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Lagrangian circle actions

CLÉMENT HYVRIER

We consider paths of Hamiltonian diffeomorphisms preserving a given compact
monotone lagrangian in a symplectic manifold that extend to an S1–Hamiltonian
action. We compute the leading term of the associated lagrangian Seidel elements.
We show that such paths minimize the lagrangian Hofer length. Finally, we apply
these computations to lagrangian uniruledness and to give a nice presentation of the
quantum cohomology of real lagrangians in monotone symplectic toric manifolds.

53D12, 53D20, 57R17, 57R58

1 Introduction

Let .M 2n; !/ denote a symplectic manifold and let L be a compact connected la-
grangian in M . Here we will consider exact lagrangian loops of L. Consider the set
of Hamiltonian isotopies starting at the identity and with ending point a Hamiltonian
diffeomorphism preserving L:

PL Ham.M;!/ WD
˚

 W Œ0; 1� C

1

�!Ham.M;!/ j 
0 D id; 
1.L/D L
	
:

These are the paths generating exact lagrangian loops of L (see M Akveld and D Sala-
mon [1]). Similarly to loops of Hamiltonian diffeomorphisms, such paths define
automorphisms of the lagrangian quantum homology of L (see S Hu, F Lalonde, and R
Leclercq [12]). Any such automorphism can be seen as multiplication by an invertible
element of the lagrangian quantum homology, called the lagrangian Seidel element.

For weakly exact lagrangians it has been shown in [12] that the lagrangian Seidel
morphism is always trivial, hence the Seidel element is simply given by the fundamental
class of L.

In this paper we are interested in computing lagrangian Seidel elements for those
paths admitting extensions to a loop of Hamiltonian diffeomorphisms coming from
an S1–action on .M;!/. In other words, for the elements in PL Ham.M;!/ that
are homotopic to paths which, when squared, yield an S1–Hamiltonian action on the
symplectic manifold.
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To ensure that all the automorphisms we want to compute are well-defined we will
assume that .M;L/ is monotone. If �LW �2.M;L/!Z denotes the Maslov index and
if I! W �2.M;L/!R is the !–valuation, then monotonicity means that I! D ��L for
some real � > 0. We further ask that the minimal Maslov number of L, denoted NL ,
is at least 2, ie that

NL WD inf
�2.M;L/

f�L.A/ j �L.A/ > 0g � 2:

In this framework we will compute the leading term of the Seidel element. We will also
show that in some cases all the other terms vanish. For instance, this is the case for the
(monotone) totally real lagrangians in toric manifolds. This computation can be seen
as the relative counterpart of the computation done by D McDuff and S Tolman [16]
for the Seidel elements of an S1–Hamiltonian action on M .

These calculations imply that such Hamiltonian paths cannot define null-homotopic
exact lagrangian loops. We will further show that for paths giving S1–Hamiltonian
actions when squared, the lagrangian Hofer length is minimized, hence they define
relative geodesics in their homotopy class with fixed endpoints. This is not that
surprising considering that the obtained Hamiltonian loops define geodesics in their
homotopy class, as shown by D McDuff and J Slimowitz [15]. We point out that
such results can be useful for studying lagrangian unirulings, defined by P Biran
and O Cornea [5]. The main class of examples for which we concretely apply the
calculations mentioned above are the real lagrangians in monotone symplectic toric
manifolds, that is, symplectic manifolds .M 2n; !/ with a Hamiltonian action of Tn

with some positivity assumption. These lagrangians are the fixed point sets of the
unique antisymplectic involution preserving the moment map of the torus action. Under
a monotonicity assumption, L Haug [10] showed that these lagrangian submanifolds
are wide with respect to a Z2–Laurent polynomial coefficient ring. This means that
the corresponding lagrangian quantum homology must split as a product of the Z2–
Morse homology of L with the coefficient ring. We will show that the multiplicative
quantum relations of L are generated by lagrangian Seidel elements. This can be seen
as a relative version of the observation made by McDuff and Tolman in [16]. Using
Haug’s result we then describe the lagrangian quantum homology as a quotient of some
polynomial ring, analogously to the absolute case.

Formulation of the main result We need to introduce lagrangian quantum homology.
Roughly speaking, this is the homology theory obtained by deforming the Morse
differential on L taking into account pseudoholomorphic disks in M with boundary
in L. More precisely, this is the homology of the pearl complex

C.LIf; gLIJ IƒL/ WD .RhCritf i˝ƒL; dQ/;
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where .f; gL/ is a Morse–Smale pair for L, ƒL WDRŒq�1; q� is the ring of R–Laurent
polynomials graded by requiring that jqj D 1 and where the differential dQ can be
written as a sum of ƒL–linear maps

dQ D d0C d1˝ q
�NL C d2˝ q

�2NL C � � � ;

where d0 stands for the Morse differential of f and

dk W RhCritr f i !RhCritrCkNL�1 f i

is obtained by counting pearl trajectories, ie chains of gradient flow lines of f and
J –holomorphic disks in M with boundary on L with cumulative Maslov index kNL .
In the present text we will only consider RDZ2 as ground coefficients. From Biran and
Cornea [4] the homology of this complex is generically well defined under the mono-
tonicity assumption. We will denote by QH�.LIƒL/ the corresponding lagrangian
quantum homology. For more on this, we refer to [4] and the references therein.

lagrangian Seidel elements are invertible elements SL.
/ 2 QH�.LIƒL/, where

 2 PL Ham.M;!/. Their definition involves counting pearl trajectories with pseu-
doholomorphic sections in the Hamiltonian fibration M ,! P half



�
�!D2 associated

with 
 , whose boundary lies on the lagrangian ��1.@D2/ (see Section 3). In fact,
the lagrangian Seidel elements are defined as the images under the lagrangian Seidel
isomorphism of the fundamental class of L. The Seidel isomorphism is defined either
on a covering of the set of homotopy classes with fixed endpoints in 
 2PL Ham.M;!/
as in Hu and Lalonde [11], or by fixing a choice of section as in Lalonde, McDuff and
Polterovich [13]. We adopt the latter point of view and discuss, to some extent, what
happens when 
 generates an exact lagrangian loop of L admitting an S1–Hamiltonian
action extension:

Definition 1.1 We say that 
 2 PL Ham.M;!/ extends to an S1–Hamiltonian action
if it is homotopic, relative to endpoints, to a path 
 0W Œ0; 1�!Ham.M;!/ such that the
concatenation of 
 0 with itself, .
 0/2 , defines an S1–Hamiltonian action. We denote
by P the set of such paths.

In particular, if Ht W M !R denotes the family of (normalized) Hamiltonian functions
generating 
 0 , then .
 0/2 is generated by a smooth time-independent (normalized)
function KW M !R. Thus the (normalized) Hamiltonian generating 
 0 is also time-
independent and one has K D 2H . In the remainder of the article, unless otherwise
mentioned, we will assume that 
 is 
 0 , ie that 
 squares to an S1–action. Let Fmax

denote the maximal fixed point set component of the S1–action associated to .
 0/2 .
Throughout the paper we will restrict our attention to the following case:

Algebraic & Geometric Topology, Volume 16 (2016)
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(A1) Fmax is semifree, ie the action is semifree in a neighborhood of Fmax .

(A2) L intersects Fmax cleanly, and the intersection FLmax WDL\Fmax is a lagrangian
submanifold of Fmax .

Remark 1.2 (1) Note that (A2) implies dimFLmax D
1
2

dimFmax .

(2) If the gradient flow of K is contained in L, then (A2) holds. Indeed, let J be an
S1–invariant almost complex structure on M compatible with ! . At any x 2 Fmax

we have the splitting

TxM D TxFmax˚Nx Š ker.1� d
.x//˚Nx;

where Nx is the symplectic complement of TxFmax D ker.1� d
.x//. Since J is
S1–invariant, J is also split and so is the induced Hermitian metric gJ WD !. � ; J � /.
By the assumption, we have that TxL is compatible with that splitting, meaning that

TxLD TxF
L
max˚gJ fv 2 TxL j v 2Nxg:

Since L is lagrangian, the terms in this direct sum are maximally isotropic subspaces
of TxFmax and Nx , respectively, and so the claim follows.

For a fixed point x , let w.x/ be the sum of the weights at x . We recall that for an
S1–invariant !–compatible almost complex structure on M , the action of S1 on
TxM Š Cn is conjugate to a product of circle actions z 7! e2�kj tz , t 2 S1 . Then
the sum of the weights w.x/D

P
kj defines a locally constant function and as such

only depends on the connected component of the fixed point set in which x lies. We
will denote by wmax the sum of the weights for points in the fixed point set Fmax . The
main result of this paper is the following:

Theorem 1.3 Let L be a monotone compact lagrangian submanifold of .M;!/. Let

 2 P satisfy the assumptions (A1) and (A2). The corresponding lagrangian Seidel
element is given by

SL.
/D ŒF
L
max�˝ q

�wmax C

X
fB2�2.M;L/j�L.B/>0g

aB ˝ q
�wmax��L.B/;

where ŒFLmax� and aB are elements of H�.LIZ2/ with deg.aB/D dimFLmaxC�L.B/.
In particular, if codimFmax D 2 then all lower-order terms aB vanish.

