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Rectification of weak product algebras
over an operad in Cat and Top and applications

ZBIGNIEW FIEDOROWICZ

MANFRED STELZER

RAINER M VOGT

We develop an alternative to the May–Thomason construction used to compare
operad-based infinite loop machines to those of Segal, which rely on weak products.
Our construction has the advantage that it can be carried out in Cat , whereas their
construction gives rise to simplicial categories. As an application we show that a
simplicial algebra over a †–free Cat operad O is functorially weakly equivalent
to a Cat algebra over O . When combined with the results of a previous paper, this
allows us to conclude that, up to weak equivalences, the category of O–categories
is equivalent to the category of BO–spaces, where BW Cat! Top is the classifying
space functor. In particular, n–fold loop spaces (and more generally En spaces) are
functorially weakly equivalent to classifying spaces of n–fold monoidal categories.
Another application is a change of operads construction within Cat .

18D50; 55P48

1 Introduction

In [14], May and Thomason compared infinite loop machines based on spaces with an
operad acting on them to the Segal machine, which involves weakening the notion of
Cartesian product to that of a product up to equivalence. In the process they introduced
a hybrid notion of an algebra over a category of operators and created a rectification
construction to pass from this to an equivalent space with an operad action. Their
rectification is a 2–sided bar construction, which is simplicial in nature. Schwänzl
and Vogt gave an alternative comparison of the two infinite loop space machines in
[16], which is based on the fact that for a strong deformation retract A�X the space
of deformation retractions of X onto A is contractible. Neither approach translates
directly to Cat , the category of small categories, with realization equivalences as weak
equivalences: the May–Thomason construction would convert categories into simplicial
categories, and there is no apparent candidate to replace the space of strong deformation
retractions in the Schwänzl–Vogt construction.
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Similarly, the change of operads construction used in May [13], if applied to operads
in Cat , ends up in simplicial categories.

In this paper we offer a comparatively simple third rectification which has the advantages
that it can be carried out in Cat and that a change of operads functor based on it stays
in Cat .

Our main motivation for this paper is to realize a program started in Balteanu, Fiedorow-
icz, Schwänzl and Vogt [2], where a notion of n–fold monoidal category was introduced
whose structure is codified by a †–free operad Mn in Cat . The classifying space
functor BW Cat! Top maps Mn to a topological operad BMn , and it was shown in
[2] that there is a topological operad D and equivalences of operads

BMn D! Cn;

where Cn is the little n–cubes operad. A change of operads construction for topological
operads then implies that the classifying space BA of any n–fold monoidal category A
is weakly equivalent to a Cn–space and hence to an n–fold loop space up to group
completion. It was conjectured that any n–fold loop space can be obtained up to
equivalence in this way.

More generally, let O and P be †–free operads in Cat and Top, respectively, and let
O–Cat and P–Top be their associated categories of algebras. Taking P D BO , one
might be tempted to conjecture that the classifying space functor induces an equivalence
of categories

O–CatŒwe�1�' BO–TopŒwe�1�;

where we� BO–Top is the class of all homomorphisms whose underlying maps are
weak homotopy equivalences and we�O–Cat is the class of all homomorphisms which
are mapped to weak equivalences in BO–Top. To ensure the existence of the localized
categories BO–TopŒwe�1� and O–CatŒwe�1� we can use Grothendieck’s language of
universes [1, Appendix], where they exist in some higher universe.

A partial step towards a proof was accomplished in Fiedorowicz and Vogt [9], where it
was shown that the classifying space functor followed by the topological realization
functor induces an equivalence of categories

O–SCatŒwe�1�' BO–TopŒwe�1�;

where O–SCat is the category of simplicial O–algebras in Cat and the weak equiva-
lences in O–SCat are those homomorphisms which are mapped to weak equivalences
in BO–Top. In particular, each En–space is, up to equivalence, the classifying space
of a simplicial n–fold monoidal category. As far as En–spaces are concerned the full
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program was finally realized in Fiedorowicz, Stelzer and Vogt [8] where a homotopy
colimit construction for categories of algebras over a †–free operad in Cat provided a
passage from simplicial O–algebras to O–algebras. If the morphisms of the operad O
satisfy a certain factorization condition this passage induces an equivalence of categories

O–SCatŒwe�1�'O–CatŒwe�1�;

and the operads codifying n–fold monoidal categories, strictly associative braided
monoidal categories, and permutative categories satisfy this condition. For these
operads it was also shown that there is an equivalence of categories

(�) O–Cat AŒwe�1� ' BO–TopŒwe�1�

in the foundational setting of Gödel–Bernays, where O–Cat AŒwe�1� is a localization of
O–Cat up to equivalence (for a definition see [8, Definition 7.3]).

The main application of the construction developed in this paper is the full proof of the
above conjecture in the foundational setting of Gödel–Bernays with no restrictions on the
operad O in Cat apart from †–freeness. For the existence of the genuine localizations
we use an observation of Schlichtkrull and Solberg [15, Proposition A.1], and we thank
them for communicating this to us. As far as En–spaces are concerned, the present paper
offers an alternative simpler proof, because it avoids the comparatively complicated
homotopy colimit construction in O–Cat , which is of independent interest. In particular,
it considerably simplifies the part of the proof of the main result of Thomason in [20]
(the special case of (�) for the operad encoding permutative categories), which relies
on the homotopy colimit construction in Thomason [19].

The genesis of this paper stems from a previous paper of Fiedorowicz, Gubkin and Vogt
[7, Section 4], where a similar problem involved the rectification of a weak monoidal
structure on a category, without passing to simplicial categories. It was observed there
that the classical M –construction of Boardman and Vogt [5, Theorem 1.26], used for
this kind of rectification in Top, could be carried out in Cat . This led us to seek a mod-
ification of this construction for the purpose of rectifying weak product algebras in Cat .

This paper is organized as follows: In Section 2 we recall some basic notions of
operads and their associated categories of operators. In Section 3 we recall free operad
constructions and the language of trees, which underlie our rectification constructions.
In Section 4 we construct a modification of the M –construction in Top which allows
weak product algebras over an operad as inputs. In Sections 5 and 6 we recast our
modified M –construction as a homotopy colimit of a diagram in Top. Building upon
work of Thomason [18] we then show that the Grothendieck construction on the same
diagram in Cat provides the requisite rectification of weak product algebras over an
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operad in Cat . The remaining sections are then devoted to various applications of our
rectification construction.

Acknowledgements We would like to thank the referee for a careful reading of this
paper and some helpful suggestions. Fiedorowicz also wishes to acknowledge the
support of the University of Osnabrück in the preparation of this paper.

Note The first two authors were saddened by the death of the third author during
the final stages of production of this manuscript. Rainer Vogt was a close friend and
collaborator to both of us. We will miss him.

2 Operads and their categories of operators

For the reader’s convenience we recall the notions of an operad and its associated
category of operators.

Let S be either the category Cat of small categories, or the category Sets of sets, or the
category SSets of simplicial sets, or the category Top of (not necessarily Hausdorff)
k–spaces. Then S is a self-enriched symmetric monoidal category with the product as
structure functor and the terminal object � as unit. In what follows, for an object X

in S , it will be convenient to refer to elements in X . If X is a topological space, this
will mean a point in X . If X is a simplicial set, this will mean a simplex in X . If X

is a category, then this will mean either an object or morphism in X . We will also use
the following notions of equivalence in S . In Top an equivalence will mean a strict
homotopy equivalence. An equivalence between simplicial sets will mean a simplicial
map whose geometric realization is a homotopy equivalence. Lastly, in Cat we will
call a functor F W C! D an equivalence if it induces a homotopy equivalence on the
geometric realizations of the nerves.

2.1 Definition An operad O in S is a collection fO.k/gk�0 of objects in S equipped
with symmetric group actions O.k/�†k !O.k/, composition maps

O.k/� .O.j1/� � � � �O.jk//!O.j1C � � �C jk/;

and a unit id 2O.1/ satisfying the appropriate equivariance, associativity and unitality
conditions; see [13] for details.

An operad in Top is called well-pointed if fidg �O.1/ is a closed cofibration.

2.2 Remark We often find it helpful to think of an operad in the following equivalent
way. An operad O in S is an S–enriched symmetric monoidal category .O;˚; 0/
such that:
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(i) obODN and m˚ nDmC n.

(ii) ˚ is a strictly associative S–functor with strict unit 0.

(iii) The mapa
r1C���CrnDk

O.r1; 1/� � � � �O.rn; 1/�†r1
�����†rn

†k !O.k; n/;

..f1; : : : ; fn/; �/
� // .f1˚ � � �˚fn/ ı �

is an isomorphism in S . (Note in particular that O.n; 0/ D ∅ for n > 0. By
contrast, there are no a priori restrictions on O.0; 1/.)

In the topological case, “well-pointed” translates to fidg �O.1; 1/ is a closed cofibra-
tion.

Each such category determines an operad in the sense of Definition 2.1 by taking
the collection fO.k; 1/gk�0 . Conversely, each operad determines such a category by
property (iii).

The symmetric monoidal category associated to the trivial operad Com parametrizing
commutative monoid structures can be identified with a skeletal category of unbased
finite sets F . Here we identify the natural number n with the set f1; 2; : : : ; ng, which
may be viewed as an object in any of our categories S . In particular, we identify 0

with the empty set. For any operad O , the natural map O! Com induces a symmetric
monoidal functor �W O ! F . This functor induces an equivalence on S–enriched
morphism sets

`
m;n O.m; n/!

`
m;n F.m; n/ for any E1 operad O . More generally,

for any morphism �W m! n in F and any operad O , ��1.�/ is isomorphic to the
product

Qn
iD1 O.j��1.i/j/, where jS j denotes the cardinality of the set S .

2.3 Definition Let O and P be operads in S .

(1) In the cases S D Cat , Sets or SSets, O is called †–free if the †n–action
on O.n/ is free for each n. If S D Top we require that O.n/!O.n/=†n is a
numerable principal †n–bundle for each n.

(2) An operad map O! P is a collection of equivariant maps O.n/! P.n/ in S ,
compatible with the operad structure.

(3) An O–structure on an object X in S is an operad map O ! EX into the
endomorphism operad EX of X , which is defined by EX .n/D S.X n;X / with
the obvious †n–action and the obvious composition maps and unit. We say
that O acts on X , or that X is an O–algebra; if S D Top we also call X an
O–space.
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If we interpret an operad as a symmetric monoidal category as in Remark 2.2, an
O–algebra is the same as a strict symmetric monoidal S–functor O!S taking n

to X n . Here strict monoidal means that we use the canonical isomorphisms in S
to identify X mCn with X m �X n .

(4) An operad map is called a weak equivalence if each map O.n/! P.n/ is an
equivariant homotopy equivalence (in Cat or SSets this means that each map is
an equivariant homotopy equivalence after applying the classifying space functor
or the topological realization functor, respectively).

