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Spin structures on almost-flat manifolds

ANNA GĄSIOR

NANSEN PETROSYAN

ANDRZEJ SZCZEPAŃSKI

We give a necessary and sufficient condition for almost-flat manifolds with cyclic
holonomy to admit a Spin structure. Using this condition we find all 4–dimensional
orientable almost-flat manifolds with cyclic holonomy that do not admit a Spin
structure.

53C27; 20H25

1 Introduction

An almost-flat manifold is a closed manifold M with the property that for any � > 0

there exists a Riemannian metric g� on M such that jK�j diam.M;g�/
2<� , where K�

is the sectional curvature and diam.M;g�/ is the diameter of M . In [10], Gromov gave
a topological description of almost-flat manifolds, showing that every such manifold is
finitely covered by a nilmanifold, ie it is a quotient of a connected, simply connected
nilpotent Lie group by a uniform lattice. Ruh [17] later improved on Gromov’s result
by deducing that in fact every almost-flat manifold is infra-nil. Conversely, every infra-
nilmanifold has an almost-flat structure, since it is finitely covered by a nilmanifold
and every nilmanifold has an almost-flat structure (see Gromov [10] and Buser and
Karcher [2]).

Given a connected and simply connected nilpotent Lie group N , the group of affine
transformations of N is defined as Aff.N /DN Ì Aut.N /. This group acts on N by

.n; �/ �mD n�.m/ for m; n 2N and � 2 Aut.N /:

Let C be a maximal compact subgroup of Aut.N / and consider the subgroup N Ì C

of Aff.N /. A discrete subgroup � � N Ì C that acts cocompactly on N is called
an almost-crystallographic group. In addition, if � is torsion-free then it is said to
be almost-Bieberbach. In this case, the quotient N=� is a closed manifold called
an infra-nilmanifold (modeled on N ). If in addition � � N , then N=� is called a
nilmanifold.
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Almost-flat manifolds occur naturally in the study of Riemannian manifolds with
negative sectional curvature. It is well-known that every complete noncompact finite-
volume manifold with pinched negative sectional curvature has finitely many cusps,
all of which are diffeomorphic to manifolds of the form M � Œ0;1/, where M is an
almost-flat manifold (see Buser and Karcher [2, Section 1]). They also play a crucial
role in the study of collapsing manifolds with uniformly bounded sectional curvature.
By a deep theorem of Cheeger, Fukaya and Gromov [3], if a manifold is sufficiently
collapsed relative to the size of its diameter, then it admits a local fibration structure
whose fibers are almost-flat manifolds.

In this paper we study the problem of determining the existence of Spin structures on
almost-flat manifolds. The existence of Spin structures on flat manifolds and related
invariants have been investigated by the third author and others for the special case of
flat manifolds (see for example Dekimpe, Sadowski and Szczepański [6], Gąsior and
Szczepański [8], Hiss and Szczepański [11], Miatello and Podestá [13; 14], Putrycz
and Szczepański [16], and Szczepański [19]). Our results represent the first modest
step towards understanding this problem in the more general setting of almost-flat
manifolds.

We will always assume that an almost-flat manifold comes equipped with the structure
of an infra-nilmanifold when discussing its topological properties. Before stating our
main result, let us recall the definition of a Spin structure on a smooth orientable
manifold.

We denote by SO.n/ the real special orthogonal group of rank n and by Spin.n/
its universal covering group. We also write �nW Spin.n/! SO.n/ for the (double)
covering homomorphism. A Spin structure on a smooth orientable manifold M is an
equivariant lift of its orthonormal frame bundle via the covering �n . The existence of
such a lift is equivalent to the existence of a lift z� W M ! B Spin.n/ of the classifying
map of the tangent bundle � W M !B SO.n/ such that B�n

ı z� D � . Equivalently, M

has a Spin structure if and only if the second Stiefel–Whitney class w2.TM / vanishes
(see Kirby [12, pages 33–34]).

It is well-known that infra-nilmanifolds are classified by their fundamental group
which is almost-crystallographic. A classical result of Auslander [1] asserts that every
almost-crystallographic subgroup � � Aff.N / fits into an extension

1!ƒ! �
q
! F ! 1;

where ƒD � \N is a uniform lattice in N and F is a finite subgroup of C called
the holonomy group of the corresponding infra-nilmanifold N=� . The conjugation
action of � on ƒ induces an action of the holonomy group F on the factor groups
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of the adapted lower central series (see (1)) of the nilpotent lattice ƒ. This gives us a
representation � W F ,! GL.n;Z/, where n is the dimension of N .

