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Satellite operators as group actions on knot concordance

CHRISTOPHER W DAVIS

ARUNIMA RAY

Any knot in a solid torus, called a pattern, induces a function, called a satellite
operator, on concordance classes of knots in S3 via the satellite construction. We
introduce a generalization of patterns that form a group (unlike traditional patterns),
modulo a generalization of concordance. Generalized patterns induce functions,
called generalized satellite operators, on concordance classes of knots in homology
spheres; using this we recover the recent result of Cochran and the authors that
patterns with strong winding number ˙1 induce injective satellite operators on
topological concordance classes of knots, as well as smooth concordance classes
of knots modulo the smooth 4–dimensional Poincaré conjecture. We also obtain
a characterization of patterns inducing surjective satellite operators, as well as a
sufficient condition for a generalized pattern to have an inverse. As a consequence,
we are able to construct infinitely many nontrivial patterns P such that there is a
pattern P for which P .P .K// is concordant to K (topologically as well as smoothly
in a potentially exotic S3 � Œ0; 1�) for all knots K ; we show that these patterns
are distinct from all connected-sum patterns, even up to concordance, and that they
induce bijective satellite operators on topological concordance classes of knots, as
well as smooth concordance classes of knots modulo the smooth 4–dimensional
Poincaré conjecture.

57M25

1 Introduction

The satellite construction is a classical and well-studied family of functions on the set
of knots in S3 . Briefly, the satellite construction involves a pattern, P , ie a knot in
a solid torus V D S1 �D2 , and a knot K in S3 , called the companion; the satellite
knot P .K/ is the image of the knot P when the solid torus V is tied into the knot K ;
see Figure 1 and Section 2.

We will consider four different equivalence relations on knots, with corresponding
sets of equivalence classes C , Ctop , Cex , and CR , where R is any localization of Z.
Here C denotes the smooth knot concordance group, consisting of knots up to smooth
concordance; we recall that two knots K0 ,!S3�f0g and K1 ,!S3�f1g are smoothly
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P K P .K/

Figure 1: The satellite construction on knots in S3 .

concordant if they cobound a smooth, properly embedded annulus in S3 � Œ0; 1� with
its usual smooth structure. Similarly, K0 ,! S3 � f0g and K1 ,! S3 � f1g are
topologically concordant if they cobound a locally flat, properly embedded annulus
in a topological manifold homeomorphic to S3 � Œ0; 1�; knots modulo topological
concordance form the topological concordance group, denoted Ctop . As a transition of
sorts between C and Ctop , we have the exotic concordance group Cex , consisting of knots
up to exotic concordance, where K0 ,! S3 � f0g and K1 ,! S3 � f1g are exotically
concordant if they cobound a smooth, properly embedded annulus in a smooth manifold
homeomorphic, but not necessarily diffeomorphic, to S3 � Œ0; 1�; ie Cex consists of
knots up to concordance in a potentially exotic S3 � Œ0; 1�. For a localization R of Z,
the knots K0 ,! S3 � f0g and K1 ,! S3 � f1g are R–concordant if they cobound
a smooth, properly embedded annulus in a smooth R–homology cobordism from
S3 � f0g to S3 � f1g; CR denotes the group of knots up to R–concordance. If the
smooth 4–dimensional Poincaré conjecture is true then CexD C [5, Proposition 3.2]. In
fact, for odd n, it is unknown whether CZŒ1=n� D C . (CZŒ1=2� is distinct from C , since
the figure-eight knot is slice in a ZŒ1

2
�–homology ball, but not slice.)

The satellite construction is well-defined on concordance classes of each of the types
mentioned above; that is, any pattern P gives a function, a satellite operator (which
we will denote by the same letter),

P W C�! C�;

ŒK� 7! ŒP .K/�;

where � 2 f¿; ex; top;Rg for any localization R of Z, and Œ � � denotes the relevant
concordance class. This fact has been used to construct knots that yield distinct
concordance classes but which cannot be distinguished between by many classical
invariants. Examples of this philosophy in action can be found in [8; 7]. In [6], winding
number one patterns are used to construct nonconcordant knots which have homology
cobordant zero surgery manifolds. In the more general context of 3– and 4–manifold
topology, the satellite construction was used in [10] to modify a 3–manifold while
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fixing its homology type. Winding number one patterns, which are of particular interest
in this paper, are related to Mazur 4–manifolds [3] and Akbulut corks [2]. In [4], it was
shown that changing the attaching curve of a 2–handle in a handlebody description of
a 4–manifold by a winding number one satellite construction can change the (relative)
diffeomorphism type while fixing the homeomorphism type.

As a result, there has been considerable interest in understanding satellite operators on
C . For example, it is a famous conjecture that the Whitehead double of a knot K is
smoothly slice if and only if K is smoothly slice [13, Problem 1.38]. This question
might be generalized to ask if satellite operators are injective on smooth concordance
classes; that is, if P is a pattern/satellite operator, does P .K/DP .J / imply KDJ in
smooth concordance? A survey of such work on the Whitehead doubling operator may
be found in [11]. In [7], several “robust doubling operators” were introduced, and some
evidence was provided for their injectivity. This is the current state of knowledge in
the winding number zero case. For satellite operators induced by patterns with nonzero
winding numbers, there has been more success as seen in the following recent theorem.

Theorem 1.1 ([5, Theorem 5.1]; see Corollary 2.16) Suppose P is a pattern with
nonzero winding number n. Then

(a) P W CZŒ1=n�! CZŒ1=n� is injective.

Suppose that P is a pattern with strong winding number ˙1. Then

(b) P W Cex! Cex is injective,

(c) P W Ctop! Ctop is injective, and

(d) if the smooth 4–dimensional Poincaré conjecture holds, P W C! C is injective.

See Section 2 for a definition of strong winding number; for the moment it suffices to
know that patterns with strong winding number ˙1 are plentiful. The above theorem
has a number of useful corollaries (see [5]) and gives us a valuable tool in studying
satellite knots. We will see in Section 2 that it will follow easily from the main theorem
of this paper.

