qi ; q/ for all i � 0:

Proof This follows readily from [41, Lemma 3.1] where for i; j > 0 Morton and
Lukac prove the first equality in the following computation (with different notation):

ti.dj /D hdj i
a� a�1.qj � qj�i C q�i/

a� a�1
D hdj i

a� a�1.qj � qj r�1C r�1/

a� a�1
:
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The right-hand side is really a Laurent polynomial in a because

hdj i D

jj j�1Y
kD0

aq�k � a�1qk

qkC1� q�k�1
;

which is also proved in [41]. The cases for other signs of i or j are similar.

Remark 5.7 Alternatively, one can deduce the statement of the proposition for the
generating set f�j j j 2 Zg from the already established decategorified Conjecture 1.1
for rational links. For this note that ti.�j / is the ƒi–reduced colored HOMFLY
polynomial of the .ƒi ; ƒ1/–colored .2; 2j / torus link.

5.3 The color-stable HOMFLY polynomial and the multivariable Alexan-
der polynomial.

Let L0 DL[U be a link with an unknot component U and a fixed coloring on L.

Definition 5.8 The color-stable HOMFLY polynomial P st.L0;U / 2 ZŒa˙1; r˙1�.q/

of L0 with respect to the unknot component U is the unique element of ZŒa˙1; r˙1�.q/

satisfying
P st.L0;U /.a; r D qi ; q/D ti.L/ for all i � 0:

Theorem 5.9 Let L0DK[U be a two-component link with an unknot component U ,
and suppose K is colored by ƒ1 . Then we have

P st.L0;U /.1;u; v/D .1�u2/�.L0/.u2; v2/;

where �.L0/.x;y/ is the multivariable Alexander polynomial of L0 with U labeled
by x .

We first prove this for rational links and show how the computation of the multivariable
Alexander polynomial ties in with the geometric algorithm.

Lemma 5.10 The theorem is true for rational links L0 .

Proof Actually we prove

.q� q�1/P st.L0;U / jaD1; rDu; qDvD .1� v
2/.1�u2/�.L0/.u2; v2/:

We may assume that L0 is the closure of a rational tangle whose continued fraction
expansion has odd length. Since we work with a .ƒj ; ƒ1/–colored tangle, we only
need one vertical, left or right, in the geometric picture. We assume that the tangle
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has all upward boundary orientation and the colored HOMFLY complex has objects
UPŒj ; 1; 1� and UPŒj ; 1; 0�. The case of the other orientation with objects OPŒj ; 1; 1�
and OPŒj ; 1; 0� is analogous.

In Section 5.2 we have computed the reduced closures of the objects UPŒj ; 1; k�. Their
contributions to the left-hand side of the above equation are computed as follows:

Reduced closure of

(
UPŒj ; 1; 0�

UPŒj ; 1; 1�
D

(�
0
1

�
a

�
�j
0

��
�1
0

�
a

�
�j
1

� ! (
0;

u�1.1�u2/:

Here the arrow indicates multiplication by q� q�1 and subsequent substitution aD 1,
s D u=v , q D v .

Hence, in the geometric algorithm we only need to count intersection points with the
left vertical. Note that because the continued fraction expansion has odd length, the
last twist applied to the diagram was a top twist. Thus the intersection points with
the left vertical are paired up by simple discs and their relative grading is �v2 . We
can replace two paired intersection points by the single intersection point of ˛ with
the real axis along the segment of ˛ that joins the pair. The contribution of such a
double intersection point is thus u�1.1� v2/.1�u2/. The relative gradings of such
double intersection points can be computed from winding numbers of connecting paths
around the special points Y;X�;XC , which count as �v2 , �u2 and �u�2 under the
substitution. Here a connecting path starts at one double intersection point on the real
axis, travels along ˛ to the second double intersection point and returns on the real
axis. This shows that, up to multiplication by a monomial, the geometric algorithm
for the modified colored HOMFLY polynomial outputs .1� u2/.1� v2/P .u2; v2/,
where P is some two-variable polynomial. It remains to show that P D�.L0/.