As an example let us mention the case of half of a Hamiltonian loop fixing a given
divisor D (which corresponds to a facet of the moment polytope) in a monotone
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symplectic toric manifold, a special case of Fano1 symplectic toric manifolds. The
endpoints of such path fix the real lagrangian in this manifold (eg consider a meridian S1

in S2 and the action of rotating around the poles) and assumptions (A1) and (A2) are
verified. Hence, if the real lagrangian is monotone, one concludes that the corresponding
lagrangian Seidel element is given by ŒD \ L�˝ q�wmax . It is worth noticing that
lower-order terms may appear in situations that are reminiscent of those discussed in
[16, Theorem 1.10, Example 5.6]. Such behavior is shown to occur in Example 5.9.
One could wonder if the more general results in [16] still hold in the lagrangian context.
Similarly, one could ask if the closed formulas obtained by S Anjos and R Leclercq in
the NEF case [2] have lagrangian counterparts. Unfortunately, the techniques used here
are not adapted to answer such questions as regularity of symmetric almost complex
structures generally fails.

Theorem 1.3 can be applied to deduce some results about uniruledness of lagrangian
submanifolds. As defined by Cornea and Biran in [5], a monotone lagrangian man-
ifold L in M is said to be 1–uniruled, or uniruled, if there exists a Baire second
category subset of families of almost complex structures of M with the property that
for each such almost complex structure there is a nonconstant pseudoholomorphic disk
in M with boundary on L passing through any generic point of L.

Theorem 1.4 Let L�M be a closed monotone lagrangian and suppose there is 
 2P
such that the corresponding S1–Hamiltonian action verifies hypotheses (A1) and (A2)
and that codimM Fmax D 2. Then L is uniruled.

For example, any real monotone lagrangian with NL�2 in a toric manifold is lagrangian
uniruled. Indeed, the fundamental class ŒL� of such a lagrangian does not appear in
any lagrangian Seidel element associated to an S1–circle action fixing one of the
codimension-one faces of the Delzant polytope of the toric manifold. Furthermore,
lagrangian Seidel elements are all invertible. The claim then follows from Lemma 5.10.

Theorem 1.3 also implies that exact lagrangian loops respecting the assumptions of the
Theorem cannot be null-homotopic since the higher order term is not ŒL�. We further
show the following:

Theorem 1.5 Let L � M be a closed monotone lagrangian. Suppose there exists

 2 PL Ham.M;!/ such that 
2 defines a semifree S1–Hamiltonian action on M .
Then the lagrangian path induced by 
 minimizes the Hofer length in its homotopy
class with fixed endpoints.

1Fano means that the first Chern class of the tangent evaluates positively on any nontrivial class, or
equivalently that the anticanonical bundle is ample. Note that a Fano Kähler manifold is deformation
equivalent to a monotone one.

Algebraic & Geometric Topology, Volume 16 (2016)
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The paper is organized as follows. In Section 2 we recall the definition of Hamiltonian
fibrations associated to loops or paths of Hamiltonian diffeomorphisms. In Section 3 we
introduce lagrangian Seidel elements. Section 4 is devoted to the proofs of Theorems 1.3
and 1.5. In Section 5 we apply our results to lagrangian uniruledness (we give the
proof of Theorem 1.4) and we show that the multiplicative relations for the lagrangian
quantum homology of real lagrangians in monotone symplectic toric manifolds are
generated by lagrangian Seidel elements (more precisely, we prove Proposition 5.5).

Acknowledgements I would like to thank François Charette, Octav Cornea, Tobias
Ekholm and Yasha Savelyev for useful discussions. I would also like to thank François
Charette for his suggestions and comments on an earlier version of this note, that helped
improve the presentation of the paper; in particular, for explaining to me how to simplify
the assumptions in Theorem 1.4. Finally, the final version of the paper benefited from
numerous useful comments and suggestions from the anonymous referee.

2 Hamiltonian fibrations

A Hamiltonian fibration � W P ! B with fiber .M 2n; !/, and compact symplectic
base .B; !B/, is a symplectic fibration whose structure group reduces to Ham.M;!/.
Such fibrations are naturally equipped with a family f!bgb2B of symplectic forms
in the fibers ��1.b/ induced by ! . It was shown by V Guillemin, E Lerman, and
S Sternberg [8], and by McDuff and Salamon in full generality, that Hamiltonian
fibrations are symplectically trivial over the 1–skeleton of B and that they admit
an Erhesman connection on TP whose holonomy around any loop is Hamiltonian.
This latter condition can be formally expressed as follows: there exists a closed 2–
form � 2�2.P / extending ! . The corresponding horizontal distribution, ie a direct
complement in TP to the vertical subbundle Vert WD ker d� , is given by

Hor� .p/ WD fw 2 TpP j �.w; v/D 0 for all v 2 Vertp D ker d�.p/g:

Different connection forms � as above may determine the same horizontal distribution.
However, a unique choice can be made by requiring that ���nC1 D 0, where ��
denotes integration over the fibers. When this latter normalization condition is satisfied
we say that � is a coupling form. Note that such Hamiltonian fibrations admit symplectic
structures

�c WD � C c�
�!B ;

where c is a sufficiently large strictly positive real number.

Algebraic & Geometric Topology, Volume 16 (2016)
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Recall that an !–tame almost complex structure J on a symplectic manifold .M;!/
is a smooth endomorphism of TM such that

.J.p//2 D� idTpM for all p 2M and !. � ; J � / > 0:

Let J .M;!/ denote the set of !–tame almost complex structures, which is contractible
and nonempty [14, Chapter 2]. The symplectic manifold .P;�c/ admits �c–tame
almost complex structures JP that are compatible with � and � , or fibered, in the
following sense:

� d� ıJP D JB ı d� , where JB 2 J .B; !B/,
� Jb WD JP j��1.b/ 2 J .��1.b/; !b/ for all b 2 B ,

� JP preserves the horizontal distribution induced by � .

Let J .P;�c ; �; �/ denote the set of such almost complex structures. In fact, for
fixed � , any family J D fJbgb2B of !b–tame almost complex structures and any
given JB give rise to a unique fibered JP 2 J .P;�c ; �; �/ for some c 2R.

Hamiltonian fibrations as above are given two canonical cohomology classes. The first
one is the vertical first Chern class induced by any family of almost complex structures
fJbgb2B and defined by

cv WD c1.Vert/ 2H 2.P;Z/:

The second one is the de Rham cohomology class of the coupling form Œ� �2H 2.P;R/:
this is the unique class such that

��Œ� �D Œ!� and Œ� �nC1 D 0:

In what follows we shall only consider Hamiltonian fibrations over D2 and S2 .

Hamiltonian fibrations associated to a loop of Hamiltonian
diffeomorphisms

Let LHam.M;!/ be the set of loops of Hamiltonian diffeomorphisms based at the
identity. Any element 
t 2 LHam.M;!/ defines a Hamiltonian fibration over S2 via
the clutching construction. Namely, let DC and D� denote the unit disks in C , but
with opposite orientations. Then set

P
 WD .D
C
�M/t .D� �M/

ı
.ei2�t ; x/� .ei2�t ; 
t .x//; t 2 Œ0; 1�:

This is obviously a Hamiltonian fibration over .S2; !FS/, where !FS denotes the
Fubini–Study form on S2 with total area 2. Its isomorphism class only depends on the
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homotopy class of the loop f
tg. In fact, any Hamiltonian fibration over S2 can be
obtained in this way [13]. If �
 denotes the corresponding coupling form, then

�c WD �
 C c�
�!FS

is symplectic for a sufficiently large positive constant c .

When f
tg is given by an S1–action on F , P
 can be described in the following
way. Let pW S3! S2 denote the Hopf fibration. The product S3�M admits the free
S1–action

eit � ..z0; z1/; x/D ..e
�itz0; e

�itz1/; 
t .x//;

and the quotient S3 �S1M can be identified with P
 . In that setting, the coupling
form is obtained by considering a connection 1–form on S3 . Namely, let ˛ 2�1.S3/
be the standard contact structure, so that d˛ D p�!FS , where !FS is the Fubini–Study
form on S2 normalized to have area 1. Let also KW S3 �M !R denote the moment
map of the circle action above. Then !�d.K˛/ 2�2.S3�M/ defines a closed basic
form, hence defines a closed 2–form on the quotient:

�
 D pr�.! � d.K˛// 2�
2.S3 �S1M/;

where prW S3 �M ! S3 �S1 F denotes the projection and pr� denotes integration
over the fibers of pr. This form clearly extends ! on the fiber F , and since K is
normalized the integral ���nC1
 vanishes. Thus �
 is a coupling form.

