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The rational homology of spaces of long links

PAUL ARNAUD SONGHAFOUO TSOPMÉNÉ

We provide a complete understanding of the rational homology of the space of long
links of m strands in Rd when d � 4 . First, we construct explicitly a cosimplicial
chain complex, L�� , whose totalization is quasi-isomorphic to the singular chain
complex of the space of long links. Next we show, using the fact that the Bousfield–
Kan spectral sequence associated to L�� collapses at the E2 page, that the homology
Bousfield–Kan spectral sequence associated to the Munson–Volić cosimplicial model
for the space of long links collapses at the E2 page rationally, solving a conjecture
of B Munson and I Volić. Our method enables us also to determine the rational
homology of high-dimensional analogues of spaces of long links. Our last result
states that the radius of convergence of the Poincaré series for the space of long links
(modulo immersions) tends to zero as m goes to infinity.

57Q45; 18D50, 18G40, 55P48

1 Introduction

A long link of m strands in Rd , d � 3, is a smooth embedding
Fm
1 R ,! Rd

of m copies of R inside Rd , which coincides outside a compact set with a fixed
standard embedding. Such embedding is said to be compactly supported. We denote
by Embc.

Fm
1 R;Rd / or simply by Ldm the space of long links of m strands, and

define the space Immc.
Fm
1 R;Rd / of long immersions of m strands analogously. It

is clear that there is an inclusion Embc.
Fm
1 R;Rd / ,! Immc.

Fm
1 R;Rd /, whose

homotopy fiber is called the space of long links modulo immersions, and is denoted
by Embc.

Fm
iD1R;Rd / or simply by Ldm . This paper is devoted to the study of the

latter space. More precisely, we completely determine the rational homology of Ldm .
In fact, we prove that the homology Bousfield–Kan spectral sequence associated to the
Munson–Volić cosimplicial model for Ldm collapses at the E2 page rationally.

Let Conf.k;Rd / denote the space of configuration of k points in Rd . We will construct
an explicit cosimplicial chain complex L�� , where

L
p
� DH�.Conf.mp;Rd /IQ/:
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Let Bd denote the little d–disks operad, and let s�p be the suspension functor of
degree �p . Define the totalization TotL�� to be

TotL�� D
M
p�0

.s�pL
p
� /;

where the differential is the alternate sum of cofaces. We will show in this introduction
that the homology of this totalization can be interpreted by the

Wm
iD1S

1–homology of
H�.Bd IQ/.

Our first result says that the cosimplicial chain complex L�� gives a cosimplicial model
for the singular chain complex of the space of long links.

Theorem 1.1 For d � 4, the totalization of L�� is quasi-isomorphic to the chain
complex of the space of long links of m strands in Rd . That is,

TotL�� ' C�.L
d
m/˝Q:

The following corollary is an immediate consequence of Theorem 1.1.

Corollary 1.2 For d � 4, the rational homology of the space of long links of m
strands is isomorphic to the

Wm
iD1S

1–homology of H�.Bd IQ/. That is,

H�.LdmIQ/ŠHH
Wm

iD1
S1

.H�.Bd IQ//:

We now explain what we mean by the
Wm
iD1S

1–homology of H�.Bd IQ/. Let �
denote the category of finite pointed sets whose morphisms are maps preserving the
base point. If X� is a simplicial object in � , and if A is a contravariant functor from
� to chain complexes, then the composite A.X�/W � �! Ch� yields a cosimplicial
chain complex, and the homology of its totalization, denoted by HHX .A/, is called the
X–homology of A. Here, the simplicial model .

Wm
iD1S

1/� (the one we construct at the
beginning of Section 4) of the wedge of m copies of the circle is viewed as a simplicial
object in � , while the homology H�.Bd IQ/W � �! Ch� is viewed as a contravariant
functor from � to chain complexes. Hence, the composite H�.Bd ;Q/..

Wm
iD1S

1/�/

gives another way to see the cosimplicial chain complex L�� , so that we can set

L�� WDH�.Bd ;Q/..
Wm
iD1S

1/�/:

We now state the second and the most important result of this paper, which solves a
conjecture of Munson and Volić. In [9], Munson and Volić build a cosimplicial space
(we denote it by Km�

d
) that gives a cosimplicial model for the space Ldm of long links of

m strands in Rd , when d � 4. They also define two spectral sequences that converge
respectively to the homotopy and cohomology of the space Ldm of long links. In this
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paper, we look at the homology Bousfield–Kan spectral sequence associated to Km�
d

,
which converges to the homology H�.Ldm/ (this is a consequence of Theorem 1.1).

Conjecture 1.3 (Munson–Volić) This spectral sequence collapses at the E2 page
rationally for d � 4.

Theorem 1.4 For d � 4, the homology Bousfield–Kan spectral sequence associated
to the Munson–Volić cosimplicial model Km�

d
for the space of long links of m strands

in Rd collapses at the E2 page rationally.

Remark 1.5 Our method enables us also to determine the rational homology of
high-dimensional analogues of spaces Embc.

Fm
iD1Rn;Rd / of long links modulo

immersions. More precisely, as in the case of long links, we construct an explicit
cosimplicial chain complex Ln�� and we prove that it gives a cosimplicial model for
the singular chain complex of Embc.

Fm
iD1Rn;Rd /. Thus we obtain Theorem 5.2,

Corollary 5.3 and Proposition 5.4. With the same strategy, one can go further by
understanding the rational homology of Embc.

Fm
iD1Rni ;Rd / for any integers ni � 1.

The case mD1 (this case corresponds to Embc.R;Rd /, the space of long knots modulo
immersions) has been studied recently by several authors. First, Sinha constructs in [11]
a cosimplicial model K�

d
of Embc.R;Rd / when d � 4. Next, Lambrechts, Turchin

and Volić prove [5] that the homology Bousfield–Kan spectral sequence associated
to K�

d
collapses at the E2 page rationally when d � 4. Subsequently, the author [12]

and Moriya [8] prove independently that the collapsing result still holds for d � 3, and
simplify the proof of the main result of [5]. In this paper, we produce (using a completely
different approach than that of [5; 8; 12]) another proof of the collapsing result.

Other interesting results obtained in the study of the space of long knots are the following.
The author [12] and Moriya [8] independently discover the multiplicative formality
(for d � 3) of the Kontsevich operad Kd .�/. This result has two strong consequences:
the first one is immediate and says that Sinha’s cosimplicial space K�

d
is formal when

d � 3. The second and most important one furnishes a complete understanding of
the rational homology of the space of long knots as a Gerstenhaber algebra. In fact,
this second consequence states [12, Corollary 1.6] that, for d � 4, the isomorphism
of vector spaces between the E2 page and the homology H�.Embc.R;Rd // of the
space of long knots (modulo immersions) respects the Gerstenhaber algebra structure.