(5) Two operads are called equivalent if there is a finite chain of weak equivalences
connecting them.

We denote the category of O–algebras in S by O–S .

2.4 Let O be an operad in S , interpreted as in Remark 2.2. As is shown in [5,
Chapter II], the symmetric monoidal category O can be enlarged into an S–enriched
category with products ‚O , such that nD 1� 1� � � � � 1. This category ‚O is called
the theory associated to O and is determined up to isomorphism by the requirement
that an O–structure on an object X extend uniquely to a product-preserving functor
zX W ‚O ! S . The category ‚O contains O and …, the category of projections, as

subcategories, and O\…D†� , the subcategory of bijections. We define the category
of operators yO as the subcategory of ‚O generated by O and …, and note that the
symmetric monoidal structure on ‚O restricts to yO . For X an O–algebra, the functor
zX W ‚O! S restricts to a strict symmetric monoidal functor yX W yO! C .

A more explicit description of yO can be obtained as follows. First observe that for any
set S , a projection S l ! Sk corresponds to an injection k! l of finite sets. Thus
the category of projections … can be identified with Injop , the opposite of the category
of injections in F . Then

yO.l; n/D
a

0�k�l

O.k; n/�†k
Inj.k; l/:

In particular, yO.l; 0/ consists of a single morphism, the nullary projection. Composition
of .f; �/2O.k; n/�†k

Inj.k; l/ with .g1˚� � �˚gl ; �/2O.p; l/�†p
Inj.p; q/, where

gi 2O.ri ; 1/ and p D r1C � � �C rl , is defined by

.f; �/ ı .g1˚ � � �˚gl ; �/D .f ı .g�.1/˚ � � �˚g�.k//; � ı �.r1; : : : ; rl//;

where
�.r1; : : : ; rl/W r D r�.1/C � � �C r�.k/! p
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is the following block injection: r and p are the ordered disjoint unions

r D r�.1/ t � � � t r�.k/ and r1 t � � � t rl I

the block injection �.r1; : : : ; rl/ maps the block r�.i/ identically onto the corresponding
block in p . For a comparison of this description of yO with that given in May and
Thomason [14], the reader is referred to the proof of Lemma 5.7 in that paper.

We will often denote the morphisms .idk ; �/ 2 yO.l; k/ by �� .

2.5 Remark (1) If O D Com, then yO can be identified with F� , the skeletal
category of based finite sets, with objects nC D f0; 1; 2; : : : ; ng. The inclusion
O � yO can be identified with the functor F ! F� which adjoins a disjoint
basepoint 0 to the finite set nDf1; 2; : : : ; ng. The theory ‚Com can be identified
with the category whose objects are the natural numbers with morphisms m! n

being n �m matrices with entries in the natural numbers, with composition
given by multiplication of matrices. We can then identify yO Š F� with the
subcategory of ‚Com whose morphisms are matrices with entries in f0; 1g, with
at most one non-zero entry in each column.

(2) The unique map of operads O ! Com induces functors y�W yO ! F� and
‚�W ‚O!‚Com , and there is a pullback diagram of S–enriched categories

yO �
�

//

y�

��

‚O

‚�
��

F� �
�

// ‚Com

For any E1 operad O , y� induces an equivalence on S–enriched morphism setsa
m;n

yO.m; n/!
a
m;n

F�.m; n/:

More generally, for any morphism �W m! n in F� and any operad O , ��1.�/

is isomorphic to the product
Qn

iD1 O.j��1.i/j/. Moreover, F� is the largest
subcategory of ‚Com containing F with this property. For other morphisms
in ‚Com the inverse image under ‚� is the quotient of such a product by a
stabilizing group of permutations. For instance,

‚�1
�

��
a
c

b
d

�
W 2! 2

�
Š
�
O.aC b/=†a �†b

�
�
�
O.cC d/=†c �†d

�
:

2.6 Definition An yO–diagram in S is an S–enriched functor GW yO! S . Such a
diagram is called special if the injections �k W 1! n sending 1 to k define a homotopy
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equivalence .��
1
; : : : ; ��n/W G.n/ ! G.1/n for each n, ie G is a weakly symmetric

monoidal functor.

We denote the category of yO–diagrams in S by S yO .

As we noted above in 2.4, there is an obvious functorc.�/W O–S! S yO;

given by extending a symmetric monoidal functor X W O! S to a product-preserving
functor zX W ‚O ! S , and then restricting this extension to yX W yO ! S . Explicitly,
yX W yO! S is defined by yX .n/ D X n , yX ..f; id// D X.f /, and yX .��/W X l ! X k

being the projection
.x1; : : : ;xl/ 7! .x�.1/; : : : ;x�.k//:

By construction, yX is special.

We recall that the classifying space functor BW Cat! Top is the composite

BW Cat
N�
��! SSets

j�j
��! Top

of the nerve functor N� and the topological realization. The classifying space functor
preserves products, which implies the following result:

2.7 Lemma Let O be an operad in Cat , let X be an O–algebra, and let GW yO! Cat
be an yO–diagram. Then:

(1) BO is an operad in Top and BX is a BO–space.

(2) B.yO/Š bBO and BGW bBO! Top is a bBO–diagram. If G is special, so is BG .

(3) bBX Š B yX .

If we want to determine the homotopy types of our categorical constructions, we
usually have to assume that all operads we consider are †–free. The reason we need
to make this assumption is that our constructions will require us to take quotients,
by permutation groups, of categories which are products of various O.k/ categories
together with other categories. Under this hypothesis the classifying spaces of the
resulting quotient categories will be homeomorphic to the quotients of the classifying
spaces of the product categories, due to the fact that the classifying space functor
preserves finite products and the following elementary result.

2.8 Lemma Let a discrete group � act freely on a small category C . Then BC is a
free �–space and

B.C=�/Š .BC/=�:

Algebraic & Geometric Topology, Volume 16 (2016)



Rectification of weak product algebras over an operad in Cat and Top and applications 719

Proof Since BC is a �–CW complex with a free �–action, BC ! .BC/=� is
a numerable principal bundle. We have ob.C=�/ D ob.C/=� and mor.C=�/ D
mor.C/=� . Composition in C=� is defined by lifting to C : given composable mor-
phisms Œf �W ŒA�! ŒB� and Œg�W ŒB�! ŒC � in C=� , choose a representative object A

in C . Then there are unique morphisms f W A! B and gW B! C in C representing
Œf � and Œg�, and Œg� Œf �D Œgf �. Hence any simplex in the nerve of C=� has a unique
lift to the nerve of C once we choose a lift of the initial vertex. It follows that the nerve
of C=� is the quotient of the nerve of C by the action of � , which implies the result.

This result fails to hold if the action of � on C is not free. For instance, if H is a
group regarded as a category with one object, C D H �H and � D Z=2 acts on C
by permuting the factors, then B.C=�/Š BA, where A is the abelianization of H .
This is clearly different from B.H �H /=� D .BH �BH /=.Z=2/, particularly if H

is perfect.

3 Free operads

Since our constructions start with free operads, we recall their construction for the
convenience of the reader and to fix notation. We follow the expositions [3, Section 5.8]
and [4, Section 3], because they are the most convenient ones for our purposes. We
recommend [14, Part I, Section 2] for background on the language of trees.

Recall that a collection K in one of our categories S is an N–indexed family of objects
K.n/ with a right †n–action. Let Opr.S/ and Coll.S/ denote the categories of operads
and collections in S . Then there is the obvious forgetful functor

RW Opr.S/! Coll.S/;

and we are interested in its left adjoint

LW Coll.S/!Opr.S/;

the free operad functor.

Let T denote the groupoid of planar trees and non-planar isomorphisms. Its objects
are finite directed rooted planar trees (see [12, pages 85–87] for a formal definition).
A tree can have three types of edges: internal edges with a node on each end, input
edges with a node only at the end, and one outgoing edge, called the root, with a node
only at its beginning. Each node � has a finite totally ordered poset In.�/ of incoming
edges, also called inputs of � , and exactly one outgoing edge, called its output. The
cardinality In.�/ of In.�/ is called the valence of � . We allow stumps, ie nodes of
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valence 0, and the trivial tree consisting of a single edge. The poset of input edges of a
tree T is denoted by In.T /, and its cardinality by In.T /. We say that a subtree T 0 of
a tree T is a subtree above a node � of T if T 0 consists of an incoming edge of �
and all nodes and edges of T lying above that edge. Note that if T 0 is such a subtree,
then In.T 0/ forms a (possibly empty) subinterval of In.T /.

3.1 Definition A morphism �W T ! T 0 in T is an isomorphism of trees after
forgetting their planar structures. So � preserves inputs and hence induces a bijection
In.�/W In.T / ! In.T 0/. If in1; : : : ; inn are the inputs of T and in01; : : : ; in

0
n are

the inputs of T 0 counted from left to right, then � has an associated permutation
�† 2 †n defined by �†.k/ D l if �.inl/ D in0k . Note that � 7! �† is covariant:
. �/† D  †�† .

Let ‚n denote the tree with exactly one node and n inputs. Any tree T with a root
node of valence n decomposes uniquely into n trees T1; : : : ;Tn whose outputs are
grafted onto the inputs of ‚n as in the diagram

T D

TnT2T1

‚n

: : :

We denote this grafting operation by

T D‚n ı .T1˚ � � �˚Tn/:

Any isomorphism �W T ! T 0 has a similar decomposition

� D � ı .�1˚ � � �˚�n/

into isomorphisms � W ‚n ! ‚n and �i W T� .i/! T 0i . Since � only permutes the
inputs of ‚n we usually denote �† simply by � .

Since the number of nodes and edges in each Ti is strictly less than the number of
nodes and edges in T , this decomposition is suited for inductive procedures.

For any collection K we define a functor KW T op ! S inductively by mapping the
trivial tree to the terminal object and putting

K.T /D K.‚n ı .T1˚ � � �˚Tn//D K.n/�K.T1/� � � � �K.Tn/:

On morphisms �W T ! T 0 we define ��W K.T 0/! K.T / inductively by

�� D .� ı .�1˚ � � �˚�n//
�
D �� ����.1/ � � � � ��

�
�.n/;
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which is determined by setting

��W K.n/! K.n/; a 7! a � �:

There is also a functor �W T ! Sets associating with each tree T the set �.T / of
bijections � W f1; 2; : : : ; In.T /g ! In.T /. On morphisms �W T ! T 0 we define

�.�/W �.T /! �.T /; � 7! In.�/ ı �:

Since Sets is canonically included in Cat , SSets and Top as the full subcategory of
discrete objects, we can consider � as a functor �W T ! S . The groupoid T is the
disjoint sum of the groupoids T .n/DfT 2T W In.T /D ng, and the free operad functor

LW Coll.S/!Opr.S/

sends the collection K to the operad whose underlying collection is the family of
coends

LK.n/D K˝T.n/ �; n 2N:

Before we define the operad structure, let us give an explicit description of LK.n/. An
element of LK.n/ is represented by a triple .T; f; �/ consisting of a tree T with n

inputs, a function f assigning to each node � of T an element a 2 K.In.�//, and a
bijection � W nD f1; 2; : : : ; ng! In.T /. We call a the decoration of � and i the label
of the input �.i/. We usually suppress f and � and speak of a decorated tree T with
input labels.