Let S denote the set of all patterns. S has a monoid structure with respect to which
the usual satellite construction is a monoid action; see Section 2. The main technical
result of this paper shows that the classical satellite construction is, in fact, a restriction
of a natural group action. Specifically, we show that patterns form a submonoid of the
group of homology cobordism classes of homology cylinders, which was introduced
by Levine in [15], and we show that this group has a natural action on concordance
classes of knots in homology spheres, which is compatible with the classical satellite
construction. In other words, we prove a theorem of the following type.
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Main theorem (See Section 2 for the precise statement) Let � 2 fex; top;Rg for a
localization R

of Z. For each C� , there exist a particular submonoid S� of S , an enlargement

‰W C� ,! yC�;

and a monoid morphism,
EW S�! yS�;

where yS� is a group which acts on yC� , such that the following diagram commutes for
all P 2 S� :

C� C�

yC� yC�

P

E.P /

‰ ‰

In the above, S� contains all strong winding number ˙1 patterns for � D ex or
top, and all winding number ˙n patterns when � D ZŒ1

n
�; yC� consists of knots in

homology spheres up to concordance in the category �; and yS� is a group of homology
cobordism classes of homology cylinders. For a pattern P � V D S1�D2 , we denote
by E.P / the exterior of a regular neighborhood of P in V , as well as the function on
yC� induced by it. See Section 2 for the precise definitions as well as the proof of the
main theorem.

Since E.P / is an element of a group acting on yC� , E.P /W yC� ! yC� must be a
bijection. This observation yields Theorem 1.1 as a corollary (see Corollary 2.16), via
an elementary diagram chase.

Moreover, considering the satellite construction as a restriction of a group action
provides a novel approach to the problem of finding nontrivial surjective satellite
operators on C� . While it is elementary to show that patterns with winding number
other than ˙1 cannot induce surjections on knot concordance (see Proposition 3.1),
very little is known in the case of patterns of winding number ˙1. For instance, the
conjecture of Akbulut [13, Problem 1.45] that there exists a winding number one pattern
P such that P .K/ is not slice for any knot K (that is, the unknot is not in the image
of the satellite operator) remains open.

For �2 fex; top;Rg and P in the monoid S� , we have shown that E.P / is an element
of a group and, therefore, has a well-defined inverse E.P /�1 . It is of independent
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interest to ask whether, for a given pattern P , the homology cylinder E.P /�1 cor-
responds to a pattern, that is, if there exists some P 2 S such that E.P /�1 DE.P /

in S� (we say that P is an inverse for P ). In fact, if P has an inverse P , we may
infer that the induced satellite operator P is a bijection on C� ; see Corollary 3.7. In
Section 3, we give a sufficient condition for a pattern to have an inverse, which allows
us to construct a family of patterns that induce bijective satellite operators on C� , as
follows. Of course, it is easy to see that connected-sum patterns (of the form shown
in Figure 5) give bijective functions on C� for each � 2 fex; top;Rg. Consequently,
when seeking examples of patterns inducing bijective satellite operators, one should
make sure that one avoids patterns that are equivalent to connected sum patterns.

Theorem 3.4 Let P � V D S1 �D2 be a pattern with winding number ˙1. If the
meridian of P is in the normal subgroup of �1.E.P // generated by the meridian of
V , then P has strong winding number ˙1, and there exists another strong winding
number ˙1 pattern P such that E.P /�1 DE.P / as homology cylinders.

Corollary 3.9 For each m�0, the pattern Pm�V .Pm/DS1�D2 shown in Figure 2
induces a bijective map PmW C� ! C� for � 2 fex; top;Zg. Moreover, each Pm is
distinct from all connected-sum patterns.

In our final application of the main theorem, we draw a connection between the
surjectivity of satellite operators (specifically Akbulut’s conjecture [13, Problem 1.45]
mentioned above) and a question of Matsumoto [13, Problem 1.30] asking if every knot
in a 3–manifold homology cobordant to S3 is concordant, in a homology cobordism
to S3 , to a knot in S3 . That is, we show the following result.

Proposition 4.3 Let �2fex; topg. If there exists a pattern with strong winding number
˙1 such that the induced function P W C�! C� is not surjective, then there exists a

2mC1
2mC1 D

2mC1 half-twists

Figure 2: fPmgm�0 , a class of patterns yielding bijective satellite operators
(see Corollary 3.9).
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knot in a 3–manifold M homology cobordant to S3 that is not concordant, in the
category �, to any knot in S3 in any �–homology cobordism from M to S3 .

Outline In Section 2, we give the relevant background and prove the main theo-
rem. Section 3 addresses surjectivity of satellite operators. In Section 4, we prove
Proposition 4.3.

Remark Shortly after a preprint of this paper was circulated, Adam Levine proved
the existence of nonsurjective satellite operators; see [14].

2 Background and proof of the main theorem

2.1 Patterns and satellite operators

For a pattern P � V D S1 � D2 , let E.P / denote the complement of a regular
neighborhood of P in V . There are four important (oriented) curves on the boundary
of E.P /:

(1) m.P /, the meridian of the pattern,

(2) `.P /, the longitude of the pattern,

(3) m.V /Dm.V .P //D 1� @D2 , the meridian of the solid torus, and

(4) `.V /D `.V .P //D S1 � 1, the longitude of the solid torus.

Here, `.P / is the pushoff (unique up to isotopy) of P in V , which is homologous
in E.P / to a multiple of `.V /. We say that P has winding number w D w.P / 2 Z
if `.P / is homologous to w � `.V /. Consistent with this definition, on the torus
T D S1 �S1 , we will call the curve `D S1 � f1g the longitude of T , and the curve
mD f1g �S1 the meridian of T . Let S denote the set of all patterns up to isotopy.

Remark 2.1 Given a pattern P � V one gets a knot zP � S3 by adding a 2–handle
to V along `.V /, followed by a 3–handle along the resulting 2–sphere boundary.
Let � be the image of m.V / after this handle addition. It is straightforward to see
that the map P 7! . zP ; �/ gives a bijection from S to the set of (ordered, oriented)
2–component links in S3 whose second component is unknotted, since, given such a
link, we can remove a tubular neighborhood of the second component to get a knot
(the first component) in a solid torus, namely a pattern. The winding number of P is
the same as the linking number between zP and �, and E.P / is the complement of
the link . zP ; �/ in S3 ; see Figure 3.
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P P

�

zP

(a) (b)

Figure 3: (a) A schematic picture of a pattern P . The circle containing P

denotes a tangle. (b) The 2–component link corresponding to the pattern P .
The circle containing P denotes the same tangle as in the previous panel.

The set S has a natural monoid structure. Given two patterns P �V .P / and Q�V .Q/,
where V .P / and V .Q/ are standard solid tori, we construct the composed pattern
P ?Q as follows. Glue E.Q/ and V .P / together by identifying @E.Q/ with @V .P /
via m.Q/�m.V .P // and `.Q/� `.V .P //. The product P ?Q is the image of P

after this identification, and the resulting manifold is still a solid torus V .P ?Q/; see
Figure 4. The operation ? is clearly associative, ie P ? .Q?S/D .P ?Q/ ?S , and
the monoid identity is given by the core of the solid torus, namely the trivial pattern.