A classical way of computing the multivariable Alexander polynomial is via Fox
calculus on a presentation of the fundamental group of the link complement. Since our
diagrams are essentially genus-two Heegaard diagrams of the link complement, we
can extract a presentation hu2; v2 j w D 1i for its fundamental group by the following
procedure. First we have to replace the arc ˛ by the embedded circle x̨ which is the
boundary of a small neighborhood of ˛ . Starting from any point on x̨ , the word w
is assembled from letters fu2;u�2; v2; v�2g by appending a letter v˙2 for every
intersection with the segment Œ�2;�1� on the real axis, where the exponent depends on
whether ˛ hits the real axis from above or below, and similarly u˙2 for intersections
with the segment Œ1; 2�. Then the multivariable Alexander polynomial can be extracted
from the presentation by taking the Fox derivative of w with respect to the variable v2

and then dividing by .1�u2/.
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Claim The summands produced by the Fox derivative are in bijection with the in-
tersection points of x̨ with the segment Œ�2;�1� on the real axis and their relative
gradings are determined by the winding of connecting paths around the special points
Y;X�;XC , which count as �v2 , �u2 and �u�2 . The connecting paths run along x̨
from one intersection point to the other and back on the real axis. The proof of this
claim is an exercise for the reader who is familiar with the Fox derivative.

One can further simplify this picture by noting that in our case intersection points
of x̨ with Œ�2;�1� always come in pairs that correspond to an intersection of ˛ with
Œ�2;�1�. Furthermore, these pairs have relative grading �u2 and hence we expect
a factor of .1� u2/ in the result of the Fox derivative — exactly the factor that has
to be canceled in order to get the multivariable Alexander polynomial. This shows
that �.L0/.u2; v2/ can be directly computed by counting intersections of ˛ with
Œ�2;�1�, where relative gradings are computed as winding numbers of connecting
paths around the special points Y;X�;XC , which count as �v2 , �u2 and �u�2 ,
exactly as described by the specialization of the geometric algorithm for the colored
HOMFLY complex. Thus P D�.L0/ and we are done.

Remark 5.11 The statement of the lemma can also be interpreted as saying that the
geometric algorithm in Section 4 computes the link Floer homology of L, because for
rational links it contains exactly as much information as its multivariable Alexander
polynomial. It would be interesting to see if the color-stability of Conjecture 1.1
could be related to link Floer homology of a more general class of links with unknot
components.

Proof of Theorem 5.9 We prove the theorem in two steps. First we compare the skein
relations in the HOMFLY skein of the annulus and in an appropriate Alexander skein
of the annulus. In the second step we use Lemma 5.10 in the case of .2; 2k/ torus
links to compare the two polynomials on a common basis for the skeins.

For the first step, pick a crossing c in a diagram of L0 that does not involve strands
in U and denote by LC , L� and L0 the diagrams which have a positive crossing, a
negative crossing and the oriented resolution of the crossing at position c , respectively.
Because the involved strands are ƒ1–colored, the colored HOMFLY polynomial P

satisfies
aP .LC/� a�1P .L�/D .q� q�1/P .L0/:

After substituting variables aD 1, q D v , s D u=v we get exactly the skein relation
for the multivariable Alexander polynomial for crossings with strands labeled by v2 :

�.LC/��.L�/D .v� v�1/�.L0/:
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From now on we assume that we have made these substitutions in all expressions.

For a link X in the annulus, let �0.X / denote the evaluation of X linked with an
unknot via the skein theory of the multivariable Alexander polynomial, with X labeled
by v2 and the unknot labeled by u2 . By virtue of the identical skein relation in the
annulus, we can write

P st.L0;U /D
X
I2A

aI ti.�I / and �.L/D
X
I2A

aI�
0.�I /

with the same coefficients aI 2 ZŒu˙1; v˙1� and with �I denoting a monomial in
braid closures �i in the annulus.

