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Random walk invariants of string links from R–matrices

THOMAS KERLER

YILONG WANG

We show that the exterior powers of the matrix valued random walk invariant of string
links, introduced by Lin, Tian, and Wang, are isomorphic to the graded components
of the tangle functor associated to the Alexander polynomial by Ohtsuki divided
by the zero graded invariant of the functor. Several resulting properties of these
representations of the string link monoids are discussed.
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1 Introduction, definitions, and results

1.1 The Burau representation and tangles

The aim of this article is to relate two generalizations of the Burau representation of
the braid groups to certain types of tangles. Consider the standard presentation of the
braid group in n strands:

(1) Bn D

�
�i ; i D 1; : : : ; n� 1

ˇ̌̌
�i�iC1�i D �iC1�i�iC1; i D 1; : : : ; n� 2

�i�j D �j�i ; ji � j j � 2

�
:

The unreduced Burau representation Bn is defined on the free ZŒt; t�1�–module of
rank n, given by the homomorphism

(2) BnW Bn! End.ZŒt; t�1�n/; �i 7! Bn.�i/D ˇi :

Here the Burau matrices ˇi and their inverses, denoting t D t�1 , are defined as

(3) ˇi D 1i�1˚

�
.1� t/ 1

t 0

�
˚1n�i�1 and ˇ�1

i D 1i�1˚

�
0 t

1 .1� t/

�
˚1n�i�1:

There are various generalizations of the Burau representation from braids to tangles.
To explain these recall first the usual category of oriented tangles, denoted by Tgl ,
whose objects are tuples of signs, � D .�1; : : : ; �n/, writing j�j D n. A morphism
T W �! ı is an equivalence class of oriented tangle diagrams in R�Œ0; 1� with endpoints
f.j ; 0/; j D 1; : : : ; j�jg at the bottom of the diagram and f.j ; 1/; j D 1; : : : ; jıjg at the
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top, so that the orientation is upwards at the j th position if �j DC and downwards if
�j D�. The equivalences are given by isotopies and the usual Reidemeister moves.

We denote by �nD .C; : : : ;C/ the array of length n with all C entries, which implies
that the orientations of all strands at this object (either as source or target) must be
pointing upwards.

1 2

1 2

Figure 1: S W �2! �2 .

A string link is a tangle class T W �n! �n with precisely n interval components, each
of which has one endpoint .i; 0/ at the bottom and the other endpoint .j ; 1/ at the top
of the diagram. See Figure 1 for an example of a string link S W �2! �2 on two strands.
String links form a monoid Str.n/ with respect to the composition in Tgl , so we have
the following inclusions of monoids:

(4) Bn � Str.n/� EndTgl.�
n/:

1.2 Random walk on string link diagrams

In [7], Lin, Tian, and Wang consider a generalization of Bn to Str.n/ that is inspired
by a remark of Vaughan Jones in his seminal paper [4], where he offers a probabilistic
interpretation of the Burau representation. The description there is in terms of a bowling
ball that runs along an arc in a braid diagram following its orientation. At positive
crossings, the ball drops from an overcrossing strand to an undercrossing strand with
probability 1� t and remains on the overcrossing strand with probability t .

The situation is illustrated in Figure 2. An analogous rule is used for negative crossings
in which t is replaced by t D t�1 (see Figure 3), so “probabilities” should rather
be understood as weights whose values are allowed to be outside of the unit interval.
Assuming the pictured strands are the i th and .i C 1/st strands in a braid presentation
on n strands, the Markov transition matrix from the array of probabilities just above
the crossing to one just below is given by the unreduced Burau matrices in (3).
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.1� t/
t

i .i C 1/

Figure 2

The construction in [7] extends the idea of weighted paths along an oriented string link
diagram with the same rule as in Figure 2. As opposed to braid diagrams, it is possible
to encounter loops, and thus infinite numbers of paths, between two endpoints. It is
shown that, for t sufficiently close to 1, the resulting series of weights converge. For
example, the diagram in Figure 1 contains a loop of combined weight wD t.1� t/ and
associated geometric series

P1
kD0w

k D .2� t/�1 . The combined transition matrix in
this example is given as

(5) R2.S/D
1

2�t

�
1 t � 1

1� t 3� t � t

�
:

It is shown in [7] that the resulting transition matrix will always have rational functions
in t as entries. The functorial nature of the construction (see Lemma 3 below) further
implies a homomorphism of monoids,

(6) RnW Str.n/ �! End.Q.t; t�1/n/;

which restricts to Bn on the braid group Bn . The main result of this paper will also
extend to the exterior powers of this representation

(7)
V

kRnW Str.n/! End
�VkQ.t; t�1/n

�
;V

kRn.T /.x1 ^ � � � ^xk/D .Rn.T /x1/^ � � � ^ .Rn.T /xk/:

The construction of the random walk invariant in [7] has been applied to studies of the
Jones polynomial and its relation to the Alexander polynomial in [8; 2] and has been
generalized in [1; 6; 13].

1.3 Functorial invariants of tangles

A second generalization to the entire category of oriented tangles is given in Ohtsuki’s
book [10, Section 3.3] as operator invariants of tangles associated to the Alexander
polynomial. The matrices assigned to generating tangles there have entries in the ring
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of Laurent polynomials in t˙1=2 for a suitable basis. The construction can thus be
summarized as a functor,

(8) VW Tgl �! ZŒt1=2; t�1=2��Fmod;

from the tangle category to the category of free ZŒt1=2; t�1=2�–modules. The assign-
ment on objects is given by V.�/ D V �1 ˝ � � � ˝ V �n , where V C D V is the free
ZŒt1=2; t�1=2� module of rank 2 generated by elements e0 and e1 , and V � D V � is
the dual module with dual basis fe�

0
; e�

1
g. In fact, V is easily seen to be a tensor functor

with respect to the tensor product on Tgl defined by the usual juxtaposition.

As described in [10, Section 4.5], the tangle functor may be derived from the rep-
resentation theory of the quantum group U�1.sl2/ following the methods originally
introduced by Reshetikhin and Turaev in [12]. One implication of this observation,
which can also be checked directly, is that for a tangle T the operator V.T / preserves
a natural grading on the modules induced, for example, by deg.e0/ D deg.e�

0
/ D 0,

deg.e1/D 1, and deg.e�
1
/D�1. For example, the module assigned to the object of

length n with all positive orientations decomposes, as free ZŒt1=2; t�1=2�–modules,
into its invariant graded components as follows:

(9) V.�n/D V ˝n
D

nM
jD0

Wn;j with dim.Wn;j /D

�
n

j

�
:

A consequence of this decomposition is that the representation of Str.n/ on V.�n/
implied by the inclusion in (4) yields a series of representations as follows:

(10) Wn;j W Str.n/ �! End.Wn;j /W T 7! V.T /jWn;j
:

We note that Wn;0 is of rank one so we may write Wn;0.T / 2ZŒt1=2; t�1=2� as a well-
defined polynomial-valued invariant. We will see in Lemma 9 that its specialization at
t D 1 is one for all string links, so Wn;0.T /¤ 0 also as an element in ZŒt1=2; t�1=2�.
We can therefore define representations of the string monoid as follows:

(11) Wn;k=0W Str.n/! End.Q.t1=2; t�1=2/n/; T 7!
1

Wn;0.T /
Wn;k.T /:

It is shown in [10] that the restriction of the n–dimensional representation Wn;1W Bn!

