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A topologically minimal, weakly reducible, unstabilized
Heegaard splitting of genus three is critical

JUNGSOO KIM

Let .V;WIF / be a weakly reducible unstabilized genus three Heegaard splitting in
an orientable, irreducible 3–manifold M. In this article, we prove that either the disk
complex D.F / is contractible or F is critical. Hence, the topological index of F

is 2 if F is topologically minimal.

57M50

1 Introduction and result

Throughout this paper, all surfaces and 3–manifolds will be taken to be compact
and orientable. Bachman introduced the concept of a critical surface [1] and proved
that a critical surface intersects an incompressible surface such that the intersection
is essential on both surfaces up to isotopy in an irreducible manifold. A strongly
irreducible Heegaard surface also has this property, as seen in Schultens [19]. In a
subsequent paper [2], he generalized the definition of critical surface for the proof of
Gordon’s conjecture using the notation from the standard disk complex. Moreover, he
defined the concept of a topologically minimal surface, which includes incompressible
surfaces, strongly irreducible surfaces, critical surfaces, and so on; the topologically
minimal surfaces are distinguished by the topological index [3]. Indeed, he proved that
a topologically minimal surface also intersects an incompressible surface such that the
intersection is essential on both surfaces up to isotopy in an irreducible manifold. He
also found counterexamples to the stabilization conjecture using this concept [7]. In a
series of articles [4; 5; 6], he proved that there is a resemblance between a topologically
minimal surface and a geometrically minimal surface.

In recent results, including the author’s works, several examples of critical Heegaard
surfaces were found and most of them are easily constructible; see Bachman and Johnson
[8], Lee [14], Lei and Qiang [9], and Kim [12; 13]. Hence, it is now conjectured that
it is more common for a weakly reducible surface to be topologically minimal than
not. Indeed, the condition that the disk complex is noncontractible for a topologically
minimal surface seems to be more common than the contrary.

In this article, we will prove the following theorem, giving evidence for an affirmative
answer to this question.
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Theorem 1.1 Let .V;WIF / be a weakly reducible unstabilized genus three Heegaard
splitting in an orientable, irreducible 3–manifold M. If every weak reducing pair of F

gives the same generalized Heegaard splitting after weak reduction, and the embedding
of each thick level in the relevant compression body is unique up to isotopy, then the
disk complex D.F / is contractible. Otherwise, F is critical.

Note that the author proved that if a weakly reducible unstabilized genus-three Heegaard
splitting in an orientable, irreducible 3–manifold is topologically minimal, then the
topological index is at most 4 [12], and Theorem 1.1 improves the upper bound of
the topological index, that is, the topological index is 2 if F is topologically minimal.
Since there exist many unstabilized critical Heegaard surfaces of genus three, this upper
bound is sharp.
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2 Preliminaries

Definition 2.1 A compression body is a 3–manifold which can be obtained by starting
with a closed orientable connected surface F , forming the product F � I , attaching
some number of 2–handles to F�f1g, and capping off all resulting 2–sphere boundary
components that are not contained in F � f0g with 3–balls. The boundary component
F � f0g is referred to as @C . The rest of the boundary is referred to as @� .

Definition 2.2 A Heegaard splitting of a 3–manifold M is an expression of M as a
union V [F W , denoted as .V;WIF / (or .V;W/ if necessary), where V and W are
compression bodies that intersect in a transversally oriented surface F D @CV D @CW .
We say F is the Heegaard surface of this splitting. If V or W is homeomorphic to a
product, then we say the splitting is trivial. If there are compressing disks V � V and
W �W such that V \W D∅, then we say the splitting is weakly reducible and call
the pair .V;W / a weak reducing pair. If .V;W / is a weak reducing pair and @V is
isotopic to @W in F , then we call .V;W / a reducing pair. If the splitting is not trivial
and we cannot take a weak reducing pair, then we call the splitting strongly irreducible.
If there is a pair of compressing disks .V ;W / such that V intersects W transversely
in a point in F , then we call this pair a canceling pair and say the splitting is stabilized.
Otherwise, we say the splitting is unstabilized.
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Definition 2.3 Let F be a surface of genus at least 2 in a compact, orientable 3–
manifold M. Then the disk complex D.F / is defined as follows:

(1) Vertices of D.F / are isotopy classes of compressing disks for F .

