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A lower bound on tunnel number degeneration

TRENTON SCHIRMER

We prove a theorem that bounds the Heegaard genus from below under special kinds
of toroidal amalgamations of 3–manifolds. As a consequence, we conclude that
t.K1 # K2/ �maxft.K1/; t.K2/g for any pair of knots K1;K2 � S3 , where t.K/

denotes the tunnel number of K .

57M25, 57N10

The tunnel number t.K/ of a knot K �S3 can be defined by the equation t.K/C1D

g.S3 � �.K//, where g. � / denotes Heegaard genus and �.K/ is an open regular
neighborhood of K . In more intuitive terms, the tunnel number of a knot is the minimal
number of “tunnels” that must be drilled through S3 � �.K/ in order to make the
resulting manifold a handlebody.

The behavior of t.K/ under the operation of connected sum has been studied extensively.
It is not difficult to see that t.K1 # K2/ � t.K1/ C t.K2/ C 1, although it takes
some work to find examples where equality is achieved in this bound; on this see
Kobayashi and Rieck [5], Moriah and Rubinstein [8], and Morimoto, Sakuma and
Yokota [10]. Morimoto [9] was the first to find pairs of knots in S3 which satisfy
t.K1 # K2/ < t.K1/ C t.K2/. Soon after, Kobayashi [3] constructed an infinite
family of examples for which the degeneration t.K1/C t.K2/� t.K1 # K2/ can be
arbitrarily large.

Perhaps most difficult is the task of finding lower bounds on t.K1 #K2/. Norwood [13]
employed a group-theoretic argument to show that t.K1 # K2/ � 2 for any pair
of nontrivial knots in S3 , and Scharlemann and Schultens [15] subsequently used
topological arguments to show t.K1 # � � � # Kn/� n. In the case that K1 and K2 are
small, Morimoto and Schultens [11] proved that t.K1 # K2/ � t.K1/C t.K2/, and
Kobayashi and Rieck [4] subsequently proved that this inequality holds even under
the assumption that K1 and K2 are meridionally small. Scharlemann and Schultens
[16] also proved that the lower bound t.K1 # K2/=.t.K1/C t.K2//�

2
5

holds for any
pair of nontrivial knots in S3 (in fact, they derive a more general analogue involving
iterated connected sums there).

In this paper, we prove that

t.K1 # K2/�maxft.K1/; t.K2/g
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for any pair of knots K1;K2 � S3 . This bound was previously unknown, although
there are many examples that show it to be best possible, including those of Morimoto
[9], Nogueira [12], and Li and Qui [7]. Moreover, this lower bound gives a negative
answer to [7, Question 1.5].

A rough outline of the strategy of our proof is as follows. Suppose without loss of
generality that maxft.K1/; t.K2/gD t.K2/ and let K1#K2 be realized via the satellite
construction with K1 as the companion and K2 as the pattern. This means that K1#K2

lies in V D �.K1/, and if hW V ! S3 is the standard unknotted embedding of the
solid torus V , then h.K1 # K2/DK2 . If G is a thin generalized Heegaard surface of
S3��.K1 #K2/, then G can be isotoped to intersect S3�V in a particularly nice way.
Taking into account certain information contained in the intersection G \ .S3�V /,
we can then construct a so-called doppelgänger surface Q inside of a solid torus
W D S3� h.V / which, in certain important respects, imitates the placement of the
surface G \ .S3�V / in .S3�V /. As a result, Q[ h.G \ V / forms a generalized
Heegaard surface of S3� h.V / D S3 � �.K2/ which amalgamates to a surface of
lower genus than the amalgamation of G . This yields the desired lower bound.

In Section 1, we introduce generalized compression bodies, which form the basic pieces
of S3�V � G and W �Q, and we prove a series of essential cutting and pasting
lemmas about them. Section 2 then describes and works out the basic topology of
so-called spoke graphs and spoke surfaces, which form the building blocks of the
doppelgänger surface Q. Section 3 then constructs Q in detail and proves that it has the
desired properties, culminating in the main technical result of the paper, Theorem 3.21.
In Section 4, the bound

t.K1 # K2/�maxft.K1/; t.K2/g

is proved (Theorem 4.1), and some topics related to it are briefly discussed.

Throughout this paper, N.Y;X / denotes a closed regular neighborhood of Y in
X , E.Y;X /D X �N.Y;X /, and Fr.Y;X /D N.Y;X /\E.Y;X /, or equivalently,
Fr.Y;X / D @N.Y /� @X . We assume throughout that N.Y;X / behaves well with
respect to intersection, so that N.Y1;X /\N.Y2;X / D N.Y1 \ Y2;X /. If X is a
topological space, jX j denotes the number of components of X . An embedding of
manifolds f W Y !X is said to be proper if f is transverse to @X and f .@Y /� @X .
A proper isotopy is a homotopy through proper embeddings (note that this does not
imply that the boundary remains fixed). As an informal aid to the reader, topological
spaces that are allowed to have multiple connected components will usually be denoted
in calligraphic font, eg A, X , and Y , whereas connected topological spaces will usually
be denoted in standard font, eg A, X , and Y .
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1 Generalized compression bodies

Definition 1.1 Let F be a compact orientable surface, and let V D .F � I/ [

.2–handles/[ .3–handles/, where the 2–handles are attached along essential, non-
boundary parallel curves in F � f0g, and 3–handles are attached along all spherical
components of F �I [ .2–handles/ that are disjoint from F �f1g. Then V is called a
generalized compression body over F , or simply a generalized compression body. Let
@CV D F � f1g, @vV D .@F/� I , and @�V D @V � .@CV [ @vV/. If V is connected
and @vV D ∅, V is a compression body. If V is connected and @�V D ∅, V is
a handlebody.

Observation 1.2 Suppose V is a generalized compression body, A1 and A2 are dis-
joint components of @vV , and hW A1!A2 is an orientation reversing homeomorphism
which preserves @CV . Then V=h is a generalized compression body over .@CV/=h.

Observation 1.3 If V is a generalized compression body and W is obtained by
compressing V along a properly embedded disk D such that @D � @CV , then W is
again a generalized compression body. Going the other way, if W is obtained from V by
attaching an oriented 1–handle along @CV , then W is a generalized compression body.

A1

A2

A0
1

A0
2

D1

D2

Figure 1: Primitive disk set for a paired union of annuli.
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Definition 1.4 Let V be a generalized compression body and let ADA1[ � � � [An

and A0 D A0
1
[ � � � [A0n be disjoint unions of annuli embedded in @CV satisfying

A\A0 D∅. Let DDD1[ � � � [Dn be a disjoint union of compressing disks for V
such that @D � @CV . If Di \ .Ai [A0i/ consists of a single spanning arc in one of
Ai or A0i for all 1� i � n, and Di \ .Aj [A0j /D∅ if j > i , then D is said to be a
primitive disk set for A[A0 , and the component of Ai [A0i which meets Di is said
to be dual to Di . The above orderings of the components of A[A0 and D will be
called the primitive ordering associated with D . See Figure 1.

Remark 1.5 The choice of primitive ordering is essential to Definition 1.4, and some
fixed choice is always assumed to be present when we are dealing with a primitive disk
set D for a paired union A[A0 of annuli. For the most part, however, the primitive
ordering will only be specified explicitly when necessary.

Proposition 1.6 Let V be a generalized compression body and let ADA1[ � � �[An

and A0 D A0
1
[ � � � [A0n be disjoint unions of annuli embedded in @CV satisfying

A\A0 D ∅. Let hW A! A0 be an orientation reversing homeomorphism such that
h.Ai/ D A0i for all 1 � i � n, and suppose that A[A0 admits a primitive disk set.
Then V=h is a generalized compression body over .@CV/=h.

Proof We proceed by induction on n. In the base case n D 0, there is nothing to
prove. If n> 0, suppose without loss of generality that An is dual to Dn (the argument
is the same if A0n is dual Dn ). By Observation 1.3, E.Dn;V/ is again a generalized
compression body, and the result of reattaching N.Dn;V/ to E.Dn;V/ via the map
hjN.Dn\An;An/ again results in a generalized compression body V 0 since this amounts
to trivially attaching a ball to @CE.Dn;V/ along a disk on its boundary. But observe
that V=hjAn

is obtained from V 0 by identifying a pair of disks in @CV 0 , which is the
same as a 1–handle attachment, so Observation 1.3 tells us that V=hjAn

is a generalized
compression body. Since D1 [ � � � [Dn�1 was disjoint from An [A0n and Dn , it
remains a primitive disk set for A1[� � �[An�1 and A0

1
[� � �[A0

n�1
in V=hjAn

, and
the desired conclusion follows by induction.