We close this introduction with our last result, which concerns the Poincaré series
for the space of long links. In [4] Komawila and Lambrechts study the E2 page of
the cohomology Bousfield–Kan spectral sequence associated to the Munson–Volić
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cosimplicial space. They show that the coefficients of the associated Euler series grow
exponentially at a rate of m1=.d�1/ > 1. Using now our collapsing Theorem 1.4, we
deduce the following result.

Theorem 1.6 For d � 4 the radius of convergence of the Poincaré series for the
space of long links (modulo immersions) Ldm is less than or equal to .1=m/1=.d�1/ .
Therefore the Betti numbers of Ldm grow at least exponentially.

An immediate consequence of Theorem 1.6 is the following corollary.

Corollary 1.7 For d � 4 the radius of convergence of the Poincaré series for Ldm
tends to 0 as m goes to 1.

When mD 1 the upper bound of Theorem 1.6 is equal to 1, and the following theorem,
due to Turchin, gives a better upper bound in that case.

Theorem 1.8 [14] For d � 4 the radius of convergence of the Poincaré series for the
space of long knots (modulo immersions) is less than or equal to .1=

p
2/1=.d�1/ .

Since the space of m copies of long knots is a retraction up to homotopy of the space
of long links, Theorem 1.8 implies that the radius of convergence of the Poincaré series
for Ldm is less than or equal to .1=

p
2/1=.d�1/ . Our Corollary 1.7 furnishes a better

upper bound for m large.

Outline of the paper In Section 2 we set up some results that we will use to prove
Theorem 1.1 and Theorem 1.4. First of all, we define a manifold M , and we show that
(see Proposition 2.3 below) the study of the space of long links modulo immersions is
reduced to the study of the space Embc.M;Rd / of compactly supported embeddings
of M into Rd . Next we recall some results, related to the Taylor tower associated to
Embc.Rn;Rd /, obtained by Arone and Turchin in [1]. Finally, we show that similar
results (Propositions 2.9, 2.10, 2.11 and 2.12) hold for the space Embc.M;Rd /.

In Section 3 we construct an explicit cosimplicial chain complex L�� that gives a cosim-
plicial model for the singular chain complex C�.Embc.M;Rd /IQ/ (Theorem 1.1).
To prove Theorem 1.1, we use all the results from Section 2.2, and also Proposition 3.4,
Lemma 3.5 and Theorem 3.6.

In Section 4 we prove Theorem 1.4. The plan of the proof is as follows. First we build
a simplicial model for the wedge of m copies of the circle. Next we prove (Lemma 4.2)
that the E1 pages of spectral sequences fEr.L��/gr�0 and fEr.C�.Km�d IQ//gr�0 are
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isomorphic. Using now the fact that the spectral sequence fEr.L��/gr�0 collapses at
the E2 page (Lemma 4.3) and Theorem 1.1, we deduce Theorem 1.4.

In Section 5 we show that the spectral sequence computing the rational homology of
the high-dimensional analogues of spaces of long links collapses at the E2 page.

In Section 6 we show that the radius of convergence of the Poincaré series for the space
of long links modulo m copies of the space of long knots tends to zero as m goes to
the infinity. This result is obtained from Theorem 1.4 and a theorem of Komawila and
Lambrechts [4].

Acknowledgements I am grateful to my advisor Pascal Lambrechts for his outstanding
guidance on this work and also for his encouragement. I also thank Gregory Arone
for his valuable help with Proposition 2.3 (which is one of the central observations
in this paper) and for helpful conversations (by emails) that we have had during the
preparation of the first draft of this paper. Obviously, I cannot forget to thank Victor
Turchin for his explanation on infinitesimal bimodules and for suggesting the statement
of Proposition 3.4.

2 A compactly supported version of Goodwillie–Weiss em-
bedding calculus for the space of long links

We introduce this section with Proposition 2.3, which allows us to reduce the study
of the space Ldm of long links to the study of the space Embc.M;Rd / of compactly
supported embeddings of some manifold M into Rd . Before stating that proposition,
we will properly define M and the spaces Ldm and Embc.M;Rd /. The ground field
in this section is Q.

Roughly speaking, M is the complement in R2 of a slightly thickening of mC 1
copies of the interval I D Œ�1; 1�. To be more precise, let fa0; a1; : : : ; amg � I be the
family of points defined by

ai D
2i �m� 1

mC 1
:

Let 0 < � < 2
mC1

be a fixed real number. For 0� i �m, define

Ki D

�
I � Œai ; ai C �� if 0� i �m� 1;
I � Œam; 1� if i Dm:

Definition 2.1 Let M be the complement of K D
Sm
iD0Ki in R2 . That is,

(1) M DR2n
m[
iD0

Ki :
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We now define the spaces Ldm and Embc.M;Rd /. Let �W R2 ,!Rd be a fixed linear
embedding defined by �.t; x/D .0; : : : ; 0; t; x/. Define Embc.M;Rd / to be the space
of smooth embeddings f W M ,!Rd such that

f .t; x/D �.t; x/ for all .t; x/ … ��1; 1Œ� ��1; 1Œ:

This space is equipped with the weak C1–topology. Furthermore, define the space
Embc.

Fm
iD1R;Rd / of smooth embeddings f W R � fb1; : : : ; bmg ,! Rd such that

fi .t/D �.t; bi / for all jt j � 1 and for all 1� i �m. Here bi D 1
2
.ai�1C �Cai / and

fi is the restriction of f to R� fbig. Similarly, we have the spaces Immc.M;Rd /
and Immc.

Fm
iD1R;Rd / of compactly supported immersions. By definition, there are

inclusions

Embc.M;Rd / ,! Immc.M;Rd / and Embc

� mG
iD1

R;Rd
�
,! Immc

� mG
iD1

R;Rd
�
:

Let l 2 Immc.M;Rd / be a fixed immersion, and let Ql 2 Immc.
Fm
iD1R;Rd / be the

restriction of l to
Fm
iD1R� fbig.

Definition 2.2 (i) The space Embc.M;Rd / is the homotopy pullback of the dia-
gram

flg ,! Immc.M;Rd / - Embc.M;Rd /:

(ii) The space Embc.
Fm
iD1R;Rd / or more simply Ldm is the homotopy pullback

of the diagram

fQlg ,! Immc

� mG
iD1

R;Rd
�
 - Embc

� mG
iD1

R;Rd
�
:

The following proposition is a central observation in this paper.