Main theorem Let M be an almost-flat manifold with holonomy group F . Then
M is orientable if and only if det � D 1. Suppose M is orientable and a 2–Sylow
subgroup of F is cyclic, ie C2m D ht j t2m

D 1i for some m� 0. Let �ab denote the
abelianization of the fundamental group � of M .

(a) If 1
2
.n�Trace.�.t/2

m�1

// 6� 2 .mod 4/, then M has a Spin structure.

(b) If 1
2
.n � Trace.�.t/2

m�1

// � 2 .mod 4/, then M has a Spin structure if and
only if the epimorphism q�W �ab!C2m induced by the projection qW �!C2m

factors through a cyclic group of order 2mC1 .

The conditions arising in the theorem are quite practical to check given a finite pre-
sentation of the fundamental group of the almost-flat manifold, ie the associated
almost-Bieberbach group. We illustrate this by finding all 4–dimensional almost-flat
manifolds whose holonomy group has a cyclic 2–Sylow subgroup that do not admit a
Spin structure.

Corollary There are exactly four families of 4–dimensional almost-flat manifolds
with cyclic holonomy group that do not admit a Spin structure. In each family, any
two distinct almost-Bieberbach groups �1 and �2 are modeled on the same nilpotent
Lie group N but have nonisomorphic nilpotent sublattices, �1 \N © �2 \N . The
holonomy group is always isomorphic to C2 .

Acknowledgements The first and third authors were supported by the Polish National
Science Center grant 2013/09/B/ST1/04125.

2 Results

We first show that the classifying map of the tangent bundle of an almost-flat manifold
M factors through the classifying space of the holonomy group F and is induced by a
representation �W F ! O.n/. Let us describe this representation.

Define n to be the Lie algebra corresponding to the nilpotent Lie group N modeling M .
Since N is a connected and simply connected nilpotent Lie group, the differential
defines an isomorphism d W Aut.N /! Aut.n/. Choose an inner product h ; i on n.
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Since d.C / is a compact subgroup of Aut.n/, we can define a new inner product hh ; ii
on n that is also invariant under the action of d.C / by letting

hhv;wii D

Z
d.C /

hxv;xwi�.x/ for v;w 2 n;

where � is a left-invariant Haar measure on d.C /.

Now we select basis on n orthonormal with respect to the new inner product. Iden-
tifying this basis with the standard basis in Rn defines a vector space isomorphism
�W n!Rn and a monomorphism ıW Aut.n/!GL.n/ such that ı ıd.C /�O.n/. We
define �W F ,! O.n/ by restricting the domain and the codomain of the composite
homomorphism

C ,! Aut.N /
d
�! Aut.n/

ı
�! GL.n/

to F and O.n/, respectively. It is crucial to note that � is well-defined up to isomor-
phism of representations. That is, for a different choice of the inner product and the
orthonormal basis of n, one obtains a representation that is isomorphic to �W F ,!O.n/.

Proposition 2.1 Let M be an n–dimensional almost-flat manifold modeled on a
connected and simply connected nilpotent Lie group N . Denote by � the fundamental
group of M and let

1!ƒ! �
q
! F ! 1

be the standard extension of � . Then the classifying map � W M!BO.n/ of the tangent
bundle of M factors through BF and is induced by a composite homomorphism

� ı qW �! F
�
! O.n/:

Proof Let �W F ,!O.n/ be the representation constructed above. This yields a map of
the classifying spaces B�W BF ! BO.n/ that is well-defined up to homotopy. Denote
by � the pullback of the universal n–dimensional vector bundle on BO.n/ under
the map B� . Its total space is the Borel construction EF �F Rn , ie the quotient of
EF �Rn by the action of F given by f � .x; v/ D .f x; �.f /v/ for all f 2 F and
.x; v/ 2EF �Rn .