In this particular framework, each fixed point of the circle action yields a section of P
 .
Namely, for x 2 Fix.
/, the corresponding section is

�x WD S
3
�S1 fxg:

The following will be useful later on:

Lemma 2.1 [16, Lemma 2.2] If x is a fixed point of the Hamiltonian circle action
of 
 , then

cv.�x/D w.x/ and �
 .�x/D�K.x/;

where w.x/ denotes the sum of the weights at x . Moreover, if B is the class of a
sphere formed by the 
–orbit of an arc between x and y , then B D �x � �y .

Consider now an S1–invariant !–tame almost complex structure on M . Note that the
standard complex structure J0 in C2 is S1–invariant. Its restriction to S3 preserves
the contact structure ker˛ . Let R denote the Reeb vector field associated to ˛ , and
let XK denote the Hamiltonian vector field of the S1–action on M . Then any vector
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field vD Œv1; v2� 2 T .S3�S1M/ admits a unique representative in T .S3�M/ lying
in ker˛˚TM , given by

.v1�˛.v1/R; v2C˛.v1/XK/:

It follows that J0 �J descends to a well-defined almost complex structure J on P
 ,
which is obviously fibered and tames �c for c > maxK . Note that �x is then J –
holomorphic.

Hamiltonian fibrations associated to 
 2 PL Ham.M;!/

To any path 
 2PL Ham.M;!/ one associates a Hamiltonian fibration over the 2–disk
as follows. Let H denote the upper half plane in C , and set

DC
C
WD fz D xC iy 2H j jzj � 1g;

DC� WD fz D xC iy 2H j jzj � 1g:

Thus, the upper-half plane H is identified with DC
C
['D

C
� , where the two regions are

glued along their common boundary via the map

'W DC
C
!DC� ; z 7! xz�1:

Let H be the compactification of H by R[f1g. Then H can be identified with D2 ,
the disk of radius 1.

The Hamiltonian fibration associated to the path is then given by the half clutching
construction:

P half

 WD .DC

C
�M/t .DC� �M/

ı
.ei�t ; x/� .ei�t ; 
t .x//:

Again, its isomorphism class only depends on the homotopy class with fixed endpoints
of 
t . This manifold carries symplectic structures such that the subbundle defined by
collecting all the copies of L along the boundary of H is a lagrangian submanifold N
fibering over S1 . If 
 D f
tg 2 P HamL.M;!/, then

N Š
[
t2Œ0;1�

fe2�itg � 
t .L/:

This lagrangian actually embeds in P half

 ŠD2 �M and is called an exact lagrangian

loop (see [1; 12]). Considering the specific case where 
 2 P , one easily sees that N
is a lagrangian.

A connection form on P half

 is given by

(2-1) �
 D ! � dH ^ dx� dH ^ dy �
H

�
dx ^ dy;

Algebraic & Geometric Topology, Volume 16 (2016)
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and symplectic structures are explicitly given by

�c D �
 C
c

�
dx ^ dy; for c > 0 big enough:

One verifies that the parallel transport of �
 preserves the fiber bundle N . Letting Ls
be the copy of L lying in the fiber over s 2 @D2 , this is the same as saying that the
vector field �

s0;
d

ds

ˇ̌̌
sD0


s.p/
�
; p 2 Ls0

along N is horizontal with respect to �
 . Hence, N is a lagrangian submanifold
of P half


 for the symplectic forms �c . Note also that � vanishes on N . We will
denote by T .
/ the set of connection 2–forms on P half


 whose parallel transport
along the boundary preserves N . Equivalently, these are the connection 2–forms that
vanish identically on N (see [1, Lemma 3.1]). The set of relative cohomology classes
Œ� � 2H 2.D2 �M;N IR/ associated to elements � 2 T .
/ is a 1–dimensional affine
space: for any �0; �1 2 T .
/,

Œ�1�� Œ�0�D c.�1; �0/
h
1

�
dx ^ dy

i
; s.�1; �0/ 2R:

Hence, for c big enough, � D �0 C .c=�/dx ^ dy is symplectic, and for c small
enough, �� is symplectic. Set T ˙.
/ WD f� 2 T .
/ j ˙�nC1 > 0g. Then any value of
c for which � is nonsymplectic lies between the two real numbers

�C.�0; N / WD inffc.�; �0/ j � 2 T C.
/g;

��.�0; N / WD inffc.�; �0/ j � 2 T �.
/g:

The width of the corresponding nonsymplectic interval �.N / does not depend on the
reference point �0 , and is given by

�.N /D �C.�0; N /� �
�.�0; N /:

Hofer length of exact lagrangian loops

Let 
 D f
tg 2 PL Ham.M;!/. As seen above, this defines an exact lagrangian loop
N � S1 �M . Assume 
t is generated by the family Ht of Hamiltonians. In the case
where M is not compact these must be compactly supported. The Hofer length of N
is defined to be

`.N /D

Z 1

0

�
max
x2Lt

Ht .x/� min
x2Lt

Ht .x/
�
dt;

where Lt D 
t .L/. Subsequently we will consider minimizing the Hofer length within
the isotopy class of 
 with fixed endpoints. This is the same as minimizing `.N /

Algebraic & Geometric Topology, Volume 16 (2016)
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within its isotopy class of exact lagrangian loops. In other words, we will examine
the quantity

�.N / WD inf
N 0
`.N 0/;

where the infimum is taken over all exact lagrangian loops that are Hamiltonian-isotopic
to N . The following theorem is due to Akveld and Salamon:

Theorem 2.2 [1, Theorem B] For every exact lagrangian loop N ,

�.N /� �.N /:

The doubling procedure

Let 
2 denote the loop of Hamiltonian diffeomorphisms associated to the path 
 2 P .
First note that we have an obvious embedding

�2W P
half

 ,! P
2 :

Taking the pullback of pr�.! � d.K˛// under �2 actually yields �
 in (2-1).

In fact, P
2 is made of two copies of P half

 glued together along their boundaries.

More precisely,
P
2 D P

half

 [' P

half

 ;

where
'W @P half


 ! @P half

 ; .s; x/ 7! .�s; 
1.x//:

This happens to be useful subsequently to induce information on P half

 from P
2 . In

particular, this will be handy when dealing with holomorphic sections. Concerning
sections, let us note that not only any section in P
2 gives rise to a section in P half




(which may not have boundary on the lagrangian), but also, any section

� W .D2; S1/! .P half

 ; N /; z 7! .z; u.z//

can be doubled to give a section in P
2 with the equator being constrained to the
lagrangian �2.N /. In fact, identify D2 with H . Note that S2 is obtained by gluing
H and ei� �H along their boundaries using the identification s 7! �s . Then the new
section is given by

�dbW S
2
! P
2 ; z 7!

�
.z; u.z// if z 2H;

.z; 
1.u.e
�i�z/// if z 2 ei� �H:

Note that this is well-defined and continuous.

Algebraic & Geometric Topology, Volume 16 (2016)
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3 Lagrangian Seidel elements

Here we recall the definition of Seidel elements in the relative case.

Section classes and vertical Maslov index

Consider the pair .P half

 ; N /, as above. We say that � 2 �2.P half


 ; N / is a section class
if and only if ��.�/D ŒD2; S1� is the positive generator. We say that it is a fiber class
if � lies in the image of the inclusion map

�2.M;L/! �2.P
half

 ; N /;

thus implying ���D0. As shown in [12], the following sequence is exact in the middle:

(3-1) �2.M;L/! �2.P
half

 ; N /! �2.D

2; S1/

Definition 3.1 [12] Let uW D2! P half

 be a smooth map representing an element

� 2 �2.P
half

 ; N /. The vertical Maslov index of B is the Maslov index of the pair

.u�.T vP half

 /; u�T vN/, where T vN denotes the vertical tangent bundle of the bun-

dle N . We will denote this number by �v
 .�/ or �v for simplicity.

The vertical Maslov index is a well-defined Z–valued morphism on �2.P half

 ; N /,

which further satisfies that

�N .�/D �
v

 .�/C 2 and �N .� � �

0/D �L.� � �
0/

for two section classes � and � 0 . The next lemma follows directly from the definitions
of the vertical Maslov class and of the doubling of a section:

Lemma 3.2 Let 
2 denote the loop of Hamiltonian diffeomorphisms associated to the
path 
 2 P . If � represents the class Œ�� 2 �2.P half


 ; N / then �db represents the class
Œ�2� WD Œ�#�� 2 �2.P
2/, and one has

cv.Œ�db�/D �
v

 .Œ��/ and �
2.Œ�db�/D 2�
 .Œ��/:

Proof The second equality follows by definition. For the first equality,

2cv.Œ�
2�/D �v.Œ�

2�/D �v.Œ��/C�v.Œ��/D 2�v.Œ��/;

hence the claim.
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Holomorphic and antiholomorphic sections

Let j denote the standard complex structure on the disk, that is, the anticlockwise
rotation by 90 degrees in the plane. Let fJzg, z 2 D2 , denote a smooth family of
!–tamed almost complex structures in M . Let

H WDH ˝ dxCH ˝ dy:

This is a 1–form over D2 with values in C10 .M/. Let XH be the induced 1–form
with values in Hamiltonian vector fields of M , and let X0;1H denote the corresponding
.j; J / antiholomorphic part. These data provide an almost complex structure on P half


 ,
as follows:

JP .�; J /.z; x/ WD

 
j.z/ 0

X
0;1
H .z; x/ Jz.x/

!
:

It is easy to check that this is fibered. Furthermore, if � 2 T ˙.
/ then JP .�;˙J / is
˙�–tamed. In fact JP .�; J / is �c–tamed for c large enough.