Proposition 1.7 Suppose V is a generalized compression body, let ADA1[� � �[An

be a disjoint union of annuli embedded in @CV , and let DDD1[� � �[Dn be a disjoint
union of disks properly embedded in V such that @D � @CV . If Di \Ai consists of
a single spanning arc in Ai for all 1 � i � n, and Di \Aj D ∅ whenever i < j ,
then manifold W obtained by attaching 2–handles along A is again a generalized
compression body.
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Proof The proposition is well known in the case that V is a compression body. The
proof in the general case here is essentially the same as that of Proposition 1.6.

Definition 1.8 An annulus A properly embedded in a generalized compression body
V is said to be spanning if one component of @A lies on @CV , and the other lies on
@�V . A is said to be horizontal if @A� @CV .

Proposition 1.9 If F is a compact surface and A is a disjoint union of incompressible
spanning annuli embedded in F � I , then F � I can be reparameterized so that
AD C � I for some disjoint union of essential simple closed curves C � F .

Proof This is a well known fact which often appears in the literature, so the following
proof is merely a sketch. If CDA\ .F �f0g/, then C�I is another union of spanning
annuli A0 such that A0\.F �f1g/ is isotopic to A\.F �f1g/ in F �f1g (this follows
from the �1 –injectivity of A and A0 ). This allows A0 to be properly isotoped so
that @A0 and @A are parallel and disjoint in F � f0; 1g. Since A and A0 are both
incompressible, and F � I is irreducible, any simple closed curves in A0\A that are
trivial in either of A0 or A can be eliminated via further isotopy of A0 using standard
inner-most disk arguments. Again, since each component of A[A0 is �1 –injective, any
remaining components of A\A0 must come from pairs of annuli A;A0 with isotopic
boundaries on F � f0; 1g. Thus these components of A\A0 can also be removed,
uppermost ones first, using the fact that any incompressible horizontal annulus in F �I

with parallel boundary components will cobound a solid torus with an annulus on
F � f1g. Once A0 has been made disjoint from A, the components of A[A0 will
cobound solid tori with annuli in F � f0; 1g, so that A0 can finally be isotoped onto
A. Extending this proper isotopy of A0 to an ambient isotopy of F � I yields the
desired reparameterization.

Proposition 1.10 Let V be a compression body and let A D As [Ah be a disjoint
union of incompressible annuli properly embedded in V , so that every component of As

is spanning and every component of Ah is horizontal. Then E.A;V/ is a generalized
compression body V 0 such that @v.V 0/D Fr.As;V/ and Fr.Ah;V/� @CV 0 . Moreover,
for an appropriate ordering of the components of Ah D A1 [ � � � [ An , if we set
Fr.Ai ;V/DA0i[A00i , A0DA0

1
[� � �[A0n , and A00DA00

1
[� � �[A00n , then the collection

A0[A00 admits a primitive disk set in V 0 .

Proof From Schultens [18, Lemma 2], we have that W D E.Ah;V/ is a union of
compression bodies. The annuli As remain spanning in W , and thus are disjoint from
some union of disks E properly embedded in W such that E.E ;W/ Š @�W � I ;
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see, eg Saito, Scharlemann and Schultens [14, Lemma 3.1.5]. By Proposition 1.9,
we may assume that E.E ;W/ has been parameterized so that As has the form C � I

in @�W � I , where C � @�W is a disjoint union of simple closed curves. Thus
V 0DE.As;W/DE.A;V/ is a generalized compression body, since it is just @�W cut
along C�I[f2–handlesg[f3–handlesg, and it satisfies @vV 0D Fr.As;V/ as claimed.

We prove the second part by induction on n. There is nothing to prove if nD0. If n>0,
then from Bonahon and Otal [2, Lemma 9], we have that Ah is boundary-compressible
in V via some disk D1 . We may choose D1 so that it is disjoint from As , and we
assign the label A1 to the component of Ah which has been boundary-compressed by
D1 . By the first part of this lemma, E.As[A1;V/ is a generalized compression body,
and so by induction, Fr.Ah�A1;V/ admits a primitive disk set D0 in V 0 DE.A;V/
with respect to an appropriate choice of numbering for Ah�A1 , with A2 as the lowest
indexed annulus. We may also choose (appropriately indexed) D0 so that D0\D1D∅,
and since D1\ .Ah�A1/D∅, it follows that DDD0[ .D1\V 0/ is a primitive disk
set for Fr.Ah;V/ in V 0 as required.

Definition 1.11 A graph X embedded in a 3–manifold M is said to be properly
embedded if X is transverse to @M and X \@M is a union of elements from the set of
univalent vertices of X . Also, X is said to be unknotted if it can be isotoped into @M
via an isotopy ˆW X � I !M such that the function ˆjftg�X is a proper embedding
for all 0� t < 1.

Observation 1.12 If X is an unknotted tree properly embedded in the 3–ball B ,
and F is the surface which results from removing an open collar of @.@B �N.X //

from @B �N.X /, then there is homeomorphism hW F � I Š E.X;B/ such that
h.F � f1g/D F and h.F � f0g/D Fr.X;B/.

Definition 1.13 Let X be a graph embedded in a handlebody V such that E.X;V /Š

@V � I . Then X is called a spine of V .

Proposition 1.14 Suppose X is a graph embedded in the interior of a handlebody V ,
and that there is a disjoint union of compressing disks D properly embedded in V so
that the following are true:

(1) E.D;V / is a union of balls.

(2) X \ B is a properly embedded, unknotted tree for each component B of
E.D;V /.

(3) For each component D of D , D\X is a single point on an edge of X .

Then X is a spine of V .
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Proof For each component B of E.D;V /, let E � @B be the set of “scars” left behind
by cutting along D , ie E DN.D;V /\B , and let X 0DX \B . Then hypotheses 2 and
3 give us a homeomorphism hW F �I!E.X 0;B/ as per Observation 1.12, where we
may take F D @B � E . These homeomorphisms can then be pasted together to form a
homeomorphism between E.X;V / and @V � I .

Proposition 1.15 Suppose V is a handlebody with spine X , and that Y is a subgraph
of X without simply connected components. Then E.Y;V / is a compression body.

Proof E.Y;V / is obtained from E.X;V / Š @V � I by attaching 2–handles and
3–handles along @V � f0g.

Definition 1.16 A Heegaard splitting .V;W;G/ of a compact, connected, orientable
3–manifold M is a decomposition M D V [W , where each of V and W is a
compression body, and G D @CV D @CW D V \W . Also, G is called a Heegaard
surface. The Heegaard genus g.M / of a manifold is the minimal genus of a Heegaard
surface for M .

Definition 1.17 A generalized Heegaard splitting ..V1;W1;G1/; : : : ; .Vn;Wn;Gn//

of a compact, orientable, connected 3–manifold M is a decomposition M DM1[

� � � [Mn such that the following conditions hold:

� .Vi ;Wi ;Gi/ forms a Heegaard splitting for the submanifold Mi .
� For all i < j , Mi meets Mj only along components of @�Wi that are identified

with components of @�Vj .

We include the case nD 1 corresponding to standard Heegaard splittings. Let GC D
G1 [ � � � [Gn , and let G� denote the union of surfaces Mi \Mj for i < j . Then
G D GC[G� is called a generalized Heegaard surface with thick surfaces GC and thin
surfaces G� .

Definition 1.18 A Heegaard splitting .V;W;G/ is said to be:

� Stabilized if there exist compressing disks D�V and D0�W such that D\D0

is a single point.
� Reducible if there exist compressing disks D � V and D0 � W such that
@D D @D0 .

� Weakly reducible if it is not stabilized or reducible, and there are compressing
disks D � V and D0 �W such that D\D0 D∅.

� Strongly irreducible if it is not stabilized and, for all compressing disks D � V

and D0 �W , D\D0 ¤∅.