3.2 Equivariance relation We impose the following relation on the set of decorated
trees T with input labels. Let

T 0 D

T 0
l

T 0
2

T 0
1

a

� � �

be a subtree of T above a node � with decoration a 2 K.l/, and let � 2†l . Then T

is equivalent to the decorated tree �T obtained from T by replacing T 0 by

T 00 D

T 0
�.l/

T 0
�.1/

a � �

� � � � � �
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The elements of LK.n/ are the equivalence classes of decorated trees with input labels
with respect to this relation.

If .T; f; �/ represents an element x in LK.n/ and if � 2 †n , we define x � � to be
represented by .T; f; � ı �/. This defines the right action of †n on LK.n/. Operad
composition is defined by grafting decorated trees with input labels according to the
labels: T ı .T1˚ � � �˚Tn/ is obtained by grafting Ti on the input of T labeled by i .

Let � W n! In.T / be an input labeling of T , and suppose �.i/ is the k th input of T

counted from left to right. Then we identify � with the permutation � 2†n sending i

to k . Using this identification we obtain the following:

3.3 Proposition We have

LK.n/D K˝T.n/ �D
a
ŒT �

K.T /˝Aut.T /†n; n� 0;

where the sum is indexed by isomorphism classes of trees in T .n/.

For later use we observe that Proposition 3.3 is a special case of a more general result.

3.4 Let G be a groupoid and let F W Gop! S and �W G! S be functors. Then

F ˝G �D
a
ŒG�

F ˝ŒG� �Š
a
ŒG�

F .G/˝Aut.G/ �.G/;

where the sum is indexed by isomorphism classes in G . The coend F ˝ŒG� � is
taken over the elements in the class ŒG�. The isomorphism depends on the choice of
representatives G in the class ŒG�.

4 Rectifying yO–spaces

We start with our rectification construction for yO–spaces, which is easier to describe
than the version we use for the Cat case. Although this space version is simpler, it
uses some of the same ingredients as our subsequent rectification construction for
yO–categories and will help to motivate that construction. In the process we give a
simple variant of a rectification result of May and Thomason [14, Theorem 4.5] We
should also note that the construction we define here is a variant of the M –construction
of Boardman and Vogt [5, page 134ff].
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4.1 Let O be an arbitrary operad in Top. We are going to define a rectification functor

M W TopyO!O–Top:

Our construction starts with a modification of the free operad construction. We in-
ductively define a functor LOW T op! Top by mapping the trivial tree to a point and
putting

LO.T /D LO.‚n ı .T1˚ � � �˚Tn//DO.n/� In
�LO.T1/� � � � �LO.Tn/;

where I is the unit interval. On morphisms �W T ! T 0 the functor is given by

�� D .� ı .�1˚ � � �˚�n//
�
D �� ����.1/ � � � � ��

�
�.n/;

with

��W O.n/� In
!O.n/� In; .aI t1; : : : ; tn/ 7! .a � � I t�.1/; : : : ; t�.n//:

For GW yO ! Top there is a functor � D �G W T ! Top, sending the trivial tree to
G.O.1// and ‚n ı .T1 ˚ � � � ˚ Tn/ to G.In.T1// � � � � � G.In.Tn//. In particular,
�.‚n/DG.O.1//n . On morphisms � W ‚n!‚n it is defined by

�.�/W G.1/n!G.1/n; .g1; : : : ;gn/ 7! .g��1.1/; : : : ;g��1.n//;

and for � D � ı .�1˚ � � �˚�n/W T ! T 0 by

�.�/W G.In.T1//� � � � �G.In.Tn//!G.In.T 01//� � � � �G.In.T 0n//;

.gi/
n
iD1 7!

�
G.�†

��1.i/
/.g��1.i//

�n
iD1

:

Here recall that ���1.i/W T��1.i/ ! T 00i is in T and �†��1.i/ is the induced inputs
permutation (see Definition 3.1). A natural transformation G!G0 induces a natural
transformation �G! �G0 .

Let zT � T be the full subgroupoid of non-trivial trees. Restricting our functors to zT ,
the coend construction defines a functor

LO˝ zT �.�/W TopyO! Top; G 7! LO˝ zT �G :

The functor M W TopyO!O–Top will be a quotient of this functor.

4.2 We find it helpful to view an element of LO.T / as a triple .T; f; h/ consisting of
a tree .T; f / with vertex decorations as in Section 3, and a length function h assigning
to each internal edge of T a length in I . We usually suppress f and h and speak of a
decorated tree T with lengths whose nodes are decorated by elements in O and whose
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internal edges have a length label. It will be clear from the context whether T denotes
a decorated tree with lengths or just a tree. Let T have the form

(4.3) T D

TnT2T1

root

: : :

Here Ti is allowed to be the trivial tree.

We define

V .G;T /D LO.T /�G.In.T //;

U.G;T /D LO.T /�G.In.T1//� � � � �G.In.Tn//;

LO˝ zT �G D

�a
T

U.G;T /

�ı
�;

where the unions is taken over all trees in zT and the relations are as follows:

4.4 Equivariance relations It is helpful to consider U.G;T / as

U.G;T /DO.n/� In
�V .G;T1/� � � � �V .G;Tn/;

where .t1; : : : ; tn/ 2 In are the lengths of the incoming edges of the root from left to
right and O.n/ is the space of root decorations.

(1) Root equivariance Let � 2†n . Then

.aI t1; : : : ; tnI .T1;g1/; : : : ; .Tn;gn//

� .a � � I t�.1/; : : : ; t�.n/I .T�.1/;g�.1//; : : : ; .T�.n/;g�.n///:

(2) Ti –equivariance Ti–equivariance is a relation on the factor V .G;Ti/. We use
the notation of 3.2 with the difference that the internal edges of our trees have
a length label. As in 3.2, let T 0 be the subtree above a node v of valence l

of Ti decorated by a. Let � 2 †l and let �Ti be obtained from Ti as in 3.2.
Then � determines an isomorphism �W Ti!

�Ti of underlying trees in zT , and
Ti–equivariance is the relation

.Ti Igi/� .
�Ti IG.�

†/.gi//:

4.5 Definition The functor

M W TopyO!O–Top
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is obtained from the functor LO˝ zT �.�/ by imposing the following relations. Let T

be a decorated tree with lengths of the form (4.3).

(1) Shrinking an internal edge An internal edge e of length 0 may be shrunk:

node v with decoration a

node w with decoration b

e D edge e with length 0

Let T 0 be obtained from T by shrinking e . If e is the i th input of v counted from
left to right, the new node in T 0 is decorated by a ı .idi�1˚b˚ idIn.v/�i/.

(a) v is not the root Then

.T Ig1; : : : ;gn/� .T
0
Ig1; : : : ;gn/; gi 2G.In.Ti//:

(b) v is the root Then Ti has the form

Tir
Ti1

w

: : : : : :

and e is the outgoing edge of w . If w is not a stump, shrinking e makes the in-
coming edges of w into incoming edges of the root of T 0. Let �j W In.Tij /� In.Ti/

be the inclusion. Then there is a map

��W G.In.Ti//!

rY
jD1

G.In.Tij //

whose j th component is G.��j /. We have the relation

.T Ig1; : : : ;gn/� .T
0
Ig1; : : : ;gi�1; �

�.gi/;giC1; : : : ;gn/:

If w is a stump, In.Ti/D∅ and we impose the relation

.T Ig1; : : : ;gn/� .T
0
Ig1; : : : ;gn/:

(2) Chopping an internal edge An internal edge e of length 1 may be chopped off.
Let e be as above, but of length 1. Let T 00 be the subtree of T with root w . Then
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T 00 is a subtree of some Ti . Let T 0 be obtained from T by deleting the subtree T 00 .
Composing all node decorations of T 00 using the operad composition gives us an
element c 2 O.In.T 00//. We label the inputs of Ti from left to right by 1 to In.Ti/.
Then the inputs of T 00 form a subinterval s C 1; s C 2; : : : ; s C t with t D In.T 00/.
Define

Oc D ids˚c˚ idIn.Ti /�s�t 2O � yO:

We have the relation

.T Ig1; : : : ;gk/� .T
0
Ig1; : : : ;gi�1;G. Oc/.gi/;giC1; : : : ;gk/:

In particular, if w is a stump then c D b 2 O.0/, In.T 00/ D ∅ so that t D 0, and
In.T 0/D In.T /C 1.

4.6 Proposition M.G/ has an O–algebra structure, and we obtain a functor

M W TopyO!O–Top:

Proof Let xi 2M.G/, i D 1; : : : ; n, be represented by .Ti Igi1; : : : ;giki
/ and let

a 2O.n/. Then a.x1; : : : ;xn/ is represented by

.T Ig11; : : : ;g1k1
; : : : ;gn1; : : : ;gnkn

/;

where T is obtained from T1; : : : ;Tn by grafting the roots of the Ti together to a
single root. If the root of Ti is decorated by bi , the new root is decorated by

a ı .b1˚ � � �˚ bn/:

We want to compare the yO–space 1M.G/ associated with the O–algebra M.G/ with
the original yO–space G . For this purpose we define an yO–space

Q.G/W yO! Top; n 7!Qn.G/

by

Qn.G/D
�a

LO.T1/� � � � �LO.Tn/�G.In.T1/C � � �C In.Tn//
�ı
�;

where the union is taken over all n–tuples .T1; : : : ;Tn/ of trees in zT . The relations are:

(1) Shrinking an internal edge An internal edge e of length 0 in any of the trees
may be shrunk as explained in Definition 4.5(1a), which makes sense even if e

is a root edge.

(2) Chopping an internal edge Any internal edge e of length 1 in any of the trees
may be chopped as explained in Definition 4.5(2) with the difference that Oc is
formed using all inputs rather than only the ones of Ti .
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(3) Equivariance Ti–equivariance, as explained in 4.4(2), holds for each tree
T1; : : : ;Tn , and the relation reads

.T1; : : : ;TnIg/� .T1; : : : ;
�Ti ; : : : ;TnIG.id� � � � ��† � � � � � id/.g//:

This defines Q.G/ on objects.