Proposition 2.3 For d � 3, the space of long links modulo immersions in Rd is
weakly equivalent to the space of smooth compactly supported embeddings (modulo
immersions) of M in Rd . That is,

Ldm ' Embc.M;Rd /:

Proof For 1 � i �m, set Ai D I � �ai�1C �; ai Œ, and define Embc.
Fm
iD1Ai ; I

d /

to be the space of smooth embeddings

f W

mG
iD1

Ai ,! Id
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satisfying the boundary conditions

f .�1; x/D �.�1; x/ and f .1; x/D �.1; x/

for all x 2 �ai�1C �; ai Œ; 1� i �m, and

Tf .�1;x/f .Ai /D Tf .�1;x/�.Ai / and Tf .1;x/f .Ai /D Tf .1;x/�.Ai /

for all 1� i �m and for all x 2 �ai�1C �; ai Œ. Here TpX denotes the tangent space
of X at p .

Define also Embc.
Fm
iD1 I; I

d / to be the space of smooth embeddings

f W

mG
iD1

I � fbig ,! Id

satisfying similar boundary conditions as above. That is, the endpoints of f and
the tangent vectors at those endpoints are given by �. We define similarly the spaces
Immc.

Fm
iD1Ai ; I

d / and Immc.
Fm
iD1 I; I

d /. As in Definition 2.2, we have the spaces
Embc.

Fm
iD1Ai ; I

d / and Embc.
Fm
iD1 I; I

d / (the fixed immersions here are, respec-
tively, the restrictions of l to

Fm
iD1Ai and to

Fm
iD1 I � fbig). From the definitions,

one can easily see the weak equivalences

Ldm ' Embc

� mG
iD1

I; Id
�

and Embc.M;Rd /' Embc

� mG
iD1

Ai ; I
d

�
:

To end the proof, it suffices to show that there is a weak equivalence

(2) Embc

� mG
iD1

I; Id
�
' Embc

� mG
iD1

Ai ; I
d

�
:

Notice that the spaces Embc.
Fm
iD1Ai ; I

d / and Embc.
Fm
iD1 I; I

d / are not weakly
equivalent, for the following reason. For an element f in the first space, we have the
tangent space (which is a 2–dimensional vector space) at each point f .t; x/, while at
each point g.t/ of the second space, where g is the restriction of f to

Fm
iD1 I �fbig,

we have a 1–dimensional vector space as the tangent space. For the homotopy fibers
Embc.

Fm
iD1 I; I

d / and Embc.
Fm
iD1Ai ; I

d /, this tangential information disappears
because of the prescribed immersion l . We thus obtain (2).

Remark 2.4 The idea of Proposition 2.3 (which consists in studying Embc.M;Rd /
instead of Ldm ) can be generalized to the study of the rational homology of the space
Embc.

Fm
iD1Rni ;Rd / of high string links (here the integers ni are not necessarily the
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same). For example, in the case ni D n for all i , which will be studied in Section 5,
one can define a submanifold Mn �RnC1 by

(3) Mn DRnC1n
m[
iD0

Kin;

where

Kin D

�
In � Œai ; ai C �� if 0� i �m� 1;
In � Œam; 1� if i Dm:

As a generalization of Proposition 2.3, one can prove the weak equivalence

(4) Embc

� mG
iD1

Rn;Rd
�
' Embc.Mn;R

d /:

The advantage to working with Embc.M;Rd / instead of Ldm is that one can use the
same techniques as those developed by Arone and Turchin [1] in the study of the
space Embc.Rn;Rd /. They show that the kth approximation of the Taylor tower
associated to the chain complex C�.Embc.Rn;Rd //, that is, the Taylor tower of the
functor V 7�! C�.Embc.V;Rd //, can be expressed in terms of morphisms between
infinitesimal bimodules over the operad C�.Bn/. The goal of this section is to show
that we obtain results similar to theirs (for the Taylor tower of Embc.M;Rd /). To
state and prove our results, it is easiest to first review what is done in [1].

2.1 Review of the Taylor tower associated to Embc.Rn; Rd/

Let O.Rn/ be the poset of open subsets of Rn . Define zO.Rn/ � O.Rn/ to be the
subcategory of open subsets whose complement is bounded. Define also the category
zOk.Rn/ to be the subcategory of zO.Rn/ consisting of disjoint unions U D U0[U1
such that U0 is the complement of a closed ball, and U1 is the disjoint union of at
most k open balls in Rn . Assume that there is an inclusion Rn ,!Rd . Then one may
define a contravariant functor

Embc.�;Rd /W zO.Rn/ �! Top :

Taking that functor as an input in a “compactly supported” version of Goodwillie–
Weiss embedding calculus [16; 3], one obtains Proposition 2.5 below, which states
that the kth approximation TkEmbc.Rn;Rd / can be expressed as the space of maps
between infinitesimal bimodules over the little n–disks operad Bn . Before stating that
proposition, we recall the definition of an infinitesimal bimodule from [1, Definition 3.8]
or from [14, Definition 4.1]. Recall also the following notation. By InfBimO , we
denote the category of infinitesimal bimodules over an operad O , and by InfBim�kO
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we denote its kth truncation. If B1 and B2 are two infinitesimal bimodules over O , we
denote by hInfBimO.B1;B2/ the derived object of infinitesimal bimodule morphisms
from B1 to B2 . We also recall from [1, Section 5] the notation sEmb.�;Rd / for the
functor of standard embeddings.

Proposition 2.5 [1, Theorem 6.10; 15, Theorem 7.1] For d > n and k � 1, we
have the weak equivalences

TkEmbc.Rn;Rd /' hInfBim�kBn
.sEmb.�;Rn/; Bd /' hInfBim�kBn

.Bn; Bd /:

Notice that a version of Proposition 2.5 was proved [2] by Boavida de Brito and
Weiss (they develop the details of the proof of that proposition). Notice also that
Proposition 2.5 admits an algebraic version obtained by considering the functor

C�Embc.�;Rd /W zO.Rn/ �! Ch�;

in which C�.�/ means the normalized singular chain complex functor.