Algebraic & Geometric Topology, Volume 16 (2016)
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Remark 1.19 There is a process of untelescoping a weakly reducible Heegaard split-
ting .V;W;G/ whereby it is changed into a generalized Heegaard splitting of the form
..V1;W1;G1/; : : : ; .Vn;Wn;Gn// satisfying g.G/D†g.Gi/�†g.Fi/. Conversely,
given a generalized Heegaard splitting ..V1;W1;G1/; : : : ; .Vn;Wn;Gn// for M , one
can always use the process of amalgamation to change it into a standard Heegaard
splitting .V;W;G/ of M satisfying the same equation. The interested reader is referred
to Saito, Scharlemann and Schultens [14] for the details of these processes and a proof
of the following lemma.

Proposition 1.20 (Scharlemann and Thompson [17]) Suppose that we have a weakly
reducible Heegaard splitting .V;W;G/ of a compact, orientable, connected, irreducible
3–manifold M. Then .V;W;G/ can be untelescoped to a generalized Heegaard split-
ting ..V1;W1;G1/; : : : ; .Vn;Wn;Gn// such that .Vi ;Wi ;Gi/ is a strongly irreducible
splitting of Mi for each 1 � i � n, and the thin surfaces Fi are incompressible in
M for each 1 � i < n. In this case, the generalized splitting is said to be fully
untelescoped. A standard Heegaard splitting that is strongly irreducible will also be
considered fully untelescoped.

Proposition 1.21 (Scharlemann and Schultens [15]) If G is the union of the thick
and thin surfaces of a fully untelescoped Heegaard splitting of M , and T is an incom-
pressible surface properly embedded in M , then G can be isotoped so that it meets T

only in simple closed curves that are nontrivial in both G and T .

2 Spoke surfaces in the solid torus

Convention 2.1 Throughout this section, we set W D S1 �D2 and parameterize it
using polar coordinates .�; r; �/ with 0� �; � � 2� and 0� r � 1.

Definition 2.2 Let X � W be an embedded graph with one central vertex x0 at
.�0; 0; 0/, a finite number of outer vertices fx1; : : : ;xng � f�0g � @D

2 , one radial
edge connecting each outer vertex xi to the central vertex x0 , and one longitudinal
edge li D S1 � fxig connecting xi to itself for 1 � i � n. Then X is said to be a
connected spoke graph in W . A finite, disjoint union of connected spoke graphs X in
W is simply called a spoke graph, Fr.X ;W / is called a spoke surface, and E.X ;W /

is a spoke chamber.

Definition 2.3 Suppose X is a connected spoke graph with central vertex at .�0; 0; 0/.
Let D be a disjoint union of disks embedded in VW such that for each component D

of D ,
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� D\X is a connected subarc of a radial edge of X , and

� D\ .f�0g �D2/DD\X .

Then X[@D is called a stabilized spoke graph with stabilizing disk set D , Fr.X[@D/ is
a stabilized spoke surface, and E.X[@D;W / is a stabilized spoke chamber. Moreover,
@D�X is called the set of stabilizing arcs of X .

Definition 2.4 Let X be a connected stabilized spoke graph with stabilizing disk set D
and central vertex at .�0; 0; 0/. Let ADE.X\@W; @W /, and let ED .f�0g�D2/\V ,
where V D E.X;W /. Then the standard disk set of X is the union of disks DX D

E [ .D\V /[Fr.E [A;V /.

Observation 2.5 The standard disk set of X cuts E.X;W / into a union of balls.
Thus E.X;W / is a handlebody.

Definition 2.6 Let X be a connected, stabilized spoke graph with stabilizing disk
set D , and whose central vertex has �–coordinate �1 . Let X 0 be another connected,
stabilized spoke graph disjoint from X with stabilizing disk set D0 , whose central vertex
has �–coordinate �2 ¤ �1 , and suppose the following properties are also satisfied:

� The set of longitudinal edges of X 0 is precisely the set of core curves of the
annuli E.X \ @W; @W /.

� D\ .f�2g �D2/D∅D D0\ .f�1g �D2/.

� Every component D of D meets precisely one component D0 of D0 in a single
arc that has one endpoint on @D�X and the other on @D0�X 0 , and conversely,
each component of D0 meets precisely one component of D in this way.

� Let h be the projection S1 �D2 ! S1 . Then hj
VD is a circle-valued Morse

function without singularities, and for every stabilizing arc ˛ of X , hj˛ is Morse
with only one critical point occurring at ˛\D0 . The corresponding condition
holds for the stabilizing disks and arcs of X 0 .

Then X and X 0 are said to be dual to one another. See Figure 2.

Remark 2.7 One way to obtain a dual graph X 0 is to rotate a copy of X slightly in
the � and � directions, and then isotope the stabilizing arcs of X 0 slightly so that they
clasp those of X in one to one fashion. However, we use the Morse condition on the
stabilizing arcs because it allows us complete flexibility in the choice of radial edges
of X 0 at which to base its stabilizing arcs, while still avoiding knottedness.
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Figure 2: Dual stabilized spoke graphs.

Lemma 2.8 Let X and X 0 be a dual pair of connected spoke surfaces in W , and let B

be the component of E.X;W /� VN .DX / that contains the central vertex of X 0 , where
DX is the standard disk set of X from Definition 2.4. Then B is a ball, and X 0\B is
an unknotted tree properly embedded in B .

Proof It is clear that B is a ball; we show that X 0 \ B is unknotted. We retain
the notation of Definition 2.6 throughout. If C is the set of stabilizing arcs of X 0 ,
then the Morse condition on C ensures that hjC\B is Morse without singularities, and
since hj

VD is also Morse without singularities, we can slide the endpoints of C \B

off of N.D/\ @B without introducing any further singularities. The components of
N.D;W /\ @B can then be “pushed in” so that @B � @W is level with respect to h,
and the arcs of C\B can then be properly isotoped horizontally with respect to h until
they are vertical. After these isotopies, it is clear that X 0\B is unknotted.

Lemma 2.9 If X and X 0 are connected, dual, stabilized spoke graphs, then E.X [

X 0;W / is homeomorphic to Fr.X;W /�I via a map sending Fr.X 0;W / to Fr.X;W /�

f0g and Fr.X;W / to Fr.X;W /� f1g.

Proof Take the double of W to obtain S1 �S2 , let Xd be the double of X , and let
X 0d be the double of X 0 . Then E.Xd ;S

1�S2/ is a handlebody since the double E of
the standard disk set DX cuts E.Xd ;S

1�S2/ into balls. Moreover, E.Xd ;S
1�S2/,

E , and X 0d satisfy the hypotheses of Proposition 1.14 (Lemma 2.8 handles the only
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subtle aspect of this). Thus X 0d is a spine of E.Xd ;S
1 � S2/, and we obtain a

parameterization E.Xd [ X 0d ;S
1 � S2/ Š @N.Xd / � I . By Proposition 1.9, the

spanning annuli .@W /\E.Xd [X 0d ;S
1 � S2/ can be assumed to be vertical with

respect to this parameterization, and the result follows.

Remark 2.10 Besides being a steppingstone to Proposition 2.18 below, the signifi-
cance of Lemma 2.9 is that it allows us to isotope a connected, stabilized spoke surface
S �W back and forth between small neighborhoods of dual spoke graphs lying on
opposite sides of S in W . This kind of isotopy will play an essential role in the final
doppelgänger construction.

Definition 2.11 Let X be a disjoint union of stabilized spoke graphs embedded in
W . Then two components X1 and X2 of X are said to be:

� � –adjacent if the closure A of a component of @W �N.X / meets N.X1;W /

in one boundary component and N.X2;W / in the other (in this case, A is said
to be a spanning annulus of � –adjacency).

� �–adjacent if there is a subarc ˇ�S1 such that the endpoints of ˇ�f0g�W are
the central vertices of X1 and X2 , and ˇ�f0g meets X only in these endpoints.

In all cases, an arc of the form ˇ�f0g that connects the central vertices of X1 and X2

shall be called a spanning arc of X1 and X2 (there are only two such arcs).

Definition 2.12 Let X be a disjoint union of stabilized spoke graphs whose compo-
nents are ordered X0; : : :Xn so that Xi is �–adjacent to XiC1 for all 0� i < n, and
let ˛ be the spanning arc of X0 and Xn that meets all components of X . Then ˛ is
said to be the binding arc of X with respect to the given ordering of its components.

Suppose further that, for all 1 < i � n, Xi is � –adjacent to Xji
for some ji < i ,

and let Ai be a spanning annulus of � –adjacency connecting Xi to Xji
. Then AD

A1 [ � � � [An is said to form an adjacency chain for X with respect to the given
ordering of its components.