For � 2 Inj.k; l/ the map Q.G/.��/W Ql.G/!Qk.G/ is given by the projections

LO.T1/� � � � �LO.Tl/! LO.T�.1//� � � � �LO.T�.k//

and the map G.�.In.T1/; : : : ; In.Tl//
�/ defined in 2.4. If k1C � � �C kr Dm and

˛ D .˛1; : : : ; ˛r / 2O.k1; 1/� � � � �O.kr ; 1/� yO.m; r/;

then Q.G/.˛/W Qm.G/!Qr .G/ maps a representing tuple .T1; : : : ;TmIg/, where
each Ti is a decorated tree with lengths and g 2 G.In.T1/C � � � C In.Tm//, to the
element represented by .T 0

1
; : : : ;T 0r Ig/. If p D k1C � � �C ki�1 then T 0i is obtained

from TpC1; : : : ;TpCki
by grafting their roots together and decorating the root of T 0i

by ˛i ı .ˇ1˚ � � �˚ˇki
/, where ǰ is the root decoration of TpCj .

Like M.G/, the space Qn.G/ is the quotient of a coend, namely the coend of the
functor

LOQn
W .zT op/n

LOn

���! Topn product
����! Top

and the functor

�Qn
W zTn

! Top; .T1; : : : ;Tn/ 7!G.In.T1/C � � �C In.Tn//:

4.7 Theorem There are maps of yO–spaces, natural in G ,

1M.G/
�
 �Q.G/

"
�!G;

such that

(1) each "nW Qn.G/!G.n/ is a homotopy equivalence, and

(2) if O is †–free and G is special, each �nW Qn.G/! M.G/n is a homotopy
equivalence.

Proof The map "nW Qn.G/!G.n/ is defined by chopping the roots of each tree. This
makes sense in this case although roots are not internal edges. By construction, the "n

define a map "W Q.G/!G of yO–spaces. Each "nW Qn.G/!G.n/ has a section

snW G.n/!Qn.G/; g 7! .‚1; : : : ; ‚1Ig/;
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with id 2 O.1/ as node decoration of ‚1 . Let T .t/ be the tree obtained from T by
putting T on top of ‚1 and giving the newly created internal edge the length t . Then for

.T1; : : : ;TnIg/ 2 LO.T1/� � � � �LO.Tn/�G.In.T1/C � � �C In.Tn//

we have
.T1.0/; : : : ;Tn.0/Ig/� .T1; : : : ;TnIg/

by the shrinking relation, and

.T1.1/; : : : ;Tn.1/Ig/� sn"n.T1; : : : ;TnIg/

by the chopping relation. Hence t 7! .T1.t/; : : : ;Tn.t/Ig/ defines a homotopy from
idQn.G/ to sn ı "n .

We define

� W Qn.G/!M.G/n; .T1; : : : ;TnIg/ 7!
�
Ti IG.�

�
i;1/.g/; : : : ;G.�

�
i;ki
/.g/

�n
iD1

if Ti is of the form Ti D‚ki
ı .Ti;1˚ � � �˚Ti;ki

/, and where

�i;j W In.Ti;j /� In.Ti/� In.T1/C � � �C In.Tn/

is the canonical inclusion. By construction, the �n define a map of yO–spaces.

We now prove the second statement of the theorem. So assume that G is special and
O is †–free. Then the map

�n D .G.�
�
1;1/; : : : ;G.�

�
n;kn

//W G.In.T1/C � � �C In.Tn//!

nY
iD1

kiY
jC1

G.In.Ti;j //

is a homotopy equivalence. For notational convenience we denote8̂<̂
:

G.In.T1/C � � �C In.Tn//Qn
iD1

Qki

jC1
G.In.Ti;j //Qn

iD1 Aut.Ti/

by

8̂<̂
:

GQ.T1; : : : ;Tn/;

GM .T1; : : : ;Tn/;

Aut.T1; : : : ;Tn/:

Similarly, we denote

LOQn
.T1; : : : ;Tn/D LO.T1/� � � � �LO.Tn/ by LO.T1; : : : ;Tn/:

By 3.4, M.G/n is a quotient ofa
.ŒT1�;:::;ŒTn�/

.LO�Aut GM /.T1; : : : ;Tn/;
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where

.LO�Aut GM /.T1; : : : ;Tn/D LO.T1; : : : ;Tn/�Aut.T1;:::;Tn/GM .T1; : : : ;Tn/;

and Qn.G/ is a quotient ofa
.ŒT1�;:::;ŒTn�/

.LO�Aut GQ/.T1; : : : ;Tn/;

where

.LO�Aut GQ/.T1; : : : ;Tn/D LO.T1; : : : ;Tn/�Aut.T1;:::;Tn/GQ.T1; : : : ;Tn/:

In both cases the sum is indexed by the isomorphism classes in zTn .

Hence the proof reduces to showing that

id�Aut�nW

a
.ŒT1�;:::;ŒTn�/

.LO�AutGQ/.T1; : : : ;Tn/!
a

.ŒT1�;:::;ŒTn�/

.LO�AutGM /.T1; : : : ;Tn/

induces a homotopy equivalence Qn.G/!M.G/n . (This part of the proof relies on
certain technical facts about numerable principal bundles that we list in 4.8.)

We choose a representative T in each isomorphism class ŒT � and filter both spaces. Let
Fr .Q/ and Fr .M / be the subspaces of Qn.G/ and M.G/n of those points which
can be represented by elements for which the .T1; : : : ;Tn/–part consists of trees whose
total number of internal edges is less than or equal to r . We prove by induction that
the above map induces a homotopy equivalence Fr .Q/! Fr .M / for all r , which in
turn implies the result.

F0.Q/ is the disjoint union of spaces

.O.k1/� � � � �O.kn//�†k1
�����†kn

G.k1C � � �C kn/

and F0.M / is the disjoint union of spaces

.O.k1/� � � � �O.kn//�†k1
�����†kn

G.1/k1C���Ckn :

Here observe that Aut.‚k/D†k . Since O.k1/�� � ��O.kn/ is a numerable principal
.†k1

� � � � �†kn
/–space, id��n defines a homotopy equivalence F0.Q/! F0.M /

by 4.8(2).

Now assume that we have shown that id�Aut�n induces a homotopy equivalence
Fr�1.Q/!Fr�1.M /. We obtain Fr .Q/ from Fr�1.Q/ and Fr .M / from Fr�1.M /

by attaching spaces .LO�Aut GQ/.T1; : : : ;Tn/ and .LO�Aut GM /.T1; : : : ;Tn/, re-
spectively, where .T1; : : : ;Tn/ have exactly a total of r internal edges. In both cases, an
element in the attached space represents an element of lower filtration if and only if an in-
ternal edge in .T1; : : : ;Tn/ is of length 0 or 1, because in these cases the shrinking and
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chopping relations apply, respectively. Let D.T1; : : : ;Tn//� LO.T1; : : : ;Tn// be the
subspace of such decorated trees. The inclusion of this subspace is an Aut.T1; : : : ;Tn/–
equivariant cofibration (see the product pushout theorem [5, page 233]). Consider the
diagram

Fr�1.Q/

��

.D �Aut GQ/.T1; : : : ;Tn/
proj

oo
iQ
//

��

.LO�Aut GQ/.T1; : : : ;Tn/

��

Fr�1.M / .D �Aut GM /.T1; : : : ;Tn/
proj
oo

iM
// .LO�Aut GM /.T1; : : : ;Tn/

where the vertical maps are induced by id�Aut�n . The maps iQ and iM are closed
cofibrations (see [5, page 232]). We will prove in Lemma 4.9 that O.T / is a numer-
able principal Aut.T /–space. (Recall that OW T op ! Top was defined in Section 3
for the collection K D O .) Hence O.T1/ � � � � � O.Tn/ is a numerable principal
Aut.T1; : : : ;Tn/–space (see 4.8(4)). Since there are equivariant maps

D.T1; : : : ;Tn/! LO.T1; : : : ;Tn/
forget
���!O.T1/� � � � �O.Tn/;

both D.T1; : : : ;Tn/ and LO.T1; : : : ;Tn/ are numerable principal Aut.T1; : : : ;Tn/–
spaces (see 4.8(1)). Hence the vertical maps of the diagram are homotopy equivalences
(see 4.8(2)), and the gluing lemma implies that Fr .Q/ ! Fr .M / is a homotopy
equivalence.

4.8 Facts about numerable principal �–spaces The following results are either
fairly obvious or can be found in the appendix of [5]. Let � be a discrete group and X

a numerable principal right �–space.

(1) If f W Y !X is a �–equivariant map, then Y is a numerable principal �–space.
Moreover, f is an equivariant homotopy equivalence if and only if it is an
ordinary homotopy equivalence of underlying spaces.

(2) If f W Y ! Z is an equivariant map of left �–spaces, which is an ordinary
homotopy equivalence of underlying spaces, then id��f W X �� Y !X �� Z

is a homotopy equivalence.

(3) If H is a subgroup of � , then X is a numerable principal H –space.

(4) If Y is a numerable principal right � 0–space, then X�Y is a numerable principal
right � �� 0–space.

4.9 Lemma If O is a †–free topological operad, then O.T / is a numerable principal
Aut.T /–space.
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Proof We prove this by an inductive argument. If T D‚n , then Aut.T /D†n and
O.T /DO.n/. By assumption, O.n/ is a numerable principal †n–space.

Now let T D‚n ı .T1˚� � �˚Tn/. The following calculation of Aut.T / is taken from
[4, page 815]. By choosing T appropriately in ŒT � we may assume that it has the form

T D‚n ı .T
1
1 ˚ � � �˚T 1

k1
˚ � � �˚T l

1 ˚ � � �˚T l
kl
/;

where T i
1
; : : : ;T I

ki
are copies of a planar tree T i , and T i and T j are not isomorphic

in T for i ¤ j . Then Aut.T / is the semi-direct product

Aut.T /Š .Aut.T 1/k1 � � � � �Aut.T l/kl /Ì .†k1
� � � � �†kl

/D �T Ì†T ;

where †ki
acts on Aut.T i/ki by permuting the factors.

O.n/ is a numerable principal †T –space because †T is a subgroup of †n . By
induction, O.T 1/k1 � � � � �O.T l/kl is a numerable principal �T –space. Denote ‚n

by T 0 . By [5, Appendix, Lemma 3.2] there are open covers U i D fU i
˛I ˛ 2 Aig of

O.T i/, i D 0; : : : ; l , with subordinate partitions of unity ff i
˛ W O.T i/! Œ0; 1�; ˛ 2Aig

such that U i
˛ �h\U i

˛ D∅ for all h 2Hi different from the unit, where H0D†T and
Hi D Aut.T i/ for i D 1; : : : ; l . The open cover

V D fU 0
1 �U 1

1 � � � � �U 1
k1
� � � � �U l

1 � � � � �U l
kl
g

of O.T /, where U i
j runs through the elements of U i , satisfies the condition that

.U 0
1 �U 1

1 � � � � �U l
kl
/ � h\ .U 0

1 �U 1
1 � � � � �U l

kl
/D∅

for all h 2 �T Ì†T different from the unit. The product numeration obtained from
the f i

˛ provides a partition of unity subordinate to V . Now the lemma follows from [5,
Appendix 3.2].