We consider the following boundary value problem for smooth sections uW D2!P half

 :

(3-2) JP ı duD du ı j and u.@D2/�N:

Fix a section class A and let M.P half

 ; AI �; J / denote the moduli space of JP .�; J /–

holomorphic sections representing A:

M.P half

 ; AI �; J / WD fuW D2! P half


 j u satisfies (3-2) and Œu�D Ag:

For generic .�; J / this is a manifold of dimension nC�v.A/ [1; 11]. Taking �J instead
of J , the moduli space M.P half


 ; AI �;�J / is similarly defined and is generically a
manifold of dimension n��v.A/.

Remark 3.3 Note that a fixed point x 2 L of 
 defines a section of P half

 , given by

uW D2! P half

 ; z 7! .z; x/:

This section is JP .�;˙J /–holomorphic. Indeed, for z D sC i t and for uD .z; zu/,
the first part of (3-2) is equivalent to

@zu

@s
CJz.zu/

@zu

@t
CXH .zu/�Jz.zu/XH .zu/D 0:

If x 2L is fixed under 
 , then zu.s; t/D x , so that @zu=@s D @zu=@t D 0. Furthermore,
XH .zu/D 0 since x is a fixed point.
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The relative Seidel element

We now define the relative Seidel element associated to a path 
 2 PL Ham.M;!/.
First, we recall the definition of the lagrangian Seidel morphism given in [12]. Consider
a Morse–Smale pair .F;G/, where F 2C1.N / is a Morse function and G is a metric
on N such that:

(1) f˙1 WD F jL˙1 are Morse functions on the fibers L˙1 over ˙1 of N .

(2) CritfC[Critf� D CritF .

(3) maxf�C 1 <maxfC .

(4) There exist neighborhoods U˙Š .��; �/ of ˙12S1 trivializing the fiber bundle
N , with respect to which F jU˙.t; x/Df˙.x/C'˙.t/ for any .t; x/2U˙�L˙1
and where '˙W U˙!R are quadratic and 'C is of index 1 at 0 while '� is of
index 0 at 0.

(5) We also ask that GjU˙ is a product metric dt2CG˙ and that .f˙; G˙/ are
Morse–Smale pairs.

Such pairs .F;G/ can be chosen generically.

Fix � 2 T .
/ and a family J D fJzgz2D2 of !–tamed almost complex structures
on M . Let JP .�; J / be the corresponding fibered almost complex structure on P half


 .
For � a section class and for x� 2 Critf� and xC 2 CritfC , let

Mpearl.x�; xC; � I �; J; F;G/

denote the set of pearl trajectories from x� to xC representing � . In particular, elements
of this moduli space have one JP .�; J /–holomorphic section component with boundary
on N , and possibly many J˙1–holomorphic disk components with boundary on L˙1 .

For simplicity we will omit the auxiliary data �; J; F;G in the notation. This set is a
manifold of dimension

dimMpearl.x�; xC; �/D jx�jN � jxCjN C�N .�/� 1D jx�jL� jxCjLC�v.�/:

Fix a section class �0 . As seen in the preceding section, any other section class can be
written as �0CB for some fiber class B 2�2.M;L/. The lagrangian Seidel morphism
is defined as follows:

Definition 3.4 [12] For 
 2 PL Ham.M;!/ and �0 a choice of a reference section
class, the lagrangian Seidel morphism associated to 
 is an endomorphism of lagrangian
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quantum homology defined at the chain level by

SL.
; �0/W RhCrit? f�i !RhCrit? fCi;

SL.
; �0/.x�/ WD
X
B;xC

#Z2M
pearl.x�; xC; �0CB/xCq

��v.�0/��L.B/;

where the sum runs over all fiber classes B 2�2.M;L/ and critical points xC2Crit? fC
such that jxCjL D jx�jLC�v.�0CB/.

This only depends on the homotopy class of paths with fixed endpoints of 
 . Moreover,
since L is monotone with NL� 2, the lagrangian Seidel morphism is a chain morphism
(with respect to the pearl differential) and is generically well-defined with respect to
the data of JP , F and G [5; 12]. Since it is a chain morphism and since ŒL��, the
maximum of Critf� , defines a pearl cycle, SL.
; �0/.ŒL��/ is also a cycle.

Definition 3.5 For 
 2 PL Ham.M;!/ and �0 a choice of reference section class,
the lagrangian Seidel element associated to 
 and �0 is the homology class in
QHn.LCIƒLC/ given by

ŒSL.
; �0/.ŒL��/� WD

�X
B;xC

#Z2M
pearl.ŒL��; xC; �0CB/xCq

��v.�0CB/

�
;

where the sum runs over all fiber classes B and critical points xC 2Crit? fC such that
jxCjL D nC�v.�0CB/.

Below, and in fact in the statement of Theorem 1.3, we choose �0 to be �max , the
section class associated to a fixed point x 2 Fmax . The reference to �max will be
sometimes omitted in order to ease the notation.

4 Proofs of Theorem 1.3 and Theorem 1.5

Proof of Theorem 1.3

For the proof we follow the steps given by McDuff and Tolman in [16] where they
compute the absolute Seidel element of S1–Hamiltonian actions. Let � rel

x denote the
relative section class associated to a fixed point x 2L. The lemma below follows from
Lemma 2.1 and Lemma 3.2.

Lemma 4.1 Let 
 2 P with Hamiltonian H . If x 2 L is a fixed point of the Hamil-
tonian circle action of 
 , then

�v.�
rel
x /D w.x/ and �
 .�

rel
x /D�H.x/:
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Proof Let �2x denote the class section in P
2 corresponding to � rel
x . Recall that, by

definition, 
2 has Hamiltonian 2H . Thus, by Lemma 2.1 we have

cv.�
2
x /D w.x/ and �
2.�

2
x /D�2H.x/:

By Lemma 3.2,

cv.�
2
x /D �v.�

rel
x / and �
2.�

2
x /D 2�
 .�

rel
x /;

and the two equalities follow.

Let 
 2 P , � 2 T .
/, and construct JP 2 J .P; !; �;�c/ from an S1–invariant
J 2 J .M;!/ via the doubling procedure, that is, JP is the pullback of an S1–
invariant almost complex structure on P
2 under the embedding �2W P half


 ! P
2 .
Fix B 2HD

2 .M;L/, and consider the moduli space of JP –pseudoholomorphic disks
with no marked points,

M.P half

 ; �maxCB; JP /:

Its compactification M.P half

 ; �maxCB; JP / consists of stable maps with only one

JP –holomorphic section component, which we call the root, and the other components
are JP –holomorphic disks contained in some fibers of P half


 that we will call bubbles.
If the root represents the section class � 0 2H2.P half


 ; N / and the bubbles represent
fiber classes Bi 2H2.M;L/, i 2 A, we further have that

�maxCB D �
0
C

X
i2A

Bi :

Proposition 4.2 If B¤ 0 and !.B/� 0, the moduli space M.P half

 ; �maxCB; JP / is

empty. Moreover, if BD0, then JP is regular, and the moduli space M.P half

 ; �max;JP /

is compact and can be identified with L\Fmax .

Proof We begin with the first assertion. It is sufficient to show that for a JP –holo-
morphic section with boundary on N representing a section class �D�maxCB one has

(4-1) �c.�/��c.�max/;

with equality only if B D 0. Indeed, suppose (4-1) holds and assume there is a
JP –holomorphic section representing �maxCB , with B ¤ 0 and !.B/� 0. Then

�c.�/D�c.�maxCB/D�c.�max/C!.B/��c.�max/:

This is impossible by (4-1) unless !.B/D 0. This latter condition implies that B D 0,
which contradicts B ¤ 0. Let us now prove (4-1).
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Fix a point Œz; p� 2 P half

 and consider w 2 TŒz;p�P half


 . Write w D hC v , where h
and v are respectively the horizontal and vertical parts of w . Choose c > 0 such that
c > Hmax . Then

(4-2) �c.w; JPw/

D

�
!�dH ^dx�dH ^dy�

H

�
dx^dyC

c

�
dx^dy

�
.vCh; J vCJ0h/

D !p.v; J v/C
.c�H.p//

�
dx^dy.h; J0h/

�
c�Hmax
�

dx^dy.h; J0h/:

where the last inequality holds since J is !–tame. Since 1
�
dx ^ dy evaluates to 1 on

the disk of radius 1,
�c.�/� .c �Hmax/D�c.�max/

for a JP –holomorphic section with boundary on N representing a section class
� D � rel

x CB , with x some fixed point. Note that equality in (4-2) only occurs when the
vertical part of w vanishes. Hence, equality holds only when B D 0 and x 2Fmax\L.