Definition 2.13 Let X be a disjoint union of stabilized spoke graphs (possibly with
detached longitudes in the sense of Definition 2.17 below), and let X be a connected
stabilized spoke graph (possibly with detached longitudes) obtained from X by rotating
each component of X in the �–direction so that all of their central vertices coincide at
a single vertex x0 . Then X is said to be a decomposition of X . If d.x0; v/ < � for
every central vertex v occurring in a component of X , where d W W �W !R is the
flat metric, then X is said to be an �–small decomposition of X .
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Definition 2.14 Suppose X is an �–small decomposition of X with � < �=2. Then
X is said to be a good decomposition of X if the components X0; : : : ;Xn of X can
be ordered so that the following conditions are satisfied:

� Xi is �–adjacent to XiC1 for all 1� i < n.

� The binding arc of X with respect to this ordering has length less than 2� .

� X admits an adjacency chain with respect to this ordering.

Observation 2.15 Let X be an �–small decomposition of X , and let ˛ be the binding
arc of X . Then Fr.X [ ˛;W / is isotopic to Fr.X;W /, and E.X ;W / is obtained
from E.X;W / Š E.X [ ˛;W / via 2–handle attachments to Fr.X [ ˛;W / along
meridians of ˛ .

Definition 2.16 Let X1 and X2 be a pair of components in X which are � –adjacent,
with spanning annulus of � –adjacency A. Let D be disk embedded in W such that
@D D ˛ [ e1 [ ˇ [ e2 , where ˛ is a spanning arc for X1 and X2 , ei is the radial
edge of Xi nearest to A for i D 1; 2, ˇ � @W is an arc joining e1 to e2 that spans A,
and VD\X D∅. Then D is said to be a spanning disk of X1 and X2 that cuts A and
is based at ˛ . See Figure 3.

Figure 3: A spanning disk.
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Definition 2.17 Let h�W W !W be the dilation .�; r; �/ 7! .�; .1� �/r; �/. Let X

be a stabilized spoke graph, let L be a union of longitudinal edges of X , let E be the
union of those radial edges of X which meet L, and let S be the union of stabilizing
arcs attached to E . Then the graph X 0 obtained by removing E [L[S from X and
attaching h.E [L[S/ is said to be a spoke graph obtained by �–small detachments of
the longitudes h.L/.

In the following proposition, it is important to remember the conventions made in the
final paragraph before Section 1 regarding regular neighborhoods. In particular, since
X and Y are disjoint subsets of W , we assume their regular neighborhoods are chosen
small enough so that N.Y;W /\N.X ;W /D∅.

Proposition 2.18 Suppose that X and X 0 are dual stabilized spoke graphs embedded
in W , that � < �=2, and that d.X;X 0/ > � (as usual, d is the flat metric). Suppose X
is an �=8–small, good decomposition of X , and that ADA1[� � �[Ak is an adjacency
chain of annuli for X DX0[ � � � [Xk . Let Y be a spoke subgraph of X 0 which does
not meet A, and suppose Y is obtained from �=8–small longitudinal detachments of
Y , followed by an �=8–small decomposition (which need not be “good”). Let A0 be
the subset of E.X [Y; @W / consisting of those annuli which meet Fr.X ;W / on one
boundary component, and Fr.Y;W / on the other. Then E.X [Y;W / is a generalized
compression body V such that @vV DA0 and @�V D Fr.Y;W /.

Proof We have chosen the various stabilizations and detachments small enough to
ensure that they can all be carried simultaneously without creating new intersections.
As in the proof of Lemma 2.9, we double W to obtain S1 �S2 , let Xd denote the
double of X , and let X 0

d
be the double of X 0 . Then if Y 0 is the graph obtained by

detaching some of the longitudes of Y , it remains isotopic to a subgraph of X 0
d

that is
a spine of E.Xd ;S

1 �S2/. Thus E.Xd [Y 0;S1 �S2/ is a compression body with
negative boundary @N.Y 0/.

If Y is any �=8–small decomposition of Y 0 , then E.Xd [ Y;S1 � S2/ is also a
compression body because Observation 2.15 tells us that it is obtained from E.Xd [

Y 0;S1�S2/ via 2–handle attachments along @N.Y 0;W /D @�E.Xd [Y 0;S1�S2/.
The annuli A0 are the spanning annuli in the collection .@W /\E.Xd [Y;S1 �S2/

of incompressible annuli properly embedded in E.Xd [Y;S1 �S2/, and thus form
the vertical boundary of the generalized compression body E.X [Y;W / cut off by
@W \E.Xd [Y;S1 �S2/.

Define Xij so that each spanning annulus Ai in our adjacency chain A meets N.Xi ;W /

and N.Xji
;W / as in Definition 2.12. The hypothesis that Y does not meet A implies
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the existence of a spanning disk Di , disjoint from Y , for each pair Xi , Xji
. If ˛ is the

binding arc of X , Observation 2.15 tells us V 0 DE.X [˛[Y;W / is homeomorphic
to E.X [ Y;W /, and is thus a compression body. Let ˛i be the spanning arc of
Xi and Xji

that is a subset of the binding arc ˛ for X , and let Ci be the annulus
Fr.˛i ;E.X [Y;W //� @CV 0 (whose core curve is just a meridian of ˛i ). Then the
disks D D .D1 \ V 0/ [ � � � [ .Dk \ V 0/ and annuli C D C1 [ � � � [ Ck satisfy the
hypotheses of Proposition 1.7 in V 0 , and hence (again remembering Observation 2.15)
we conclude that E.X [Y;W / is a generalized compression body.

3 The doppelgänger

Convention 3.1 Throughout this section, M is a compact, connected, orientable,
irreducible 3–manifold, G is a generalized Heegaard surface of M , T is a separating
essential torus properly embedded in M , and E.T;M /DM1[M2 .

Definition 3.2 G and T are said to be well-configured with respect to M1 if the
following conditions hold:

(1) G \T consists only of simple closed curves which are essential in T and G .

(2) Each component of G \M1 separates M1 .

(3) For each component V of E.G;M /, T \V consists only of annuli which are
spanning or horizontal.

Convention 3.3 For the remainder of the section, we assume that G and T are well-
configured with respect to M1 .

Observation 3.4 Let HDE.G;M /, which is a disjoint union of compression bodies.
Let AD Fr.T \H;H/, A1 DA\M1 , and A2 DA\M2 . Then conditions 1 and 3
of Definition 3.2, together with Proposition 1.10, imply that V D E.T \H;H/ is a
generalized compression body satisfying @vVDAs , where As is the union of spanning
annuli in A. Moreover, if Ah DA�As is the subset of horizontal annuli in A, and
Ai

h
DAi \Ah for i D 1; 2, then there is a primitive disk set D for V with respect to

some ordering of A1
h
[A2

h
.

Convention 3.5 The notation of Observation 3.4 is fixed for the remainder of the
section. Moreover, we fix a choice of a primitive disk set DDD1[ � � � [Dn , which
imposes the primitive orderings Ai

h
DAi

1
[� � �[Ai

n for i D 1; 2. Here it is understood
that, for all 1� j � n, A1

j [A2
j is the frontier of a single component of T \H .
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Definition 3.6 Let V be a component of VDE.T \H;H/. Let DV DD\V , AV D

A\V , AV
s DAs\V D @vV , AV

h
DAh\V , and let AV

p consist of those components
of AV

h
that are dual to some component of DV .

Lemma 3.7 For every component V of V , @CV �AV
p is connected.

Proof In the case jAV
p j D 0 there is nothing to prove, so assume jAV

p j> 0. Order the
components of DV D D1 [ � � � [Dk so that i < j if Di has lower index than Dj

with respect to the primitive ordering of D . Similarly, order AV
p DA1[ � � � [Ak so

that i < j if Ai has lower index than Aj with respect to the primitive ordering of Ah

(so Di is dual to Ai for all 1� i � k ). The fact that D is primitive implies that @D1

meets AV
p only in a single spanning arc of A1 , so that A1 meets a single component of

@CV �AV
p . Likewise, @D2 is disjoint from AV

p �A1 and meets A2 only in a single
spanning arc. Since @D2 does not change the component of @CV �AV

p on which it
lies when it passes through A1 , it follows that A2 also meets the same component
of @CV �AV

p on each side. Continuing in this way for the remaining components of
AV

p , we see that every component of AV
p meets a single component of @CV �AV

p .
Since @CV is connected, this implies that @CV �AV

p is also connected.