Proposition 2.6 [1, Proposition 6.13] For d > n and k �1 there are weak equiva-
lences

TkC�Embc.Rn;Rd /' hInfBim�kC�Bn
.C� sEmb.�;Rn/; C�Bd /(5)

' hInfBim�kC�Bn
.C�Bn; C�Bd /:(6)

One can express (6) in terms of morphisms between infinitesimal bimodules over the
commutative operad Com D H0.Bd /. More precisely, one has Proposition 2.7, in
which C�.Sn�/ is viewed as an infinitesimal bimodule over Com, as follows. First of
all, Sn is the n–dimensional sphere viewed as the one-point compactification of Rn ,
that is, Sn DRn[ f1g with 1 as the base point. Therefore, by the second part of
Example 3.2 and by Lemma 3.5 it follows that

(7) C�.S
n�/D fC�.S

nk/gk�0 D
˚
C�.S

n
� � � � �Sn„ ƒ‚ …
k

/
	
k�0

is an infinitesimal bimodule over Com. Also, by the first part of Example 3.2, and by
Lemma 3.5, the operad H�.Bd / is an infinitesimal bimodule over Com.

In the following proposition, the first weak equivalence (which essentially comes from
the relative formality theorem [6, Theorem 1.4] of the inclusion of operads Bn ,!Bd )
is proved in [1, Proposition 7.1], and the second one in [1, Proposition 8.3]. Notice that
Proposition 2.7 was first proved by Arone and Turchin [1] for d � 2nC 1. Actually
the codimension condition d � 2nC 1, coming from the relative formality theorem of
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Lambrechts and Volić, was recently improved by Turchin and Willwacher (see [13]).
They show, by a more careful analysis of the Lambrechts–Volić construction, that the
relative formality theorem also holds for d � nC 2.

Proposition 2.7 [1, Proposition 7.1 and Proposition 8.3] For d � nC 2 and k �1,
we have the weak equivalences

TkC�Embc.Rn;Rd /' hInfBim�kC�Bn
.C�Bn;H�.Bd IQ/;

TkC�Embc.Rn;Rd /' hInfBim�kCom.C�.S
n�/;H�.Bd IQ/:

2.2 The Taylor tower associated to Embc.M; Rd/

The goal here is to show that similar results as those mentioned in Section 2.1 hold for
the space Embc.M;Rd /, where M is the manifold from Definition 2.1. We will prove
them in a more general context. That is, instead of looking at Embc.M;Rd /, we will
look at the space Embc.N;Rd / in which N denotes the complement of a compact
subset of Rn . Further, in Section 3, we will apply (in order to prove Theorem 1.1) the
results of this section by taking N DM .

Let K � Œ�1; 1�n be a compact subset with a finite number (greater than or equal to
two) of connected components. Define N to be the complement of K in Rn . Define
also Embc.N;Rd / in the same way as the space Embc.M;Rd / from Definition 2.2.
Here, the fixed immersion is a linear embedding

�W Rn ,!Rd ; with �.x1; : : : ; xn/D .0; : : : ; 0; x1; : : : ; xn/:

Let O.N / be the category whose objects are open subsets of N and morphisms
are inclusions. In the general theory of Goodwillie and Weiss, to study the space
Emb.N;Rd / of embeddings of N inside Rd we usually use the category O.N / as
the source category for the functor Emb.�;Rd /. Here we want to study the space
Embc.N;Rd / of compactly supported embeddings (modulo immersions) of N in Rd .
So we need to define a suitable source category, and a suitable filtration of it.

Definition 2.8 � Define zO.N / � O.N / to be the subcategory of open subsets
whose complement in N is bounded.

� Define zOk.N / to be the subcategory of zO.N / consisting of subsets U DV [W
such that
(a) V \W D∅,
(b) V is the complement in Rn of a closed ball containing K in Rn ,
(c) W is the disjoint union of at most k open balls.
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Recalling that we have fixed a linear embedding �W Rn ,! Rd , one may define the
contravariant functors

Embc.�;Rd /W zO.N / �! Top and C�Embc.�;Rd /W zO.N / �! Ch� :

Taking these functors as inputs in Goodwillie–Weiss embedding calculus, we have the
following two propositions, which are proved in a similar way as Proposition 2.5 and
Proposition 2.6, respectively.

Proposition 2.9 For d > n and k �1 there is a weak equivalence

TkEmbc.N;Rd /' hInfBim�kBn
.sEmb.�; N /; Bd /:

Proposition 2.10 For d > n and k �1 there is a weak equivalence

TkC�Embc.N;Rd /' hInfBim�kC�Bn
.C� sEmb.�; N /; C�Bd /:

Applying now the relative formality theorem, which says that for d �nC2 the inclusion
Bn ,! Bd is R–formal (see [6, Theorem 1.4] and [13, Theorem 1]), we obtain the
following proposition.

Proposition 2.11 For d � nC 2 and k �1, there is a weak equivalence

TkC�.Embc.N;Rd /IQ/' hInfBim�kC�Bn

�
C�.sEmb.�; N /IQ/;H�.Bd IQ/

�
:

Proof The proof is the same as that of the second assertion of [1, Proposition 7.1].

We end this section with a proposition, which will be a key ingredient in the proof
of Theorem 1.1. Before stating that proposition we fix some notation. Let yN be the
one-point compactification of N . That is,

yN DN [f1g:

By N [f1g we mean g.N /[f.0; : : : ; 0; 1/g, where gW Rn �! Sn is the inverse of
the stereographic projection. The space yN is a pointed topological space with1 as the
base point. As the case of C�.Sn�/ from (7), we have a structure of an infinitesimal
bimodule over Com on C�. yN��/.

Proposition 2.12 For d � nC 2 and k �1, there is a weak equivalence

TkC�.Embc.N;Rd /IQ/' hInfBim�kCom.C�.
yN��/;H�.Bd IQ//:
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Proof The proof is the same as that of [1, Proposition 8.3], except that here we
will work with the categories zO.N / and zOk.N / instead of the categories zO.Rn/
and zOk.Rn/. Recall that the two latter categories were defined at the beginning of
Section 2.1.