We claim that the pullback bundle B�q .�/ of � under the map BqW B� ! BF is
isomorphic to tangent bundle TM !M . To see this, let LgW N !N , h 7! gh be the
left multiplication by an element g in N . It is a standard fact from Lie group theory
that the map

�W TN !N � n; .g; v/ 7! .g; dLg�1.v// for g 2N; v 2 n
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gives a trivialization of the tangent bundle of N . A quick computation shows that this
map is equivariant with respect to the action of � on N � n given by

 � .g; v/D .g; d ı q. /.v// for  2 � and .g; v/ 2N � n:

Hence, we obtain a commutative diagram

TN

=�
��

�
// N � n

=�
��

TM
�
// N �� n

where the resulting map �W TM !N �� n gives an isomorphism between the tangent
bundle of M and pr1W N �� n!N=� DM . But since N is a model for E� , we
also have a commutative diagram

N �� n

pr1

��

 
// EF �F Rn

�

��

M
Bq

// BF

for  W N �� n! EF �F Rn , fg; vg 7! fEq.g/; �.v/g, where EqW N ! EF is an
equivariant map covering Bq . This finishes the claim and the proposition follows.

Remark 2.2 If the manifold M is orientable, then in the statement of the proposition
the structure group O.n/ can be replaced by SO.n/.

With the previous notation, we define the classifying representation of an oriented
almost-flat manifold M to be the composite homomorphism �ıqW �! SO.n/. Recall
that it is well-defined up to isomorphism of representations.

Corollary 2.3 Let M be an orientable almost-flat manifold of dimension n with
fundamental group � . Then M has a Spin structure if and only if there exists a
homomorphism �W �! Spin.n/ such that �n ı � D � ı q .

Proof The manifold M has a Spin structure if and only if the classifying map
� D B�ıqW M ! BO.n/ has a lift z� W M ! B Spin.n/ such that B�n

ı z� D B�ıq .
Since M D B� , a homomorphism �W �! Spin.n/ satisfying �n ı � D � ı q yields a
map B�W M !B Spin.n/ such that B�n

ıB� DB�ıq . Hence, M has a Spin structure.

For the other direction, assume M has a Spin structure. Then w2.TM /D 0 and it
is the image of the generator of H2.B SO.n/;Z2/ D Z2 under the homomorphism
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B��ıqW H2.B SO.n/;Z2/!H2.B�;Z2/. Let SO.n/ı denote the group SO.n/ but with
the discrete topology. Note that the Friedlander–Milnor conjecture holds for SO.n/
(see [18]), ie the forgetful map f W SO.n/ı! SO.n/ induces an isomorphism of coho-
mology groups of B SO.n/ı and B SO.n/ with mod 2 coefficients. This implies that
the homomorphism B��ıq can be identified with .� ı q/�W H2.SO.n/;Z2/!H2.�;Z2/

and therefore the image of the generator of H2.SO.n/;Z2/ is zero. Reinterpreting the
statement using group extensions, gives us a commutative diagram

Z2
// Spin.n/

�n

// SO.n/

Z2

id

OO

// e�
!

OO

�
// �

s

ii

�ıq

OO

where � ı s D id� . Setting � D ! ı s we have �n ı � D � ı q as desired.

Next we will show that the representation �W F ,! O.n/ is isomorphic in GL.n/ to a
representation that arises from the action of the holonomy group on the factor groups
of a certain adapted lower central series of the nilpotent lattice ƒ. This representation
will turn out to be more suitable for applications.

To this end, we denote by

ƒD 1.ƒ/ > 2.ƒ/ > � � �> cC1.ƒ/D 1;

the lower central series of ƒ, ie iC1.ƒ/ D Œƒ; i.ƒ/� for 1 � i � c . By [5,
Lemma 1.2.6], we have that ƒ

p
i.ƒ/ D ƒ\ i.N /. By [5, Lemmas 1.1.2–3], the

resulting adapted lower central series

(1) ƒD ƒ
p
1.ƒ/ >

ƒ
p
2.ƒ/ > � � �>

ƒ
p
cC1.ƒ/D 1

has torsion-free factor groups

Zi D

ƒ
p
i.ƒ/

ƒ
p
iC1.ƒ/

; 1� i � c:

Thus, each Zi Š Zki for some positive integer ki . Just as in the case when ƒ is
abelian, conjugation in � induces an action of the holonomy group F on each factor
group Zi . This gives a faithful representation

� W F ,! GL.k1;Z/� � � � �GL.kc ;Z/ ,! GL.n;Z/; k1C � � �C kc D n:
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The representation is indeed faithful since its kernel is a finite unipotent group and is
therefore trivial.

Proposition 2.4 The representations �˝RW F ,!GL.n/ and �W F ,!O.n/�GL.n/
are isomorphic.