(2) A set of mC1 vertices forms an m–simplex if there are representatives for each
that are pairwise disjoint.

Definition 2.4 (Bachman [3]) The homotopy index of a complex � is defined to
be 0 if � D∅, and defined to be n for the smallest n such that �n�1.�/ is nontrivial,
otherwise. We say a separating surface F with no torus components is topologically
minimal if its disk complex D.F / is either empty or noncontractible. When F is
topologically minimal, we say its topological index is the homotopy index of D.F /.
If F is topologically minimal and its topological index is 2, then we call F a critical
surface.

Note that Bachman originally defined a critical surface in a different way in [2] and
proved its equivalence to being index-two in [3].

Definition 2.5 Consider a Heegaard splitting .V;WIF / of an orientable, irreducible
3–manifold M. Let DV.F / and DW.F / be the subcomplexes of D.F / spanned
by compressing disks in V and W , respectively; see [16, Section 5]. We call these
subcomplexes the disk complexes of V and W . Let DVW.F / be the subset of D.F /
consisting of the simplices with at least one vertex from DV.F / and at least one vertex
from DW.F /.

Theorem 2.6 (McCullough [16, Theorem 5.3]) DV.F / and DW.F / are contractible.

Note that D.F /D DV.F /[DVW.F /[DW.F /.

From now on, we will consider only unstabilized Heegaard splittings of an irreducible
3–manifold. If a Heegaard splitting of a compact 3–manifold has a reducing pair,
then the manifold is reducible or the splitting is stabilized; see Saito, Scharlemann and
Schultens [17]. Hence, we can exclude the possibilities of reducing pairs among weak
reducing pairs.

Definition 2.7 Suppose W is a compressing disk for F �M. Then there is a subset
of M that can be identified with W � I so that W DW �

˚
1
2

	
and F \ .W � I/D

.@W / � I . We form the surface FW , obtained by compressing F along W , by
removing .@W /� I from F and replacing it with W � .@I/. We say the two disks
W � .@I/ in FW are the scars of W .
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Lemma 2.8 (Lustig and Moriah [15, Lemma 1.1]) Suppose that M is an irreducible
3–manifold and .V;WIF / is an unstabilized Heegaard splitting of M. If F 0 is obtained
by compressing F along a collection of pairwise disjoint disks, then no S2 component
of F 0 can have scars from disks in both V and W .

Lemma 2.9 (Kim [12, Lemma 2.9]) Suppose that M is an irreducible 3–manifold
and .V;WIF / is an unstabilized genus-three Heegaard splitting of M. If there exist
three mutually disjoint compressing disks V , V 0 � V and W �W , then either V is
isotopic to V 0 in V , or one of @V and @V 0 bounds a punctured torus T in F and the
other is a nonseparating loop in T . Moreover, we cannot choose three weak reducing
pairs .V0;W /, .V1;W /, and .V2;W / such that Vi and Vj are mutually disjoint and
nonisotopic in V for i ¤ j .

The next is the definition of generalized Heegaard splitting originated from Scharlemann
and Thompson [18].

Definition 2.10 (Bachman [2, Definition 4.1]) A generalized Heegaard splitting
(GHS) H of a 3–manifold M is a pair of sets of pairwise disjoint, transversally
oriented, connected surfaces, Thick.H / and Thin.H / (called the thick levels and thin
levels, respectively), which satisfies the following conditions:

(1) Each component M 0 of M�Thin.H / meets a unique element HC of Thick.H /

and HC is a Heegaard surface in M 0 . Henceforth we will denote the closure of
the component of M �Thin.H / that contains an element HC 2 Thick.H / as
M.HC/.

(2) As each Heegaard surface HC � M.HC/ is transversally oriented, we can
consistently talk about the points of M.HC/ that are “above” or “below” HC .
Suppose H� 2 Thin.H /. Let M.HC/ and M.H 0C/ be the submanifolds on
each side of H� . Then H� is below HC if and only if it is above H 0C .

(3) There is a partial ordering on the elements of Thin.H / which satisfies the
following: suppose HC is an element of Thick.H /, H� is a component of
@M.HC/ above HC and H 0� is a component of @M.HC/ below HC ; then
H� >H 0� .

We denote the maximal subset of Thin.H / consisting of surfaces only in the interior
of M as Thin.H / and call it the inner thin level. A GHS in this article is the same as
a pseudo-GHS in [2] since we allow a GHS to have product compression bodies and
we do not encounter thin 2–spheres.
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Figure 1: Preweak reduction.