Let gW Bn �! Com D f�gp�0 be the unique morphism of operads from Bn to the
topological commutative operad Com, and let C�.g/W C�.Bn/ �! C�.Com/D Com
be the chain complex of g . The morphisms g and C�.g/ induce respectively pairs

(8) findW hInfBimBn
� hInfBimCom Wres

and

(9) findW hInfBimC�Bn
� hInfBimCom Wres

of adjoint functors. Here res is the restriction functor, and find is the induction functor
defined as follows. Let z�.Bn/ be the category whose object is a finite pointed set
.S;�/, which is viewed as jS j standard balls together with one standard antiball (an
antiball is defined to be the complement of a ball). Morphisms in z�.Bn/ are standard
embeddings, sEmb..S;�/; .T;�//, preserving the base point (the antiball playing the
role of the base point). The category z�.Bn/ is filtered by the categories z��k.Bn/,
where objects in z��k.Bn/ consist of one antiball together with (at most) k open balls.
It is proved (see [1, Proposition 4.9] for a more general statement) that the category of
infinitesimal bimodules over Bn is equivalent to the category of contravariant functors
from z�.Bn/ to Top. We will thus identify these two categories. Let X W z�.Bn/�!Top
be an infinitesimal bimodule over Bn . The object find.X/ is defined to be the homotopy
left Kan extension of X along z�.g/

z�.Bn/
X

//

z�.g/
��

Top

z�.Com/D �

find.X/

44

where � is the category from Definition 3.1. Similarly, one can define the functor find
of (9). By noticing that res.H�.Bd //DH�.Bd /, and by using the adjunction (9), we
deduce (from Proposition 2.11) that

TkC�.Embc.N;Rd /IQ/' hInfBim�kCom

�find.C�.sEmb.�; N /IQ//;H�.Bd IQ/
�
:

To end the proof it suffices to show that the functors C�. yN��/ and find.C� sEmb.�; N //
are weakly equivalent as infinitesimal bimodules over Com. Since find.C� sEmb.�; N //
is the homotopy colimit of a certain diagram, and since the singular chain functor
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C�.�/ commutes with homotopy colimits, it suffices to prove that there is a weak
equivalence

(10) find.sEmb.�; N //' yN��;

holding in the category of contravariant functors from ��k to Top (here ��k � � is
the subcategory whose objects are pointed sets .S;�/ with jS j � k ). The rest of the
proof is devoted to (10). Notice first that

(11) find sEmb.�; N /' find hocolim
V 2zOk.N/

sEmb.�; V /;

and

(12) find hocolim
V 2zOk.N/

sEmb.�; V /' hocolim
V 2zOk.N/

find sEmb.�; V /:

Let U 2 z��k.Bn/. Then, since sEmb.�; U /W z��k.Bn/ �! Top is the free functor
generated by U , it follows that find sEmb.�; U / is the free functor generated by
z�.g/.U /. That is,

(13) find sEmb.�; U /'Map�.�; z�.g/.U //W ��k �! Top;

which is natural in U . Notice that Map�.�; z�.g/.U // is not weakly equivalent to the
functor Map�.�; U / because the antiball of U is not contractible. To correct this, let
us define yU to be the one-point compactification of U , that is, yU D U [f1g. Here
the point 1 is of course added to the antiball of U , and it is the base point of yU . We
now have the weak equivalence

(14) Map�.�; z�.g/.U //'Map�.�; yU/;

which is also natural in U . Combining (11)–(14), one has

(15) find sEmb.�; N /' hocolim
V 2zOk.N/

Map�.�; yV /:

Since the right-hand side of (15) is weakly equivalent to Map�.�; yN/ D yN
�� , the

desired result follows.

3 A cosimplicial model for the singular chain complex of the
space of long links

The goal of this section is to prove Theorem 1.1 announced in the introduction. Before
doing that, we state some intermediate results. As in Section 2, the ground field in this
section is Q.
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Let us start with the definition of a right �–module.

Definition 3.1 � We define � to be the category of finite pointed sets, the mor-
phisms being the maps preserving the base point.

� A right �–module is a contravariant functor from � to chain complexes Ch� .

We denote by Rmod� the category of right �–modules. If M1 and M2 are two right
�–modules, by hRmod�.M1;M2/, we denote the derived chain complex of right
�–module morphisms from M1 to M2 . Here are two examples of right �–modules
that we look at in this paper.

Example 3.2 (i) The homology H�.Bd /W � �! Ch� defined by the formula

H�.Bd /.kC/DH�.Bd .k//;

where kC is a finite pointed set of cardinality kC 1, is a right �–module.

(ii) Let X be a pointed topological space. The functor C�.X��/W � �! Ch�
defined by

C�.X
��/.kC/D C�.hom�.kC; X//Š C�.X�k/

is a right �–module.

We are now going to define the cosimplicial chain complex L�� which appears in
Theorem 1.1. From now on, if X� is a simplicial set, we will denote by X its geometric
realization. Let .

Wm
iD1S

1/� denote the simplicial model of the wedge
Wm
iD1S

1 of
m copies of the circle, which has a unique 0–simplex and exactly m non-degenerate
1–simplices (see the beginning of Section 4 for the construction of that model). This sim-
plicial model is actually a simplicial object in � , where the base points are taken to be the
0–simplex and its degeneracies. Hence, we have the functor .

Wm
iD1S

1/�W �
op �! � ,

and we can therefore form the composite H�.Bd /..
Wm
iD1S

1/�/W � �! Ch� , which
yields a cosimplicial chain complex.

Definition 3.3 The cosimplicial chain complex L�� is defined to be the composite

L�� DH�.Bd /..
Wm
iD1S

1/�/:

The following proposition is known to specialists, but its proof is written nowhere, to
my knowledge.
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Proposition 3.4 Let X�W � �! � be a simplicial object in the category � . Let
AW � �! Ch� be a right �–module. Then there is a weak equivalence of chain
complexes

(16) TotA.X�/' hRmod�.C�.jX�j��/; A/:

Proof We will work with a field K of characteristic 0. For a set S we denote by KŒS�
the vector space generated by S , which will be viewed as a chain complex concentrated
in degree 0.

We begin the proof by showing that there is an isomorphism

(17) C�.jX
��
�
j/Š C�.jX�j

��/

of right �–modules. To do that, let us consider the pair of functors

�
jX��� j

//
jX�j
��

// Top :

It is well known [7, Theorem 14.3] (since the simplicial set X� is countable) that there
is an isomorphism

jX�j � jX�j  �
Š
jX� �X�j

in the category of topological spaces, and we can easily see that this isomorphism
induces, for each pC 2 � , an isomorphism

�pC W jX�j
�p
 �
Š
jX�p
�
j

which is natural in pC . We thus get a natural isomorphism �W jX�j
��  �

Š
jX��
�
j

and, therefore, the isomorphism (17) holds in the category of right �–modules. From
the latter isomorphism, we deduce the following one:

(18) hRmod�.C�.jX�j��/; A/Š hRmod�.C�.jX��� j/; A/:

In the second part of this proof, we are going to show, since the totalization Tot.A.X�//
is weakly equivalent to the homotopy limit of the �–diagram A.X�/ in chain complexes,
that the right-hand side of (18) is quasi-isomorphic to the homotopy limit of a certain
�–diagram. For the rest of this proof, the standard simplicial set �p