If X is an O–algebra and G D yX then, by inspection, Qn.G/ŠQ1.G/
n , and the yO–

structure on Q.G/ defines an O–algebra structure on Q1.G/. The map �1W Q1.G/!

M.G/ is a homeomorphism of O–algebras, and "1W Q1.G/!G.1/DX is a weak
equivalence of O–algebras. Composing "1 with the inverse of �1 , we obtain:

4.10 Proposition If X is an O–algebra in Top then there is a natural weak equiva-
lence of O–algebras

x"W M. yX /!X:
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5 Tree-indexed diagrams

In order to adapt the rectification construction described in Section 4 to the case of
categories, we will recast the topological version described there into a homotopy colimit
construction of a certain diagram. The same diagram makes sense in Cat , where we will
apply the Grothendieck construction, which is the analog of the homotopy colimit in Cat .

5.1 The indexing category T As in the previous section, our construction involves
trees with a root vertex. So the objects of T are the isomorphism classes ŒT � of planar
trees in zT . The shrinking and chopping relations of Definition 4.5 correspond to
morphisms in the diagram to be constructed. So the generating morphisms of T are of
two types:

(1) Shrinking an internal edge.

(2) Chopping off a subtree above any node � of a tree:

T1 : : : Ti�1 Ti TiC1 : : : Tk

� v

�!

T1 : : : Ti�1 TiC1 : : : Tk

� v

That is, the subtree Ti in the original tree is replaced by a single input edge in
the new tree.

To define a general morphism in T we introduce the notion of a marked tree. A
marked tree is a planar tree S with a marking of some (possibly none) of its internal
edges with either the symbol s or the symbol c , subject to the constraint that an edge
which is anywhere above an edge marked c is left unmarked. A morphism in T
is an isomorphism class of marked trees with respect to non-planar isomorphisms
respecting the marking. The source of such a morphism f is the isomorphism class
of the underlying unmarked planar tree. Let S be a marked tree representing f and
let T be the unmarked tree obtained from S by first chopping off the branches above
every edge marked c . (Note that this map would discard any markings of edges above
such an edge, which accounts for the constraint.) Then one shrinks all edges marked s .
The isomorphism class of T is the target of f . By construction, ŒT � is independent of
the choice of the representative S of f . In most cases, there is at most one morphism
between objects of T . However, there are exceptions. For instance,

c and s

represent distinct morphisms with the same source and target.
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The following remark will make the definition of the composition easy.

5.2 Remark In the sequel we will need to prescribe a consistent way of representing
simplices in the nerve of T by a chain of marked planar trees. Given an n–simplex

ŒT0�! ŒT1�! � � � ! ŒTn�

in the nerve of T , pick a planar representative T0 2 ŒT0�. Any morphism ŒT0�! ŒT1�

is represented by a marking of T0 . By applying the edge shrinking and chopping
specified by the marking of T0 , we obtain a well-defined planar representative T1

of ŒT1�. Now apply the same procedure to the map ŒT1�! ŒT2� and carry on to obtain
a sequence

T0! T1! � � � ! Tn representing ŒT0�! ŒT1�! � � � ! ŒTn�;

where the maps Ti ! TiC1 are given by a marking of Ti . If we had picked a
different representative T 0

0
2 ŒT0�, then there is an isomorphism �W T0 ! T 0

0
in zT ,

which transports the marking of T0 to a marking of T 0
0

, and the marked tree T 0
0

also
represents the morphism ŒT0�! ŒT1�. Clearly � can be extended to the whole sequence
of representatives in a unique way.

To define the composition of f W ŒS �! ŒT � and gW ŒT �! ŒU �, we take a representing
chain S ! T ! U with a marking of S and a marking of T . Let E.S/ and E.T /

be the sets of internal edges of S and T , respectively. Since T is obtained from S

by shrinking and chopping off internal edges, we may consider E.T / as a subset of
E.S/. Observe that the marked edges of S do not lie in E.T /. So the marking of T

defines a marking on edges of S which have not been marked before. We now erase in
this larger marking any mark above an edge marked with c to satisfy our constraint.
The resulting marking of S represents the composition g ıf .

5.3 The diagram Let O be an arbitrary operad in S and let GW yO ! S be an
yO–diagram in S , where S is Cat; Top; Sets or SSets. We are going to define a
diagram

FG
W T ! S:

We recall the functor OW T op ! S from Section 3. The definition of the functor
�G W
zT ! Top in 4.1 also makes sense if we replace Top by S . We define

FG.ŒT �/DO˝ŒT � �G ;

the coend obtained by restricting of the functors to the isomorphism class ŒT �� zT .
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As in 4.2 we have the following explicit description of an element in FG.ŒT �/. The
object

W .G;T /DO.T /�G.In.T //

replaces V .G;T /. If T has the form (4.3) we define

FG.ŒT �/D

� a
T2ŒT �

O.n/�
nY

iD1

W .G;Ti/

�ı
�D

� a
T2ŒT �

O.T /�
nY

iD1

G.In.Ti//

�ı
�;

where the relation is the equivariance relation 4.4 with the factor In dropped.

Next we describe FG on the generating morphisms of T .

(1) Suppose ˛W ŒT �! ŒT 0� is shrinking a bottom edge of ŒT �. So ˛ is represented
by T with a single marking s of the edge connecting the root node to a subtree Ti

of T :

Tn

Tir
Ti2

Ti1

T2T1 � � �� � �

� � �

root

˛
�! TnTir

Ti2
Ti1T2T1 � � �� � �� � �

root

The corresponding morphism FG.˛/ is induced by the map

O.T /�
nY

jD1

G.In.Tj //!O.T 0/�
i�1Y
jD1

G.In.Tj //�

rY
kD1

G.In.Tik
//�

nY
jDiC1

G.In.Tj //

which sends a decorated tree T 2 O.T / to the decorated tree T 0 obtained from T

as in the shrinking relation of Definition 4.5(1b), disregarding lengths. On the other
factors the map is given by identities and the map �� of Definition 4.5(1b).

(2) Shrinking a nonbottom edge corresponds under FG to the map .T Ig1; : : : ;gn/ 7!

.T 0Ig1; : : : ;gn/, where T 0 is obtained from T as in (1).

(3) Let � W ŒT �! ŒT 0� be a chopping morphism, represented by a tree T of the form
(4.3) with exactly one marked edge e with marking c . This edge belongs to some
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subtree Ti of T ; it could be its root. Then FG.�/ is induced by the map

H W O.T /�
nY

jD1

G.In.Tj //!O.T 0/�
i�1Y
jD1

G.In.Tj //�G.In.T 0i //�
nY

jDiC1

G.In.Tj //;

where T 0 is obtained from T and T 0i from Ti by deleting the subtrees with root
edge e (if e is the root of Ti then T 0i is the trivial tree). The map H is given on
O.T /!O.T 0/ by the projection (the set of decorated nodes in T 0 is a subset of the
set of decorated nodes in T ), and on the other factors by the identities and the map
G. Oc/ of Definition 4.5(2).

In each case the equivariance relations on the operad O and the functoriality of G

imply that the definition of FG on the morphisms of T does not depend on the choice
of representatives and that FG is a well-defined functor.

5.4 A relative version There is a relative version of this construction with respect
to a map of operads 'W O! P in S . Again, let GW yO! S be an yO–diagram in S .
We then define the functor FG

' W T ! S in exactly the same way as we defined FG ,
except that for FG

' ŒT � the bottom node of a representing decorated T is decorated
with an element of P.k/ instead of O.k/. Thus

FG
' .ŒT �/D

� a
T2ŒT �

P.k/�
kY

iD1

W .G;Ti/

�ı
�;

with the equivariance relation as above. On morphisms FG
' is defined in the same way

as FG , except that when we shrink a bottom edge we apply ' to the element of O
decorating the node at the top of the edge before we compose it with the element of P
decorating the bottom node.

6 Homotopy colimits

For a diagram DW C! Cat in Cat the Grothendieck construction C
R

D is the category
whose objects are pairs .c;X / with c 2 ob C and X 2 ob D.c/. A morphism .c;X /!

.c0;X 0/ is a pair .j ; f / consisting of a morphism j W c ! c0 in C and a morphism
f W D.j /.X /!X 0 in D.c0/. Composition is the obvious one.

6.1 Proposition If O is an operad in Cat and GW yO! Cat is an yO–category then
T
R

FG is an O–algebra.
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Proof We define

(�) O.m/�†m

�
T
R

FG
�m
! T

R
FG

as follows. A planar representative of an object on the left side of (�) looks like

.A; f.Ti/g
m
iD1;C i/; with Ti D

TikiTi2Ti1 � � �

Bi

where A is an object in O.m/, Ti is a planar tree whose nodes are decorated by
objects in the appropriate O.k/, and C i is an object in G.In.Ti1//�� � ��G.In.Tiki

//.
The underlying tree of Ti represents an object ŒTi � in T and the pair Xi D .Ti ;C i/

an object in FG.ŒTi �/. We send this object to the object represented by the pair
.T; .C 1;C 2; : : : ;C m//, where

T D A ı .B1˚B2˚� � �˚Bm/

TmkmTm1T1k1T11 � � � � � � � � �

For later use we denote this representative by x�.AIX1; : : : ;Xm/. This map extends to
morphisms: the O.m/ factor only affects A, while morphisms in T

R
FG may result

in operad compositions from the right of the Bi with other node decorations of Ti ,
chopping or shrinking of internal edges and their effects on the C i .

6.2 Definition For a diagram F W I!Top of topological spaces we define hocolimI F

to be the 2–sided bar construction

hocolimI F D B.�; I;F /;

where �W Iop! Top is the constant diagram on a point (see [11, Proposition 3.1] for a
list of properties of the 2–sided bar construction). More explicitly, B.�; I;F / is the
topological realization of the simplicial space

Œn� 7! Bn.�; I;F /D
a
A;B

In.A;B/�F.A/;

where In.A;B/� .mor I/n is the subset of composable morphisms

A
f1
�! � � �

fn
�! B:
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The degeneracy maps are defined as in the nerve of I , the boundary maps

d i
W Bn.�; I;F /! Bn�1.�; I;F /

are defined as in the nerve for i>0, while d0.f1; : : : ; fnIx//D.f2; : : : ; fnIF.f1/.x//.