Definition 2.11 (Bachman [2, Definitions 5.2, 5.3 and 5.6]) Let M be a compact,
orientable 3–manifold. Let H be a Heegaard splitting of M , that is, Thick.H /DfFg

and Thin.H / consists of @M. Let V and W be disjoint compressing disks of F from
the opposite sides of F such that FV W has no 2–sphere component. (Lemma 2.8
guarantees that FV W will not have a 2–sphere component in the proof of Theorem 1.1.)
Define

Thick.G 0/D .Thick.H /�fFg/[fFV ;FW g;

Thin.G 0/D Thin.H /[fFV W g;

where we assume that each element of Thick.G 0/ belongs to the interior of V or W
by slightly pushing off FV or FW into the interior of V or W , respectively, then
also assume that they miss FV W . We say the GHS G 0 D fThick.G 0/;Thin.G 0/g
is obtained from H by preweak reduction along .V;W /. The relative position of
the elements of Thick.G 0/ and Thin.G 0/ follows the order described in Figure 1. If
there are elements S 2 Thick.G 0/ and s 2 Thin.G 0/ that cobound a product region P

of M such that P \ Thick.G 0/ D S and P \ Thin.G 0/ D s then remove S from
Thick.G 0/ and s from Thin.G 0/. If we repeat this procedure until there are no such
two elements of Thick.G 0/ and Thin.G 0/, then we get the resulting GHS G of M

from the GHS G 0 [2, Lemma 5.4], and we say G is obtained from G 0 by cleaning.
We say the GHS G of M given by preweak reduction along .V;W /, followed by
cleaning, is obtained from H by weak reduction along .V;W /.

Definition 2.12 (Kim [13, Definition 2.12]) In a weak reducing pair for a Heegaard
splitting .V;WIF /, if a disk belongs to V , then we call it a V –disk. Otherwise, we call
it a W –disk. We call a 2–simplex in DVW.F / represented by two vertices in DV.F /

and one vertex in DW.F / a V –face, and likewise define a W –face. Let us consider a
1–dimensional graph as follows:

(1) We assign a vertex to each V –face in DVW.F /.

(2) If a V –face shares a weak reducing pair with another V –face, then we assign an
edge between these two vertices in the graph.

Algebraic & Geometric Topology, Volume 16 (2016)



1432 Jungsoo Kim

We call this graph the graph of V–faces. If there is a maximal subset "V of V–faces
in DVW.F / representing a connected component of the graph of V–faces and the
component is not an isolated vertex, then we call "V a V –facial cluster. Similarly, we
define the graph of W –faces and a W –facial cluster. In a V –facial cluster, every weak
reducing pair gives the common W –disk, and vice versa.

If we consider an unstabilized genus-three Heegaard splitting of an irreducible manifold,
we obtain the following lemmas.

Lemma 2.13 (Kim [13, Lemma 2.13]) Suppose that M is an irreducible 3–manifold
and .V;WIF / is an unstabilized genus-three Heegaard splitting of M. If there are two
V –faces f1 represented by fV0;V1;W g and f2 represented by fV1;V2;W g sharing a
weak reducing pair .V1;W /, then @V1 is nonseparating, and @V0 , @V2 are separating
in F . Therefore, there is a unique weak reducing pair in a V –facial cluster which can
belong to two or more faces in the V –facial cluster.

Definition 2.14 (Kim [13, Definition 2.14]) By Lemma 2.13, there is a unique weak
reducing pair in a V–facial cluster belonging to two or more faces in the cluster. We
call it the center of the cluster, and call the other weak reducing pairs hands of the
cluster; see Figure 2.

Lemma 2.15 (Kim [13, Lemma 2.15]) Let M and F be as in Lemma 2.13. Every V –
face belongs to some V –facial cluster. Moreover, every V –facial cluster has infinitely
many hands.

Note that if a V –face is represented by two weak reducing pairs, then one is the center
and the other is a hand. Lemma 2.13 means that the V –disk in the center of a V –facial
cluster is nonseparating, and those from hands are all separating. Moreover, Lemma 2.9
implies that the V –disk of a hand of a V –facial cluster (i) is a band-sum of two parallel
copies of the V –disk of the center of the cluster, and (ii) determines the V –disk of the
center by the uniqueness of the meridian disk of the solid torus cut off from V by the
V –disk of the hand.