�
will be viewed as

a simplicial object in � , where the base point of �p
k
D hom�.Œk�; Œp�/ is taken to be

the null morphism. We denote by s� the category of simplicial objects in � , and by N
the Dold–Kan normalization functor. Let us consider the pair of contravariant functors

(19) �

hocolim
Œp�2�op

KŒhom�.�;Xp/�

//

C�.jX
��
� j/

// Ch� :
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We want to build a natural weak equivalence between these two functors. So let rC 2�
be a finite pointed set. Then the simplicial structure of X� induces a simplicial structure
on hom�.rC; X�/. By Yoneda’s lemma, we have for each p � 0 the isomorphism

homs�.�p� ; hom�.rC; X�//Dhoms�.hom�.�; Œp�/; hom�.rC; X�/Šhom�.rC; Xp/;

which implies that

hocolim
Œp�2�op

KŒhom�.rC; Xp/�Š hocolim
Œp�2�op

KŒhoms�.�p� ; hom�.rC; X�//�(20)

'NV�.rC/:(21)

Here V�.rC/ is the simplicial chain complex defined by the formula

Vp.rC/DKŒhoms�.�p� ; hom�.rC; X�//�:

Notice that the isomorphism (20) and the weak equivalence (21) are natural in rC . On
the other hand, let W�.rC/ be the simplicial chain complex defined by

Wp.rC/DKŒhomTop.�
p; jX�r

�
j/�:

Then the associated chain complex is nothing other than the singular chain complex
C�.jX

�r
�
j/. Therefore, since the chain complex associated to a simplicial abelian group

is quasi-isomorphic to its Dold–Kan normalization, there is a natural quasi-isomorphism

(22) C�.jX
�r
�
j/'NW�.rC/:

We have just defined a pair of contravariant functors

�
NV� //
NW�

// Ch� :

Define now

˛rC W NVp.rC/ �!NWp.rC/ by ˛rC.f /D jf j;

where f W �p
�
�! hom�.rC; X�/ is a morphism in simplicial sets. It is straightforward

to check that ˛W NV� �! NW� is a quasi-isomorphism natural in rC . This implies
(with (20)–(22)) that there is a quasi-isomorphism

(23) hocolim
Œp�2�op

KŒhom�.�; Xp/�' C�.jX��� j/:
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in the category of right �–modules. We end the proof with the following summary:

hRmod�.C�.jX�j��/; A/Š hRmod�.C�.jX��� j/; A/ by (18)

' hRmod�
�

hocolim
Œp�2�op

KŒhom�.�; Xp/�; A
�

by (23)

' holim
Œp�2�

hRmod�.KŒhom�.�; Xp/�; A/

Š holim
Œp�2�

.A.Xp// by Yoneda’s lemma

Š Tot.A.X�//:

Before starting the proof of Theorem 1.1, we need to state Lemma 3.5 and Theorem 3.6.
The first one is an immediate consequence of [1, Propostion 4.9].

Lemma 3.5 The category of infinitesimal bimodules over the commutative operad is
equivalent to the category of right �–modules. That is,

InfBimCom Š Rmod� :

Recalling the definition of Mn from (3), one has the following result, which is proved
using Goodwillie–Weiss techniques for embedding calculus [17; 3].

Theorem 3.6 For d � 2nC 2, there is a weak equivalence

C�.Embc.Mn;R
d /IQ/' T1C�.Embc.Mn;R

d /IQ/:

Proof There is a weak equivalence

(24) C�.Embc.Mn;R
d /IQ/' T1C�.Embc.Mn;R

d /IQ/

for d � 2 dim.Mn/C 2D 2nC 4. Since the important quantity regarding the source
manifold is not the actual dimension, but the homotopy dimension, it follows that
(24) also holds for d � 2nC 2 (notice that the manifold Mn is essentially an .mC1/–
punctured euclidean space RnC1 , and therefore its homotopy dimension is n). This is
the relative (or boundary) stronger formulation of the excision estimates of Goodwillie
and Klein.

The following remark is straightforward.

Remark 3.7 The one-point compactification of M , denoted yM DM [f1g (for the
meaning of “one-point compactification” see the paragraph just before Proposition 2.12),
is weakly equivalent to the wedge of m copies of the circle. That is,

(25) yM '
Wm
iD1S

1:
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We are now ready to prove Theorem 1.1, which states that the cosimplicial chain
complex L�� defined above (see Definition 3.3) is a cosimplicial model for the singular
chain complex of the space Ldm of long links of m strands in Rd .

Proof of Theorem 1.1 For d � 4, we have the following weak equivalences:

C�.Ldm/˝Q' C�.Embc.M;Rd /IQ/ (Proposition 2.3)

' T1C�.Embc.M;Rd /IQ/ (Theorem 3.6
with Mn DM1 DM )

' hInfBimC�B2
.C� sEmb.�;M/; C�Bd / (Proposition 2.10

with N DM )

' hInfBimC�B2
.C� sEmb.�;M/;H�Bd / (Proposition 2.11

with N DM )

' hInfBimCom.C�. yM
��/;H�Bd / (Proposition 2.12

with N DM )

' hRmod�.C�. yM��/;H�Bd / (Lemma 3.5)

' hRmod�.C�..
Wm
iD1S

1/��/;H�Bd / (25)

' TotH�Bd ..
Wm
iD1S

1/�/ (Proposition 3.4)

D TotL�� (Definition 3.3):

4 Collapsing of the Bousfield–Kan spectral sequence associ-
ated to the Munson–Volić cosimplicial model

The goal of this section is to prove Theorem 1.4 stated in the introduction. We begin
by giving the simplicial model of the wedge of m copies of the circle. Next we state
and prove the crucial Lemma 4.2. Finally we prove Theorem 1.4. As in the previous
sections, the ground field here is Q.

Let �1
�

denote the simplicial model of the standard 1–simplex �1 , and let @�1
�

denote
its boundary. Recall that �1p is a nondecreasing sequence of length p C 1 on the
alphabet f0; 1g. Define the simplicial set S1

�
to be the quotient

S1
�
D
�1
�

@�1
�

:

It is clear that S1
�

is a simplicial model of the circle S1 . Notice that each S1p is a finite
set pointed at

� D 0 � � � 0„ƒ‚…
pC1

� 1 � � � 1„ƒ‚…
pC1

;
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and faces and degeneracies preserve the base point. Therefore S1
�

is a simplicial object
in � . Define now the simplicial set .