Next, we show that M.P half

 ; �max; JP / is compact (ie that it coincides with its com-

pactification M.P half

 ; �max; JP /) and that it can be identified with L\Fmax . Consider

a stable map representing � . Such a stable map consists of exactly one root � 0 and
possibly many bubbles representing classes Bi , i 2A, with positive !–area. It follows
that the only stable maps representing a class � such that

�c.�/� .c �Hmax/

are the constant sections � rel
x , with x 2 Fmax\L, which proves the claim.

It remains to show that JP is regular for �max . Let B denote the set of smooth maps
uW .D2; @D2/! .P half


 ; N / representing the class �max . For u 2 B , set

Eu WD C1.ƒ0;1JP .D
2; u�TP half


 // and E WD
G
u2B

Eu:

We have to show that the linearization of

@JP W B! E ; u 7! duCJP ı du ı j

is surjective at every u 2M.P half

 ; �max; JP / (at least between suitable completions

of the source and the target). Up to completion, this linearization is given by

L
@JP ;u

W C1.u�TP half

 ; u�TN/! C1.ƒ0;1.D2; u�TP half


 //:
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Since we only consider sections one only needs to verify that

Lv
@JP ;u

W C1.u�Vert; u�.TN \Vert//! C1.ƒ0;1.D2; u�Vert//:

We show that the partial indices of the holomorphic bundle pair .u�TP half

 ; u�TN/

must be greater than or equal to �1. Then we conclude by applying the results of
Y-G Oh in [17]. Let u be a JP –holomorphic section representing � rel

x with x 2 Fmax .
Since x is a fixed point, u�Vert reduces to TxM Š Cn , u�.TN \Vert/ reduces to
TxLŠRn and the restriction of u to S1 defines a loop of lagrangian subspaces in Cn .
Moreover, this loop is given by

TLju.ei2�t / � d
.t/TxL� TxM:

Since the action is semifree, and since JP comes from an S1–invariant almost complex
structure J on .M;!/, d
.t/W Cn!Cn takes the following diagonal expression after
an appropriate change of basis of Cn :

(4-3) d
.t/ WD

0BBBB@
ei�m1t 0 � � � 0

0
: : :

: : :
:::

:::
: : :

: : : 0

0 � � � 0 ei�mnt

1CCCCA;
where m1; : : : ; mn are the weights of the action at x and are given by m1D� � �DmlD0,
l D dimFLmax , and mlC1 D � � � Dmn D�1. By projecting on each factor of Cn , the
initial Riemann–Hilbert problem splits into a direct sum of 1–dimensional Riemann–
Hilbert problems of the form(

@�j .z/D 0 on D2;

�j .e
2�it / 2Rhei�mj t @=@xj i;

where �j denotes the projection of �W D2!Cn to the j th factor, and where the xj
are the real coordinates in Cn . In this situation the partial indices coincide with the
weights (Maslov indices) of each summand. Here the partial indices are all greater
than �1, and Oh [17] proved that regularity holds for holomorphic disks with partial
indices greater than �1, which completes the proof.

Lemma 4.1 gives the general form of the terms in the Seidel element. Proposition 4.2
then ends the proof of the first part of Theorem 1.3 since it gives the specific form
of the leading term of the Seidel element, and since it shows that the sum runs over
the fiber classes B with !.B/ > 0. To end the proof of Theorem 1.3, we show the
vanishing of all the other terms provided Fmax is of codimension 2.
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Proposition 4.3 If codimM Fmax D 2, then aB D 0 for all B 2 �2.M;L/ with
�L.B/ > 0.

Proof This is done by a simple dimension argument. Note that for � D �maxCB ,
the moduli space Mpearl.ŒL��; xC; �/ is empty unless

jxCj D nC�v.�max/C�L.B/:

From Lemma 4.1 and (4-3) we have

nD dimFLmax�wmax D dimFLmax��v.�max/;

implying that jxCj D dimFLmaxC�L.B/. Now, taking B with �L.B/ > 0, one must
have �L.B/� 2 by monotonicity, so that jxCj>n if codimM FmaxD 2 or equivalently
codimL FLmax D 1.

Proof of Theorem 1.5

The idea here is to adapt Akveld and Salamon’s line of proof for length-minimizing
exact lagrangian loops in CP n (see [1]). We will make use of the following general
result they showed:

Proposition 4.4 [1, Lemmas 5.3 and 5.4] Let 
 2 PL Ham.M;!/ with 
 2 P . Let
A 2 �2.P

half

 ; N / be a section class. Suppose that for any � 2 T ˙.
/ there exists a

family J DfJzgz2D2 of !–tame almost complex structures in M such that the moduli
space M.P half


 ; AI �;˙J / is not empty. Then

�C.�0; N /� �hŒ�0�; Ai and ��.�0; N /� �hŒ�0�; Ai

for any connection 2–form �0 2 T .
/.

We begin by observing that in Proposition 4.2 the results are independent of the choice
of connection 2–form in T .
/. Note that the arguments in this proposition apply to
show that JP is regular for �min , assuming the minimum fixed point set Fmin to be
semifree. Also, M.P half


 ; �min; JP / is nonempty and coincides with Fmin\L.

With this in mind, one argues as follows. Assume � 2T C.
/. Then there is a regular JCP
such that M.P half


 ; �max; J
C

P / is nonempty. Similarly, assuming � 2 T �.
/, there is
a regular J�P such that M.P half


 ; �min; J
�
P / is nonempty. Let �0 D �
 . Then by
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Proposition 4.4 one has

�.N /D �C.�
 ; N /� �
�.�
 ; N /

� �hŒ�
 �; �maxiC hŒ�
 �; �mini

�

Dh
! �

H

�
dx ^ dy � dH ^ dx� dH ^ dy

i
; �min� �max

E
� �.Hmin�Hmax/

D `.N /

since the extrema of H are reached on N . It follows from [1, Theorem B] that

`.N /� �.N /� �.N /;

hence the proof.

5 Application to monotone toric manifolds

Toric manifolds: the Delzant construction

The following is taken from [20], [6] or [9]. Let h � ; � iW Rn � .Rn/� ! R denote
the standard pairing. Symplectic toric manifolds are compact connected symplectic
manifolds .M 2n; !/ together with an effective Hamiltonian action of Tn and a choice
of corresponding moment map �. It is well-known that the image � WD�.M/� .Rn/�

is a convex polytope, meaning that this is an intersection of a collection of affine half-
planes in .Rn/� . Such half-planes are determined by vectors fvigi21;:::;d in Rn and
real numbers faigi21;:::;d . Explicitly, the polytope is given by

� WD ff 2 .Rn/� j hf; vi i � ai ; 1� i � dg:

The vi represent inward-pointing normal vectors to the facets, ie the codimension-1
faces, of the polytope, and the faces of � are in bijection with the sets

FI WD ff 2 .R
n/� j hf; vi i D ai ; i 2 I g; I � f1; : : : ; ng; FI ¤∅:

Symplectic toric manifolds are in one-to-one correspondence with Delzant polytopes,
ie polytopes satisfying the following conditions:

(1) Each vertex has n edges.

(2) The edges at any vertex p are rational in the sense that they are given by some
pC tfi with t 2 Œ0; 1� and fi 2 Zn , i D 1; : : : ; n.