Definition 3.8 Let V be a component of V , and index the annuli AV
h
DA1[� � �[Am

so that i < j implies that Ai has lower index than Aj with respect to the primitive
ordering on Ah . A set A D fAi1

; : : : ;Aik
g of components of AV

h
�AV

p is said to be
connective if .@CV �AV

h
/[Ai1

[ � � � [Aik
is connected. Moreover, A is minimal if:

(1) jAj is minimal among all connective sets of V .

(2) For every other connective set of annuli A0 D fAj1
; : : : ;Ajk

g satisfying jAj D
jA0j, il � jl for all 1� l � k .

Note that conditions (1) and (2) define a unique minimal connective set with respect to
any given ordering.

Convention 3.9 For the remainder of the section, let W Š S1 �D2 be a solid torus
parameterized as in Convention 2.1. Furthermore, let Ti D Fr.T;M /\Mi for i D 1; 2

and let hW T1! @W be a homeomorphism such that each component of h.G \T1/ is
a longitude of the form S1 � fxg. Let � W T2! T1 be the projection which collapses
T2 onto T1 along the I –fibers of N.T;M / (we assume that �.T2 \ G/D T1 \ G ).
We let M 0 DW [hı� M2 for the remainder of the section.

Observation 3.10 If a component V of V\M1 meets T1 at all, then @CV must meet
T1 since the annuli of AV DT1\V are all either horizontal or spanning. However, it is
possible that AV consists entirely of horizontal annuli, so that @�V does not meet T1 ,
and this is a case which requires special treatment at certain points in our construction.
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Definition 3.11 For each component V of V \M1 which meets T1 , let BV denote
@W � h.AV /, which is a union of annuli.

Lemma 3.12 For each component V of V\M1 which meets T1 , and each component
B of BV , both components of h�1.@B/ lie on the same component of @V �AV .

Proof If the curves of h�1.@B/ lie on distinct components F1 and F2 of @V �AV ,
then we can construct an embedded curve in M1 that is the union of a spanning arc ˛
of h�1.B/ and an arc ˇ properly embedded in V with @˛ D @ˇ . This curve would
then intersect the surface F1 in a single point, which contradicts the assumption that
each component of G \M1 (and hence each component of @V �AV ) is separating
in M1 .

Definition 3.13 Let V be a component of V \M1 , and let F be a component of
@V �AV that meets T1 . Let BF be the union of those components B of BV such that
h�1.@B/ � F . If X is a connected, stabilized spoke graph, possibly with detached
longitudes, whose nondetached longitudinal edges are the core curves of BF , then X

is said to be a doppelgänger spoke graph for F .

Definition 3.14 Let V be a component of V \M1 that meets T1 , and let X [Y be
a spoke graph constructed as follows:

(1) Let BV
C be the union of those annuli in BV that appear in BF for some component

F of @CV �AV , let X be a connected stabilized spoke graph whose longitudinal
edges are the core curves of BV

C , and let X 0 be its dual. Suppose d.X;X 0/D

� < �=2, where d is the flat metric on W as in Proposition 2.18.

(2) Suppose A D fAi1
; : : :Aik

g is the minimal connective set of components of
AV

h
�AV

p defined in Definition 3.8. Label the components of @CV �AV that
meet Ai1

as F0 and F1 , and inductively label the remaining components of
@CV �AV by setting Fj equal to the component of @CV �AV that meets Aij

and has not been labeled yet. At each stage of the induction, such a component of
@CV �AV will always exist because A was chosen to be minimal (otherwise,
we could remove an element of A and still have a connective set). Moreover,
since A is connective, @CV �AV D F0 [ � � � [Fk . Thus there exists a good
�=8–small decomposition X of X such that X D X0 [ � � � [Xk , where Xj

is a doppelgänger spoke graph of Fj . Moreover, X can be chosen so that
Ci1
[ � � � [Cik

forms an adjacency chain for X , where here Cij denotes the
component of @W � VN .X;W / that contains h.Aij /; see Definition 2.12.
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(3) Let BV
� D BV � BV

C , which is the union of those annuli in BV which appear
in BF for some component F of @�V that meets T1 . Every component of
@W �X contains at most one component of BV

� , for if two components of BV
�

both lie in the same component of @W �X , this would imply the existence of a
component of AV whose boundary components both lie in @�V , contrary to
part 3 of Definition 3.2. Thus we may assume that the core curves of BV

� form a
subset of the longitudinal edges of the dual X 0 of X .

(4) Define the prohibited longitudinal edges of X 0 to be those that lie in the same
component of @W �X as a component of h.AV

p /[h.Ai1
/[� � �[h.Aik

/ (there
is at most one component of this set lying inside each component of @W �X ).
A subgraph Y 0 of X 0 is said to be admissible if it possesses every core curve of
BV
� as a longitudinal edge, but no prohibited longitudinal edges.

(5) It is possible that BV
� D ∅, in which case we set Y D ∅. Otherwise, let

F 0
1
; : : : ;F 0

l
be the components of @�V that meet T1 . Let Y 0 be an admissible

subgraph of X 0 , and let Y be obtained from Y 0 via an �=8–small detachment of
those longitudes of Y 0 that are not core curves of BV

� . Finally, let YDY1[� � �[Yl

be an �=8–small decomposition of Y , where Yj is a doppelgänger spoke graph
for F 0j with 1� j � l .

Then X [Y DX0[ � � �[Xk [Y1[ � � �[Yl is said to be a doppelgänger spoke graph
of V , and it is said to be perfect if Fr.Xj ;W / Š Fj and Fr.Yr ;W / Š F 0r for all
0� j � k and 1� r � l .

Observation 3.15 The construction of Definition 3.14 was tailored to the hypotheses
of Proposition 2.18. It implies that if X [ Y is a doppelgänger spoke graph associ-
ated with V , then U DE.X [Y;W / is a generalized compression body satisfying
@�U D Fr.Y;W /. Then @CU is the union of Fr.X ;W / with those components of
@W �N.X [Y;W / whose boundary components both lie in Fr.X ;W /.

If V does not meet T1 as our hypotheses require, then U simply does not exist. Also,
if V does meet T1 but some component F 0 of @�V does not, then @�U will not
contain a component corresponding to F 0 .

Parts (2) and (4) of Definition 3.14 allow us to deduce the existence of a primitive
disk set EU in U which will serve as a substitute for the disk set DV of V , as the
following lemma shows.

Lemma 3.16 Let V be a component of V \M1 that meets T1 , let X [ Y be a
doppelgänger spoke graph of V , and let U D E.X [ Y;W /. Suppose AV

h D A1 [

� � � [Am is ordered as in Definition 3.8, and that AV
p DAp1

[ � � � [Apq
. Then there is
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an ordered, disjoint collection of disks EU DEp1
[ � � � [Epq

properly embedded in
U with the following properties:

(1) EU \ @vU D∅.

(2) Epj
\ h.Apj

/ is a single spanning arc for all 1� j � q .

(3) Epj
\ h.Al/D∅ for all 1� j � q andpj < l �m.

Proof For each component Al of AV
h , let Cl denote the closure of the component

of @W � VN .X [ Y/ that contains h.Al/. Let A D fAi1
; : : : ;Aik

g be the minimal
connective set for AV

h
. Order the components of X D X0 [ � � � [Xk as in part 2 of

Definition 3.14 so that, for all 1� j � k , one component of @Cij lies on Fr.Xj ;W /

and the other on some component Fr.Xr ;W / of lower index r < j . The following
technical claim is of central importance.

Claim A If Cpl
meets Fr.Xs;W / and Fr.Xr ;W /, where s < r , then ir < pl .

In particular, Claim A implies that no component of AV
p lies in the minimal set A , so

Cpl
and Cij will be distinct for all 1� l � q and 1� j � k .

Proof of Claim A Notice that both Cpl
and Cir

connect Fr.Xr ;W / to a component
of Fr.X ;W / of lower index. It follows that if pl < ij , then the annulus Aij could
be replaced by Apl

in A and still yield a connective set, which violates condition
2 of Definition 3.8. If pl D ir , then Apl

D Air
is both a component of AV

p and a
member of A . As a member of the minimal set A , we know that the components
of @Apl

lie on distinct components of @CV � . VApl
[ VAplC1[ � � � [

VAm/. But this is
incompatible with the fact that, as a component of AV

p , there must be a disk properly
embedded in V whose boundary lies in @CV � . VAplC1[ � � �[

VAm/ and meets Apl
in

a single spanning arc.