Wm
iD1S

1/� to be the wedge of m copies of the
simplicial set S1

�
:

.
Wm
iD1S

1/� D
Wm
iD1.S

1
�
/:

The following proposition is well known in the literature.

Proposition 4.1 The simplicial set .
Wm
iD1S

1/� is a simplicial model for the wedgeWm
iD1S

1 . Moreover, for each p � 0, the finite pointed set .
Wm
iD1S

1/p is of cardinality
mpC 1. That is,

j.
Wm
iD1S

1/pj DmpC 1:

Proof It is straightforward to check that .
Wm
iD1S

1/� is a simplicial model of
Wm
iD1S

1 .

Let p � 0. Since jS1p j D p C 1, by the definition of the wedge, it follows that
j.
Wm
iD1S

1/pj DmpC 1.

Recall now some notation about spectral sequences. For a cosimplicial chain com-
plex C �� , the associated total complex admits a natural filtration by the cosimplicial
degree. We denote by fEr.C ��/gr�0 the spectral sequence induced by this filtration.

In the rest of this paper, we will denote by Km�
d

the Munson–Volić cosimplicial
model [9] for the space of long links of m strands. Notice that Km�

d
is built in the same

spirit as Sinha’s cosimplicial model [11] for the space of long knots.

Lemma 4.2 For d � 3, the E1 pages of the spectral sequences fEr.L��/gr�0 and
fEr.C�.Km�d IQ//gr�0 are isomorphic. That is,

fEr.L��/grD1 Š fE
r.C�.Km�d IQ//grD1:

Before proving Lemma 4.2, we recall the Com–infinitesimal bimodule structures of
H�.Bd / and H�.Kd / (note that Kd is the Kontsevich operad, which was defined and
studied in [11, Definition 4.1 and Theorem 4.5]). First, as in the previous sections, Com
is the 0th homology group of the little d–disks operad Bd . That is, ComDH0.Bd /.
Here H0.�/ is viewed as a chain complex concentrated in degree 0. Next we endow
the homology H�.Bd / with the Com–infinitesimal bimodule structure induced by
the obvious morphism Com �!H�.Bd /. The homology H�.Kd / is endowed with
a similar Com–infinitesimal bimodule structure, since [10, Theorem 5.10], which
states that the operads Bd and Kd are weakly equivalent, implies the existence of an
isomorphism H�.Bd / �!

Š H�.Kd /.
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Proof of Lemma 4.2 Since the diagram

H�.Bd /
Š // H�.Kd /

H0.Bd /

OO

Š // H0.Kd /

OO

is commutative, it follows that the upper isomorphism holds in the category InfBimCom .
Therefore, since an infinitesimal bimodule over Com is the same thing as a right
�–module (see Lemma 3.5), the same isomorphism (H�.Bd /ŠH�.Kd /) holds in the
category of right �–modules. This implies that the isomorphism

L�� DH�.Bd /..
Wm
iD1S

1/�/

ŠH�.Kd /..
Wm
iD1S

1/�/

DH�.Km�d / (Proposition 4.1)

holds in the category of cosimplicial chain complexes, thus completing the proof.

Lemma 4.3 For d � 3 the spectral sequence fEr.L��/gr�0 collapses at the E2 page
rationally.

Proof By Proposition 4.1 and Definition 3.3, we have Lp� DH�.Bd .mp// for each
p � 0. Since the homology H�.Bd .mp/ is a chain complex with 0 differential,
it follows that the vertical differential in the bicomplex associated to L�� is trivial.
Therefore, the spectral sequence fEr.L��/gr�0 collapses at the E2 page.

We are now ready to prove Theorem 1.4.

Proof of Theorem 1.4 The proof follows from the following three points:

� The E1 pages of fEr.L��/gr�0 and fEr.C�.Km�d IQ//gr�0 are isomorphic by
Lemma 4.2.

� For d � 4, the spectral sequences fEr.L��/gr�0 and fEr.C�.Km�d IQ//gr�0
have the same abutment by Theorem 1.1.

� The spectral sequence fEr.L��/gr�0 collapses at the E2 page by Lemma 4.3.
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5 High-dimensional analogues of spaces of long links

The goal of this short section is to show that our method enables us also to get the
collapsing at the E2 page of the spectral sequence computing the rational homology
of the high-dimensional analogues of spaces of long links.

Let us start with a definition. Consider the space Embc.
Fm
iD1Rn;Rd / of compactly

supported embeddings of
Fm
iD1Rn inside Rd . Consider also Immc.

Fm
iD1Rn;Rd /.

Definition 5.1 The high-dimensional analogue of the space of long links is the homo-
topy fiber of the inclusion

Embc

� mG
iD1

Rn;Rd
�
,! Immc

� mG
iD1

Rn;Rd
�
;

and it is denoted by Embc.
Fm
iD1Rn;Rd /.

As in the case of long links, let us consider the cosimplicial chain complex

Ln�� WDH�.Bd ;Q/..
Wm
iD1S

n/�/

in which .
Wm
iD1S

n/� is the simplicial model (built in the similar way as .
Wm
iD1S

1/� ) of
the wedge

Wm
iD1S

n of m copies of the n–dimensional sphere Sn . The following theo-
rem gives a cosimplicial model for the singular chain complex C�Embc.

Fm
iD1Rn;Rd /.

Theorem 5.2 For d � 2nC 2 there is a weak equivalence

TotLn�� ' C�

�
Embc

� mG
iD1

Rn;Rd
��
˝Q:

Proof The proof works exactly as that of Theorem 1.1 given in Section 3. It suffices to

� use (4) from Remark 2.4,

� replace M by Mn (recall that the open submanifold Mn �RnC1 was defined
in (3)),

� replace B2 by BnC1 , and of course S1 by Sn and L�� by Ln�� .

The rest remains unchanged.

The following corollary is a generalization of Corollary 1.2. It is also an immediate
consequence of Theorem 5.2.
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Corollary 5.3 For d � 2nC 2 there is an isomorphism

H�

�
Embc

� mG
iD1

Rn;Rd
�
IQ

�
ŠHH

Wm
iD1

Sn

.H�.Bd IQ//:

Let us consider now the spectral sequence fEr.Ln�� /gr�0 , the Bousfield–Kan spec-
tral sequence associated to Ln�� . It is clear by Theorem 5.2 that it converges to the
homology H�.Embc.

Fm
iD1Rn;Rd /IQ/ when d � 2nC 2. We can prove exactly as

Lemma 4.3 above that this spectral sequence collapses at the E2 page, which gives
the following result.