Patterns act on knots in S3 as we described in Figure 1. To obtain P .K/ from a
pattern P � V and a knot K � S3 , start with the knot complement S3 �K . The
toral boundary contains the oriented curves `.K/, the longitude of K , and m.K/, the
meridian of K . Glue in V .P / by identifying `.V /� `.K/ and m.V /�m.K/. The
resulting 3–manifold is S3 , and the image of P is the satellite knot P .K/. For further
details, see [18, page 111].

Let K denote the set of knots in S3 modulo isotopy. For patterns P and Q and a
knot K , we easily see that .P ?Q/.K/D P .Q.K//. Therefore, we have a monoid
homomorphism S!Maps.K;K/, that is, a monoid action on the set of isotopy classes
of knots in S3 . The following proposition shows that S is far from being a group
under the operation ?.

P Q P ?Q

Figure 4: The monoid operation on patterns.
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Proposition 2.2 The only element of S that has an inverse under the operation ? is
the trivial pattern given by the core of the solid torus.

Proof We see this using the notion of bridge index b.K/ of a knot K ; see [18, p. 114].
Suppose P � V has an inverse denoted P�1 . For any satellite knot P .K/, we know
from [19] that b.P .K//� n � b.K/, where n is the geometric winding number of P ,
ie the minimal (unsigned) number of intersections between `.P / and a meridional disk
of V . Therefore, for any pattern P and knot K , b.P .K//� b.K/, and so

b.K/D b..P�1 ?P /.K//D b.P�1.P .K///� b.P .K//� b.K/:

Thus, b.P .K//D b.K/, and P has geometric winding number one. This implies that
P is a connected-sum pattern, ie P D QJ for some knot J as shown in Figure 5.
However, the connected-sum operation with a nontrivial knot cannot have an inverse
due to the additivity of genus. Therefore, P D QU , where U is the unknot. This
completes the proof, since QU is the trivial pattern.

The following submonoids of S will be of particular interest in this paper.

Definition 2.3 Let P be a pattern and Z�R�Q a localization of Z.

(a) P is said to lie in SR if w.P / is invertible in R, that is, 1=w.P / 2R.

(b) P is said to lie in Sstr (and have strong winding number ˙1) if w.P / D
˙1 and each of the sets fm.V /; `.V /g and fm.P /; `.P /g normally generates
�1.E.P //.

Recall from Remark 2.1 that one can obtain a knot zP from a pattern P �V DS1�D2

by adding a 3–dimensional 2–handle to V along `.V / and then a 3–dimensional
3–handle along the resulting 2–sphere boundary (in fact, zP D P .U /, where U is the
unknot). In [5], a pattern P was said to have strong winding number ˙1 if w.P /D˙1

and m.V / normally generates �1.S
3� zP /. Our definition is equivalent to the definition

in [5] as follows.

J

Figure 5: The connected-sum pattern QJ corresponding to the knot J . A
strand going up through the box marked J has the knot type of J .
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Proposition 2.4 For a pattern P � V D S1�D2 with winding number ˙1, we have
that m.V / normally generates �1.S

3� zP / if and only if each of the sets fm.V /; `.V /g
and fm.P /; `.P /g normally generates �1.E.P //.

Proof From the definition of zP , it is clear that �1.S
3 � zP /D �1.E.P //=hh`.V /ii,

where hh`.V /ii is the normal subgroup generated by `.V / in �1.E.P //. The backward
direction follows immediately, since if fm.V /; `.V /g normally generates �1.E.P //,
the group �1.S

3� zP /D �1.E.P //=hh`.V /ii must be normally generated by m.V /.
For the forward direction, note that if we assume that m.V / normally generates
�1.S

3� zP /D�1.E.P //=hh`.V /ii, then fm.V /; `.V /g normally generates �1.E.P //.
In order to see that fm.P /; `.P /g also normally generates �1.E.P //, notice that V

is obtained from E.P / by adding a 2–handle along m.P / (followed by a 3–handle)
so that

ZŠ �1.V /D �1.E.P //=hhm.P /ii:

Since P has winding number ˙1, we know �1.V / is generated by `.P /, which is
homotopic in V to `.V /. Thus, fm.P /; `.P /g normally generates �1.E.P //.

2.2 Homology cobordism classes of homology cylinders

In [15], Levine defined the group of integral homology cylinders over a surface, with
the goal of producing an enlargement of the mapping class group. For completeness,
and since we require slight variants and generalizations, we recall the definitions below.

Definition 2.5 [15] Let T D S1 �S1 be the torus and R a localization of Z. An
R–homology cylinder on T , or an R–cylinder, is a triple .M; iC; i�/ where

� M is an oriented, compact, connected 3–manifold;

� i�W T ! @M is an embedding, for � D˙1, with @M = iC.T /t i�.T /;

� iC is orientation-preserving and i� is orientation-reversing; and

� .i�/�W H�.T IR/!H�.M IR/ is an isomorphism.

For R–homology cylinders .M; iC; i�/ and .N; jC; j�/, we say that .M; iC; i�/D

.N; jC; j�/ if there is a homeomorphism �W M ! N such that � ı i� D j� for
� 2 f˙1g.

A Z–cylinder .M; iC; i�/ is called a strong cylinder if �1.M / is normally generated
by each of Im.iC/� and Im.i�/� . Let HR denote the set of all R–cylinders and Hstr

denote the set of all strong cylinders.
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For � 2 fstr;Rg, there is a monoid operation on H� given by stacking:

.M; iC; i�/ ? .N; jC; j�/D
�
M tN

ı
iC.x/� j�.x/; 8x 2 T ; jC; i�

�
:

The identity element with respect to ? is given by .T � Œ0; 1�; id�f1g; id�f0g/.

Definition 2.6 [15] Two R–cylinders .M; iC; i�/ and .N; jC; j�/ are said to be
R–cobordant if there is a smooth 4–manifold W with

@W DM t�N
ı

iC.x/� jC.x/; i�.x/� j�.x/; 8x 2 T

such that H�.M IR/!H�.W IR/ and H�.N IR/!H�.W IR/ are isomorphisms.
This is equivalent to requiring that the compositions

H�.T IR/
.i�/�
���!H�.M IR/ �!H�.W IR/;

H�.T IR/
.j�/�
���!H�.N IR/ �!H�.W IR/

are isomorphisms for each � 2 f˙1g. Such a W is called an R–cobordism. HR

denotes the set of all R–cobordism classes of R–cylinders.

Two strong cylinders .M; iC; i�/ and .N; jC; j�/ are said to be strongly cobordant
if there exists a Z–cobordism W between M and N such that �1.W / is normally
generated by each of �1.M / and �1.N /. Such a W is called a strong cobordism.
This is equivalent to requiring that the images of

�1.T /
.i�/�
���! �1.M / �! �1.W /;

�1.T /
.j�/�
���! �1.N / �! �1.W /

(individually) normally generate �1.W / for each � 2 f˙1g. We let Hex denote the set
of all strong cobordism classes of strong cylinders.