Proof Since F is finite, it suffices to show that the two representations have equal
characters (see [4, Corollary 30.14]). Let CW Aff.N /! Aut.N / denote the homo-
morphism defined by the conjugation action of the group of affine transformations
on the normal subgroup N . Note that restricted to the standard subgroup Aut.N / of
Aff.N /, this is just the identity homomorphism. Let expW n!N be the exponential
map. Recall that for any homomorphism �W N !N there is a commutative diagram

n

exp
��

d�
// n

exp
��

N
�
// N:

Moreover each subgroup i.N / in the lower central series of N is characteristic in N

and one has exp.i.n//D i.N / (see [5, Lemma 1.2.5]).

Now we choose a Mal’cev basis for n so that the images of its elements under the expo-
nential map generate the lattice ƒ. By construction, the subspaces Vi D �.i.n//; 1�

i � c give us a filtration

0D VcC1 � Vc � � � � � V1 DRn

with dim Vi D ki C � � � C kc and each Vi is left invariant under the action by the
image of the homomorphism ıW Aut.n/! GL.n/. For each 1� i � c , this defines a
representation

ıi W Aut.n/! GL.Vi=ViC1/:

Let z�i W �! GL.ki/ denote the composition

� ,! Aff.N /
C
�! Aut.N /

d
�! Aut.n/

ıi
�! GL.Vi=ViC1/:

Since ƒ is in the kernel of z�i , it gives rises to the representation �i W F ! GL.ki/.
Since ı and ı1 ˚ � � � ˚ ıc have equal characters, � and �1 ˚ � � � ˚ �c have equal
characters.

On the other hand, the representation � is isomorphic to �1˚� � �˚ �c where �i W F !

GL.ki ;Z/ is induced from z�i W �! GL.ki ;Z/ and the latter is defined by

�
Cj�
��! Aut.ƒ/! GL.k1;Z/� � � � �GL.kc ;Z/

pri
��! GL.ki ;Z/;
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for each 1� i � c . So, to finish the proof it suffices to show that z�i and z�i ˝R have
equal characters for each 1� i � c .

By taking a closer look at z�i , it is not difficult to see that it is isomorphic to the
composition

�
Cj�
��! Aut.N /! Aut.i.N /=iC1.N //

d
�! GL.i.n/=iC1.n//

where we identify i.n/=iC1.n/ and Vi=ViC1 via the isomorphism �W n!Rn and
where the second homomorphism is the natural map arising from the action of the
automorphism group of N on the lower central series of N .

On the other hand, the representation z�i can be defined by the composition

�
Cj�
��! Aut.ƒ/! Aut

�
ƒ
p
i.ƒ/=

ƒ
p
iC1.ƒ/

�
;

where the second homomorphism is the natural map arising from the action of the
automorphism group of ƒ on the adapted lower central series of ƒ.

From the choice of the Mal’cev basis on n and the fact that ƒ
p
i.ƒ/=

ƒ
p
iC1.ƒ/ is a

lattice in the Euclidean group i.N /=iC1.N /, it follows that z�i ˝R is isomorphic
to the composition

�
Cj�
��! Aut.N /! Aut.i.N /=iC1.N //

and hence to z�i . This finishes the proof.

Remark 2.5 It follows that the almost-flat manifold M is orientable if and only if
the image of the representation � W F ,! GL.n;Z/ lies inside SL.n;Z/.

Lemma 2.6 Let M be an orientable almost-flat manifold with holonomy group F .
Let S be a 2–Sylow subgroup of F and set M.2/DN=q�1.S/. Then M has a Spin
structure if and only if M.2/ has a Spin structure.

Proof Recall that the second Stiefel–Whitney class w2.TM / is the obstruction for
the existence of a Spin structure on M . The inclusion i W q�1.S/ ,! � induces a
homomorphism i�W H2.M;Z2/! H2.M.2/;Z2/. This is a monomorphism because
q�1.S/ is a subgroup of � of odd index. Since w2.TM.2// D i�.w2.TM //, we
obtain that w2.TM /D 0 if and only if w2.TM.2//D 0.

We also need the following lemma that will help us determine whether almost-flat
manifolds with cyclic holonomy group admit Spin structures.
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Lemma 2.7 Let A 2 SO.n/ be of order 2m , m > 0. Then there is an element in
��1

n .hAi/ of order 2mC1 if and only if

1
2
.n�Trace.A2m�1

//� 2 .mod 4/:

Proof The case mD1 is well-known (see [9; 7]). The general case follows easily from
this case where we replace the matrix A with A2m�1

.