GL.Wn;1/ to the braid group is, up to a universal rescaling of generators, equivalent to
the unreduced Burau representation Bn from (2).

An closely related approach of constructing invariants of tangles associated to the
Burau representation and Alexander polynomial makes use of the quantum groups
U�.gl.1j1//; see for example [5; 9; 15].

Algebraic & Geometric Topology, Volume 16 (2016)



Random walk invariants of string links from R–matrices 573

1.4 Statement of main result

In view of the dominance of algebraically constructed functorial invariants it is natural to
ask whether the representation Rn is really a special case of these. Among the obstacles
in an identification is the peculiar analytic flavor of the construction involving geometric
series. Particularly, the role of the denominators that are obtained by summing these
series (as, for example, .2� t/ in (5)) are not obvious, and their algebraic or topological
meaning is not at all immediate from the construction.

The main result of this article is to provide such algebraic interpretations in terms of an
equivalence of string link representations as stated in the following theorem.

Theorem 1 The representations
V

kRn and Wn;k=0 of the string link monoid Str.n/
are isomorphic to each other.

We note that the isomorphism will consist only of rescaling or reordering of basis
vectors. In the case of k D 1, we obtain a direct formula for the string link invariant,

(12) I�1
n Rn.T /In D

1

Wn;0.T /
Wn;1.T /;

where In is given as a bijection of canonical basis vectors up to multiplication with
units of ZŒt1=2; t�1=2�. The denominator occurring in the random walk construction
can thus also be interpreted as the zero-graded part of Ohtsuki’s functor. Additional
interpretations are suggested in Section 4.4.

Theorem 1 trivially holds true in the case nD 1. Particularly, let T W �1! �1 be any
1–1–tangle and denote by L its closure. We note that [10, Theorem 3.12] implies
V.T /D�L.t/ � idV , where �L.t/ is the Alexander polynomial of the closed link L.
In our notation, this means W1;0.T /DW1;1.T /D�L.t/, so we find W1;1=0.T /D 1

for the right-hand side of (12). Clearly, we also have R1.T /D 1 for any string link
T W �1! �1 , since a ball entering at the bottom of a diagram for T will have to emerge
at the top of the diagram with probability one.

In the case of the basic string link S W �2! �2 introduced in Figure 1, we will also
verify (12) and Theorem 1 in Section 4.3. There we explicitly compute the Ohtsuki
Functor V.S/ using standard functorial methods and decompositions. In (76), we
obtain W2;0.S/D .2� t/ as well as

(13) W2;1.S/D

�
3� t � t t�1=2� t1=2

t�1=2� t1=2 1

�
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in the basis fe0˝ e1; e1˝ e0g. Relation (12) is now easily verified using (5) as well as
the basis transformation

(14) I2 D

�
0 t1=2

t 0

�
:

An immediate implication of Theorem 1 is that Rn is dominated by finite type invariants
since it is dominated by V . This fact has been proved by more indirect means in [7].
Another consequence of Theorem 1 is the following.

Corollary 2 Suppose T 2 Str.n/. Then Wn;0.T /
k�1 divides all k � k minors of

Wn;1.T / in ZŒt1=2; t�1=2�.

1.5 Overview of paper

The original random walk construction of Rn from [7] is reviewed and formalized
in Section 2, where it is also applied to the situation of a string link T given as the
closure of a braid b . Particularly, we obtain in Proposition 7 an expression for Rn.T /

in terms of blocks of the Burau matrix for b . A consequence, stated in Corollary 8, is
that Rn.T / admits an equilibrium state that is independent of T (and thus contains no
information about T ).

In Section 3, we review Ohtsuki’s construction of the tangle functor V as well as
the equivalence given in [10] of the implied braid representation with the exterior
algebra extension of the unreduced Burau representation. The quantum trace, relevant
to evaluating braid closures, is related to the natural supertrace on exterior algebras in
Section 3.3. In addition, various grading and equivariance properties are discussed.

Section 4.3 contains the proofs for Theorem 1 and Corollary 2 after introducing several
technical lemmas on relating traces, evaluations on top forms, and Schur complements
of block matrices in Sections 4.1 and 4.2. Finally, we present additional points of view
and possible further questions of study in Section 4.4.

Acknowledgment The first author thanks Craig Jackson for discussions and calcula-
tions on an early version of the conjecture that are documented in [3].

2 Random walk invariants of tangles

After a brief review of the random walk construction of [7], the main result of this
section is a formula for the representation Rn , in Proposition 7, in terms of block
matrices of a Markov presentation of the string link.
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2.1 Weighted path construction

We will review here the construction of [7], formalizing the intuition in terms of
random walks given in the introduction. A string link T 2 Str.n/ is an oriented tangle
T W �n! �n for which each component is an interval that starts at a bottom point .i; 0/
and end at a top point .�T .i/; 1/ with �T 2 Sn .

An admissible path P in a diagram of T is a path following the orientation of T at
each piece of the diagram. At a crossing, the path must continue its direction on T if
it is along the undercrossing piece of the crossing. If the path approaches a crossing
along the overcrossing piece, it may either continue in the same direction or continue
on the undercrossing piece in the respective direction. In addition, an admissible path
needs to start at a bottom point .i; 0/ and end at a top point .j ; 1/. Thus, locally, a
path near a crossing may look like one of the dashed lines in Figures 2 or 3.

For braids, all admissible paths need to travel upwards so that they will pass through
each crossing at most once. However, for a string link, such as the one in Figure 1,
admissible paths may loop through a crossing arbitrarily often, so there are infinitely
many admissible paths.

t .1� t/

Figure 3

To an admissible path P that passes through M crossings (counting repetitions) we
associate a weight w.P / D w1 � � � � �wM , where wk D 1 if P approaches the k th

crossing along an undercrossing piece. If P approaches the k th crossing along an
overcrossing piece and the crossing is positive as in Figure 2, we set wk D t if P is
continuing in the same direction and wk D 1� t if P continues on the undercrossing
piece. For a negative crossing as in Figure 3, we assign wkD t D t�1 if P is continuing
in the same direction and wk D 1� t D 1� t�1 otherwise.

We use these to assign to the diagram of a string link T W �n ! �n an n� n matrix
Rn.T / whose .i; j / entry is given by

(15) Rn.T /j ;i D
X

P2Pj
i

w.P / 2Q.t; t�1/:
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Here, the summation is over the set Pj
i of all admissible paths in a diagram of T from

the point .i; 0/ to .j ; 1/. The entry is 0 if there is no such path.