In the latter definition, if the manifold W is not required to be smooth, we say
.M; iC; i�/ and .N; jC; j�/ are strongly topologically cobordant. Htop denotes the
set of strong topological cobordism classes of strong cylinders.

In [15], Levine proves that the binary operation ? on HZ is well-defined on HZ and
endows HZ with the structure of a group. Indeed, N � Œ0; 1� can be seen to be a
cobordism between .N; iC; i�/ ? .�N; i�; iC/, where �N denotes the orientation
reverse of N , and the identity element .T � Œ0; 1�; id�f0g; id�f1g/. Thus, the inverse
of .N; iC; i�/ in HZ is .�N; i�; iC/. Since N � Œ0; 1� is a smooth R–cobordism
when N is an R–cylinder, HR is a group for all localizations R of Z. Similarly, if N

is a strong cylinder, it is easy to see that N � Œ0; 1� is a smooth and topological strong
cobordism. Thus, Hex and Htop are also groups.
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2.3 Patterns produce homology cylinders

For any pattern P 2 SR , the exterior of P in the solid torus, E.P /, can be seen to be
an R–homology cylinder in a natural way. Let iC be the identification S1 �S1!

@V sending m 7! m.V / and ` 7! `.V /. Similarly, let i� be the identification of
the boundary of a tubular neighborhood of P with S1 � S1 that sends ` 7! `.P /

and m 7! m.P /. A Mayer–Vietoris argument easily reveals that .E.P /; iC; i�/ is
an R–cylinder. It follows immediately from our definitions that if P 2 Sstr , then
.E.P /; iC; i�/ 2 Hstr . Henceforth, we will often abuse notation by letting E.P /

denote the �–cylinder .E.P /; iC; i�/, where � 2 fstr;Rg. For each value of �, we
have a map

EW S�!H�; P 7!E.P /;

which is easily seen to be a monoid homomorphism.

Note that if P is a pattern with winding number w¤ 0, then in E.P /, the curve `.P /
is homologous to w �`.V /, and the curve m.P / is homologous to .1=w/ �m.V /. Thus,
with respect to the basis f`;mg for H1.S

1�S1/, the composition ..iC/�1
� ı .i�/�/ is

given by the matrix
�
w
0

0
1=w

�
: This motivates the following definition.

Definition 2.7 Let R be a localization of Z. We define yS 0
R � HR to be the sub-

monoid of all R–cylinders .M; iC; i�/ for which the map .iC/�1
� ı.i�/�W H1.T IR/!

H1.T IR/ has determinant one and is diagonal with respect to the basis f`;mg. Simi-
larly, yS 0

str �Hstr is the submonoid of all strong cylinders .M; iC; i�/ for which the
map .iC/�1

� ı .i�/�W H1.T IZ/!H1.T IZ/ is ˙ id. Elements of yS 0
� will be called

generalized �–patterns, for � 2 fstr;Rg.

As a result of our previous discussion, we see the following result.

Proposition 2.8 For each � 2 fstr;Rg there is a monoid homomorphism

EW S�! yS
0
�:

Moreover, the submonoids yS 0
� of H� are closed under the map sending a �–cylinder

to its inverse in H� , namely .N; iC; i�/ 7! .�N; i�; iC/ . Therefore, we define

ySex WD yS
0
str
ı

strong cobordism;

yS top WD yS
0
str
ı

strong topological cobordism;

ySR WD yS
0
R

ı
R–cobordism

and see that ySex , yS top , and ySR are subgroups of Hex , Htop , and HR , respectively.
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From the above, using the monoid morphisms E from Proposition 2.8, we obtain the
following proposition.

Proposition 2.9 There are monoid homomorphisms

EW SR! ySR; EW Sstr! ySex; and Sstr! yS top:

2.4 Generalizations of knot concordance

Definition 2.10 Let K and J be knots in the Z–homology spheres X and Y , re-
spectively. .K;X / and .J;Y / are called exotically concordant (resp. topologically
concordant) if there is a smooth (resp. topological) Z–homology cobordism W from X

to Y with �1.W / normally generated by the images of each of �1.X / and �1.Y / and
in which K and J cobound a smooth (resp. locally flat) annulus. The set of all knots
in Z–homology spheres modulo exotic concordance (resp. topological concordance) is
denoted by yCex (resp. yCtop ).

Now, suppose that R is a localization of Z, and K and J are knots in the R–homology
spheres X and Y . Then .K;X / and .J;Y / are called R–concordant if there is a
smooth R–homology cobordism W from X to Y in which K and J cobound a
smooth annulus. We denote by yCR the set of all knots in R–homology spheres modulo
R–concordance.

Proposition 2.11 The map

‰W C�! yC�; ŒK� 7! Œ.K;S3/�

is well-defined and injective, for each value of � 2 fex; top;Rg.

Proof Let � D ex. If K is exotically concordant to J , then K and J cobound a
smooth annulus in W WDS3� Œ0; 1� with a possibly exotic smooth structure. Therefore,
W is a homology cobordism from S3 to itself, and since �1.W / D 0, we have
.K;S3/D .J;S3/ in yCex . Hence, the map ‰ is well-defined.

Suppose .K;S3/D .J;S3/ in yCex . Then K and J cobound a smooth annulus in a
smooth homology cobordism W from S3 to itself with �1.W / normally generated by
�1.S

3/D 0. Thus, W is simply connected, and by Freedman’s proof of the topological
4–dimensional Poincaré conjecture [9], W is homeomorphic to S3 � Œ0; 1� (but not
necessarily diffeomorphic). Thus, K is exotically concordant to J .

The proofs in the cases � D top and � DR are similar.
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In fact, yC� has a group structure coming from the connected-sum operation, and the
map C� ,! yC� is a monomorphism. Since we are not so interested with the group
structure on knot concordance in this paper, we will not prove this fact.

Remark 2.12 We noted in Remark 2.1 that patterns Pi � Vi D S1�D2 (i D 0; 1) in
Sstr can be uniquely represented by the 2–component links . zPi ; �i/. In fact, if the links
. zP0; �0/ and . zP1; �1/ are exotically (resp. topologically) concordant, then the strong
homology cylinders E.P0/ and E.P1/ are strongly (resp. strongly topologically)
cobordant. This is seen by cutting out a regular neighborhood of the concordance
between the two links in S3 � Œ0; 1�. Similarly, suppose the patterns Pi are in SR for
some localization R of Z; if the links . zP0; �0/ and . zP1; �1/ are R–concordant, then
E.P0/ and E.P1/ are R–cobordant.