Proposition 5.4 For d � 2nC2, the spectral sequence fEr.Ln�� /gr�0 computing the
rational homology H�.Embc.

Fm
iD1Rn;Rd /IQ/ collapses at the E2 page rationally.

6 Poincaré series for the space of long links modulo m copies
of long knots

The aim of this section is to prove that the radius of convergence of the Poincaré series
for the pair formed by the space of long links and the space of m copies of long knots
tends to 0 as m goes to the infinity. We also state a conjecture followed by a theorem
concerning the radius of convergence for that pair. Here, the abbreviation H�BKSS
means cohomology Bousfield–Kan spectral sequence.

Let us start by defining expressions that appear in the title of the section.

Definition 6.1 Let X be a topological space.

� For k � 0 the kth Betti number, bk.X/, of X is the rank of its kth homology
group Hk.X/.

� The Poincaré series of X , denoted by PX Œx�, is the series

PX Œx�D

1X
kD0

bk.X/x
k :

Up to now we have denoted the space of long knots by Embc.R;Rd /. For the sake of
simplicity, we will denote it here by K . Let K�m denote the space of m copies of long
knots. Recall also the notation Ldm for the space of long links (modulo immersions) of
m strands in Rd . It is clear that K�m is a subspace of Ldm .

Definition 6.2 The pair .Ldm;K�m/ is called the space of long links modulo m copies
of long knots.
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In [4], Komawila and Lambrechts studied the Euler series of the E1 page of the
H�BKSS associated to the Munson–Volić cosimplicial model for the space of long
links, and they obtained the following results. Recall that the Euler series associated to
a bigraded vector space V D fVp;qgp;q�0 is defined by

�.V /Œx�D

1X
qD0

� 1X
pD0

.�1/p dimVp;q

�
xq:

Theorem 6.3 [4, Theorem 5.1] For d � 4 the Euler series �.E1/Œx� of the E1 page
of the H�BKSS associated to Ld�m is given by

(26) �.E1/Œx�D
1

.1� xd�1/.1� 2xd�1/ � � � .1�mxd�1/
:

The following corollary gives the Euler series of the pair .Ldm;K�m/.

Corollary 6.4 [4] For d � 4 the Euler series of the E2 page of the H�BKSS
associated to the pair .Ld�m ; .K�d /

�m/ is given by

(27) �.E2/Œx�D
1

.1� xd�1/.1� 2xd�1/ � � � .1�mxd�1/
�

1

.1� xd�1/m
:

Proof Recall first that the pair .Ldm;K�m/ admits a cosimplicial model .Ld�m ; .K�d /
�m/.

The second component of that cosimplicial model is just the product .K�
d
/�m of m

copies of the Sinha cosimplicial model K�
d

. The proof of the corollary comes from
Theorem 6.3 and the fact that the retraction (up to homotopy) Ldm �! K�m (see [4,
Section 2.1] for an explicit definition of that retraction) holds at the level of cosimplicial
models, so that we have the isomorphism

(28) fEr..Ldm;K
�m//gr�0 Š

fEr.Ldm/gr�0
fEr.K�m/gr�0

of spectral sequences.

From Corollary 6.4 and Theorem 1.4, we deduce the exponential growth of the Betti
numbers of the pair .Ldm;K�m/.

Proposition 6.5 For d � 4 the Betti numbers of the pair .Ldm;K�m/ grow at least
exponentially.

Proof By (28) and Theorem 1.4, the H�BKSS of the pair .Ld�m ; .K�d /
�m/ collapses

at the E2 page. Moreover, the coefficients of (27) grow exponentially at a rate of
m1=d�1 >1, and by [4, Proposition 4.5] the Betti numbers of the pair .Ldm;K�m/ have
the same growth.
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One can also see Proposition 6.5 as a consequence of a theorem of Turchin [14,
Theorem 17.1], which states that the Betti numbers of the space K of long knots grow
at least exponentially. Notice first that the concatenation operation endows Ldm and
K�m with the structure, denoted �, of an H–space. Let 1 2K�m denote the unit, and
consider the diagram

(29)

F
i // Ldm

� // K�m

F

id

OO

g // F �K�m
 

OO

f // K�m
id

OO

where

� F is the fiber of � over the unit 1, id is the identity map,
� the map  is defined by  .x; y/ D i.x/� s.y/, where sW K�m �! Ldm is a

section of � ,
� the maps g and f are defined by g.x/D .x; 1/ and f .x; y/D y ,
� the map � is the one constructed in [4, Section 2].

It is clear that the left square of (29) commutes. The right square also commutes,
because

�. .x; y//D �.i.x/� s.y//

D �.i.x//� �.s.y// (because � is a morphism of H–spaces)

D 1�y (because s is a section of �)

D f .x; y/:

This implies that the triple .id;  ; id/ is a morphism of fibrations, and therefore the
space Ldm is homeomorphic to the product F �K�m . We thus have the inequality

dimH�.Ldm/ > dimH�.K�m/:

Since dimH�.K/ grows at least exponentially [14, Theorem 17.1], it follows that
dimH�.K�m/ also grows at least exponentially, and the proposition follows.

Our proof has some consequences. We have seen that the Betti numbers of the pair
.Ldm;K�m/ grow exponentially at a rate of m1=.d�1/ . This implies the following
corollary.

Corollary 6.6 For d � 4, the radius of convergence of the Poincaré series for the pair
.Ldm;K�m/ is less than or equal to .1=m/1=.d�1/ , and therefore tends to 0 as m goes
to 1.
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Let us denote by RC.X/ the radius of convergence of the Poincaré series for a space X .
For the space of long knots we will denote it by R .

Remark 6.7 As a consequence of Theorem 1.8 we have,

RC.Ldm;K
�m/� .1=

p
2/1=.d�1/:

Our approach gives a better upper bound for this radius thanks to Corollary 6.6.

We end this section with a conjecture having a nice consequence.

Conjecture 6.8 The radius of convergence of the Poincaré series of the space of long
knots (modulo immersions) is greater than 0. That is, R > 0.

Corollary 6.6 tells us that the radius of convergence of the Poincaré series for .Ldm;K�m/
is less than or equal to .1=m/1=.d�1/ , but does not tell us that it is less than R . We
therefore have the following theorem.

Theorem 6.9 If Conjecture 6.8 is true, then for d � 4 and for m>1=Rd�1 the radius
of convergence of the Poincaré series for the pair .Ldm;K�m/ is less than R . That is,
RC.Ldm;K�m/ < R .

Proof The proof comes immediately from Corollary 6.6 and the hypothesis that
m> 1=Rd�1 .
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