It is shown in [7] that, for t sufficiently close to 1, the summations (15) over all
paths converge, indeed, to rational expressions in t , and that these expressions are not
dependent on the diagram chosen to present a particular T .

Lemma 3 The assignment in (15) has the following basic properties:

(1) The assignment T 7! Rn.T / obeys Rn.T /Rn.S/ D Rn.T ı S/, where the
composite T ıS in Tgl is given by stacking T on top of S .

(2) When restricted to the braid group Bn , the assignment reduces to the Burau
representation as defined in (2).

(3) Specializing Rn.T / to t D 1, we obtain the matrix of the permutation �T

associated to T , that is, Rn.T /j ;i D ıj ;�T .i/ .

Proof For the first part, note that, at the boundary between T and S in T ı S ,
all orientations are upwards, so no admissible path can return from T to S . Thus,
any admissible path QW i ! k in T ı S is the composite of a path P W i ! j in S

and a path RW j ! k in T for some j . Also, the weight is clearly multiplicative:
w.Q/ D w.R/w.P /. Summation over all R, P , and j thus yields the respective
matrix element for Rn.T ıS/, which is thus the matrix product as desired.

As described in the introduction, the assignment coincides with the Burau representation
on the generators, so, by the properties above, the two representations coincide on all
elements on Bn .

For the third claim, notice that all paths that change direction will have weight zero and
may thus be discarded. For given indices, the remaining paths that run strictly along a
tangle component (preserving direction at every crossing) will have weight one.

2.2 Braid closures and Burau matrix blocks

Given a braid b 2 BnCm thought of as an isomorphism on �nCm , we can construct a
tangle T W �n! �n by closing the last m strands by loops as indicated in Figure 4. The
following lemma is a nearly straightforward generalization of Alexander’s theorem for
links with some additional attention given to orientations at the end points. A respective
generalization of the Markov theorem also holds, but is not needed here, since we are
only concerned with the comparison, rather than the construction, of invariants.

Lemma 4 Every oriented tangle T W �n! �n is given as the partial closure of a braid
b 2 BnCm for some m (as in Figure 4).
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T D b m O
L

n

: : :

: : :

: : :

Figure 4: Markov presentation.

Proof Most of the proof is nearly verbatim the same as, for example, the one in [11,
Section 6.5]. The diagram is assumed to be polygonal with vertical endpoints and a
rotation point O to the right of the diagram at midheight. We may assume that no
line segments are in radial direction from O and, using subdivision, that each segment
has at most one crossing point. Thus each segment is either in clockwise or counter-
clockwise direction around O . The Alexander trick is applied to every line segment in
counterclockwise direction as depicted in [11, Figure 6.4], depending on the orientation
of a possible crossing. As a result, all segments will be in clockwise direction.

Observe that the line segments at the top and bottom end points are already in clockwise
direction, so they are not affected by the algorithm. In the resulting tangle diagram, we
will have m segments intersecting the horizontal line L as indicated in Figure 4. Each
of these segments can be arranged to be vertical and, thus, oriented downwards. To
these we apply the cut and stretch process described in [11, Figure 6.3]. As a result,
segments at all crossings are oriented upwards and to the left of O , so we obtain the
desired braid closure presentation.

For a given tangle T W �n! �n that is the closure of a braid b 2 BnCm in the above
fashion, consider the block form of the .nCm/� .nCm/ Burau matrix associated to
b and its specialization at t D 1:

(16) Bn.b/D

�
X Y

Z Q

�
and �b D Bn.b/jtD1 D

�
X Y

Z Q

�
:

Here, X is an n � n matrix and Q is an m �m matrix, each with coefficients in
ZŒt; t�1�. The dimensions of the matrices X , Y , Z , and Q are the same, but all
matrix entries are either 0 or 1.
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Lemma 5 Suppose T W �n ! �n is a tangle that is the closure of a braid b 2 BnCm

and that has associated matrices as in (16). Then T is a string link if and only if Q

is nilpotent.

Proof We note first that, since Q is the block of a permutation matrix �b , it has at
most one 1 in each row and each column and 0 for all other entries. That is, it is
the incidence matrix of an oriented graph IQ with each vertex having at most one
incoming and one outgoing edge. Clearly, the components of such a graph are either
oriented intervals or oriented circles. Thus, by reordering the basis, the matrix can be
brought into a block diagonal form with two types of blocks. The first, corresponding
to interval components of IQ , are nilpotent Jordan blocks given by square matrices
N with Ni;j D ıj ;iC1 . The second type, for the circle components, are cyclic k � k

matrices C with Ci;j D 1 if j � i C 1 mod k and Ci;j D 0 otherwise. Hence, Q is
nilpotent if and only if there are no cyclic blocks.

Consider first a matrix block of the first nilpotent type N. Denoting the canonical
basis fej W j D 1; : : : ; nCmg, we have, for some p and q with n< p < q � nCm,
that �bes DNes D es�1 for s D pC 1; : : : ; q . Since �b encodes which points at the
bottom of b are connected by strands to which points at the top of b , we find that the
arcs at positions p through q are consecutively connected to each other by intervals in
b . They thus form one interval J in T that is starting at the qth position at the top of b ,
and ending at the pth position at the bottom of b , and intersecting L in q�pC1 arcs.
Since N , and thus Q, has only 0 entries in the pth column, we must have a 1 entry in
the pth column for Y in some k th row (with k � n), which means J is connected to
the k th top point of the diagram for T . Similarly, since N, and thus Q, has only 0

entries in the qth row, Z must have a 1 entry in the qth row in some l th column, so J

must be connected to the l th start point at the bottom of the tangle diagram.

Thus, if all matrix blocks of Q are of nilpotent type, the components of all closing
arcs are connected to top and bottom points of the tangle diagram. Components of
T that are disjoint from closing arcs are always oriented upwards and thus also must
connect to top and bottom points of the diagram. Thus, if Q is nilpotent, T is indeed
a string link.

Conversely, suppose Q contains a cyclic block with �bes D Ces D es�1 for s D

pC 1; : : : ; q and Cep D eq . Then the arcs connected at positions p through q are
again consecutively connected by intervals of b into one component, but now the ends
of the component are also connected by an interval in b forming a closed component
of T . However, closed components are not allowed for a string link.
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2.3 Block matrix formula for string links

The following consequence of nilpotency will be useful to control geometric series
occurring in the random walk picture.