Remark 2.13 A generalized �–pattern .M; iC; i�/ yields a link . zPM ; �M / in a 3–
manifold yM , as follows. We obtain yM by attaching 2–handles to M along i�.m/ and
iC.`/, followed by 3–handles along the two resulting sphere boundary components.
Let zPM denote the image of i�.`/ in yM and �M the image of iC.m/ in yM . If �DR,
then yM is an R–homology sphere, whereas if � D str, then yM is a Z–homology
sphere. It is straightforward to see that if two R–cylinders .M; iC; i�/ and .N; jC; j�/
are R–cobordant, then . zPM ; �M / and . zPN ; �N / are therefore concordant as links in
an R–homology cobordism from yM to yN . If M and N are strong homology cylinders
which are strongly cobordant, then the links . zPM ; �M / and . zPN ; �N / are concordant in
a homology cobordism from yM to yN whose fundamental group is normally generated
by each of �1. yM / and �1. yN /. If the strong homology cylinders are merely strongly
topologically cobordant, then the link concordance is topological.

2.5 Generalized patterns act on knots in homology spheres via general-
ized satellite operators

Proposition 2.14 The monoid yS 0
R acts on the set of knots in R–homology spheres.

For the map EW SR! yS
0
R , if P 2 SR and K � S3 is a knot, .P .K/;S3/ is isotopic

to .E.P //.K;S3/.

Note that since yS 0
str �

yS 0
Z , the above says that yS 0

str acts on the set of knots in Z–
homology spheres.

Proof of Proposition 2.14 Let K be a knot in the R–homology sphere Y , and
.M; iC; i�/ be an R–homology cylinder. Construct a 3–manifold Y 0 as follows —
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start with M , glue on a solid torus along i�.T / such that i�.m/ bounds a disk, and
glue in Y �N.K/ such that iC.`/� `.K/ and iC.m/�m.K/. Therefore,

Y 0 WD S1
�D2

[
@D2�i�.m/

M [
iC.m/�m.K /

iC.`/�`.K /

Y �K:

It is easy to check that Y 0 is an R–homology sphere when .V; iC; i�/ 2 yS
0
R . Let K0

be the core of the solid torus S1 �D2 in this decomposition. The above construction
gives the desired action on knots in R–homology spheres; that is,

.M; iC; i�/ � .K;Y / WD .K
0;Y 0/:

It is straightforward to see that for all homology cylinders M and N and any pair
.K;Y / as above, .M ?N / � .K;Y /DM � .N � .K;Y //. Therefore, we have a monoid
action. The pairs .P .K/;S3/ and .E.P // � .K;S3/ are isotopic since the gluing
instructions given above are identical to those in the classical satellite construction.

Proposition 2.15 Let R be a localization of Z and � 2 fex; top;Rg. The monoid
action of Proposition 2.14 descends to a group action by yS� on yC� for each choice of
� 2 fex; top;Rg.

Proof Let .M; iC; i�/; .N; jC; j�/ 2 S� be generalized �–patterns, for � 2 fstr;Rg,
and K and J be knots in the manifolds Y and X , respectively. From the proof of
Proposition 2.14, we know that .M; iC; i�/ � .K;Y / and .N; jC; j�/ � .J;X / are knots
in the 3–manifolds Y 0D S1�D2 [M [S3�K and X 0D S1�D2 [ N [S3�J ,
where, in particular, the resulting knots are given by the cores of the S1 �D2 –pieces.

Suppose .K;Y / and .J;X / are R–concordant, ie .K;Y / D .J;X / in yCR , and
.M; iC; i�/ and .N; jC; j�/ are R–cobordant, ie .M; iC; i�/D .N; jC; j�/ in ySR .
Then there is an R–cobordism U0 between M and N , and an R–concordance C

from K to J in some 4–manifold; let E.C / be the complement of C .

The gluing instructions used to build X 0 and Y 0 extend to gluing instructions for
a 4–manifold

U D S1
�D2

� Œ0; 1� [ U0[E.C /

with @U D Y 0 t�X 0 . Since each of the pieces of U is smooth, U is smooth as well.
Moreover, since each of the pieces of U is an R–homology cobordism, it follows from
a Mayer–Vietoris argument that U is an R–homology cobordism as well, where the
core of S1 �D2 � Œ0; 1� is a smooth annulus cobounded by the two resulting knots.
This completes the proof in the case that � DR.
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For the �D ex case, we only need to show that the additional condition on fundamental
groups is satisfied when the spaces used above are in ySex and yCex . This can be seen
using two successive Seifert–van Kampen arguments, since the fundamental group
of each piece of U is normally generated by each of its boundary components. The
last remaining case, � D top, follows from the various arguments above, with the
additional trivial observation that if the pieces of U are merely topological, the core of
S1 �D2 � Œ0; 1� is a locally flat annulus.

Thus, any generalized �–pattern .M; iC; i�/ yields an induced function

M W yC�! yC�

as described above, which we will call a generalized satellite operator, for appropriate
choice of symbols (generalized str–patterns induce functions on yCex and yCtop while
generalized R–patterns induce functions on yCR , where R is a localization of Z).

We combine the results and definitions of this section to give the main theorem.

Main theorem Let R be a localization of Z. For the maps ‰ from Proposition 2.11,
the monoid morphisms EW Sstr! ySex , Sstr! yS top and SR! ySR from Proposition 2.9,
and any P 2 Sstr , and Q 2 SR , the following diagrams commute.

(2-1)

Cex Cex

yCex yCex

P

E.P /

‰ ‰

Ctop Ctop

yCtop yCtop

P

E.P /

‰ ‰

CR CR

yCR
yCR

Q

E.Q/

‰ ‰

Proof The result follows from Propositions 2.9, 2.11, and 2.14.

As an immediate corollary of the main theorem we recover the following result from [5].

Corollary 2.16 [5, Theorem 5.1] Let P be a pattern. If P has winding number
n¤ 0, then P W CZŒ1=n�! CZŒ1=n� is injective. If P has strong winding number ˙1,
then P W Cex! Cex and P W Ctop! Ctop are injective.

Proof The proof is a straightforward diagram chase. Let � 2 fex; top;ZŒ1
n
�g. Sup-

pose that P .K/ is concordant to P .J / in the �–category; ie P .K/ D P .J / in C� .
Then ‰.P .K// D ‰.P .J //. Since the diagrams in (2-1) commute, we see that
.E.P //.‰.K//D .E.P //.‰.J //. Since E.P / 2 yS� is an element of a group which
acts on yC� , it has an inverse. Therefore, the satellite operator E.P / is bijective and,
in particular, injective. Thus, ‰.K/D ‰.J /. But ‰ is also injective; therefore, we
conclude that K D J in C� , as needed.
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3 Surjectivity of satellite operators

Since satellite operators have now been shown to be injective in several categories
(in Section 2 as well as in [5]), it is natural to ask which satellite operators P W C�!
C� are surjective, for � 2 fex; top;Rg and a localization R of Z. The following
proposition shows that only patterns of winding number ˙1 may induce surjective
satellite operators.