Lemma 5.12 Let �I D
QnI

kD1
�iI;k . Then �0.�I /D .1�u2/nI�1

QnI

kD1
�0.�iI;k /.

Proof At the expense of perhaps changing the label v2 into v�2 on some compo-
nents �iI;k , we may assume that they are coherently oriented and hence �I can be
written as a braid closure. The multivariable Alexander polynomial of a braid closure
together with its axis can be computed via Theorem 1 of Morton [40]. There �0.�I / is
presented as the characteristic polynomial det.I �u2B.�I // of a matrix B.�I / which
is inductively built from a braid representative for �I . It is easy to see that since �I is
a disjoint union of nI braids, the matrix B.�I / has nI � 1 rows containing a single
entry 1 and 0 elsewhere. Removing all such rows (and the corresponding columns) via
Laplace expansion, we get det.I �u2B.�I //D .1�u2/nI�1 det.I �uB0/, where B0

is of block diagonal form and the blocks are exactly the matrices B.�iI;k /.

Using the lemma we have

.1�u2/�.L0/D .1�u2/
X
I2A

aI�
0.�I /D

X
I2A

aI .1�u2/nI

nIY
kD1

�0.�iI;k /

D

X
I2A

aI

nIY
kD1

.1�u2/�0.�iI;k /D
X
I2A

aI

nIY
kD1

ti.�iI;k /

D

X
I2A

aI ti.�I /D P st.L0;U /:

Here the key step is that

.1�u2/�0.�iI;k /D P st.�iI;k [U;U /D ti.�iI;k /

since �iI;k linked with a meridional unknot is a .2; 2iI;k/ torus link, for which theorem
holds by Lemma 5.10.
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5.4 Comparison with multivariable link invariants from Lie superalge-
bras

Geer, Patureau-Mirand and Turaev [14; 15; 16] define multivariable polynomial link
invariants using modified Reshetikhin–Turaev invariants for the Lie superalgebras slmjn .
We give a brief review of this construction and how it is related to color-stability of
colored HOMFLY polynomials.

Reshetikhin–Turaev slmjn invariants are invariants of (framed) oriented tangles labeled
by irreducible representations of the Lie superalgebra slmjn . They can be defined in a
similar way as described in Section 2.1 by scanning the tangle in generic position from
bottom to top and associating certain maps of slmjn representations to cups, caps and
crossings. While the representation theory of slmjn is richer and more complicated than
the representation theory of slN , it turns out that for most (to be precise: for so-called
typical) colorings, the resulting colored link invariants are trivial. The reason for this is
that the quantum dimensions of these slmjn representations, and thus the invariants of
unknots colored by such representations, are zero.

The solution to this problem, as described in detail in [15], is to cut one component of
the link L open and consider it as an oriented two-ended tangle T� , where � indicates
the representation on the open strand. The Reshetikhin–Turaev invariant of T� is a
multiple x.T�/ Id� of the identity map on the representation �. Here x.T�/ lives in
the ground ring CŒŒh�� Œh�1� and h is related to the familiar variable q by qD exp.h=2/.
We can think of x.T�/ as an invariant of L that is reduced with respect to the opened
link component. Geer and Patureau-Mirand then show that there exist “fake quantum
dimensions” d.�/2CŒŒh�� Œh�1� of representations � that can be used to “fake unreduce”
the invariant in a non-trivial5 way.

Theorem 5.13 [15, Theorem 0.1] The map L 7!F 0.L/ WDd.�/x.T�/ is independent
of the choice of cut component and, hence, is a well-defined framed colored link
invariant.