Lemma 6 Suppose Q is an m�m matrix that depends continuously on a real (or
complex) parameter t in a vicinity of t D 1. Assume also that the specialization Q at
t D 1 is nilpotent. Then, for any d > 0, there exist an " > 0 and a C > 0 such that, for
all t with jt � 1j< " and all integers N > 0, we have

(17) kQN
k � CdN :

Proof Assume that Q is continuous for t with jt � 1j � "1 , and let M > d be an
upper bound of kQk for these t . Now since Qm D 0 by assumption, we have that
kQmk is a continuous function vanishing at 0, so there is an " 2 .0; "1/ such that
kQmk < dm whenever jt � 1j < ". Writing N D cmC r with r D 0; : : : ;m � 1,
we thus have kQN k D kQr Qmck � kQkrkQmkc �M r dmc D .M=d/r dN � CdN ,
where C D .M=d/m�1 .

In the proposition below, we establish a relation between the blocks of the Burau
representation of a braid and the random walk invariant of the string link obtained by
closing the same braid.

Proposition 7 Suppose T 2 Str.n/ is a string link obtained as the closure of a braid
b 2 BnCm , and let X , Y , Z , and Q be the matrix blocks of Bn.b/ as in (16). Then
.1�Q/ is invertible over Q.t; t�1/, and we have

(18) Rn.T /DX CY .1�Q/�1Z:

Proof We first note that, for D.t/ D det.1 �Q/, we have D.1/ D 1 since Q is
nilpotent, so D.t/ ¤ 0, and .1�Q/ is indeed invertible over Q.t; t�1/. Thus, the
expression on the right side of (18) is always well defined.

In order to evaluate Rn.T /ji , we partition the set of admissible paths Pj
i further. Note

that every path P 2 Pj
i is characterized by how often and in which order it will pass

through the m closing arcs attached to positions nC 1 through nCm of b as in
Figure 4. Denote by Pj

i .i1 : : : ik/ the set of admissible paths that pass through arcs in
positions i1; : : : ; ik 2 fnC 1; : : : ; nCmg in this order (and with repetitions allowed).
Denote also by Mt

s the set of admissible paths in b that start at the sth position at the
bottom of b and end at the t th position at the top of b . Then it is clear that each path
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in the former is put together in a unique fashion by pieces from the latter sets, yielding
a natural bijection as follows:

(19) Pj
i .i1 : : : ik/ŠMj

ik
�Mik

ik�1
� � � � �Mi2

i1
�Mi1

i :

Special cases are Pj
i .i1/DMj

i1
�Mi1

i for k D 1 and Pj
i .∅/DMj

i for k D 0. For
k � 1, we compute, using multiplicative property of weights of composed strands,
(20) X

P2Pj
i
.i1:::ik/

w.P /D
X

Pk2M
j

ik
;:::;P12M

i2
i1
;P02M

i1
i

w.Pk/ � � �w.P1/w.P0/

D

� X
Pk2M

j

ik

w.Pk/

�
� � �

� X
P12M

i2
i1

w.P1/

�� X
P02M

i1
i

w.P0/

�
(by Lemma 3 (2)) D Bn.b/jik

� � �Bn.b/i2i1
Bn.b/i1i

(using block form) D Yjik
� � �Qi2i1

Zi1i :

The set of admissible paths Pj
i Œk� from .i; 0/ to .j ; 1/ that intersect L exactly k times

is the union of all Pj
i .i1 : : : ik/ for fixed i , j , and k . Hence, for k � 1, from (20) and

by summation over all intermediate indices i1; : : : ; ik , we obtain

(21)
X

P2Pj
i
Œk�

w.P /D .YQk�1Z/ji :

In the case k D 0, we have Pj
i Œ0�DMj

i , so

(22)
X

P2Pj
i
Œ0�

w.P /DXji :

Summing terms in (21) and (22), we thus obtain

(23)
X

P2Pj
i
;jP\Lj�N

w.P /D

�
X CY

�N�1X
rD0

Qr

�
Z

�
ji

:

Given that T is a string link, we know by Lemma 5 that Q specializes to a nilpotent
matrix at t D 1, so we can apply Lemma 6. Thus, if we choose any d < 1 in the
latter lemma, the geometric series in (23) will converge, as N !1 for t in some
"–vicinity of 1, to the right hand side expression of (18). This has to coincide with
the rational function limit asserted in [7, Theorem A]. By uniqueness of meromorphic
continuations, we thus have the desired equality as rational functions for all t .
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We conclude with an observation related to the initial interpretation of Rn.T / as
a stochastic matrix (at least for positive string links), namely that there are right
and left eigenvectors independent of T . To this end, we denote the n–dimensional
row vector en D .1; : : : ; 1/ and let vn be the n–dimensional column vector with
vT

n D .1; t; : : : ; t
n�1/.

Corollary 8 For any string link T 2 Str.n/, we have

(24) enRn.T /D en and Rn.T /vn D vn:

Proof We first note that (24) holds for braids since en and vn are easily verified to
be eigenvectors for the braid generators in (1). In particular, for a braid b 2 BnCm

whose m–closure is T , we have enCmBn.b/D enCm and Bn.b/vnCmD vnCm . Since
enCmD .en; em/, the former implies enXCemZD en and enY CemQD em , which
can also be written as enY D em.1�Q/. Using (18), we find

enRn.T /D enX C enY .1�Q/�1Z

D enX C em.1�Q/.1�Q/�1Z D enX C emZ D en:

A similar calculation, again using Proposition 7, shows that vn is a right eigenvector.

The fact that en is a left eigenvector means that all column sums of Rn.T / are one,
supplementing a formal proof to the intuition for this fact provided in [7]. Assuming
that T is a positive string link and t 2 Œ0; 1� so that all entries in Rn.T / are nonnegative,
we thus have that Rn.T / is indeed a stochastic matrix. After suitable renormalization,
the positive eigenvector vn thus represents an equilibrium state,

pn D
1

hen; vni
vn D .p1; : : : ;pn/

T ;

with probability of finding a ball in j th position given by pj D tj .1� t/=.1� tn/. If
T is, in addition, nonseparable and t 2 .0; 1/, this is the unique equilibrium; see [7].

Since the stationary state p is independent of T , it clearly contains no information
about T , answering [7, Remark (4)] in the negative. An interpretation of these right
and left eigenvectors in terms of the representation theory of U�1.sl2/ is given in
Section 4.4.

3 Tangle functors and exterior algebras

3.1 Tangle functor associated to the Alexander polynomial

In this section we review, with slight variations, Ohtsuki’s description in [10] of the
tangle functor in (9), which is associated to the Alexander polynomial and generalizes
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the Burau representation. The construction is based in Turaev’s set of relations for R–
matrices identified in [14], which imply the extension to a functor on oriented tangles,
as stated in [10, Theorem 3.7]. The R–matrix associated in [10] to the Alexander
polynomial is given as an endomorphism on V ˝V , where V is the free ZŒt1=2; t�1=2�

module with generators e0 and e1 . In the basis fe0˝ e0; e0˝ e1; e1˝ e0; e1˝ e1g, it
has the form

(25) RD

2664
t�1=2 0 0 0

0 0 1 0

0 1 t�1=2� t1=2 0

0 0 0 �t1=2

3775 :
This R–matrix implements a representation of  nW Bn ! End.V ˝n/ in the usual
manner (see [10, (2.1)]), so  n.b/ coincides with V.b/ for a braid b 2 Bn .