The remainder of the proof will mostly be devoted to the construction of a collection
Ki1
[ � � � [Kik

of auxiliary “flap” disks associated with the adjacency chain Ci1
[

� � � [Cik
. These flap disks will then become pieces of the so-called “disks with flaps”

that will form the components of EU. See Figure 4 for an example of a disk with very
simple flaps.

Recalling Definitions 2.11 and 2.12, let ˛ be the binding arc of X , let ˛0j be the
spanning arc of Xj�1 and Xj that lies in ˛ , and let j̨ denote the slightly shorter arc
U \ ˛0j . Recalling Definition 2.16, let K0i1

be the spanning disk of X0 and X1 that
cuts Ci1

and is based at ˛0
1

. Condition 4 of Definition 3.14 ensures that K0i1
is disjoint
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Figure 4: A disk with flaps.

from Y . Set Ki1
D K0i1

\U and observe that @Ki1
D ˛1 [ ˇ1 , where ˇ1 is an arc

lying on @CU that meets h.AV
p / only in the annulus h.Ai1

/� Ci1
.

The remaining flap disks Kij are defined recursively. Suppose that the disks Kis
for

s < j have already been constructed in U and satisfy the following properties:

(1) @Kis
D ˛s [ˇs , where ˇs is an arc on @CU that meets h.AV / only in a subset

of h.Ai1
[ � � � [Ais

/� Ci1
[ � � � [Cis

.

(2) Kis
meets ˛\U only in ˛s .

(3) Kis
\Kir

D∅ for all r < s < j .

We will construct Kij so that it also satisfies these properties. To begin with, we know
that Cij meets Fr.Xj ;W / and Fr.Xr ;W / for some r < j . Let D be the spanning
disk for Xr and Xj that cuts Cij and is based at ˛0

rC1
[ � � � [ ˛0j . If we construct

the disks Kis
correctly in the “obvious” way (or rather, the way that is most directly

imaginable after some careful thought), then K DKirC1
[ � � �[Kij�1

[ .D\U / will
already be an embedded disk in U satisfying property 1, and after a small isotopy
it could be made to satisfy 2 and 3 as well (in the case that r D j � 1 we just set
K DD\U ). A formal description of these so-called “obvious” disks would be rather
tedious and obscure, so we will take a more abstract route in the description of Kij .
However, it is a helpful exercise to visualize what Ki2

could look like.
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As it stands, our hypotheses on the disks Kis
allow the possibility that D\U meets

KDKirC1
[� � �[Kij�1

not only along ˛rC1[� � �[ j̨�1 , which is desirable, but also
(transversely, as always) along other “undesirable” arcs and simple closed curves disjoint
from ˛rC1[ � � � [ j̨ . We eliminate the undesirable intersections as follows. First, the
simple closed curves of intersection can be eliminated via isotopy of D\U in U . If
D\U meets K along any undesirable arcs, then it must meet some component Kis

of K
along an undesirable arc  which bounds a disk ı �Kis

with the following properties:

� @ı �  [ .@Kis
�˛s/.

� Vı\D D∅.

In other words, ı is an outermost disk of intersection whose boundary does not contain
the arc ˛s . If D00 is the component of .D\U /�  that contains j̨ in its boundary,
D0 DD00[ ı is a disk which can be isotoped slightly away from  so that it intersects
K in strictly fewer arcs than D\U . It is also possible that D0 contains fewer of the
arcs ˛s for r < s < j , so let K0 denote the union of those Kis

that meet D00 along ˛ .

Certainly D0 meets K0 in fewer undesirable arcs than D met K . Thus, by repeating
this process, we eventually will obtain a disk (call it D0 as well) that still contains j̨

in its boundary, as well as a corresponding subset of components of K (call it K0 as
well) such that D0 meets K0 only along desirable arcs. Then D0 [K0 will be a disk
embedded in U that satisfies property 1 above and, after a small isotopy, property 2 as
well. If necessary, another round of outermost disk surgeries that preserve the piece of
D0 that contains j̨ can eliminate any intersections of D0[K0 with Ki1

[� � �[Kij�1
.

The result is the desired disk Kij that satisfies property 3 as well.

We are now ready to construct the disks Epj
. The first kind we construct are those with

index pj such that both components of @Cpj
lie on a single component Fr.Xr ;W /

of Fr.X ;W /, where Xr has central vertex v D .�0; 0; 0/. In the notation of part 4 of
Definition 3.14, Y 0 must be disjoint from Cpj

since the longitude of X 0 that lies in
Cpj

is prohibited. Hence Y is disjoint from the component of .f�0g�D2/\E.X ;W /

that meets Cpj
. We define Epj

to be this component, whose boundary lies in @CU

and meets h.AV / only in a single spanning arc of Apj
. Hence it satisfies conclusions

(1), (2), and (3) of our lemma.

The remaining components of EU will be “disks with flaps”; see Figure 4 for a
simple example. Such disks have indexes pj such that the components of @Cpj

lie
on distinct components Fr.Xs;W / and Fr.Xr ;W / of Fr.X ;W / with s < r . Let D

be the spanning disk of Xs and Xr that cuts Cpj
and is based on the spanning arc

˛0
sC1
[ � � � [˛0r of Xs and Xr . Then D\U will meet KDKisC1

[ � � � [Kir
along

“desirable” arcs ˛sC1[� � �[˛r , and possibly also along undesirable simple closed curves
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and arcs, which form the self intersections of the immersed disk E0 D .D\U /[K
whose boundary lies entirely on @CU . Moreover, D\U meets h.AV ) only in Apj

,
and Claim A and property 1 of the flap disks ensure K can only meet h.AV / in
components of the form h.Al/ with l < pj . Hence the boundary of E0 already has
the desired properties. As with the construction of the flap disks, we can now eliminate
the self-intersections of E0 by performing isotopies and a sequence of outermost disk
surgeries on D\U that preserve its intersection with h.Apj

/. The result is our desired
“disk with flaps” Epj

that does satisfy conclusions (1)–(3) of our lemma.

One technicality to note is that, as constructed, it is possible for some of the components
of EU to intersect, but again a sequence of appropriate innermost/outermost disk
surgeries can be employed to turn it into a disjoint union of disks with the desired
properties if necessary.

Proposition 3.17 For every component V of V\M1 that meets T1 , there is a perfect
doppelgänger spoke graph embedded in W .

Proof For any doppelgänger spoke graph XF of a component F of @V �AV , the
surface Fr.XF ;W / will have the same number of boundary components as F . More-
over, the genus of Fr.XF ;W / is the same as the total number of stabilizing arcs and
detached longitudes that occur in XF . In particular, if XF is unstabilized and has
no detached longitudes, then Fr.XF ;W / will be planar. Thus we can always find a
doppelgänger spoke graph XF that satisfies Fr.XF ;W /ŠF after attaching a sufficient
number of stabilizing arcs and/or detached longitudes.

In part 1 of Definition 3.14, we have the flexibility to stabilize X as often as we
need, with stabilizing arcs based on radial edges of our choosing. This allows us to
choose the number of stabilizing arcs that will eventually occur in the components of
the spoke graph X defined in part 2 of Definition 3.14. It follows from this and the
previous paragraph that we may choose X so that each of its components Xj satisfies
Fr.Xj ;W /Š Fj .

As noted in Remark 2.7, the Morse condition of Definition 2.6 grants us enough
flexibility to choose the radial edges on which the stabilizing arcs of X 0 (the dual
of X ) will be based, and this in turn allows us to control the component of Y on
which they will eventually occur in part 5 of Definition 3.14. Likewise, we can choose
the components of Y on which the detached longitudes of Y shall occur after the
decomposition described in part 5 of Definition 3.14.

So, as in the case with X , we may distribute detached longitudes and stabilizing arcs
among the components of Y however we please. But there is an important difference:
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the total number of stabilizing arcs and detached longitudes that can occur in Y is
bounded above by sC a, where s denotes the number of stabilizing arcs that occur in
X , and a denotes the maximal number of detached longitudes that can occur on an
admissible subgraph of X 0 (as defined in Definition 3.14(4)). Therefore, to complete
the proof, we must show that a total of sCa stabilizing arcs and detached longitudes is
always sufficient to create a spoke graph Y that satisfies the equation Fr.Yj ;W /Š F 0j
for each of its components Yj .