A great difference between the representation theories of slmjn and slN is that in
the first case isomorphism classes of finite-dimensional irreducible representations
come in continuous families. To be more precise, for slmjn they are indexed by
.d; z/ 2NmCn�2 �C . Supposing that all colors on a link live in the same continuous
family, it turns out that the invariants F 0.L/ change in a very predictable way under
varying these colors in their family.

5As noted earlier, unreducing with respect to actual quantum dimensions produces trivial invariants.
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Theorem 5.14 [15, part of Theorem 0.2] Let L be a framed link with k � 2 com-
ponents in some order, let d 2NmCn�2 and denote by L.z1; : : : ; zk/ the link L with
components colored by the slmjn–representations indexed by .d; zi/.

Then there exists a framing-independent invariant M d
slmjn

.L/ 2 ZŒq˙1; q˙1
1
; : : : ; q˙1

k
�

of L such that (up to renormalization) the identity

F 0.L.z1; : : : ; zk//DM d
slmjn

.L/.q; q1 D qz1 ; : : : ; qk D qzk /

of Laurent series in h holds for all zi such that .d; zi/ are typical representations. Note
that we identify q D exp.h=2/ and qz D exp.zh=2/.

This theorem shows that the modified slmjn Reshetikhin–Turaev invariants have very
strong stability properties under shifting colors with respect to the continuous param-
eters zi . In fact, Geer and Patureau-Mirand show that the color-stability captured in
M d

slmjn
.L/ is determined by the color-stability of specializations of colored HOMFLY

polynomials. In [14, Proposition 3.4] they prove that for certain integer values of zi

the invariant F 0.L.z1; : : : ; zk// agrees up to renormalization with the a D qm�n

specialization of the colored HOMFLY polynomial of L labeled by Young diagrams
that are determined by the pairs .d; zi/; for details see [14, proof of Corollary 3.5].
This together with Theorem 5.14 shows the following proposition.

Proposition 5.15 [14, Corollary 3.5] The multivariable link invariants M d
slmjn

.L/

are determined by and can in principle be computed from aD qm�n specializations of
colored HOMFLY polynomials of L.

We expect that for a link L with an unknot component the invariants M 0
slmj1

.L/ are
closely related to the color-stable HOMFLY polynomial. In the case of slmj1 and
d D 0, the Young diagrams constructed in the proof of Proposition 5.15 represent
exterior powers ƒi .

Corollary 5.16 Let L be a k–component link. Then

M 0
slmj1

.L/.q; q1 D q1Cm�i1 ; : : : ; qk D q1Cm�ik /

agrees with the a D qm�1 specialization of the .ƒi1 ; : : : ; ƒik /–colored HOMFLY
polynomial of L up to renormalization.

The strong color-stability properties described by M d
slmjn

come at the price that (unlike
the color-stable HOMFLY polynomial) these invariants don’t seem to be stable in super-
rank m�n. In particular, we cannot expect colored HOMFLY polynomials of arbitrary
links to be stable under changing color (in a simple way) without specializing aDqm�n ;
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this is already indicated by the decategorification of Conjecture 1.2. However, it is a
very interesting question what information about the large-color behavior of HOMFLY
type invariants of general links can be inferred from the color-stability of related Lie
superalgebra invariants.

Finally, we want to mention another parallel between M 0
slmj1

.L/ and the color-stable
HOMFLY polynomial. Geer and Patureau-Mirand prove that their invariants specialize
to the multivariable Alexander polynomial in a similar way as the color-stable HOMFLY
polynomial; see Theorem 5.9.

Theorem 5.17 [14, Theorem 3] The invariants M 0
slmj1

.L/ of a k–component link L

specialize to the Conway potential function r.L/ 2 Q.t1; : : : ; tk/ of L, which is a
refinement of the multivariable Alexander polynomial:

r.L/.qm
1 ; : : : ; q

m
k /D e

p
�1.m�1/�=2M 0

slmj1
.L/.q D e

p
�1�=m; q1; : : : ; qk/:
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