Proposition 3.1 Let P be a pattern with winding number n ¤ ˙1. The induced
satellite operator P W C�! C� is not surjective for any � 2 fex; top;Rg, where R is a
localization of Z.

Proof We know from [16; 17] that for any knot K ,

(3-1) �.P .K/; !/D �.P .U /; !/C �.K; !n/;

where U is the unknot, and �. � ; !/ denotes the Levine–Tristram signature at ! 2C ,
with j!j D 1. For a fixed P , this imposes restrictions on the signature function
of P .K/, as follows. Let J be a knot for which �.J; !/ does not have the form
g.!n/ for any function on g on S1 (for example, the right-handed trefoil knot).
Then �.P .U /#J; !/ D �.P .U /; !/C �.J; !/ cannot be of the form prescribed to
�.P .K/; !/ in Equation (3-1). Therefore, P .U /#J is not in the image of P ; the
result follows, since the signature function is an invariant of rational concordance.

As a result, we mostly restrict ourselves, henceforth, to patterns in SZ and Sstr . Of
course, connected-sum patterns, ie patterns of the form QJ shown in Figure 5, are
clearly surjective. We say that a pattern P with winding number ˙1 is nontrivial if it
is distinct as an element of ySZ from the connected-sum patterns QJ , for all knots J .

We first note that we have a characterization of patterns inducing surjective satellite
operators as follows.

Proposition 3.2 The pattern P 2 Sstr induces a surjective map P W C� ! C� for
� 2 fex; topg if and only if E.P /�1.‰.C�// � ‰.C�/, where E.P /�1 is the inverse
of the homology cylinder E.P / 2 yS� . Similarly, P 2 SZ induces a surjective map
P W CZ! CZ if and only if E.P /�1.‰.CZ//�‰.CZ/.

Proof The key observation here is that since E.P / acts via a group action, it must
induce a bijection on yC� for each � 2 fex; top;Zg. Therefore, by the commutativity of
the diagrams in (2-1) and the injectivity of ‰ , we see that P W C�! C� is surjective if
and only if E.P /�1.‰.C�//D‰.C�/. However, we know that E.P /.‰.C�//�‰.C�/
for all P .
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It is worth noting that one way to guarantee that E.P /�1.‰.C�// � ‰.C�/, for � 2
fex; topg, is for E.P /�1 to be the image under EW Sstr ! yS� of some P 2 Sstr ,
since as we saw in the proof above, E.P /.‰.C�//�‰.C�/ for all P . This holds for
connected-sum patterns as shown below.

Proposition 3.3 For � 2 ftop; ex;Rg and any knot J in S3 , we have E.QJ /
�1 D

E.Q�J / in yS� .

Proof To prove the result is suffices to find a strong cobordism from E.QJ / ?

E.Q�J / to the identity element .T � Œ0; 1�; id�f0g; id�f1g/. Since EW S�! yS� is
a homomorphism E.QJ / ?E.Q�J /DE.QJ ?Q�J /. Finally, it is easy to see from
the definition of multiplication in S� that QJ ?Q�J DQJ #�J .

As a 3–manifold E.QJ #�J / is diffeomorphic to the complement in S3 of the 2–
component link L consisting of J#� J and a meridian � for J#�J . The diffeo-
morphism sends the longitude and meridian of J#�J to the longitude and meridian
of QJ #�J respectively, and the meridian and longitude of � to the longitude and
meridian of the solid torus `.V / and m.V / respectively.

Finally, since J#� J is slice, the link .J#� J /t� is concordant to the Hopf link,
whose exterior is diffeomorphic to T � Œ0; 1�. It is straightforward to check that the
complement of the concordance provides a �–cobordism between E.QJ ?Q�J / and
the identity element .T � Œ0; 1�; id�f0g; id�f1g/.

In fact, there exist nontrivial patterns P with winding number ˙1 such that E.P /�1D

E.P / for some P 2 SZ , as we see below.

Theorem 3.4 Let P � V D S1 �D2 be in SZ . If m.P / is in the normal subgroup
of �1.E.P // generated by m.V / then P has strong winding number ˙1 and there
exists another strong winding number one pattern P such that E.P /�1 D E.P / as
homology cylinders.

Proof We see that P has strong winding number ˙1 by Proposition 2.4. Indeed, in
order to construct S3� zP from P , a 2–handle is added to `.V /. Thus, �1.E.P //!

�1.S
3� zP / is surjective. By assumption, m.P / is in the normal subgroup generated

by m.V / in �1.E.P //. Since �1.E.P //! �1.S
3� zP / is surjective, m.P / is in the

normal subgroup generated by m.V /D � in �1.S
3 � zP /. Since zP is a knot in S3 ,

we know �1.S
3� zP / is normally generated by m.P /. Since m.P / 2 hh�ii, it follows

that � normally generates �1.S
3 � zP /. Proposition 2.4 now concludes that P has

strong winding number ˙1.
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Note that �1.E.P //=hhm.P /ii Š �1.V /ŠZ since the solid torus V is obtained from
E.P / by adding a 2–handle to the meridian of P and then a 3–handle. Additionally,
m.V / is nullhomotopic in V so that m.V /D0 in �1.E.P //=hhm.P /ii and hhm.V /ii�
hhm.P /ii. By assumption, m.P / 2 hhm.V /ii so that we conclude that hhm.P /ii D
hhm.V /ii. Therefore, �1.E.P //=hhm.P /ii D �1.E.P //=hhm.V /ii Š Z.

Now consider E.P /�1 . By definition, E.P /�1 D .�E.P /; i�; iC/. Perform a Dehn
filling on �E.P / along m.V / to obtain a manifold X . By the preceding paragraph,
�1.X /Š Z and therefore, since @X has no S2 components, X is diffeomorphic to
the solid torus [12, Theorem 5.2]. Since m.P / must be mapped to a curve which is
null homologous, we see that m.P / 7! 1� @D2 . By performing meridional twists if
necessary, we may assume that `.P / 7!S1�1. Then, by definition, if we denote by P

the image of `.V / in X ŠS1�D2 , we see that E.P /D .�E.P /; i�; iC/. Since `.V /
is homologous to `.P / in E.P / (since P 2 SZ ), w.P /D w.P /D 1. Since P has
strong winding number ˙1 each of the sets fm.P /; `.P /g and fm.V .P //; `.V .P //g
normally generate �1.E.P //. But these sets of curves are respectively the same as
fm.V .P //; `.V .P //g and fm.P /; `.P /g. It follows that P has strong winding number
˙1 as well.