Note also that every V – or W –facial cluster is contractible (see Figure 2).

The following lemma means that the isotopy class of the generalized Heegaard splitting
obtained by weak reduction along a weak reducing pair does not depend on the choice
of the weak reducing pair if the weak reducing pair varies in a fixed V – or W –facial
cluster.

Algebraic & Geometric Topology, Volume 16 (2016)



Topologically minimal, weakly reducible, unstabilized Heegaard splitting of genus three 1433

W

V1

V2

V0

V3

V4

: : :
:::

Figure 2: An example of a V –facial cluster in DVW.F / . .V0;W / is the
center and the other weak reducing pairs are hands.

Lemma 2.16 Let M and F be as in Lemma 2.13. Every weak reducing pair in a
V –face gives the same generalized Heegaard splitting after weak reduction up to isotopy.
Therefore, every weak reducing pair in a V–facial cluster gives the same generalized
Heegaard splitting after weak reduction up to isotopy. Moreover, the embedding of the
thick level contained in V or W does not vary in the relevant compression body up to
isotopy.

Proof Let .V;W / be the center of a V–facial cluster and .V 0;W / be a hand of the
V –facial cluster. Here, V is nonseparating while V 0 is separating in V by Lemma 2.13.
Let H and H 0 be the generalized Heegaard splittings obtained by weak reductions
along .V;W / and .V 0;W / from .V;WIF /, respectively. It is sufficient to show that
H and H 0 are the same up to isotopy.

Claim Both Thin.H / and Thin.H 0/ consist of one component.

Proof of claim Suppose that Thin.H / or Thin.H 0/ does not consist of one compo-
nent. We claim that each component of the inner thin level of the generalized Heegaard
splitting obtained by weak reduction must have scars of both disks of the weak reducing
pair. Let us consider an arbitrary weak reducing pair .D;E/. Then @E must belong
to the genus-two component of F � @D by Lemma 2.8 and vice versa. Hence, we get
the following in the GHS obtained by the preweak reduction along .D;E/:

(1) FDE has a component without scars of both D and E if and only if at least
one of D or E is separating.

(2) If one of D and E is separating, say D , then we can find a product region in the
GHS cobounded by the isotoped genus-one component of FD into the interior
of V and the torus component of FDE with only the scar of D .

Therefore, every component of FDE without scars of both D and E disappears after
cleaning; see Figure 3 or Figure 5.
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Figure 3: The inner thin level comes from the component of FV W with scars
of both V and W after cleaning.

Hence, if we try all possible weak reductions by considering Lemma 2.8 (see the Ap-
pendix), then the only case for disconnected inner thin level is when both disks are
nonseparating but the union of boundaries of them is separating in F , that is, the inner
thin level consists of two tori (see Figure 4). This means that Thin.H 0/ must consist
of only one component since V 0 is separating. Hence, Thin.H / is disconnected, that
is, W is nonseparating and @V [ @W is separating in F . But Lemma 2.9 forces V 0

to be a band–sum of two parallel copies of V . Here, V 0 must intersect W otherwise
we can find an arc in F realizing the band–sum but missing @W , that is, @V [ @W is
nonseparating, violating the assumption that @V [ @W is separating in F . But this
violates the assumption that .V 0;W / is a weak reducing pair.

This completes the proof of the claim.

Recall that given a GHS G 0 obtained by preweak reduction along a weak reducing
pair .D;E/, the isotoped genus-one component of FD into V in Thick.G 0/ disappears
after cleaning when D is separating, as we have seen in the proof of the claim and the
symmetric argument also holds for the isotoped genus-one component of FE into W
in Thick.G 0/ when E is separating.