We are now ready to prove the main theorem.

Proof of Main theorem (a) Suppose 1
2
.n�Trace.�.t/2

m�1

// 6� 2 .mod 4/. Then,
by Lemma 2.7 and Proposition 2.4, we have ��1

n .�.C2m// Š C2 � C2m . So, the
restriction �nW �

�1
n .�.C2m//!�.C2m/ splits and hence the classifying homomorphism

� ı qW � ! SO.n/ lifts to the universal covering group Spin.n/ of SO.n/. This, by
Proposition 2.1, insures that M has a Spin structure.

(b) In view of Lemma 2.6, we can assume the C2m is the whole holonomy group of
M . Thus, M has a Spin structure if and only if there is a lift l W �! Spin.n/ of the
composite homomorphism

� ı qW �
q
�! C2m

�
�! SO.n/:

But by our assumption and Lemma 2.6, the preimage ��1
n .�.C2// is isomorphic to

C2mC1 . This shows that there is lift l W �! Spin.n/ if and only if qW �!C2m factors
through C2mC1 which happens if and only if q�W �ab! C2m factors through C2mC1 .

3 Applications

It is well-known that all closed orientable manifolds of dimension at most 3 have a
Spin structure (see [12, page 35; 15, Exercise 12.B and VII, Theorem 2]). Next we
give a list of 4–dimensional orientable almost-flat manifolds modeled on a connected,
simply connected nilpotent Lie group N that cannot have a Spin structure. This list
is complete in the sense that, up to dimension 4, it gives all possible examples of
orientable almost-flat manifolds whose holonomy has a cyclic 2–Sylow subgroup not
admitting a Spin structure (see [16]). In fact, we will see that in each of these examples
the holonomy group is C2 . In contrast, all flat manifolds with holonomy C2 have a
Spin structure (see [11, Theorem 3.1(3)]).

For this purpose, we use the classification of the associated almost-Bieberbach groups
given in [5, Sections 7.2 and 7.3].
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3.1 N is 2–step nilpotent

The only family of almost-flat manifolds without a Spin structure are classified by
number 5, QD C 2 on page 171 of [5].

For each integer k > 0, the almost-Bieberbach group �k has the presentation

�k D a; b; c; d; ˛

Œb; a�D 1; Œc; a�D dk ; Œd; a�D 1;

Œc; b�D dk ; Œd; b�D 1; Œd; c�D 1;

˛2
D d; ˛a˛�1

D b�1; ˛b˛�1
D a�1;

˛d˛�1
D d; ˛c˛�1

D c�1

where ƒ D ha; b; c; di and ƒ
p
Œƒ;ƒ� D hdi. Since the representation � W C2 ,!

GL.4;Z/ arises from the conjugation by the element ˛ on ƒ, it is generated by the
matrix 2664

1 0 0 0

0 �1 0 0

0 0 0 �1

0 0 �1 0

3775
which lies in SL.4;Z/. So, by Remark 2.5, Mk is orientable for all k > 0.

The abelianization of �k has the presentation

.�k/ab D hxa; xc; x̨ j xc
2
D x̨

2k
D 1i D C1 �C2 �C2k :

The map q�W .�k/ab ! C2 can then be seen as the epimorphism arising from the
projection of the C2k –factor onto C2 . Therefore, it does not factor through C4 if and
only if k is odd. So, by the Main theorem(b), Mk does not have a Spin structure if
and only if k is odd.

3.2 N is 3–step nilpotent

In this case, we find 3 families of almost-flat manifolds without a Spin structure.

The first family is classified by number 3, QD h.2l; 1/i on page 220 of [5]. For each
k; l > 0, the associated almost-Bieberbach group �k;l has the presentation

�k;l D a; b; c; d; ˛

Œb; a�D c2ld .2l�1/k ; Œc; a�D 1; Œd; a�D 1;

Œc; b�D d2k ; Œd; b�D 1; Œd; c�D 1;

˛2
D d; ˛aD a˛c; ˛b D b�1˛;

˛d˛�1
D d; ˛c˛�1

D c�1
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where ƒD ha; b; c; di, ƒ
p
Œƒ;ƒ�D hc; di and ƒ

p
3.ƒ/D hdi. The representation

� W C2 ,! GL.4;Z/ is generated by the matrix2664
1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 1

3775
which lies in SL.4;Z/. So, Mk;l is orientable for all k > 0.