Under the assumptions of the above theorem, the pattern P has an inverse P which
is also a pattern. A close reading of the proof of the theorem reveals how to draw a
picture of the latter given the former. In fact, it is easier to see how to draw a picture
of the corresponding 2–component link L (see Remark 2.1 and Figure 3); recall that
given such a link L we can recover the pattern P by removing a tubular neighborhood
of the second component of L from S3 .

Start with the 2–component link L corresponding to the given pattern P . The manifold
E.P / is exactly the complement of this link in S3 . A key observation in the above
proof is that the manifold obtained by performing a Dehn filling of �.S3�L/ along
the second component of L is homeomorphic to a solid torus, via a homeomorphism
taking the first component of L to the longitude of the solid torus. Of course, if we were
to perform a Dehn filling along the longitude of a solid torus we obtain S3 . Therefore,
this is the same as saying that if we reverse the orientation and crossings of L and
then perform 0–framed Dehn surgery on S3 along both components, we get back
S3 . Further, in this new S3 , we can find the components of the link corresponding
to P . In the proof above these were the images of the curves `.V / and m.P /. In the
framework of links, these are the images of the meridians of the two components of
L (see Figure 6) – the meridian of the first component of L is the second component
of L and the meridian of the second component of L is the first component of L.
Therefore, we have proved the following proposition.
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P

zP

�

(a)

mP 0

0
zP

�

(b)

Figure 6: (a) The 2–component link . zP ; �/ corresponds to the pattern P ;
see Figure 3. Recall that the circle containing P denotes a tangle. (b) The
circle containing mP indicates the tangle obtained from P in the previous
panel by reversing all the crossings. The curves decorated with zeros give a
surgery diagram for S3 . The 2–component link . zP ; �/ (drawn in heavier
weight) corresponds to the pattern P .

Proposition 3.5 Let P � V D S1 �D2 be in SZ . Assume that m.P / is in the
normal subgroup of �1.E.P // generated by m.V / and . zP ; �/ is the 2–component
link corresponding to P where � is unknotted in S3 . Then the inverse of P is
given by the link . zP ; �/ in the surgery diagram for S3 given by zero surgery on both
components of the reverse mirror image of . zP ; �/, where zP is the meridian of � and �
is the meridian of zP .

Remark 3.6 Let Pm�V .Pm/DS1�D2 be the patterns shown in Figure 2 and again
in Figure 7 (these first appeared in [1]). Note that each Pm satisfies the requirements
of Theorem 3.4, as follows. It suffices to show that m.Pm/ is nullhomotopic in the
3–manifold N obtained from E.Pm/ by adding a 2–handle along m.V .Pm//. The
result of sliding Pm over this 2–handle twice (isotopies in N ) is depicted in Figure 7.
In the result of the isotopy, the meridian of Pm cobounds an annulus with the meridian
of V .Pm/ and so bounds a disk in N . As a result, we can use Proposition 3.5 to
construct inverses for the patterns fPmgm�0 shown in Figure 2. This is indicated in
Figure 8.

Theorem 3.4 also gives a sufficient condition for patterns to induce bijective satellite
operators as follows.

Corollary 3.7 Let P � V D S1 �D2 be in SZ . If m.P / is in the normal subgroup
of �1.E.P // generated by m.V / then P W C�! C� is bijective for � 2 fex; top;Zg.

Proof Surjectivity follows from Proposition 3.2 and Theorem 3.4 since if E.P /�1 D

E.P / for some P 2 SZ , then E.P /�1.‰.C�// D .E.P //.‰.C�// � ‰.C�/. Any

Algebraic & Geometric Topology, Volume 16 (2016)



964 Christopher W Davis and Arunima Ray

P 2 SZ is injective on CZ . By Theorem 3.4, P has strong winding number ˙1 and
therefore, induces injective satellite operators on Cex and Ctop .

Before we provide the promised examples of bijective satellite operators, we will need
the following lemma, which provides an extension of the operation P 7! �.P / of
“twisting a pattern” to the setting of generalized patterns. The function � W S! S gives
a full right-handed twist to each pattern, as shown in Figure 9.

Lemma 3.8 For � 2 fex; top;Zg there is a map y� W yS�! yS� such that for all P 2 Sstr ,
y�.E.P //DE.�.P // as elements of yS� .

Proof Let P be a pattern with winding number ˙1 in the solid torus V , and �.P /
be the corresponding twisted pattern. Let f W V ! V be the homeomorphism given
by a negative meridional Dehn twist. Notice that f sends �.P / to P . Thus, f
restricts to a homeomorphism E.�.P //!E.P /. This homeomorphism sends m.V /

to m.V / and `.V / to `.V /�m.V /. Since f� is well-defined on homology classes,
f sends m.�.P // to m.P / and `.�.P // to `.P /�m.P /. Let �W T ! T be the
homeomorphism of the torus sending m to m and ` to `�m. As homology cylinders,
P and �.P / are given by .E.P /; iC; i�/ and .E.P /; jC; j�/ where j� D i� ı� for
� 2 fC;�g.

For any homology cylinder .M; iC; i�/, define y�.M; iC; i�/D .M; iC ı�; i� ı�/. By
the preceding paragraph, for any pattern P , y�.E.P //DE.�.P //. It remains only to
show that y� is well-defined modulo �–cobordism. Assume that W is a �–cobordism
between .M; iC; i�/ and .N; jC; j�/. Taking advantage of the fact that �W T ! T is
a diffeomorphism, we see that

@W DM t�N
ı

iC.x/D jC.x/; i�.x/D j�.x/;8x 2 T

ŠM t�N
ı

iC.�.x//D jC.�.x//; i�.�.x//D j�.�.x//;8x 2 T:

The satellite operator Pm.

2mC1

The result of sliding Pm

over the meridian of V .m/.

2mC1

The result of a further isotopy.

2mC1

Figure 7: The patterns Pm satisfy the requirements of Theorem 3.4.
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2mC1

2mC1

2mC1 D

2mC1 half-twists

0
0 0 0

�Pm

�

�Pm

�

Figure 8: Left: By Proposition 3.5, the link . �Pm; �/ in this surgery diagram
represents the inverse of the pattern Pm , for m� 0 . Right: This diagram is
obtained from the one in the previous panel by handle-slides and isotopy, and
we see a standard picture of S3 (notice that the curves marked with zeros
form a Hopf link). To get a picture of the inverse pattern as a link, we simply
need to slide the undecorated curves away from the surgery curves. This
readily yields a picture of a link in S3 .

P

A pattern P .

P

The twisted pattern �.P /.

Figure 9: Twisting a pattern.