Hence, considering Thick.H / and Thin.H /,

Thick.H /D fFV ;FW g and Thin.H /D fFV W g;

where FW comes from the genus-two component of FW and FV W is the component
of FV W with scars of both V and W (if there is no confusion, then we will use the
terms FV or FV as the component isotoped into the interior of V for the cases of
thick levels).
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Similarly, for Thick.H 0/ and Thin.H 0/,

Thick.H 0/D fFV 0 ;FW g and Thin.H 0/D fFV 0W g;

where FV 0 comes from the genus-two component of FV 0 and FV 0W is the component
of FV 0W with scars of both V 0 and W . Here, V 0 must cut off a solid torus V 0 from V
and V is a meridian disk of V 0 by Lemma 2.9, that is, FV is isotopic to FV 0 in V , so it
is in M. Moreover, FV W is isotopic to FV 0W similarly, since @W must belong to the
genus-two component of F�@V 0 by Lemma 2.8. Hence, Thick.H /DThick.H 0/ and
Thin.H /D Thin.H 0/ up to isotopy and indeed we can naturally imagine the ambient
isotopy moving H into H 0 . This completes the first and the second statements.

The last statement has already been proven in the previous paragraph. This completes
the proof of Lemma 2.16.

The next lemma gives an upper bound for the dimension of DVW.F / and restricts the
shape of a 3–simplex in DVW.F /.

Lemma 2.17 (Kim [12, Proposition 2.10]) Let M and F be as in Lemma 2.13.
Then dim.DVW.F // � 3. Moreover, if dim.DVW.F // D 3, then every 3–simplex
in DVW.F / must have the form fV1;V2;W1;W2g, where V1;V2�V and W1;W2�W .
Indeed, V1 (resp W1 ) is nonseparating in V (resp in W ) and V2 (resp W2 ) is a band–
sum of two parallel copies of V1 in V (resp W1 in W ).

Note that the third statement of Lemma 2.17 is obtained by applying Lemma 2.9 to the
V –face fV1;V2;W1g and the W –face fV2;W1;W2g.

The next lemma gives natural but important observations for genus g � 2 compression
bodies containing a negative boundary component of genus g� 1. The proof comes
from a standard outermost disk argument for the intersection of two compressing disks
in V when we consider the uniqueness of the desired disk. We can find a rigorous
proof in Ido, Jang and Kobayashi [11, Lemma 3.3].

Lemma 2.18 Let V be a genus g� 2 compression body with @�V containing a genus
g� 1 surface. Then the following hold:

(1) If @�V is connected (that is, @�V consists of a genus g� 1 surface), then there
is a unique nonseparating disk in V up to isotopy.

(2) If @�V is disconnected (that is, @�V consists of a genus g � 1 surface and a
torus), then there is a unique compressing disk in V up to isotopy and it is a
separating disk.
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3 The proof of Theorem 1.1

Lemma 3.1 Suppose that M is an orientable, irreducible 3–manifold and .V;WIF /
is an unstabilized genus-three Heegaard splitting of M. If there exist two weak reducing
pairs such that the generalized Heegaard splittings obtained by weak reductions along
these weak reducing pairs are not isotopic in M , then F is critical.

Before proving Lemma 3.1, we introduce the notion of distance between two weak
reducing pairs.

Definition 3.2 (Bachman [2, Definition 8.3]) Suppose F is a Heegaard surface in a
3–manifold. Let .Vi ;Wi/ be a weak reducing pair for F for i D 0; 1. Then we define
the distance between .V0;W0/ and .V1;W1/ to be the smallest n for which there is a
sequence fDj g

nC1
jD0

such that

(1) fD0;D1g D fV0;W0g,

(2) fDn;DnC1g D fV1;W1g,

(3) for all j the pair fDj ;DjC1g gives a weak reducing pair for F ,

(4) for 1� j � n, Dj�1 is disjoint from, or equal to, DjC1 .

If there is no such sequence, then we define the distance to be 1.

Lemma 3.3 (Bachman [2, Lemma 8.5]) Suppose F is a Heegaard surface in a 3–
manifold. If there are weak reducing pairs .V;W / and .V 0;W 0/ for F such that the
distance between them is 1, then F is critical.

Proof of Lemma 3.1 Suppose that there are two weak reducing pairs .V;W / and
.V 0;W 0/ for .V;WIF / such that the generalized Heegaard splittings H and H 0

obtained by weak reductions along these pairs are not isotopic in M.

If the distance between .V;W / and .V 0;W 0/ is 1, then F is critical by Lemma 3.3.