We note that our convention for orientations is the opposite of that in [10], where
downwards arrows are considered positive orientations. However, diagrams in [10]
there are easily translated to our convention by simply reversing all arrows.

As already indicated in Section 1.3 of the introduction, the tangle functor preserves a
natural grading on the associated vector spaces which can be expressed more formally
as follows. Specifically, define an endomorphism �.�/ on the module V.�/D V �1 ˝

� � �˝V �n acting diagonally in the natural basis by

(26) �.�/.e
�1

i1
˝ � � �˝ e

�n

in
/D

� nX
sD1

�sis

�
e
�1

i1
˝ � � �˝ e

�n

in
:

Here we use the convention eCj D ej and e�j D e�j for basis vectors of V C D V and
V � D V �, respectively. The eigenspaces of �.�/ are thus the graded components of
V.�/. It is readily checked that the morphism in (26) gives, in fact, rise to a natural
transformation �W V �

�!V .

In the case when all signs are positive, we denote further �˝n WD �.�
n/ 2 End.V ˝n/,

which has eigenvalue k D jfs W is D 1gj on ei1
˝ � � �˝ ein

. The eigenspace

(27) Wn;k D ker.�˝n � k1/

is thus the k –graded component of rank
�

n
k

�
in V ˝n (as noted in (9)) and is invariant

under the braid group action.

Observe also that the R–matrix in (25) specializes for t D 1 to a signed permutation
given by R.ei ˝ ej /D .�1/ij ej ˝ ei , so, in particular, RDR�1 . The latter implies
that, in this case, crossings of a tangle T can be changed arbitrarily without changing
V.T /, so we may assume T to be a braid. Hence, V.T / is a composition of signed
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permutations. Moreover, on Wn;0 D he
˝n
0
i, all R act as the identity at t D 1, which

implies the following statement.

Lemma 9 The endomorphism Wn;k.T / reduces to signed permutations on the canon-
ical basis in the specialization t D 1. In particular, Wn;0.T /D 1 at t D 1.

Another useful property of the tangle functor is its equivariance with respect to the
U�1.sl2/ action given in [10]. In the particular case of a tangle T W �n ! �n , this
property implies that V.T / 2 End.V ˝n/ commutes with operators

(28) h˝n
D tn=2.�1/�

˝
n ; where hD t1=2

�
1 0

0 �1

�
;

as well as

(29) zEn D

nX
iD1

1˝i�1
˝

�
0 1

0 0

�
˝ .h�1/˝n�i ; zFn D

nX
iD1

h˝i�1
˝

�
0 0

1 0

�
˝ 1˝n�i :

The operators in (28) and (29) describe the actions of n–fold coproducts of rescaled
generators of U�1.sl2/, and they fulfill basic relations. For example, h˝n anticommutes
with both zEn and zFn , and Œ zEn; zFn�D .t

1=2� t�1=2/�1.h˝n� .h�1/˝n/.

Functoriality also implies that the operator invariant of a tangle T W �n! �n is given
by the partial quantum trace over the invariant for a braid b 2 BnCm if T is given
as the closure of b in the sense of Figure 4. More precisely, for an endomorphism
f 2 End.V ˝n/, define its quantum trace in terms of the canonical trace as follows:

(30) Trn.f /D traceV˝n.h˝nf /:

It follows from the evaluations and coevaluations associated to extrema in [10, Sec-
tion 3.3] (again with reversed orientation convention) that closing off a right most
strand of a tangle diagram with an arc corresponds to applying Tr1 to contract the
respective indices of the associated operator. Iterating the process, we obtain, for the
closure T of a braid b as above,

(31) V.T /D id˝n
˝Trm.V.b//;

where we suppress notation for the natural isomorphism

End.V ˝nCm/Š End.V ˝n/˝End.V ˝n/:
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3.2 Isomorphisms with exterior algebra representations

In this section we outline, again with some variations in conventions and normalizations,
the equivalence of the braid representation  n obtained from V and the exterior algebra
extension of the Burau representation given in [10, Appendix C].

We denote by Mn the free ZŒt1=2; t�1=2�–module with basis fv1; : : : ; vng and by
BnW Bn ! End.Mn/ the braid group representation as given in (2) and (3). The
extension to the exterior algebra is thus

(32)
V
�BnW Bn! End

�V�
Mn

�
; b 7!

V
�Bn.b/:

The action is clearly also graded with invariant submodules
V

k
Mn . As before, it is

useful to encode the grading as an operator on
V
�
Mn defined by

(33) �^n .!/D k! for ! 2
V

k
Mn:

This allows us to define, similar to the quantum trace above, a supertrace strn on
morphisms f 2 End

�V�
Mn

�
by

(34) strn.f /D traceV�
Mn
..�1/�

^
n f /:

Analogous to [10, (C.3)], we next define, for each n, an isomorphism InW V
˝n !V

�
Mn by induction as

(35)
InW V

˝n
V
�
Mn�1˝V

V
�
Mn;

˛0˝ e0C˛1˝ e1 ˛0C tn=2˛1 ^ vn:

In�1˝ idV

Some immediate properties of these isomorphisms implied by (35) include that they
preserve the respective gradings, that is,

(36) In�
˝
n D �

^
n In;

and that they factor, up to scaling, with respect to products of spaces in the sense of
the following commutative diagram.

(37)

V ˝nCm V ˝n˝V ˝m

V
�
MnCm

V
�
.Mn˚Mm/

V
�
Mn˝

V
�
Mm

InCm In˝ t.n=2/�^m Im

Here, double lines indicate obvious canonical isomorphisms, and the factor tn=2�^m

stems from the shift in the basis labeling for MnCm ŠMn˚Mm .
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In order to state the equivalence of braid group representations, we also consider the
representation y nW Bn! End.V ˝n/ obtained from the rescaled R–matrix yRD t1=2R

with R as in (25). It is related to the original representation by

(38) y n.b/D t .1=2/$.b/ n.b/D t .1=2/$.b/V.b/;

where $.b/ is the writhe of b given by the number of positive crossing minus the
number of negative crossings of b .

The following lemma is essentially identical to [10, Lemma C.1] and is verified by
direct computation using (35) and (37).

Lemma 10 [10] The isomorphisms defined in (35) provide an equivalence between
the representations  n and

V
�Bn of Bn . That is, for any b2Bn , we have the following

commutative diagram.

(39)

V ˝n

V ˝n

V
�
Mn

V
�
Mn

In

In

y n.b/
V
�Bn.b/

Moreover, all isomorphisms preserve gradings, so (39) also holds when restricted to
subrepresentations Wn;k and

V
k
Mn instead of V ˝n and

V
�
Mn .