Therefore, W is also a �–cobordism between y�.M; iC; i�/ and y�.N; jC; j�/.

We are now ready to construct examples of patterns which yield bijective satellite
operators on knot concordance, and are distinct from connected-sum patterns.

Corollary 3.9 Fix m� 0. The pattern Pm � V .Pm/D S1 �D2 shown in Figure 2
(and again in Figure 7) induces a bijective satellite operator PmW C� ! C� for � 2
fex; top;Zg; moreover, as elements of ySZ , we have E.Pm/¤E.QJ / for all knots J .

Proof We already know that each Pm satisfies the requirements of Theorem 3.4 and
Corollary 3.7 from Remark 3.6. This gives the first statement.
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In order to see the second result notice that the twisting map � of Figure 9 and
Lemma 3.8 sends QJ to QJ for any knot J . It suffices then to prove that �.Pm/¤Pm

in ySZ . In order to see this first observe that Pm.U / is smoothly slice. However,
according to an Alexander polynomial computation the knots .�.Pm//.U / are not slice
for m� 0; see also [1, Theorem 3.6]. Since the Alexander polynomial is an obstruction
to being slice in a Z–homology sphere, we conclude that as maps on CZ , Pm and
�.Pm/ disagree, so that as elements of ySZ , we have Pm ¤ �.Pm/. This completes
the proof.

In passing, we note that by Remark 2.12, the above result implies that the link
.Pm; �.V .Pm/// is not (smoothly, exotically, topologically, or Z–) concordant to
the link .QJ ;m.V .QJ /// for any knot J and m� 0 (see also [5, Proposition 2.3]). It
is also worth noting that even though Pm and QJ are distinct as homology cylinders
for all knots J and m� 0, it is still possible that they induce the same satellite operator,
ie Pm.K/D J#K for some fixed knot J , and any knot K .

We end this section with the following result, leading to a corollary for satellite operators
induced by patterns with winding number other than ˙1.

Proposition 3.10 There exists a pattern in Sstr for which the induced satellite operator
on C� is not surjective if and only if there exists a pattern in Sstr for which the unknot
is not in the image of the induced satellite operator on C� , for � 2 fex; topg.

Similarly, for a localization R of Z, there exists a pattern in SR for which the induced
satellite operator on CR is not surjective if and only if there exists a pattern in SR for
which the unknot is not in the image of the induced satellite operator on CR .

Proof For the forward direction, let P be a pattern that induces a nonsurjective
satellite operator on C� for some �, ie there exists a knot J such that P .K/ is not
concordant to J , in the appropriate sense dictated by the value of �, for any knot K .
Then the pattern Q�J ?P does not have the unknot in the image of its induced map
on C� , since if .Q�J ?P /.K/D�J#P .K/ were concordant to the unknot for some
K , then P .K/ would be concordant to J . The backward direction is trivial.

Corollary 3.11 For any integer n, with jnj> 1 and RD ZŒ1
n
�, there exist patterns in

SR for which the induced satellite operator on CR does not have the unknot in its image.

4 Concordance to knots in S 3 and surjectivity of satellite op-
erators

Akbulut conjectured that there exists a winding number one pattern P for which
the induced satellite operator on Cex does not have the unknot in its image. By
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Proposition 3.10 this conjecture is equivalent to the conjecture that not all satellite
operators induced by winding number one patterns are surjective. We restate Akbulut’s
conjecture in these terms.

Conjecture 4.1 [13, Problem 1.45] There is a pattern with winding number one, P ,
such that the induced satellite operator P W C�! C� is not surjective, for � 2 fex; topg.

Consider a knot K in a homology sphere M . Then .K;M / gives a class in yC� for
� 2 fex; topg and one may ask whether there is some knot K0 � S3 such that .K;M /

and .K0;S3/ are equivalent in yC� . In the PL category, this forms Problem 1.31 of [13].
We restate this as a conjecture.

Conjecture 4.2 [13, Problem 1.31] The image of ‰W C� ! yC� is the set of all
concordance classes .K;M / of knots K in 3–manifolds M , where M is �–cobordant
to S3 .

We can use the group action given in the main theorem to prove the following relation-
ship between the two conjectures above.

Proposition 4.3 For P 2 Sstr and any K 2 Cex (resp. Ctop ), if K 62 Im.P W Cex! Cex/

(resp. Im.P W Ctop ! Ctop//, then the knot E.P /�1.‰.K// is not in the image of
‰W Cex! yCex (resp. Ctop! yCtop ) and moreover, is contained in a 3–manifold smoothly
(resp. topologically) homology cobordant to S3 .

Proof To see the first claim, suppose that E.P /�1.‰.K// is equal in yC� to ‰.J / for
some J 2 C� (for � D ex or top) then ‰.K/DE.P /.‰.J //. Then by the diagrams
in (2-1), since ‰ is injective, K D P .J / and therefore, K 2 Im.P W C�! C�/. The
second statement follows from the following lemma since ‰.K/D .K;S3/.

Lemma 4.4 If P 2 Sstr and .K;Y / 2 yCex (resp. yCtop ), then E.P /�1.K;Y / is a knot
in a 3–manifold which is smoothly (resp. topologically) homology cobordant to Y .

Proof By definition, E.P /.K;Y / is a knot in the 3–manifold

Y D S1
�D2

[
@D2�m.P/

E.P / [
m.V /�m.K /

`.V /�`.K /

Y �K:

But S1 �D2 [ E.P / is just a solid torus with meridian m.V / and therefore, these
gluing instructions cut a solid torus out of Y and then glue it back in the same way.
Therefore, Y is diffeomorphic to Y and E.P /.K;Y / is a knot in Y .
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Let E.P /�1.K;Y / D .K0;Y 0/ and E.P /.K0;Y 0/ D .K00;Y 00/. By the preceding
paragraph, Y 00 is diffeomorphic to Y 0 . Since E.P / ıE.P /�1 is the identity map
on yCex (resp. yCtop ), K is concordant to K00 in a smooth (resp. topological) homol-
ogy cobordism between Y and Y 00 , and hence Y is smoothly (resp. topologically)
homologically cobordant to Y 00 D Y 0 . Since E.P /�1.K;Y / D .K0;Y 0/, the proof
is completed.

The above proposition shows that if the satellite operator induced by a strong winding
number ˙1 pattern P fails to be surjective on Cex (resp. Ctop ), ie there is some K 2 Cex

(resp. Ctop ) such that K ¤ P .J / for all knots J , then there exists a knot K0 in a
3–manifold Y 0 smoothly (resp. topologically) homology cobordant to S3 , such that
.K0;Y 0/ is not exotically (resp. topologically) concordant to any knot in S3 , where
.K0;Y 0/DE.P /�1.K;S3/.
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