(3) At each vertex the corresponding vectors f1; : : : ; fn can be chosen to be a
Z–basis of Zn .
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The symplectic toric manifold M with moment polytope � can be realized as a sym-
plectic reduction of a Hamiltonian torus action of Td�n on .Cd ; !st/. The construction
is as follows. Let feigiD1;:::;d denote the standard basis of Rd . It is easy to see that
the map � W Rd !Rn , ei 7! vi descends to a surjective Lie group morphism

� W Td
! Tn:

Let N WD ker� . If �W N ! Td denotes the inclusion, then the composition of � with
the standard Hamiltonian action of Td on Cd ,

.ei�1 ; : : : ; ei�d / � .z1; : : : ; zd /D .e
�2�i�1z1; : : : ; e

�2�i�d zd /;

gives a Hamiltonian action of Td�n on Cd . Let fw1; : : : ; wd�ng � ker� be a basis,
where wi D

Pd
jD1w

j
i ej . Then

exp.wi / � .z1; : : : ; zd /D .e
�2�iw1

i z1; : : : ; e
�2�iwd

i zd /:

Furthermore, considering the exact sequence of dualized Lie algebras

0! .Rn/�
��

��! .Rd /�
��

�! .Lie.ker�//�! 0

and setting

�j WD �
�e�j ; j D 1; : : : ; d;

the action becomes

exp.w/ � .z1; : : : ; zd /D .e
�2�ih�1;wiz1; : : : ; e

�2�ih�d ;wizd /:

The moment map of this action is then given by the composition �� ı�st , where

�st.z1; : : : ; zd /D .�jz1j
2; : : : ; �jzd j

2/C .a1; : : : ; ad /:

Explicitly, one gets

�� ı�st.z1; : : : ; zd /D �
�

� dX
iD1

.�jzi j
2
C ai /e

�
i

�

D

dX
iD1

.�jzi j
2
C ai /�i

D

dX
iD1

d�nX
mD1

.�jzi j
2
C ai /w

i
mw
�
m:
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Then 0 is a regular value for �� ı�st . Moreover, ker� acts freely on the compact
submanifold Z WD .�� ı�st/

�1.0/. It follows that

M D .�� ı�st/
�1.0/=N

is a compact manifold. Let �Z W Z!Cd denote the inclusion map and pM W Z!M

denote the quotient map. Then, by the Marsden–Weinstein theorem, M is equipped
with a canonical symplectic structure ! such that

p�M! D �
�
Z!0:

With respect to ! , the action of the n–torus Tn D Td=N , which leaves Z invariant,
is Hamiltonian. The corresponding moment map � is defined by

�st ı �Z D �
�
ı .� ıpM /

and has image �.

Alternative construction of the toric manifold

Here we describe an alternative construction of the toric manifold M as a complex
manifold.

Extend the previously seen map � W Rd !Rn to a mapping

�CW C
d
!Cn:

Note that �C sends the standard lattice Zd to the set of primitive integral generators
of the facets of �. Hence it induces a map between complex tori �CW T

d
C ! Tn

C .
Let NC denote the kernel of �C so that we have an exact sequence of complex groups

0!NC! Td
C ! Tn

C! 0:

Consider now the linear diagonal action � of Td
C on Cd given by

�.expw/ � .z1; : : : ; zd /D .exp.w1/z1; : : : ; exp.wd /zd /:

For any subset I D fi1; : : : ; ikg � f1; : : : ; dg set

Cd
I WD fz 2Cd

j zi D 0() i 2 I g:

Note that this set is a Td
C–orbit and every Td

C–orbit is actually of this type. Now
consider the following subspace of Cd :

Cd
� WD

[
fI jFI is a face of�g

Cd
I :
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This open subset of Cd is in fact the biggest subset on which NC has no singular orbit:
in fact NC acts on Cd

� freely and properly [9].

The corresponding quotient manifold Cd
�=NC is compact and complex. Moreover,

the Td
C–action on Cd

� induces a Tn
C–action on the quotient. This is the quotient that

corresponds to M . The relation between the two constructions is expressed in the
following theorem:

Theorem 5.1 The manifold Z is contained in Cd
� and the restriction of an NC–orbit

to Z is an N –orbit.

The antisymplectic involution

This involution is the one induced by complex conjugation in Cd . In fact, complex
conjugation is well-defined on the subset Cd

� . Furthermore, it commutes with the
action of NC since for every w 2 Td

C we have

�.w/.z/D �. xw/xz:

Thus it defines an involution on the quotient space

� W M !M

satisfying

(5-1) �.w � x/D w�1 � �.x/ for all x 2M; w 2 Td :

That � is antisymplectic and that it preserves the moment map of the Tn–action on M
then follow from the fact that complex conjugation is antisymplectic with respect to
the standard symplectic structure and that the moment map associated to the diagonal
Td–action on Cd is invariant under this conjugation.

The homology of toric manifolds and their real lagrangians

In this section we describe the Z2–cohomology rings of the toric manifold M and of
its real lagrangian LD Fix.�/. We will also explain how these rings are isomorphic,
the isomorphism being given by a degree-2 ring homomorphism.

On the homology of the toric manifold The homology of the toric manifold M is
generated by its toric divisors, which correspond to the facets of �. If D1; : : : ;Dd
denote those facets then they are geometrically realized as

Dk DZ \Cd
k :
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These determine codimension-2 cycles in X . Let Y1; : : : ; Yd 2H2n�2.M;Z2/ denote
the homology classes of the corresponding toric divisors. Then

H�.M IZ2/D
Z2ŒY1; : : : ; Yd �

P.�/CSR.�/
;

where P.�/ and SR.�/ denote the following ideals:

P.�/ WD
DX

k
h�; vkiYk j � 2 .Zd /

�
E
;

SR.�/ WD
DY

i2I
Yi j I � f1; : : : ; dg with DI WDDi1\ � � � \Dik D∅, I primitive

E
;

where I is primitive if DInfimg ¤ ∅ for all im 2 I . In this setting the Chern class
c1.M/ of M is given by the Poincaré dual of Y1C � � �CYd .

We should also mention that there is a natural isomorphism between H2.M;Z2/ and
the set of tuples AD .a1; : : : ; ad / 2 Zd such thatX

k

akvk D 0:

Under this isomorphism the pairing of A with PD.Yi / (the Poincaré dual of Yi ) simply
coincides with the projection to the i–factor of A:

hA;PD.Yi /i D ai :

The following result due to V Batyrev will be useful:

Theorem 5.2 [3] For any primitive I 2 f1; : : : ; dg there is a unique vector aI D
.a1; : : : ; ad / 2H2.M;Z2/ such that

ak D 1 for all k 2 I ; ak � 0 for k … I :

The homology of the real lagrangian Let g be a �–invariant Riemannian metric
on M . Let g also denote the restriction of g to L. Note that for generic � 2 Lie.Tn/

the function
f� W M !R; x 7! h�.x/; �i

is Morse. Moreover, there exists a second-category Baire subset of �–invariant metrics
such that the pair .f� ; g/ is Morse–Smale. Then Critf� corresponds to the vertices
of the Delzant polytope, ie the critical points of the moment map. Moreover, for any
vertex p the Morse index is given by

jpjM D 2� #f1–dimensional faces  at p such that h ; �i< 0g;
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hence f� is perfect. Let f� jL be the restriction of f� to L. It is not hard to see that

Critf� jL D Critf� :

Furthermore, the restricted pair .f� jL; g/ is also Morse–Smale. In fact, the inclusion
of L into M induces an isomorphism of Morse chain complexes:

Theorem 5.3 (H Duistermaat [7], L Haug [10]) The map

(5-2) inclW Critk f� jL! Crit2k f� ; p 7! p

defines a ring isomorphism between Morse homologies with Z2–coefficients that
doubles the degrees:

inclW H�.L;Z2/
Š
�!H2�.M;Z2/:

The restriction to Z2–coefficients is essential; it is needed to show that f� jL is perfect
(see [10]). Note that it is easy to find examples where the theorem does not hold for
other coefficient rings, for example RP n in CP n .

The quantum homology of the real lagrangian Set

PL.�/ WD incl�1 P.�/ and SRL.�/ WD incl�1.SR.�//:

By Theorem 5.3 and from the description of H�.M;Z2/ we can write

H�.LIZ2/D
Z2ŒX1; : : : ; Xd �

hPL.�/CSRL.�/i
;

where Xj is a formal variable of homological degree n� 1 representing the homology
class of Dj\L. Let I D .i1; : : : ; id / be a multi-index of nonnegative integers. Then set

XI WDX
i1
1 � � �X

id
d
;

which has homological degree
n�

X
ik :

In general, given pure elements zXk 2Hn�dk .M;Z2/ and a multi-index ID.i1; : : : ; id /,
the homological degree of zXI is given by

(5-3) n�
X
k

ikdk :

According to [5], since the homology of L is generated by the classes of homological
degree n� 1, the lagrangian is either wide, ie there is an identification QH.LIƒL/Š
H�.LIZ2/˝ƒL , or narrow, ie QH.LIƒL/ D 0. Haug [10] showed that the Floer
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differential vanishes for the standard complex structure, which happens to be generic,
thus proving that real lagrangians are actually wide:

Theorem 5.4 [10, Theorem A] The real lagrangian L is wide, as dQ generically
vanishes. Furthermore, the isomorphism QH�.LIƒL/ŠH�.LIZ2/˝ƒL is canonical.