6.3 Proposition If O is an operad in Top and GW yO ! Top is an yO–space then
hocolimT FG is an O–algebra.

Proof Since the classifying space functor preserves products it suffices to show that
B�.�; T ;FG/ is a simplicial object in the category of O–algebras. By Remark 5.2, an
m–tuple of elements in Bp.�; T ;FG/ can be represented by sequences of marked trees˚�

Tj0

tj1

��! � � �
tjp

��! TjpIXj

�	
1�j�m

;

where tjk is Tjk with a marking. An operation a 2 O.m/ maps this m–tuple of
elements to the element represented by�
�.T10; : : : ;Tn0/

�.t11;:::;tn1/
��������! � � �

�.t1p;:::;tnp/
��������! �.T1p; : : : ;Tnp/I x�.aIX1; : : : ;Xm/

�
;

where �.T1; : : : ;Tn/ is the tree obtained from T1; : : : ;Tn by gluing their roots together
and �.t1; : : : ; tn/ the corresponding marked tree, while x�.aIX1; : : : ;Xn/ is defined
as in the proof of Proposition 6.1.

If O is an operad in Cat , then BO is an operad in Top by Lemma 2.7.

6.4 Proposition If O is an operad in Cat and GW yO! Cat is an yO–category then
hocolimT B.FG/ is a BO–space.

Proof By definition, hocolimT B.FG/ is the topological realization of the bisimplicial
set

.Œp�; Œq�/ 7!Np.T /�Nq.F
G.ŒT0�//;

where N is the nerve functor. An element in Np.T /�Nq.F
G.ŒT0�// is a pair�

ŒT0�
Œt1�
��! � � �

Œtp�
��! ŒTp �;X0

x1
�! � � �

xq

�!Xq

�
;

where ŒT0�
t1
�! � � �

tp
�! ŒTp � is a sequence of morphisms in T and X0

x1
�! � � �

xq

�!Xq is
a sequence of morphisms in the category FG.ŒT0�/. We define an operation of N�O
on its diagonal: the element�

A0

˛1
�! � � �

˛p

�!Ap

�
2NpO.n/
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maps the n–tuple represented by( 
Tj0

tj1

��! � � �
tjp

��! Tjp

Xj0

xj1

��! � � �
xjp

��!Xjp

!)
1�j�n

to the object represented by the pair of sequences: 
�.T10; : : : ;Tn0/

�.t11;:::;tn1/
��������! � � �

�.t1p;:::;tnp/
��������! �.T1p; : : : ;Tnp/

x�.A0IX10; : : : ;Xn0/
x�.˛1Ix11;:::;xn1/
�����������! � � �

x�.˛pIx1p;:::;xnp/
������������! .ApIX1p; : : : ;Xnp/

!

In degree p , the nerve N�.T
R

FG/ consists of diagrams

.ŒT0�;X0/
.Œt1�;x1/
�����! � � �

.Œtp�;xp/
�����! .ŒTp �;Xp/

with

Xi 2 FG.ŒTi �/; Œti �W ŒTi�1�! ŒTi � in T ; and xi W Œti �.Xi�1/!Xi in FG.ŒTi �/:

We always tacitly assume that the representing trees Ti and the marked trees ti are cho-
sen as in Remark 5.2. The O–structure on T

R
FG defined in the proof of Proposition 6.1

translates to an N�O–structure on N�.T
R

FG/ as follows: if

A0

˛1
�! � � �

˛p

�!Ap

is an element in NpO.n/, it maps an n–tuple˚
.ŒTj0�;Xj0/

.Œtj1�;xj1/
�������! � � �

.Œtjp�;xjp/
�������! .ŒTjp �;Xjp/

	
1�j�n

to�
Œ�.T10; : : : ;Tn0/�; x�.A0IX10; : : : ;Xn0/

�
! � � � !

�
Œ�.T1p; : : : ;Tnp/�; x�.ApIX1p; : : : ;Xnp/

�
in the notation above with the obvious maps.

Thomason [18] constructed a natural weak equivalence

�W hocolimT B.FG/! B.T
R

FG/

defined on nerves by mapping 
ŒT0�

Œt1�
��! � � �

Œtp�
��! ŒTp �

X0

x1
�! � � �

xp

�!Xp

!
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to

.ŒT0�;X0/
.Œt1�;Œt1�.x1//
���������! � � �

.Œtp�;Œtp�ı���ıŒt1�.xp//
��������������! .ŒTp �; Œtp � ı � � � ı Œt1�Xp/:

6.5 Proposition The map �W hocolimT B.FG/! B.T
R

FG/ is a weak equivalence
of BO–spaces natural in G .

Proof We prove this on the level of nerves. So let

.T;X /D

( 
ŒTj0�

Œtj1�
���! � � �

Œtjp�
���! ŒTjp �

Xj0

xj1

��! � � �
xjp

��!Xjp

!)
1�j�n

be an element in
Qn

jD1 Np.T /�Np.F
G.ŒTj0�// and

xAD
�
A0

˛1
�! � � �

˛p

�!Ap

�
2NpO.n/:

We have to show that xA � �n..T;X //D �. xA � .T;X //, where xA �� stands for the
operation of xA.

To avoid a multitude of indices we do this for nD 2 and p D 1; the general case is
analogous. Then

�2..T;X //D
˚
.ŒTi0�;Xj0/

.Œtj1�;Œtj1�.xj1//
�����������! .ŒTj1�; Œtj1�.Xj1//

	
jD1;2

and

xA� �2..T;X //D
�
Œ�.T10;T20/�; x�.A0IX10;X20/

�
!
�
Œ�.T11;T21/�; x�.A1I Œt11�.X11/; Œt21�.X21//

�
:

Now

xA� .T;X /D

( 
Œ�.T10;T20/�

Œ�.t11;t21/�
�������! Œ�.T11;T21/�

x�.A0IX10;X20/
x�.˛1Ix11;x21/
����������! x�.A1IX11;X21/

!)
;

which is mapped by � to�
Œ�.T10;T20/�; x�.A0IX10;X20/

�
!
�
Œ�.T11;T21/�; Œ�.t11; t21/�.x�.A1IX11;X21//

�
:

So we have to show that

Œ�.t11; t21/�.x�.A1IX11;X21//D x�
�
A1I Œt11�.X11/; Œt21�.X21/

�
;

Œ�.t11; t21/�.x�.˛1Ix11;x21//D x�
�
˛1I Œt11�.x11/; Œt21�.x21/

�
:

These equations hold because the operation of xA is defined by composition from the
left with the sum of the appropriate root labels, while the tij shrink edges of trees
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or are evaluations which could at most result in compositions with root labels from
the right.

6.6 Proposition If O is †–free, there is a natural homeomorphism B.FG/.ŒT �/Š

FBG.ŒT �/ and hence a homeomorphism

hocolimT B.FG/Š hocolimT FBG

of BO–spaces natural in G . In particular, Thomason’s map induces a weak equivalence
of BO–spaces hocolimT FBG! B.T

R
FG/.

Proof We have

FG.ŒT �/ŠO.T /�Aut.T / �G.T / and FBG.ŒT �/Š BO.T /�Aut.T / �BG.T /

by 3.4. Since B is product-preserving, there is a natural homeomorphism �BG!B�G .
Since Aut.T / acts freely on O.T / it acts freely on O.T /� �G.T /. Hence there is
a natural homeomorphism B.O.T /�Aut.T / �G.T //! BO.T /�Aut.T / B�G.T / by
Lemma 2.8. Here we also use that B.O.T /��G.T //Š B.O.T //�B.�G.T //.

A map � W G1!G2 of yO–categories induces a map F � W FG1! FG2 of T –diagrams
in Cat and hence a map

T
R

F � W T
R

FG1 ! T
R

FG2

of O–algebras.

6.7 Proposition If O is a †–free operad in S and � W G1 ! G2 is a map of yO–
diagrams in S which is objectwise a weak equivalence, then:

(1) If S D Cat , the functor T
R

F � W T
R

FG1 ! T
R

FG2 is a weak equivalence of
O–algebras.

(2) If S D Top, the map hocolimT FG1 ! hocolimT FG2 is a weak equivalence of
O–spaces.

Proof By Proposition 6.6 it suffices to prove (2) because weak equivalences in Cat
are detected by the classifying space functor B .

We have a commutative diagram

FG1.ŒT �/
F� .ŒT �/

//

Š

��

FG2.ŒT �/

Š

��

O.T /�Aut.T / �G1
.T /

id�Aut�� .T /
// O.T /�Aut.T / �G2

.T /
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Since O.T / is a numerable principal Aut.T / space by Lemma 4.9 and �� .T / is a
homotopy equivalence, the map id�Aut�� .T / is a homotopy equivalence by 4.8(2).
Hence F � W FG1 ! FG2 is objectwise a weak equivalence, inducing a homotopy
equivalence hocolim FG1 ! hocolim FG2 .

7 Change of operads

Let X be an O–algebra in Cat and yX W yO! Cat its associated yO–diagram. Then we
have a map

"W T
R

F
yX
!X

induced by

T
p

//

F
yX

��

�

X

��

e
)

Cat

where e.ŒT �/ is the composite

e.ŒT �/W F
yX .ŒT �/!O.In.T //�†In.T / X In.T /

!X:

If T is of the form (4.3) then the first map shrinks all edges of all decorated trees Ti .
The second map is the O–action on X .

By construction, " is a homomorphism of O–algebras.

7.1 Proposition The homomorphism "W T
R

F
yX ! X is a weak equivalence of

O–algebras.

Proof Note that F
yX .ŒT �/DW . yX ; ŒT �/ modulo the equivariance relation, because

yX .n/DX n . There is a section sW X ! T
R

F
yX of ", which is not a map of algebras.

It is induced by

�
i

//

X

��

T

F
yX

��

�
)

Cat

where i takes � to the tree ‚1 which in turn is mapped to O.1/�X by F
yX , and

�.�/W X ! F
yX ı i is the inclusion X D fidg �X �O.1/�X .
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Let j W T ! T be the functor which maps ŒT � to the isomorphism class represented by:

T

Now let
J W T

R
F
yX
! T

R
F
yX

be the functor sending an object .ŒT �;X / with ŒT � 2 T and X 2 F
yX .ŒT �/ to the

pair .j .ŒT �/; j .X //, where j .X / has the decoration of X on the T –part and id as
decoration of the root of j .ŒT �/. This definition extends canonically to morphisms
with the root of j .ŒT �/ always decorated by the identity.

Shrinking and chopping the incoming edge of the root of j .ŒT �/ define natural trans-
formations J ) Id and J ) s ı ", respectively. The classifying space functor turns
these transformations into homotopies Id' BJ ' Bs ıB".

7.2 Corollary Let 'W O! P be a weak equivalence of †–free operads and let X be
an O–algebra. Then there are natural weak equivalences of O–algebras

X  T
R

F
yX
! T

R
F
yX
' :

In particular, X is weakly equivalent to a P–algebra.

Proof The left map is a weak equivalence of O–algebras by Proposition 7.1; the
right map is a weak equivalence of O–algebras since F

yX ! F
yX
' is objectwise a weak

equivalence.