As in Definition 3.14(5), let F 0 D F 0
1
[ � � � [F 0

l
be the union of those components of

@�V that meet T1 . By the first paragraph of this proof, the total number of stabilizing
arcs and detached longitudes necessary to ensure that Fr.Yj ;W /ŠF 0j for all 1� j � l

is equal to
P

g.F 0j /, where g.F 0j / is the genus of F 0j . Since g.F /D 1� 1
2
�.F /Cj@F j

for any connected, compact surface F , we obtain

(1)
X

g.F 0j /D jF
0
j �

�.F 0/CjAV
s j

2
:

The fact that this quantity is less than sC a is ultimately derived from the inequality

(2) �.@CV /��.@�V /� �2.jAV
p jC j@�V j � 1/:

The truth of (2) can be seen as follows: V 0 DE.DV ;V / is a generalized compression
body with the same negative boundary as V . Furthermore, @CV 0 is connected since
@CV � @DV is connected, as can be seen using essentially the same proof as that
of Lemma 3.7. Now @�V 0 is obtained from @CV 0 via surgeries along disks, and
there must be at least j@�V 0j � 1 such surgeries since @CV 0 is connected. Thus
�.@CV 0/��.@�V 0/� �2.j@�V 0j � 1/. Inequality (2) now follows from the fact that
@�V 0 D @�V , and the fact that �.@CV 0/D �.@CV /C 2jDV j D �.@CV /C 2jAV

p j.

Since no component of @�V is a disk or sphere, and since F 0 � @�V , we have
�.@�V /� �.F 0/. Thus, from (2), we easily obtain the analogue �.@CV /��.F 0/�
�2.jAV

p jC jF 0j � 1/. In conjunction with equation (1), we obtain

(3)
X

g.F 0j /� 1� jAV
p j �

�.@CV /CjAV
s j

2
:

Our choice of X has ensured that �.@CV / D �.Fr.X ;W //. We then compute
�.Fr.X ;W // D �j@Fr.X ;W /j � 2sC 2jFr.X ;W /j D �2jAV

h
j � jAV

s j � 2sC 2jX j,
and so deduce

(4)
X

g.F 0j /� 1� jAV
p jC jA

V
h jC s� jX j:

The detached longitudes of Y , as described in part 5 of Definition 3.14, all come from
core curves of the annuli of @W �X that contain a component of h.AV

h /. On the
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(a) (b)

Figure 5: On the left, an image of a component X of X[Y of Definition 3.18
in blue, projected onto the meridian disk of W . We have chosen Fr.X;W / ,
in red, to lie close to X in the usual way near the radial edges, but it spreads
out near @W to meet h.@GV / . On the right, a spoke graph Y and its dual Y 0

(both in blue), together with Fr.Y;W / and Fr.Y 0;W / , chosen as in
Lemma 3.20.

other hand, the number of prohibited annuli (part 4 of Definition 3.14) is equal to
jAV

p j C jAj, where A denotes the set of annuli defined in part 2 of Definition 3.14.
Hence there will be at most aD jAV

h
j � jAV

p j � jAj detached longitudes which may
occur in Y . However, jAj D jX j � 1 by the minimality of jAj. Plugging this into
inequality (4) yields

(5)
X

g.F 0j /� sC a:

The proposition now follows.

Definition 3.18 Let V be a component of V \M1 that meets T1 , let GV denote the
union of those components G of G\M1 such that N.G;M1/\V ¤∅ and G\T1¤∅.
Let X [Y be a perfect doppelgänger spoke graph for V , and let QV D Fr.X [Y;W /

where we have chosen Fr.X[Y;W / so that @Fr.X[Y;W /Dh.@GV / as in Figure 5(a).
Then QV is called the doppelgänger surface of V , and the closure of the component
of W �QV that does not contain X [Y is the doppelgänger chamber of V .

Remark 3.19 Suppose now that two components V and V 0 of V \M1 that both
meet T1 are adjacent in the obvious sense, which means that N.G;M1/ meets both V

and V 0 for some component G of G \M1 that meets T1 . If Q is the component of
QV corresponding to G , and Q0 is the component of QV 0 corresponding to G , then
@Q D @Q0 . Identifying Q with Fr.Y;W / and Q0 with Fr.Y 0;W / in Lemma 3.20
below, we see that in fact Q is isotopic to Q0 via an isotopy which fixes @Q. Moreover,
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the proof will show that this isotopy, performed ambiently, will push the doppelgänger
chamber U of V into the side of Q0 that does not contain the doppelgänger chamber
U 0 of V 0 . We shall call such an isotopy a flipping isotopy.

Lemma 3.20 Let X be a connected, unstabilized spoke graph and let X 0 be its dual.
Suppose Y is obtained from X by attaching a total of n stabilizing arcs and detached
longitudes, and that Y 0 is obtained from X 0 by attaching a total of n stabilizing arcs and
detached longitudes, in any fashion. Then if we choose Fr.Y;W / and Fr.Y 0;W / so
that their boundaries coincide as in Figure 5(b), Fr.Y;W / will be isotopic to Fr.Y 0;W /

via an isotopy which remains fixed on @W .

Proof If Y has detached longitudes, then there is a sequence of edge slides that
change Y into a connected stabilized spoke graph zY without detached longitudes (see
Figure 6), and these correspond to an isotopy of Fr.Y;W / to Fr. zY ;W /, one which
we can choose to be supported outside of a small open collar of @W .

If zY 0 is the dual of zY , and we choose Fr. zY 0;W / so that its boundary coincides with
the boundary of Fr. zY ;W / (as in Figure 5(b)), then Lemma 2.9 (see also Remark 2.10)
tells us that the region of W trapped between Fr. zY 0;W / and Fr. zY ;W / can be param-
eterized as a “pinched” thickened surface whose vertical boundary has been collapsed.
Hence we can isotope Fr. zY ;W / onto Fr. zY 0;W / via an isotopy that is fixed on @W .

Finally, since zY 0 is obtained from X 0 by attaching n stabilizing arcs, using (a reversed
version of) the same kind of isotopy described in the first paragraph, we may slide
the stabilizing arcs of zY 0 along X 0 so that they coincide with the stabilizing arcs
and detached longitudes of Y 0 . This corresponds to an isotopy of Fr. zY 0;W / onto
Fr.Y 0;W / that is fixed on @Fr. zY 0;W /.

Theorem 3.21 If the generalized Heegaard surface G �M amalgamates to a minimal
genus Heegaard surface of M , then g.M 0/�g.M / (here M 0 is the manifold obtained
by gluing W to M2 as described in Convention 3.9).

Proof Our assumption that T and G are well-configured does not eliminate the
possibility that T \G D∅. But in this case, T will be parallel to a component of G� ,
the thin part of G , which implies the stronger conclusion g.M1/Cg.M2/D g.M /.
So we assume T \G ¤∅.

Suppose that V1 [ � � � [Vn is the union of all components of V \M1 that meet T1 ,
and let fU1; : : : ;Ung be the corresponding set of doppelgänger chambers in W . If the
Ui are embedded exactly as in Definition 3.18, then they will intersect one another
badly. However, using Lemma 3.20 (and Remark 3.19 preceding it) we can show:
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1 2 3

4 5 6

Figure 6: Edge slides that turn a detached longitude into a stabilized arc.

Claim B The Ui can be isotoped in W , via isotopies which leave @W fixed, so that:

(1) U1[ � � � [Un DW .

(2) For all i ¤ j , Ui \Uj D∅ unless Vi is adjacent to Vj as in Remark 3.19.

(3) If Vi is adjacent to Vj , then Ui \Uj D .@CUi \ @CUj /[ .@�Ui \ @�Uj /, and
it is a single component of @˙Ui .

We shall prove Claim B at the end. Assuming it is established, let Q denote the union
of all surfaces of the form Ui \Uj with i ¤ j , which is the same as the union of
all surfaces @CUi [ @�Ui . Moreover, for all 1 � i � n, let zUi be the component
of E.Q;W / corresponding to Ui . Thus zUi is just the result of carving out a collar
of @CUi [ @�Ui from Ui ; we need it here so that it will match up snugly with the
components of V \M2 , but morally it should just be thought of as Ui . The following
facts are now easily verified for all 1� i � n:

� h.@vVi/D @v zUi .

� h.@CVi \T1/D @C zUi .

Hence by Observation 1.2, the result of attaching the vertical annuli of .V\M2/ to the
vertical annuli of zU1[ � � � [

zUn along h ı� will be a generalized compression body,
and it will have no vertical boundary components (they have all been glued together).