The abelianization of �k;l has the presentation

.�k;l/ab D h xa; xb; x̨ j xb
2
D x̨

2k
D 1i D C1 �C2 �C2k :

The map q�W .�k;l/ab ! C2 is the epimorphism arising from the projection of the
C2k –factor onto C2 . Therefore, it does not factor through C4 if and only if k is odd.
So, by the Main theorem(b), Mk;l does not have a Spin structure if and only if k is
odd.

The second family is classified by number 5, QD h.2l; 0/i, on page 222 of [5]. For
each k; l > 0, the associated almost-Bieberbach group �k;l has the presentation

�k;l D a; b; c; d; ˛

Œb; a�D c2l ; Œc; a�D dk ; Œd; a�D 1;

Œc; b�D d�k ; Œd; b�D 1; Œd; c�D 1;

˛2
D d; ˛aD b˛; ˛b D a˛;

˛d˛�1
D d; ˛c˛�1

D c�1

where ƒD ha; b; c; di, ƒ
p
Œƒ;ƒ�D hc; di and ƒ

p
3.ƒ/D hdi. The representation

� W C2 ,! GL.4;Z/ is generated by the matrix2664
1 0 0 0

0 �1 0 0

0 0 0 1

0 0 1 0

3775
which lies in SL.4;Z/. So, Mk;l is orientable for all k > 0.

The abelianization of �k;l has the presentation

.�k;l/ab D h xa; xc; x̨ j xc
2
D x̨

2k
D 1i D C1 �C2 �C2k :

The map q�W .�k;l/ab! C2 is the epimorphism resulting from projection of the C2k –
factor onto C2 . Therefore, it does not factor through C4 if and only if k is odd. So,
by the Main theorem(b) Mk;l does not have a Spin structure if and only if k is odd.

Algebraic & Geometric Topology, Volume 16 (2016)
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The third family is classified by number 5, QD h.2l C 1; 0/i, on page 222 of [5]. For
each k; l > 0, the associated almost-Bieberbach group �k;l has the presentation

�k;l D a; b; c; d; ˛

Œb; a�D c2lC1; Œc; a�D dk ; Œd; a�D 1;

Œc; b�D d�k ; Œd; b�D 1; Œd; c�D 1;

˛2
D d; ˛aD b˛; ˛b D a˛;

˛d˛�1
D d; ˛c˛�1

D c�1

where ƒD ha; b; c; di, ƒ
p
Œƒ;ƒ�D hc; di and ƒ

p
3.ƒ/D hdi. The representation

� W C2 ,! GL.4;Z/ is generated by the matrix2664
1 0 0 0

0 �1 0 0

0 0 0 1

0 0 1 0

3775
which lies in SL.4;Z/. So, Mk;l is orientable for all k > 0.

The abelianization of �k;l has the presentation

.�k;l/ab D hxa; x̨ j x̨
2k
D 1i D C1 �C2k :

The map q�W .�k;l/ab! C2 can then be seen as the epimorphism arising from projec-
tion of the C2k –factor onto C2 . Therefore, it does not factor through C4 if and only if
k is odd. So, by the Main theorem(b), Mk;l does not have a Spin structure if and only
if k is odd.

[5, §7.2–3] Q class �ab holonomy parameters

5, page 171 C 2 2 C 2
1 �C2k C2 k odd

3, page 220 h.2l; 1/i 3 C1 �C2 �C2k C2 l > 0, k odd
5, page 222 h.2l; 0/i 3 C1 �C2 �C2k C2 l > 0, k odd
5, page 222 h.2l C 1; 0/i 3 C1 �C2k C2 l > 0, k odd

Table 1: Almost-flat manifolds without Spin structures

We now summarize our investigations (see Table 1). Every 4–dimensional almost-
Bieberbach group � fits into an extension

0! Z! �!Q! 1;

where Q is a 3–dimensional almost-crystallographic group (see [5, Section 6.3]). If
N is 2–step nilpotent, then Q is in fact a crystallographic group. The first column
of the table indicates the number of the associated almost-crystallographic group Q

as shown in [5, Section 7.2–3] and the page number in [5] where the presentation of
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� is given. The second column gives the classification of Q as in the International
Tables for Crystallography (I T) or as in [5, Section 7.1]. The third column indicates
the nilpotency class of the group N on which the almost-flat manifold is modeled.
Columns four and five show the abelianization and the holonomy group, respectively.
The last column indicates the exact parameters for which the associated almost-flat
manifold cannot admit a Spin structure.
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