The analogous results hold in Top: by [11, Proposition 3.1] the functors and natural
transformations constructed in the proof of Proposition 7.1 imply the following:

7.3 Proposition (1) Let O be a †–free topological operad, X an O–space and
yX W yO! Top its associated yO–diagram. Then there is a natural homomorphism

of O–spaces "W hocolim F
yX !X , which is a weak equivalence.

(2) If 'W O! P is a weak equivalence of †–free topological operads, then there
are natural weak equivalences of O–spaces

X  hocolim F
yX
! hocolim F

yX
' :

In particular, X is weakly equivalent to a P–space.
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8 Comparing yO–categories G with T
R

F G

Let GW yO! Cat be an O–category. We define a functor

�n D �nG W
zTn
! Cat

by sending .T1; : : : ;Tn/ to G.In.T1/C � � � C In.Tn// and a morphism .�1; : : : ; �n/

to G.�†
1
˚ � � �˚�†n /. Let

W G
n W T

n
! Cat

be the diagram given on objects by the coend

W G
n .ŒT1�; : : : ; ŒTn�/DO� � � � �O˝ŒT1������ŒTn� �n

obtained by restricting the functors �n and

O� � � � �OW zTn
! Cat; .T1; : : : ;Tn/ 7!O.T1/� � � � �O.Tn/

to ŒT1�� � � � � ŒTn�� zTn . On generating morphisms W G
n is defined as follows:

� Shrinking an internal edge: W G
n .�/ is defined in the same way as FG.�/ for

shrinking a nonbottom edge.

� Chopping off a branch: W G
n .�/ is defined in the same way as FG.�/ with

the difference that G. Oc/ is defined with respect to the union of all inputs of
T1; : : : ;Tn .

As before, an object or morphism of W G
n .ŒT1�; : : : ; ŒTn�/ is represented by a tuple

.T1; : : : ;Tn;C / consisting of trees Ti 2 ŒTi � decorated by objects or morphisms in
O.In.Ti//, respectively, and an object or morphism C 2 G.In.T1/C � � � C In.Tn//,
respectively. The appropriate equivariance relations hold.

8.1 Remark Note that, unlike in the FG construction, the bottom edges of trees
play no special role in the W G

n construction. Also note that W G
1
.ŒT �/, modulo the

equivariance relation, coincides with the construction W .G;T / used as a stepping
stone for the FG construction.

8.2 Lemma The correspondence

n 7! T n
R

W G
n

extends to an yO–category

M D T �
R

W G
� W
yO! Cat:
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Proof If � 2 Inj.k; l/ then M.��/W M.l/!M.k/ is induced by the projection

T l
! T k ; .ŒT1�; : : : ; ŒTl �/ 7! .ŒT�.1/�; : : : ; ŒT�.k/�/

and the map G.�.In.T1/; : : : ; �.In.Tl//
�/ (see 2.4). If

˛ D .˛1; : : : ; ˛r / 2O.k1; 1/� � � � �O.kr ; 1/ and mD k1C � � �C kr ;

then M.˛/W M.m/!M.r/ maps a representing tuple .T1; : : : ;Tm;C /, where each Ti

is a decorated tree and C 2 G.In.T1 C � � � C In.Tm//, to the element represented
by .T 0i ; : : : ;T

0
r ;C /. Here T 0i is obtained by grafting the roots of TpC1; : : : ;TpCki

together, where pDk1C� � �Cki�1 , and decorating the root of T 0i by ˛iı.ˇ1˚� � �˚ˇki
/

if ǰ is the root node decoration of TpCj .

8.3 Lemma If O is a †–free operad, there is a map of yO–categories

� W M D T �
R

W G
� ! T

R
FG2

;

natural in G , which is objectwise a weak equivalence if G is special.

Proof The map �.n/W M.n/! .T
R

FG/n sends a representative .T1; : : : ;Tn;C / to
..T1;G.�

�
1
/.C //; : : : ; .Tn;G.�

�
n /.C //, where �i W In.Ti/! In.T1/C � � �C In.Tn/ is

the canonical inclusion.

By construction, this defines a map of yO–categories.

If G is special, the map

.G.��1 /; : : : ;G.�
�
n //W G.In.T1/C � � �C In.Tn//!

nY
iD1

G.In.Ti//

is a weak equivalence. Consequently, � is a weak equivalence because O is †–free
(see Lemma 2.8 and also 4.8(2)).

8.4 Lemma There is a map of yO–categories

"W M D T �
R

W G
� !G;

natural in G , which is objectwise a weak equivalence.

Proof The map ".n/W M.n/!G.n/ is defined on .T1; : : : ;Tn;C / by chopping off
the roots of T1; : : : ;Tn as explained in the definition of FG . To prove that ".n/ is a
weak equivalence we proceed as in the proof of Proposition 7.1. The functor ".n/ has
a section snW G.n/!M.n/ sending C 2 G.n/ to .‚1; : : : ; ‚1;C / 2M.n/, where
the node of ‚1 is decorated by the identity.
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We define a functor J W T n
R

W G
n ! T n

R
W G

n in the same way as in Proposition 7.1:
we map .ŒT1�; : : : ; ŒTn�;X / to .j ŒT1�; : : : ; j ŒTn�I j .X // with the difference that j .X /

is obtained from X by decorating each of the n new root nodes by the identity. By
shrinking and chopping the incoming edges to the root nodes we again obtain natural
transformations J ) Id and J ) sn ı ".n/.

Combining the preceding three lemmas we obtain:

8.5 Theorem Let O be a †–free operad in Cat . Then there are functors

T
R

F .�/W CatyO!O–Cat and T �
R

W
.�/
� W CatyO! CatyO

and natural transformations of functors CatyO! CatyO

T
R

F .�/
2 �

 � T �
R

W
.�/
�

"
�! Id

such that

(1) each ".G/.n/ is a weak equivalence, and

(2) if G is special, then each �.G/.n/ is a weak equivalence.

9 Comparing yO–spaces G with hocolimT F G

As one would expect, there are topological versions of the constructions and results of
Section 8. We will give a short account of these. In the process we will use the following
properties of the homotopy colimit construction (eg see [11, Proposition 3.1]):

9.1 Let C and D be small categories, F;GW C ! D functors, X W C ! Top and
Y W D! Top diagrams,

� W F !G; ˛W X ! Y ıF; ˇW X ! Y ıG

natural transformations such that .Y ? �/ ı˛ D ˇ :

C
F;G

//

X   

D

Y~~

X

˛

||

ˇ

""

Top Y ıF
Y ?�

// Y ıG

Then F and ˛ induce a map

B.�;F; ˛/W hocolimC X ! hocolimD Y
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while � defines a homotopy

B.�;F; ˛/' B.�;G; ˇ/

(see Definition 6.2 and [11, Proposition 3.1]).

Let O be an operad in Top and GW yO! Top an yO–space. Let

V G
n W T

n
! Top

be the topological version of the diagram W G
n , defined in exactly the same way. For a

morphism f 2 yO.l; k/, the corresponding map described in the proof of Lemma 8.2
defines a functor T .f /W T l ! T k together with a natural transformation

xf W V G
l ! V G

k ı T .f /

which induces a map

hocolimT l V G
l ! hocolimT k V G

k ;

and we obtain an yO–space

hocolimT � V G
� W
yO! Top; n 7! hocolimT n V G

n :

9.2 Theorem If O is a †–free operad in Top, then there are functors

hocolimT F .�/W TopyO!O–Top and hocolimT � V
.�/
� W TopyO! TopyO

and natural transformations of functors TopyO! TopyO

7hocolimT F .�/
�
 � hocolimT � V

.�/
�

"
�! Id

such that

(1) each ".G/.n/ is a weak equivalence, and

(2) if G is special, each �.G/.n/ is a weak equivalence.

Proof The maps �n , defined on representatives like the maps �.n/ in the proof of
Lemma 8.3, define a map from the diagram V G

n to the diagram

.FG ; : : : ;FG/W T n
! Top:

Since topological realization preserves products, it induces a map

�nW hocolimT n V G
n ! .hocolimT FG/n:
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By construction, the �n define a map of yO–spaces. If G is special, the map of diagrams
V G

n ! .FG ; : : : ;FG/ is objectwise a homotopy equivalence inducing a homotopy
equivalence �n .

Let � stand for the category with one object 0 and the identity morphism, let G.n/W �!

Top be the functor sending 0 to G.n/, and let PnW T n ! � be the projection. The
maps "n of the proof of Lemma 8.4 define natural transformations ˇnW V

G
n !G.n/ıPn ,

thus inducing maps

"n D B.�;Pn; ˇn/W hocolimT n V G
n !G.n/

which define a map of yO–spaces.

Let j W T ! T be the functor defined in the proof of Proposition 7.1. Let S W � ! T n

send 0 to .Œ‚1�; : : : ; Œ‚1�/ and let 
 W G.n/! V G
n ıS be the natural transformation

sending C 2 G.n/ to the element represented by .‚1; : : : ; ‚1;C /, where the root
nodes are decorated by identities. The pair .S; 
 / induces a section

s D B.�;S; 
 /W G.n/! hocolimT n V G
n

of "n . The functor j nW T n! T n together with the natural transformation ˛W V G
n !

V G
n ı j n sending a representative .T1; : : : ;Tn;C / to .j .T1/; : : : ; j .Tn/;C /, where

the added root nodes are decorated by identities, define a selfmap

J W hocolimT n V G
n ! hocolimT n V G

n :

There are natural transformations shW j n ! Id and chW j n ! S ı Pn defined by
shrinking and chopping the incoming edges to the root nodes, respectively. Since

.V G
n ? sh/ ı˛ D id and .V G

n ? ch/ ı˛ D 
 ıˇn;

there are homotopies J ' id and J ' S ıPn .

9.3 Corollary Let O be a †–free operad in Top. Then there is a chain of natural
transformations of functors TopyO! O–Top connecting the functor M of Section 4
and the functor hocolimT F .�/ , which are weak equivalences when evaluated at special
yO–spaces.

Proof We apply the rectification of Section 4 to the diagram in Theorem 9.2 to obtain
a diagram of weakly equivalent O–algebras

M.G/ M.hocolimT � V G
� /!M.6hocolimT FG /:

By Proposition 4.10, the O–algebras M.6hocolimT FG / and hocolimT FG are weakly
equivalent.
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10 From simplicial O–algebras to O–algebras

Given a simplicial category C�W �op! Cat there are the Bousfield–Kan map and the
Thomason map

(10.1) jB.C�/j
�
 � hocolim�op B.C�/

�
�! B

�
�opR C��

which are natural maps known to be homotopy equivalences by [6, Section XII.3.4] or
[10, Theorem 18.7.4] and [18, Theorem 1.2], respectively. So Thomason’s homotopy
colimit construction in Cat replaces a simplicial category by a category in a nice way:
their realizations in Top via the classifying space functor are homotopy equivalent.

In this section we want to lift this result to simplicial O–algebras over a †–free
operad O in Cat .