3.3 Relations between traces

The aim of this section is to replace the quantum trace formula for braid closures (31)
by traces over exterior algebras and thus reduce the proof of Theorem 1 to the exterior
algebra of the Burau representation. We begin with notation for the partial supertrace
given by the following composite of natural isomorphisms and strn as in (34):
(40)

StrnCm
n W End

�V�
MnCm

�
D End

�V�
Mn˝

V
�
Mm

�
D End

�V�
Mn

�
˝End

�V�
Mm

� id˝strm
�����! End

�V�
Mn

�
:

Moreover, for an endomorphism f 2 End
�V�

Mn

�
, we denote the conjugate

(41) f I
D I�1

n f In 2 End.V ˝n/:

The explicit relation between supertrace and quantum trace is stated in this terminology
in the next lemma.
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Lemma 11 Suppose f 2 End
�V�

MnCm

�
. Then

(42) id˝Trm.f
I/D tm=2StrmCn

n .f /I:

Proof By linearity, we may assume that f D a ˝ b with a 2 End
�V�

Mn

�
and

b 2 End
�V�

Mm

�
modulo the isomorphism indicated in (40). Using (37), we thus find

f I
D I�1

nCmf InCm D I�1
n aIn˝I�1

m t�.n=2/�
^
mbt .n=2/�

^
mIm;

so we find for the partial quantum trace

(43) id˝Trm.f
I/D I�1

n aIn � traceV˝m.h˝mI�1
m t�.n=2/�

^
mbt .n=2/�

^
mIm/

D aI
� traceV�

Mm
.Pb/:

In the last step, we use cylicity of the canonical trace to combine the isomorphisms
appearing in the isomorphism P , which is given and evaluated as follows:

(44) P D t .n=2/�
^
mImh˝mI�1

m t�.n=2/�
^
m

.by (28)/ D tm=2t .n=2/�
^
mIm.�1/�

˝
m I�1

m t�.n=2/�
^
m

.by (36)/ D tm=2t .n=2/�
^
m.�1/�

^
m t�.n=2/�

^
m

D tm=2.�1/�
^
m :

On the other hand, we have StrnCm
n .f /D a � strm.b/D a � traceV�

Mm
..�1/�

^
mb/ by

definitions in (34) and (40), from which (42) readily follows.

From the traces’ equivalence, we can now compute the tangle functor V on string links
from the Burau representation.

Corollary 12 Suppose T W �n! �n is a string link presented as the closure of a braid
b 2 BnCm . Then

(45) V.T /D t .1=2/.mC$.b// �StrnCm
n

�V�Bn.b/
�I
:

Proof The proof is a direct computation combining previous results:

Right-hand side of (45)D t .1=2/$.b/tm=2
�StrnCm

n

�V�Bn.b/
�I(46)

(by Lemma 11) D t .1=2/$.b/ id˝Trm

�V�Bn.b/
I
�

(by Lemma 10) D t .1=2/$.b/ id˝Trm.y nCm.b//

(by (38)) D id˝Trm. nCm.b//D id˝Trm.V.b//
(by (31)) D V.T /:
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Note that Corollary 12 not only implies that the maps StrnCm
n

�V�Bn.b/
�

preserve the
natural grading, but also that these operators commute with the actions of the conjugates
MEn D In

zEnI�1
n and MFn D In

zFnI�1
n of the operators in (29). In fact, similar to [10,

Lemma C.3], we have

(47) MFn˛ D t�1=2vn ^˛

for any ˛ 2
V
�
Mn and vn as in Corollary 8. In order to find a respective expression for

MEn , we define �j W
V

k
Mn!

V
k�1

Mn by �j .˛/D 0 and �j .˛ ^ vj /D ˛ , where
˛ D vi1

^ � � � ^ vis
with j 62 fi1; : : : ; isg. A basic calculation with forms then yields

(48) MEn D t�n=2
nX

jD1

�j :

For a string link T given as the closure of a braid b , we denote the restriction of the
operator to degree k forms as

(49) Yn;k.T; b/D StrnCm
n

�V�Bn.b/
�ˇ̌Vk

Mn

:

This corresponds, via conjugation by In , to the restrictions defined in (10), so we have
from (45) that Wn;k.T /D t .1=2/.mC$.b// �Yn;k.T; b/

I . Let us also define

(50) Yn;k=0.T; b/D
1

Yn;0.T; b/
Yn;k.T; b/:

Canceling the factors, we thus find that

(51) Wn;k=0.T /D Yn;k=0.T; b/
I;

where the morphism on the left is as defined in (11). Consequently, we have reduced
the proof of Theorem 1 to showing that

(52)
V

kRn.T /D Yn;k=0.T; b/ for all T;

which will be the objective of the next section.

4 Proof of main results and conclusions

Before proving Theorem 1 in Section 4.3, we provide several technical lemmas on exte-
rior algebras that relate partial traces, actions on top forms and their dual contractions,
as well as Schur complements. At the end of this section, we comment on various
implications of our result and possible generalizations.
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4.1 Supertrace from top forms

The aim of this section is to generalize the well known relation strm

�V�
f
�
Ddet.1�f /,

where f 2End.Mm/ is any endomorphism on a free module Mm of rank m, to partial
traces with respect to endomorphisms on U ˚Mm , where U is another module of
rank n.

Let Mm be generated by a basis fw1; : : : ; wmg, and denote by Pm the set of subsets
of f1; : : : ;mg. For any S D fi1; : : : ; ikg 2 Pm with i1 < i2 < � � � < ik , denote
�S D wi1

^ � � � ^wik
, so f�S W S 2 Pmg is a basis of

V
�
Mm . Denote also the top

form �m D �f1;:::;mg D w1 ^ � � � ^wm . We define contractions with respective dual
forms on the combined exterior algebra as

(53) �
S W
V
�
.U ˚Mm/!

V
�
U; with �S .˛^�

T /D ıS;T ˛;

for all ˛ 2
V
�
U and S;T 2 Pm . For future application, we also record here the

following elementary property, which is immediate from (53):

(54) �
S . ^ ı/D  ^ �S .ı/ for any  2

V
�
U and ı 2

V
�
.U ˚Mm/:

We again use abbreviated notation �m D �
f1;:::;mg for contractions with the re-

spective top form. Using contractions, the partial supertrace for an endomorphism
f 2 End

�V�
.U ˚Mm/

�
acting on an element ˛ 2

V
�
U may thus be reexpressed by

the following formula:

(55) StrnCm
n .f /˛ D

X
S2Pm

.�1/jS j�S .f .˛^�
S //:

Writing Sc for the complement of S we have the relation

(56) �m
D �S�

S
^�Sc

;

where �S 2 f˙1g is the signature of the respective shuffle permutation. More generally,
for ˇ 2

V
�
U , we have that ˇ ^ �T ^ �Sc

is a nonzero multiple of ˇ ^ �m only if
T D S . This observation and (56) thus imply the relation

(57) �
S .�/D �S

�m.�^�
Sc

/:

Lemma 13 Let A 2 End.U ˚Mm/ and ˛ 2
V
�
U . Then

(58) StrnCm
n

�V�
A
�
˛ D �m

��V�
A˛
�
^
�V�

.1�A/�m
��
:
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Proof We first compute the action of .1�A/ on the top form:

(59)
V
�
.1�A/�m

D .1�A/w1 ^ � � � ^ .1�A/wm

D

X
�1;:::;�n2f0;1g

.�1/
P

i �i A�1w1 ^ � � � ^A�nwn

D

X
S2Pm

.�1/jS jAS�m D

X
S2Pm

�S .�1/jS jAS .�
S
^�Sc

/

D

X
S2Pm

�S .�1/jS j
�VjS j

A�S
�
^�Sc

:

Here AS acts on �m by the formula in the previous line with �j D 1 if j 2 S and
�j D 0 otherwise. Moreover, we are making use of (56) in the third line. By further
evaluation,

(60) Right hand side of (58)D
X

S2Pm

�S .�1/jS j�m

��V�
A˛
�
^
�VjS j

A�S /^�Sc�
D

X
S2Pm

�S .�1/jS j�m

��V�
A.˛^�S /

�
^�Sc�

(by (57)) D

X
S2Pm

.�1/jS j�S

�V�
A.˛^�S /

�
(by (55)) D StrnCm

n

�V�
A/˛;

which is the desired form and thus completes the proof.

4.2 Partial traces from Schur complements

Consider an endomorphism B 2 End.U ˚ Mm/ and assume, for the respective
block form

(61) B D

�
H J

K L

�
;

that L 2 End.Mm/ is invertible. Then B has a block-UL factorization

(62) B D BuBl ; with Bu D

�
1 G

0 1

�
and Bl D

�
D 0

K L

�
;

where

(63) D DH �JL�1K and G D JL�1:

The endomorphism D is also called the Schur complement of L in B . A basic relation
between these endomorphisms is det.B/D det.L/ det.D/ which we generalize in the
next lemma for our purposes.
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Lemma 14 Suppose B has a block form as in (61), with L invertible and D2End.U /
its Schur complement as in (63). Then, for ˛ 2

V
�
U , we have

(64) �m

�V�
B.˛^�m/

�
D det.L/

V
�
D˛:

Proof We first note that, since Bl maps Mm to itself, and since its restriction to Mm

is L, we have
V
�
Bl�

m D
V
�
L�m D det.L/�m . Furthermore, if ˛ D x1 ^ � � � ^xk

for xj 2 U , we haveV
�
Bl˛ D .Dx1CKx1/^ � � � ^ .Dxk CKxk/D

V
�
D˛C �;

where �D
P

i i ^wi , since each Kxi 2Mm and is hence a combination of the wi .
This form then implies

�V�
Bl˛

�
^�m D

�V�
D˛

�
^�m . Combining these formulas

for
V
�
Bl , we thus obtain

(65)
V
�
Bl.˛^�

m/D
�V�

Bl˛
�
^
�V�

Bl�
m
�
D det.L/

�V�
Bl˛

�
^�m

D det.L/
�V�

D˛
�
^�m:

Continuing with the action of Bu on forms, we note that
V
�
Bu�D � for any �2

V
�
U

since Bu is the identity on U . Furthermore, we have thatV
�
Bu�

m
D .w1CGw1/^ � � � ^ .wnCGwn/D �

m
C

X
S2PmWjS j<m

 S ^�
S ;

where  S 2
V
�
U , since all Gwi 2 U . As a result, we haveV

�
Bu.�^�

m/D �^
V
�
Bu�

m
D �^

V
�
Bu�

m
D �^�m

C �0;

where �0 is the summation of terms �^ S ^�
S with jS j<m and �^ S 2

V
�
U .

Since all of these terms are, by (53), in the kernel of �m , we find

(66) �m

�V�
Bu.�^�

m/
�
D �:

Combining the actions in (65) and (66) for �D det.L/
V
�
D˛ , we thus find

(67) �m

�V�
BuBl.˛^�

m/
�
D �m

�V�
Bu

�V�
Bl.˛^�

m/
��

D �m

�V�
Bu

�
det.L/

�V�
D˛

��
^�m

�
D det.L/

�V�
D˛

�
;

which is the desired form and thus completes the proof.

The next lemma extends this result to expressions as those in Lemma 13.

Lemma 15 Let B , L, D , and ˛ be as in Lemma 14 above. Then

(68) �m

��V�
.1�B/˛

�
^
�V�

B�m
��
D det.L/

V
�
.1�D/˛:
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Proof The calculations for this proof are very similar to those of Lemma 13. We
may assume ˛ D x1 ^ � � � ^xk for independent generators xi 2 U . As before, denote
˛S D xi1

^ � � � ^xip for S D fi1; : : : ; ipg 2 Pk with i1 < � � �< ip , so

(69) ˛ D � 0S˛Sc ^˛S ;

where � 0
S

is the signature of the respective shuffle permutation. We thus obtain, by a
calculation analogous to that in (59), that

(70)
V
�
.1�B/˛ D

X
S2Pk

� 0S .�1/jS j˛Sc ^
�V�

B˛S

�
:

Forming the wedge product of this expression with
V
�
B�m , we thus obtain�V�

.1�B/˛
�
^
�V�

B�m
�
D

X
S2Pk

� 0S .�1/jS j˛Sc ^
�V�

B.˛S ^�
m/
�
:

The remainder of the proof is a computation:

(71) Left-hand side of (68)D
X

S2Pk

� 0S .�1/jS j�m

�
˛Sc ^

�V�
B.˛S ^�

m/
��

(by (54)) D

X
S2Pk

� 0S .�1/jS j˛Sc ^�m

�V�
B.˛S ^�

m/
�

(by Lemma 14) D det.L/
X

S2Pk

� 0S .�1/jS j˛Sc ^
V
�
D˛S

D det.L/
V
�
.1�D/˛;

where the last step is analogous to (70).

Substituting B D 1�A, we combine this with Lemma 13 to obtain the following.

Corollary 16 Suppose an endomorphism A 2 End.U ˚Mm/ is of the form

(72) AD 1nCm�

�
1n G

0 1m

� �
D 0

K L

�
;

with L invertible. Then we have

(73) StrnCm
n

�V�
A
�
D det.L/

V
�
.1�D/:
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4.3 Proof of main results and example

Proof of Theorem 1 As noted in Section 3.3 it suffices to prove the relation in (52).
For a string link T W �n! �n presented by the closure braid b 2 BnCm , consider the
Burau matrix Bn.b/ with block form as in (16).

In order to evaluate StrnCm
n

�V�Bn.b/
�

used in the definition of Yn;k.T; b/, we apply
Corollary 16 using AD Bn.b/ and U DMn . The condition in (72) then translates to
the set of block conditions ZD�K , QD1�L, Y D�GL, and X D1�.DCGK/D

1�H .