Moreover, if E is the union of all the (deformed versions of) the disk sets EUi defined
in Lemma 3.16, then Lemma 3.16 implies that E [ .D \M2/ admits an ordering
which makes it a primitive disk set for the ordered union of annuli h.A1

h
/[A2

h
(see

Definition 1.4 and Convention 3.5) with respect to the map h ı� (see Convention 3.9).
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By Proposition 1.6, the result of gluing E.Q;W /D zU1[� � �[
zUn to E.G;M2/DV\M2

along hı� is a generalized compression body. But this is just E.Q[hı� .G\M2/;M
0/.

Hence G0 DQ[hı� .G \M2/ is a generalized Heegaard surface in M 0 . The surface
G0 may have fewer components than G , but in any event it will amalgamate to a surface
of genus less than or equal to the genus of the surface that G amalgamates to in M .
Thus we will be finished once we prove Claim B.

Proof of Claim B We will describe an algorithm which uses flipping isotopies to em-
bed the Ui in the desired fashion. Start by embedding U1 as described in Definition 3.18.
Suppose now that V1 is adjacent to Vi along some component G of G \M1 (such a
component G will be unique by Convention 3.3 above), which means that N.G;M1/

meets V1 and Vi in components F1 of @˙V1 and Fi of @˙Vi . If R1 and Ri are the
corresponding components of @˙U1 and @˙Ui , then Remark 3.19 and Lemma 3.20
tell us that R1 can be isotoped onto Ri via a flipping isotopy which is fixed on @W .
Moreover, this flipping isotopy, if performed ambiently, will push U1 into W �Ui ,
where Ui is now embedded as described in Definition 3.18 (and U1 is now distorted).

Now suppose V1 is adjacent to another component Vj of V \M1 along a component
G0 of G \M1 , and suppose R0

1
and R0j are the components of @˙U1 and @˙Uj ,

respectively, that correspond to G0 . Reverse the flipping isotopy of the previous
paragraph, so that U1 will again be embedded in the standard way, and Ui will be
distorted. We can then perform a further flipping isotopy taking R0

1
to R0j , which will

push U1 and the distorted version of Ui into W �Uj , where we assume Uj is now
embedded in the standard way.

Repeating the process of the previous two paragraphs, we can eventually embed
(distorted versions of) the doppelgänger chambers of every other component of V\M1

that is adjacent to V1 in a way that satisfies part 2 of Claim B. Once this is done, we
can then embed the components of V \M1 that are adjacent to those components of
V \M1 adjacent to V1 , and so on. Eventually this process will terminate, and we will
have embedded every doppelgänger Ui of every component of V \M1 that meets T1 ,
and it is easy to verify that part 1 of Claim B will then be satisfied as well. The claim
and theorem now follow.

Corollary 3.22 If G amalgamates to a minimal genus Heegaard surface of M, then
g.M2/� g.M /C 1.

Proof Since the core c of W can be embedded in the surface G0 constructed in the
proof of Theorem 3.21, we can stabilize G0 once (if necessary) to obtain a generalized
Heegaard splitting of E.c;M 0/ŠM2 of genus at most g.M /C 1.
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4 The main result

Theorem 4.1 If K1 and K2 are knots in S3 , then t.K1 # K2/�maxft.K1/; t.K2/g.

Proof The proposition is trivial if one of K1 or K2 is the unknot, so suppose that
both are nontrivial knots. Assume also that maxft.K1/; t.K2/gD t.K2/. Let T be the
“swallow-follow” torus in E.K1 # K2/ that swallows the K2 summand and follows
the K1 summand; see Figure 7. We apply Theorem 3.21 by setting M DE.K1 # K2/,
noting that one component of E.T;M / is homeomorphic to E.K1/, which will
correspond to M1 . What needs to be shown is that the untelescoped minimal splitting
G can be isotoped so that it meets T only in essential simple closed curves, and such
that each component of G \E.K1/ is separating.

By its definition as a swallow-follow torus, T is isotopic to A [ B , where A is
the decomposing annulus of the connected sum in M D E.K1 # K2/, and B is the
subannulus of @M �A that lies in the component of M �A corresponding to E.K1/.
By Proposition 1.21, G can be isotoped to intersect A only in essential simple closed
curves, and since each boundary component of G\E.K1/ is then a standard meridional
curve of @E.K1/, every component of G \E.K1/ is separating in E.K1/ (otherwise
we could obtain a nonseparating surface in S3 ). The hypotheses of Theorem 3.21
(which assume Conventions 3.1, 3.3, and 3.9) can then be satisfied by isotoping T

sufficiently close to A[B .

Now M2 is the component of E.T;M / which is not homeomorphic to E.K1/, but
is instead homeomorphic to E.L/, where L is the link in S3 that has K2 as one
component and a meridian � of K2 as its other component, and T D @N.�/ under
this correspondence; see Figure 7. Furthermore, the slope in which G has been made
to intersect T D @N.�/ is the standard longitudinal slope determined by the meridian
disk ı � S3 with @ı D � and jı\K2j D 1. Thus the slope of the trivial Dehn filling
of @N.�/D T that yields E.K2/ meets each component of T \G exactly once, and
Theorem 3.21 applies to M 0 DE.K2/, yielding

t.K1 # K2/D g.E.K1 # K2//� 1� g.E.K2//� 1D t.K2/:

This proof also works if the knots K1 and K2 are embedded in homology spheres (or
any pair of compact 3–manifolds in which every closed embedded surface is separating).
In general, however, it is important to keep in mind the delicacy of Theorem 3.21 (and
Corollary 3.22), whose assumptions are encoded in Conventions 3.1, 3.3 and 3.9. In
particular, the assumption of Convention 3.3 that T and G are well-configured cannot
always be satisfied as can be shown using straightforward examples in S1 �F , where
F is a closed genus g > 1 surface. Thus Corollary 3.22 cannot be applied to prove the
following plausible conjecture in the case g D 1 in any obvious way.
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Figure 7: In the first diagram, M2 (in yellow) is seen as situated in E.K1 #
K2;S

3/ , and G \ T is indicated with dashed lines lying on the “swallow-
follow” torus T . In the second diagram, M2 is re-embedded in E.K2;S

3/ ,
and in the final diagram, we see M2 and G \T as they look after inverting
the image of T under this re-embedding.

Conjecture 4.2 Suppose M is a compact 3–manifold and T is a separating, incom-
pressible, orientable, genus g surface properly embedded in M . If M1 and M2 are
the components of E.T;M /, then g.M /�maxfg.M1/;g.M2/g�g .

Similarly, the need for T and G to be well-configured is what keeps us from ap-
plying Theorem 3.21 and Corollary 3.22 to prove the analogue of Theorem 4.1 for
satellite knots.

Theorem 4.1 has some relation to the “rank-genus conjecture” for knot complements
in S3 . If we define r.K/ to be the minimal number of generators for �1.S

3 �K/,
then the rank-genus conjecture states:

Conjecture 4.3 For all knots K � S3 , r.K/D g.E.K;S3//D t.K/C 1.

Since a genus g Heegaard splitting of a knot complement induces a g–generator
presentation of �1.S

3�K/, it is clear that r.K/� t.K/C 1, but it remains unknown
whether it is possible for this inequality to be strict. Boileau and Zieschang [1] described
closed Seifert fibered 3–manifolds M that satisfy g.M / > r.M /, where r.M / is
the rank of �1.M /. More recently, Li [6] constructed closed hyperbolic 3–manifolds
satisfying the same inequality.

Hence it seems likely that the rank-genus conjecture fails for knot complements,
although it remains unknown. A pair of knots in S3 whose tunnel number degenerated
enough to violate Theorem 4.1 would have given a counterexample, since the following
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analogue of Theorem 4.1 for rank is trivial (thanks to Richard Weidmann for pointing
out the simple line of proof below).

Proposition 4.4 For any knots K1;K2 � S3 , r.K1 # K2/�maxfr.K1/; r.K2/g.

Proof We have that �1.E.K1 #K2// is an amalgamated free product �1.E.K1//�Z

�1.E.K2// that retracts onto each of its factors.

The fact that Theorem 4.1 is true indicates that the class of knot pairs that experience
high tunnel number degeneration is not a good place to look for counterexamples
to the rank-genus conjecture after all. In any event, the simplicity of the proof of
Proposition 4.4 makes a striking contrast to our proof of Theorem 4.1.
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