We start with the right-hand map in (10.1), for which there is a more general version.
Let L be a small indexing category. Let O be an operad in S , where S is Cat or
Top, and let O–SL denote the category of L–diagrams of O–algebras in S . We have
functors

HtopW O–TopL
!O–Top if O is an operad in Top,

HcatW O–CatL!O–Cat if O is an operad in Cat,

defined by

Htop.X /D hocolimT F hocolimL yX for an L–diagram X W L!O–Top

and

Hcat.D/D T
R

FL
R
yD for an L–diagram DW L!O–Cat;

where yX W yO! TopL and yDW yO! CatL are induced by X and D , respectively.

10.2 Proposition Let O be a †–free operad in Cat . Then there is a natural weak
equivalence

�W Htop ıBL
) B ıHcat

of functors O–CatL! BO–Top.
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Proof Let DW L! O–Cat be an L–diagram of O–algebras. We have natural maps
of BO–spaces

Htop.BD/D hocolimT F hocolimL cBD

! hocolimT FB.L
R
yD/

Š hocolimT B.FL
R
yD/

! B
�
T
R

FL
R
yD
�
D B.Hcat.D//:

By [18, Theorem 1.2] Thomason’s map defines a pointwise weak equivalence

hocolimL bBD ! B
�
L
R
yD
�
;

so the first map is a weak equivalence by Proposition 6.7. For the isomorphism see
Proposition 6.6, and the second map is a weak equivalence by Proposition 6.5.

In general we cannot say much about the homotopy type of Htop.X / and Hcat.D/.
This is different if LD�op and X is proper. Here we call a simplicial space proper if
the inclusions sXn �Xn of the subspaces sXn of the degenerate elements of Xn are
closed cofibrations for all n, and we call a simplicial O–space proper if its underlying
space is proper.

10.3 Proposition Let O be a †–free operad in Top and let X� be a proper simplicial
O–space. Then there is a weak equivalence of O–spaces

�W Htop.X�/! jX�j

natural with respect to homomorphisms of proper simplicial O–spaces.

Proof We have natural maps of O–spaces

Htop.X�/D hocolimT F hocolim�op cX� ! hocolimT F j
cX�j! jX�j:

The Bousfield–Kan map hocolim�op cX� ! jcX� j is pointwise a weak equivalence
provided X� is proper, so that the first map is a weak equivalence by Proposition 6.7.
Since topological realization preserves colimits and finite products, we have a natural iso-
morphism jcX� j Š cjX�j , and the second map is a weak equivalence by Proposition 7.3.

Combining these results we obtain the passage from simplicial O–algebras in Cat to
O–algebras in Cat .
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10.4 Theorem Let O be a †–free Cat–operad, and let BO–pTop�
op

be the full
subcategory of BO–Top�

op
of proper simplicial BO–spaces. Then there is a diagram

O–Cat�
op

Hcat

��

B�
op
// BO–pTop�

op

Htop )

��

� BO–Top�
op

j�j

xx

(

O–Cat B
// BO–Top

commuting up to natural weak equivalences.

Let constW Cat ! Cat�
op

be the constant simplicial object functor and let C be an
O–algebra. Since jB.const C/j ŠB.C/, the functor H ıconst preserves the homotopy
type. But we can do better. The diagram

yO
yC

//

1const C ''

Cat
�op��

''

const
��

Cat�op �op
R
�

// Cat

commutes.

10.5 Proposition Let O be a †–free Cat–operad and let C be an O–algebra. Then
there are weak equivalences of O–algebras

H.const C/D T
R

F�
op
R 1const C

D T
R

F�
op�yC �
�! T

R
F
yD "
�! C;

where � is induced by the projection �op � yC ! yC and " is the homomorphism of
Proposition 7.1.

Proof This follows from Propositions 7.1 and 6.7, because the projection �op�yC!yC
is objectwise a weak equivalence.

10.6 Remark Our passage from simplicial algebras to algebras translates verbatim to
Top, but, of course, topological realization is the preferred passage: it is well known that
the topological realization of a simplicial O–space is an O–space in a canonical way.

11 An application

11.1 Definition Let O be an operad in Cat and let P be an operad in Top. In this
section a homomorphism of P–spaces is called a weak equivalence if its underlying
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map of spaces is a weak homotopy equivalence, and a homomorphism of O–algebras
f W A! B is called a weak equivalence if Bf is a weak equivalence of BO–spaces.
Two P–spaces X and Y are called weakly equivalent if there is a chain of weak
equivalences connecting X and Y , and similarly for two O–algebras A and B .

Let O be a †–free operad in Cat . We want to compare the categories O–Cat and
BO–Top. The classifying space functor maps an O–algebra C to the BO–algebra BC .
In [9] we showed that for each BO–space X there is a simplicial O–algebra A� and
a sequence of natural weak equivalences of BO–spaces connecting X and jBA�j. By
Theorem 10.4 there is an O–algebra C such that BC and jBA�j are weakly equivalent
BO–spaces. So after localization with respect to the weak equivalences the categories
O–Cat and BO–Top are equivalent.

Since BO–Top carries a Quillen model structure with the weak equivalences of
Definition 11.1, its localization BO–TopŒwe�1� with respect to these weak equivalences
exists [17, Theorem B]. We do not know whether or not O–Cat carries a model structure,
but combining our previous results with a result of Schlichtkrull and Solberg [15] we
obtain:

11.2 Theorem Let O be a †–free operad in Cat . Then the localization O–CatŒwe�1�

exists and the classifying space functor induces an equivalence of categories

O–CatŒwe�1�' BO–TopŒwe�1�:

Proof Let T DR ıS W Top! Top be the standard CW-approximation functor, ie the
composite of the singular functor S and the topological realization functor, which we
denote by R in this proof. Let X be a BO–space. Then TX is a BO–space and the
natural map TX ! X is a weak equivalence of BO–spaces. To see this, recall that
BODRN�O . Consider the diagram

RN�.O.n//�RS.X /n
R�N�O.n/�id

//

id�"n

��

RSRN�.O.n//�RS.X /n
RS˛

//

"RN�O.n/�"n
ss

RS.X /

"

��

RN�.O.n//�X n ˛
// X

where ˛W RN�.O.n//�X n! X is a structure map, and � and " are the unit and
counit of the adjunction

RW SSets� Top WS:

Since all functors are product-preserving, the right square commutes by naturality, and
the triangle commutes because "R ıR�D id.
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In [9, Section 5] we constructed a functor yD�W BO–Top ! O–Cat�
op

and showed
that there is a sequence of natural weak equivalences in O–Cat�

op
joining C� and

yD�.BC/, where C is an O–algebra and C� is the constant simplicial O–algebra on C
[9, Lemma 6.6]. Here we call a map f�W X�! Y� of simplicial BO–spaces a weak
equivalence if its realization jf�jW jX�j ! jY�j is a weak equivalence, and a map
g�W A�! B� of simplicial O–algebras a weak equivalence if B.g�/ is a weak equiva-
lence in BO�Top�

op
. If X is a BO–space whose underlying space is a CW-complex,

we also showed that there is a sequence of natural weak equivalences in BO–pTop�
op

joining B yD�.X / and the constant simplicial BO–space X� [9, Lemma 6.3].

We define
F DHcat ı yD� ıT W BO–Top!O–Cat:

Let X be a BO–space and X� the constant simplicial BO–space on X . Theorem 10.4
implies that we have a natural weak equivalence

Htop.TX�/! jTX�j Š TX !X:

By Theorem 10.4, Htop maps weak equivalences in BO–pTop�
op

to weak equivalences
in BO–Top. So if we apply Htop to the second sequence of weak equivalences we obtain
a sequence of weak equivalences joining Htop.TX�/ and Htop.B yD�.TX //, and, again
by Theorem 10.4, there is a weak equivalence Htop.B yD�.TX //! B.Hcat. yD�.TX //.
So there is a sequence of natural weak equivalences joining B ıF and Id.

Let C be an O–algebra. By Proposition 10.5 there is a weak equivalence Hcat.C�/! C ,
and since BC is a CW-complex, the natural map TBC! BC induces a weak equiva-
lence yD�.TBC/! yD�.BC/. By applying Hcat to the first sequence of weak equiva-
lences above we obtain a sequence of natural weak equivalences joining Hcat.C�/ and
Hcat. yD�.BC//, because Hcat maps weak equivalences to weak equivalences. Altogether
we obtain a sequence of natural weak equivalences in O–Cat joining F ıB and Id.

Then by [15, Proposition A.1], the existence of the localization BO–TopŒwe�1� implies
the existence of the localization O–CatŒwe�1� and the equivalence

O–CatŒwe�1�' BO–TopŒwe�1�:

From Theorem 11.2 we obtain the results about iterated loop spaces of [8, Section 8]
without referring to the fairly complicated homotopy colimit construction in categories
of algebras over †–free operads in Cat . We include a short summary of these ap-
plications, because we now have statements about genuine localizations rather than
localizations up to equivalence. For further details, in particular the group completion
functors, see [8].
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11.3 Notation � Br denotes the operad codifying strict braided monoidal cate-
gories, ie braided monoidal categories which are strictly associative and have a
strict 2–sided unit (recall that any braided monoidal category is equivalent to a
strict one).

� Mn denotes the operad codifying n–fold monoidal categories, 1 � n � 1,
introduced in [2].

� Perm denotes the operad codifying permutative categories.
� Cn , denotes the little n–cubes operad, 1� n�1.

11.4 Theorem The composites of the classifying space functors and the change of
operads functors induce equivalences of categories

Mn–CatŒwe�1�' BMn–TopŒwe�1�' Cn–TopŒwe�1�; 1� n�1;

Br–CatŒwe�1�' BBr–TopŒwe�1�' C2–TopŒwe�1�;

Perm–CatŒwe�1�' BPerm–TopŒwe�1�' C1–TopŒwe�1�:

It is well known that the group completion of a Cn–space is an n–fold loop space for
1� n�1. Let �n-Top denote the category of n–fold loop spaces and n–fold loop
maps. A weak equivalence in �n-Top is an n–fold loop map whose underlying map
is a weak homotopy equivalence, or equivalently whose May delooping [13] is an
equivalence. Again by [15, Proposition A.1] the localization with respect to these weak
equivalences exists. Let weg denote the classes of morphisms in Br -Cat;Mn-Cat and
Perm-Cat which are mapped to weak equivalences by the composites of the classifying
space functors, the change of operads functors, and the group completion functors. The
localizations with respect to these weak equivalences exist by the same argument and
we have:

11.5 Theorem The composites of the classifying space functors, the change of
operads functors, and the group completion functors induce equivalences of categories

Mn-CatŒweg
�1�'�nTopŒwe�1�; 1� n�1;

Br -CatŒweg
�1�'�2TopŒwe�1�;

Perm-CatŒweg
�1�'�1TopŒwe�1�:
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