We note that, by Proposition 7, the block LD 1�Q is indeed invertible. Moreover,
1�D DX CGK DX �GZ DX CYL�1Z DX CY .1�Q/�1Z DRn.T /, also
by Proposition 7. This implies, by (73), that

(74) StrnCm
n

�V�Bn.b/
�
D det.1�Q/

V
�Rn.T /:

From (49) we thus find, by restriction to k –forms, that

(75) Yn;k.T; b/D det.1�Q/
V

kRn.T /:

In particular, Yn;0.T; b/D det.1�Q/. Relation (52) now follows immediately, com-
pleting the proof of Theorem 1.

Proof of Corollary 2 The k � k minors of Wn;1 are just the matrix elements ofV
kWn;1.T /, which is, by (12), up to relabeling and rescaling of basis, the same asV
k�Wn;0.T /Rn.T /

�
DWn;0.T /

k
V

kRn.T /. At the same time, Wn;0.T /
V

kRn.T /

is, again up to relabeling and rescaling of basis, the same as Wn;k.T / by Theorem 1.
Hence, up to permutations and multiplications by units in ZŒt1=2; t�1=2�, the matrix ele-
ments of

V
kWn;1.T / are the same as those of Wn;0.T /

k�1Wn;k.T /. Since Wn;k.T /

is a matrix over ZŒt1=2; t�1=2�, this implies the assertion.

As an example, consider again the string link S W �2! �2 from Figure 1. The Ohtsuki’s
tangle functor can be readily computed, for example, by using skein relations R�R�1D

.t�1=2� t1=2/1 and the fact that isolated components render a diagram zero. Organized
by graded components and using the basis fe0˝ e1; e1˝ e0g for W2;1 , we obtain

(76) V.S/DW2;0.S/˚W2;1.S/˚W2;2.S/

D .2� t/˚

�
3� t � t t�1=2� t1=2

t�1=2� t1=2 1

�
˚ .2� t/:
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We find from (35) that I2W W2;1!
V

1
M2 DM2 is given by I2.e0˝ e1/D tv2 and

I2.e1˝ e0/D t1=2v1 , so, in the basis fv1; v2g for M2 , we obtain

(77) I2V.S/I�1
2 D .2� t/˚

�
1 t � 1

1� t 3� t � t

�
˚ .2� t/:

Given that W2;0.S/D .2� t/, we immediately have that W2;1=0.S/ is, up to basis
change, the same as

V
1R2.S/DR2.S/ as in (5). Moreover, we readily compute

(78)
V

2R2.S/D det.R2.S//D
2� t

2� t
DW2;2=0.S/;

thus verifying the statement of Theorem 1 for all k in this example.

4.4 Concluding comments and outlook

We begin with remarks on the probabilistic motivation initially given in [4] and expanded
upon in [7]. As noted earlier, to have a true stochastic matrix, we need to confine
ourselves to diagrams T with only positive crossings and t 2 Œ0; 1� in order to have
probabilities in Œ0; 1� (or all negative crossings and t�1 2 .0; 1�).

Recall from the comments following Corollary 8 that the unique equilibrium state
pn D cvn of Rn.T / for nonseparable T is fixed and thus contains no topological
information about T . The size of the space of equilibrium states for general T , however,
may be used to provide a measure of separability for a given string link and thus may
be of interest for further study.

The existence of the fixed equilibrium state and the interpretation of Rn.T / as a
stochastic matrix rely on the existence of left and right eigenvectors with eigenvalue
1 as in Corollary 8. From the point of view of the tangle functor, their existence is
actually a basic consequence of the underlying representation theory of U�1.sl2/ as
outlined in the following.

In particular, we have, by equivariance and accounting for degrees, for the operators
defined in (29), that zEnWn;kC1.T /DWn;k.T / zEn and zFnWn;k.T /DWn;kC1.T / zFn .
Now, let 1D e˝n

0
be the generating vector of Wn;0 and 1� the respective dual vec-

tor in W �
n;0

. The intertwining relations imply, for k D 0, that Wn;1.T /. zFn1/ D
zFnWn;0.T /1DWn;0.T /. zFn1/, so Wn;1=0.T /. zFn1/D . zFn1/. From Theorem 1, we

thus have that In
zFn1 is also an eigenvector, with eigenvalue one, for Rn.T /.

Using (47), we find that this is, by In
zFn1 D MFnIn1 D MFn1 D t�1=2vn , indeed

proportional to the eigenvector found directly in Corollary 8. A similar equivariance
argument shows that a left eigenvector for Rn.T / is given by 1� zEnI�1

n D 1�I�1
n
MEnD

MEn

ˇ̌
Mn
D t�n=2en by (48). We remark also that the reduced Burau representation
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can be viewed in this context as the further restriction of Mn to the “highest” weight
space, ker. zEn/.

Another question not treated here, but of possible further interest, is that of duality
relations between degree k and .n� k/ representations. The existence of a duality
principle is strongly suggested by the obvious symmetry in the example in (76), but
also basic algebraic properties of the R–matrix used for V and its relations to exterior
algebras. From a topological point of view, such a principle may be expected via
Poincaré duality in local coefficient cohomologies of underlying configuration spaces.

Observe also that the multiplicative function Wn;0W Str.n/! ZŒt1=2; t�1=2� allows us
to define the assignment

(79) X W Str.n/! Z0;C; T 7! span.Wn;0.T //;

where the span of a Laurent polynomial is given by the difference of its highest
and lowest nonvanishing powers in t1=2 . Clearly, this is an additive function with
X .T ıS/D X .T /CX .S/, and it vanishes on braids, that is, the invertible elements
of Str.n/.

Further objects of study are thus the size of the kernel of X beyond the braid group, as
well as relations of X .T / with the number of simple loops in the random walk picture,
or other topological properties of string links.

We finally point out the generalization of Ohtsuki’s functor indicated by the two-variable
R–matrix provided at the end of [10, Section 4.5]. This yields, in the same manner as
before, a tangle functor from which we obtain, analogous to (10), a representation

(80) pWn;j W pStr.n/! End
�
ZŒt˙1=4

1
; : : : ; t˙1=4

n �.
n
j/
�

on the monoid pStr.n/ of pure string links. In the tangle functor picture, the variables
tj label representations of U�1.sl2/ and thus fit into the framework of TQFTs, where
the tj are interpreted as “colors” or “charges”. Analogous to (11), we can also define
quotient representations pWn;j=0 .

Extending the construction of the classical Gassner representation of the pure braid
groups, Kirk, Livingston, and Wang obtain, in [6], a representation

KLW
n W pStr.n/! End.Q.t1; : : : ; tn/n/:

We thus conclude this article with a conjecture that naturally extends Theorem 1 and
for which we expect the proof to follow a similar strategy.

Conjecture 17 The representation KLW
n is equivalent to pWn;1=0 .
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