By the theorem above each of the Xi defines an element in QH�.LIƒL/ also de-
noted Xi . By Theorem 5.2, for any primitive I � f1; : : : ; dg there is a unique vector
aI D .a1; : : : ; ad / 2H2.M IZ2/ such that

(5-4) ak D 1 for all k 2 I ; ak � 0 for k … I :

From Theorem 5.3 the same relations exist in H�.LIZ2/. Write I D .i1; : : : ; il/ and
let J D .j1; : : : ; jm/ denote the complement of I in f1; : : : ; dg. Set

P
Q
L .�/ WD PL.�/;

SRQL .�/ WD
˝
XI �X

jaJ j
J q�.aJ / j I primitive

˛
;

where I D .i1; : : : ; il/� f1; : : : ; dg, J and aI are as above, and we use the notation

XI WDXi1 � � �Xil ; X
jaJ j
J WDX

jaj1 j

j1
� � �X

jajm j

jm
; �.aJ / WD �l C

mX
rD1

jajr j:

The remainder of this section is dedicated to proving the following:

Proposition 5.5 QH�.LIƒL/Š
Z2ŒX1; : : : ; Xd �Œq

�1; q�

PL.�/CSRQL .�/
:

First, write

H�.LIZ2/D
Z2ŒX1; : : : ; Xd �

hf1; : : : ; fri
;

where f1; : : : ; fk denote the polynomial relations in the Xi . For j D 1; : : : ; k , let f Qj
to be the polynomials in the Xi variables where the standard product is replaced by the
quantum product. The following two results are simple adaptations of [19, Lemmata].
We prove them for convenience:

Lemma 5.6 The elements X1; : : : ; Xd generate QH�.LIƒL/.

Proof Assume for simplicity that X1; : : : ; Xd are critical points of a perfect Morse
function on L. The proof is by decreasing induction on the homological degree of
pure elements, starting at degree degD n. For degD n, since NL � 2, the quantum
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differential dQjRhCritn f i restricts to d0 . Consequently, the unique maximum of f
defines an element in QHn.LIƒL/, namely ŒL�. Since ŒL� is generated by the Xi ,
the degree-n case follows.

Assume that pure elements of (homological) degree at least deg are generated by
X1; : : : ; Xd : we show that every monomial XI of degree deg�1 is generated by the
Xk . Let XI;Q denote the element obtained by making the lagrangian quantum product
of Xk with multi-index I . By definition of the quantum product we have that

XI;Q DXI C
X

j�1; jRj�deg

�R;jX
Rq�j ; �R;j 2 Z2:

It follows from the induction hypothesis that the XR in the equation above can be
written as quantum products of the Xk ; hence the conclusion.

Arguing as in the preceding lemma, we obtain that

f
Q
j .X1; : : : ; Xd /D fj .X1; : : : ; Xd /Cg

Q
j .X1; : : : ; Xd /D g

Q
j .X1; : : : ; Xd /

since fj is assumed to be a relation in homology. Let q1; : : : ; qd be abstract variables
of degree deg.qk/ WD n� dk . Here, it is understood that the degree of qI is given by
(5-3) for a multi-index I D .i1; : : : ; id /. Thus, when evaluated at .X1; : : : ; Xd /, the
polynomials with Z2Œq; q�1�–coefficients in the q1; : : : ; qd variables

f
Œ!�
j .q1; : : : ; qd / WD f

Q
j .q1; : : : ; qd /�g

Q
j .q1; : : : ; qd /

define relations in the quantum homology. We have the following:

Lemma 5.7 QH�.LIƒL/D Z2Œq; q
�1�.ŒX1; : : : ; Xd �/=hf

Œ!�
1 ; : : : ; f Œ!�r i:

Proof We have seen that the f Œ!�j define relations in quantum homology. Let I
denote the ideal generated by the f Œ!�j , j D 1; : : : ; r . We show that any polynomial
defining a relation in the quantum homology actually belongs to I . As in the preceding
lemma, the proof is by decreasing induction on the degree of the polynomials, in the
variables q1; : : : ; qd , starting at degree n. Let PQ denote a relation of degree n. Then,
PQ is a constant polynomial 1˝ � for some � 2 Z2Œq; q�1�. We show that �D 0.
Evaluating PQ at X1; : : : ; Xd gives �ŒL�D 0, which can only happen if �D 0 since
ŒL�¤ 0 (L being wide). It follows that any degree-n relation is a trivial relation and
so belongs to I .

Now, let PQ ¤ 0 be a polynomial defining a relation in quantum homology where all
terms have degree at least k , and write

PQ D
X
i

Pi ˝ q
di C r;
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where the Pi are degree-k polynomials in q1; : : : ; qn with Z2–coefficients, the di
are pairwise different, and the degree of r in q1; : : : ; qn is strictly bigger than k .
Since PQ.X1; : : : ; Xd /D 0 one has that Pi .X1; : : : ; Xd /D 0 for all i . Hence, there
are polynomial functions 'i such that Pi D 'i .f1; : : : ; fr/. Replacing the ordinary
product by the quantum homology product gives 'i .f

Œ!�
1 ; : : : ; f

Œ!�
r /DPi C r

0 , where
deg r 0 > k . Consequently,

PQ D
X
i

'i .f
Œ!�
1 ; : : : ; f Œ!�r /˝ qdi C

�
r �

X
i

r 0qdi
�
;

where the term in parentheses has degree (in the qi ) strictly bigger than k , as both r
and r 0 have. By the induction hypothesis this term is also generated by the relations
f
Œ!�
1 ; : : : ; f

Œ!�
r , which finishes the proof.

Proof of Proposition 5.5 Now, we show how to use the formula for relative Seidel ele-
ments in order to compute QH�.LIƒL/. For a primitive I D .i1; : : : ; il/�f1; : : : ; dg,
let J D .j1; : : : ; jm/ denote its complement in f1; : : : ; dg. Consider the unique vector
aI D .a1; : : : ; ad / 2H1.LIZ2/ such that

(5-5) ak D 1 for all k 2 I ; ak � 0 for k … I ;
X

akvk D 0:

Let ƒ1=2j denote the half-turn map associated to ƒj , the S1–action generated by the
normal to the j–facet of the Delzant polytope. From (5-1) and since ƒ1=2j is its own
inverse, for all x 2 L we have

�.ƒ
1=2
j � x/Dƒ

1=2
j � x:

Hence, ƒ1=2j 2 PL Ham.M;!/, where ƒ1=2j also denotes the path from the identity
to the corresponding half-turn map and which is induced from ƒj . Consequently, in
terms of Hamiltonian paths preserving L, (5-5) means that

(5-6) .ƒ
1=2
1 /a1 � � � .ƒ

1=2

d
/ad D idL :

Since we are dealing with a torus action, the order of the terms in the left-hand side of
(5-6) can be reorganized in such way that we finally get

(5-7) .ƒ1=2i1 / � � � .ƒ
1=2
il
/D .ƒ

1=2
j1
/�aj1 � � � .ƒ

1=2
jm
/�ajm D .ƒ

1=2
j1
/jaj1 j � � � .ƒ

1=2
jm
/jajm j:

Observe that the maximum fixed point set of each ƒj is given by the divisor corre-
sponding to Dj , hence is of codimension 2, and both assumptions (A1) and (A2) are
verified in this context. It follows from Theorem 1.3 that SL.ƒ

1=2
j /DXj ˝ q . Thus,

considering the lagrangian Seidel element associated to both sides in (5-7), we have

Xi1 ? � � �?Xil ˝ q
l
DX

jaj1 j

j1
? � � �?X

jajm j

jm
˝ q

Pm
rD1 jajr j;
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where ? stands for the quantum lagrangian product (see [4]). As a consequence of
Lemma 5.7 and of the presentation of H�.LIZ2/, these are the only multiplicative
relations in QH�.LIƒL/. Furthermore, the additive relations are the same as in
standard homology. The presentation of QH�.LIƒL/ follows.

Remark 5.8 � This presentation is the same as that given in [16, Proposition 5.2]
for the toric manifold .M;!/. Let ƒM WD Z2ŒQ�1;Q� with jQj D 2, and denote by
QH�.M IƒM / the corresponding quantum homology. Then, as above,

QH�.M IƒM /Š
Z2ŒY1; : : : ; Yn�ŒQ�1;Q�

P.�/CSRQ.�/
;

where Yi represents the class of the divisor Di , P.�/ stands for the set of linear
relations between the divisors, and SRQ.�/ stands for the set of quantum multiplicative
relations between the divisors. It follows directly that there is a ring isomorphism

 W QH�.LIƒL/! QH2�.M IƒM /

such that  .Xi /DYi and  .q/DQ . This ring isomorphism is actually induced by the
inclusion incl in Theorem 5.3, as was shown by Haug in [10]. It is worth noticing that,
in the notation above,  .SL.ƒ

1=2
j //D S.ƒj /, ie relative Seidel elements associated

to loops dual to facets are sent to the corresponding absolute Seidel elements under  .

� Using the QH�.M IƒM /–module structure of the quantum homology of L, denoted
by ˇ, one also has [5; 11]

SL.ƒ
1=2
j / ? SL.ƒ

1=2
j /D SL..ƒ

1=2
j /2/D S.ƒj /ˇ ŒL�I

in other words SL.ƒ
1=2
j / is in a sense a square root of S.ƒj /. As was pointed out to me

by François Charette, these relations completely determine the QH�.M IƒM /–module
structure of QH�.LIƒL/. Moreover, it is possible to recover the H�.M/–module
structure of H�.L/. For instance, when NL � 3 the quantum product of Xi with itself
does not admit any quantum correction term. Hence

SL.ƒ
1=2
j / ? SL.ƒ

1=2
j /D .Xi ˝ q/ ? .Xi ˝ q/D .Xi ?Xi /q

2
DX2i q

2;

and since

S.ƒj /ˇ ŒL�D YiQˇ ŒL�D .Yi ˇ ŒL�/QD .Yi ˇ ŒL�/q
2;

we get X2i D Yi ˇ ŒL�.

We end this section with an example illustrating the results established so far.
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Example 5.9 Consider the pair .CP 3;RP 3/, where CP 3 is equipped with the Fubini–
Study form !FS . Let .M;L/D . fCP 3 ; fRP 3 / denote the monotone lagrangian blow-up
of .CP 3;RP 3/ with symplectic form z! (see [18] for the definition). Topologically,fCP 3 ŠCP 3#CP 3 and fRP 3 ŠRP 3#RP 3:

One can also view fCP 3 as the projectivization of the rank-2 complex bundle

O.�1/˚C!†;

where †ŠCP 2 denotes the exceptional divisor. From this point of view, fRP 3 is a
nontrivial S1–bundle over RP 2 . The group H2.M IZ2/ is generated by the class F
of the fiber of this fibration and the class E of the exceptional curve (EDL�F , where
LD ŒCP 1� is the class of a line). A simple computation shows that HD

2 .M;LIZ2/ is
generated by half of E and half of F . We will use the same notation to refer to them.

Now, the symplectic form for the blow-up of weight � is given by Œz!�D Œ��!FS����
2e ,

where �W fCP 3 !CP 3 is the blowing-down map, and where e 2H 2. fCP 3 ;Z/ is the
Poincaré dual of †. Monotonicity then forces � to be

p
2=2. The torus T3 acts in a

Hamiltonian way on CP 3 , as follows:

.�1; �2; �3/ � Œz0 W z1 W z2 W z3�D Œz0 W e
�2�i�1z1 W e

�2�i�2z2 W e
�2�i�3z3�:

The moment map of this action is

�.Œz0 W z1 W z2 W z3�/D

�
�jz1j

2P3
iD0 jzi j

2
;

�jz2j
2P3

iD0 jzi j
2
;

�jz3j
2P3

iD0 jzi j
2

�
so that the moment polytope is given by

�D f.x1; x2; x3/ 2R3 j 0� xi ; x1C x2C x3 � �g:

This action lifts to a Hamiltonian action of T3 on the blow-up with moment map z�.
The corresponding moment polytope can be identified with

z�D
˚
.x1; x2; x3/ 2R3 j 0� x1; 0� x2; 0� x3 �

�
2
; x1C x2C x3 � �

	
:

Moreover, the restriction of z� to fRP 3 has also image z�. Now, the outward normals
to the facets are

v1D .�1; 0; 0/; v2D .0;�1; 0/; v3D .0; 0;�1/; v4D .0; 0; 1/; v5D .1; 1; 1/:

We introduce some more notation. Let ƒi , i D 1; : : : ; 5 denote the semifree Hamilton-
ian circle action fixing the facets defined by the vi . Let ƒ1=2i denote the Hamiltonian
path corresponding to half of ƒi and let Xi be formal variables representing the
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intersection of L with the divisors associated to the facets with normals vi . To
compute the quantum homology of L, first note that

P.z�/D hX1 DX2 DX5; X3 DX4CX5i;

SR.z�/D hX1X2X5 D 0; X4.X4CX5/D 0i:

Setting X DX1 and Y DX4 and applying Proposition 5.5 yields

QH�.LIƒL/D Z2ŒX; Y �Œq
�1; q�=hX3 D Yq�2; Y.X CY /D ŒL�˝ q�2i;

which is indeed isomorphic to QH�.M IƒM /.

It is not hard to see that the product YX has no quantum term. Set YX D @E . Then
Y ?Y D @EC ŒL�˝ q�2 . Thus

SL..ƒ
1=2
4 /2/D .SL.ƒ

1=2
4 //2 D .Y ? Y /˝ q2 DE˝ q2C ŒL�;

and we see a lower-order term appearing. Note however that the action of .ƒ4/2 is not
semifree on the maximum subset.

Finally, we wish to show that lower-order terms may appear when the maximum fixed
point set is of codimension strictly greater than 2 in M . Consider the circle action ƒ
associated to the combination v1C v2C v4 . The maximum fixed point set is semifree
and corresponds to the point mapped to the intersection D1\D2\D4 under z�. Then
we have

SL.ƒ/D SL.ƒ
1=2
1 / ? SL.ƒ

1=2
2 / ? SL.ƒ

1=2
4 /D .X ?X ?Y /˝ q3:

It is not hard to check that X ?X coincides with the intersection product X �X D @F .
In order to compute the lagrangian quantum product .X �X/?Y , observe that

.X �X/?Y D Œpt�C˛Y ˝ q�2CˇX ˝ q�2; ˛; ˇ 2 f0; 1g

for dimensional reasons and since F and E are the only effective Maslov-2 classes.
By a direct computation one has ˛ D 1, hence the conclusion.

Lagrangian uniruledness

Recall that, for a non-narrow lagrangian, Hn.L/˝ƒL embeds in QH�.LIƒL/ canon-
ically. We set Q� to be the complement:

Q� WDH�

�M
k<n

Critk f ˝ƒL; d
Q

�
:
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Lemma 5.10 Let L �M be a closed monotone lagrangian with NL � 2. Assume
that L is not narrow. If L is not lagrangian uniruled, all the invertible elements of
QH�.LIƒL/ can be written as

�ŒL�C x; where � 2ƒLnf0g and x 2Q� :

Proof Assuming L is not uniruled, we show that Q� is an ideal in QH�.LIƒL/. If
this is not the case, then there would exist x 2 QH�.LIƒL/ and y 2Q� such that
x ?y has a term of the type rŒL�q�.B/ , r ¤ 0. Here,

r D #2fMprod.xx; xyI ŒL�; B/g

is the number (modulo 2) of pearl configurations used in the definition of the lagrangian
quantum product between x and y . Here xx and xy denote linear combinations of
critical points representing the classes x and y (for two given Morse functions),
and Mprod.xx; xyI ŒL�; B/ stands for the moduli space of generalized pearl trajectories
representing the class B 2 H2.M;L/, starting at xx; xy , and exiting at the (unique)
maximum of a given third Morse function. We refer to [5] for further details on the
quantum lagrangian product.

Note that B ¤ 0, since otherwise r D 0, unless both xx and xy have index n. Now,
since any generic point p of L can be chosen to represent the fundamental class, this
contradicts the fact that L is uniruled. Thus, Q� is an ideal. Furthermore, since the
unit ŒL� cannot belong to Q� unless QH�.LIƒL/ vanishes, any invertible must have
such a presentation.

Now we can prove Theorem 1.4.

Theorem 1.4 Assume L is not narrow. Then the claim follows from Lemma 5.10 and
the fact that ŒL� does not appear in any lagrangian Seidel element associated to 
 by
Theorem 1.3. If L is narrow, then the fundamental class ŒL� is a dQ–boundary. Since
ŒL� is represented by the unique maximum of some generic Morse function on L, this
implies that there is a pseudoholomorphic disk through the maximum, which completes
the proof.

Remark 5.11 It is worth pointing out that the assumption on the codimension of Fmax

could probably be weakened. In fact, in the absolute case, the same conclusion as in
Theorem 1.4 holds for the ambient manifold if we assume that all pseudoholomorphic
curves (for an S1–invariant almost complex structure on M ) that intersect Fmax but
are not entirely contained in the maximal fixed point set have first Chern number
bigger than codimFmax (see [16, Theorem 1.9(iii)]). The argument in the absolute case
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relies heavily on a localization principle that enables one to characterize the (stable)
maps contributing to the nonvanishing of higher-order terms in the Seidel element
of the S1–action. More precisely, McDuff and Tolman observed that contributions
come from the fixed points of a T2–action on the (compactified) moduli space of
pseudoholomorphic sections in the Hamiltonian fibration induced by the S1–action
on M . Those fixed points are usually not regular as stable maps.

The author thinks that a statement analogous to [16, Theorem 1.9(iii)] should also
hold in the present framework, and more precisely that nonvanishing terms in the
lagrangian Seidel element should arise from fixed point sets of some Z2–action on the
compactified moduli space of pearls (induced from a choice of S1–invariant almost
complex structure on the ambient space). Nevertheless, the tools used in the present
paper are insufficient to provide a rigorous proof of this, the main issue being the lack
of regularity of symmetric almost complex structures and a localization principle in the
relative case.
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