Assume that the distance between .V;W / and .V 0;W 0/ is k <1. If k � 1, then
either .V;W /D .V 0;W 0/ or they are contained in a V– or W–face. This leads to a
contradiction by Lemma 2.16. Hence, assume that k�2. Let fD0;D1; : : : ;Dk ;DkC1g

be the sequence of compressing disks of F realizing the distance between .V;W /

and .V 0;W 0/, where fD0;D1g D fV;W g and fDk ;DkC1g D fV
0;W 0g. Reading the

above sequence from left to right, we get a sequence of V – and W –faces �0; : : : ; �n

such that

(1) .V;W /��0 and .V 0;W 0/��n ,

(2) �i�1 shares a weak reducing pair with �i for i D 1; : : : ; n.
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Figure 4: The inner thin level consists of two tori.

If we consider the generalized Heegaard splitting corresponding to �i inductively from
iD0 to n using Lemma 2.16 and the assumption that �i�1 shares a weak reducing pair
with �i , then we see that H and H 0 are isotopic, violating the assumption. Hence, the
distance between .V;W / and .V 0;W 0/ cannot be finite. This completes the proof.

Let .V;WIF / be a weakly reducible unstabilized genus-three Heegaard splitting of an
irreducible 3–manifold M. Considering Lemma 3.1, we assume that the generalized
Heegaard splitting obtained by weak reduction from .V;WIF / is unique up to isotopy.
Considering the generalized Heegaard splitting obtained by weak reduction along
.V;W / from .V;WIF /, the inner thin level would consist of a torus or two tori, where
the latter case holds only when both disks of the weak reducing pair are nonseparating
but the union of the boundaries is separating in F , as we have checked in the proof
of Lemma 2.16; see Figure 4. The thick levels would come from the genus-two
components of FV and FW , say FV and FW , as we have checked in the proof of
Lemma 2.16. But even though we assumed that the generalized Heegaard splitting
obtained by weak reduction from .V;WIF / is unique up to isotopy, it is not clear that
both FV and FW should be unique up to isotopy in V and W , respectively, not in
the entire M. Indeed, we can imagine an ambient isotopy ft defined on M such that
f0 is the identity map on M , f1.FV /\W D∅, FV is not isotopic to f1.FV / in V ,
and ft .FV /\W ¤∅ for some t . If the isotoped generalized Heegaard splitting itself
is also that obtained by weak reduction from .V;WIF /, then there would be another
weak reducing pair .V 0;W 0/ for .V;WIF / such that f1.FV / is isotopic to the one
obtained by pushing the genus-two component of FV 0 off into the interior of V in V
but V is not isotopic to V 0 in V . Hence, we need the following lemma.

Lemma 3.4 Let M and F be as in Lemma 3.1. Suppose that there are two generalized
Heegaard splittings H1 and H2 obtained by weak reductions along .V1;W1/ and
.V2;W2/ from .V;WIF /, respectively, such that the thick levels of H1 and H2

embedded in the interior of V are nonisotopic in V . (It may be possible that H1 is the
same as H2 in M up to isotopy.) Then F is critical.
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Figure 5: W1\W Š FW � I and V2\V Š FV � I .

Proof Say Hi D .V i
1
;V i

2
IFVi

/ [ .W i
1
;W i

2
IFWi

/, where @�V i
2
\ @�W i

1
¤ ∅ and

let V 0i be the region between FVi
and @CV in V for i D 1; 2. We can see that V 0i is a

genus-three compression body, where either @�V 0i consists of (i) a genus-two surface
if @�V 0i is connected or (ii) a torus and a genus-two surface if @�V 0i is disconnected
for i D 1; 2, and Vi is a compressing disk of V 0i for i D 1; 2 by construction.

Claim If one of @�V 01 and @�V 02 is connected and the other is disconnected, then F

is critical.

Proof of claim Suppose that @�V 01 is connected but @�V 02 is disconnected.

Considering V1 , we see that either V1 is nonseparating in V , or V1 cuts off a solid
torus from V since @�V 01 is connected. If @�W1

1
has a component not belonging to

the inner thin level, then this component cannot come from @�W since W1
1
\W is the

region in W between the thick level FW1
and the genus-two component of FW1

which
is homeomorphic to FW1

� I ; see Figure 5. Hence, this component comes from @�V
after cleaning (see Figure 6(b) or (c), where @�V comes from the top horizontal line)
and therefore V1 must cut off (torus)�I from V , violating the assumption. Therefore,
@�W1

1
is the inner thin level itself, that is, @�W1

1
\ @�V D∅.

Now we consider V2 . Since V 0
2

is a genus-three compression body such that @�V 02
consists of a torus and a genus-two surface, V2 must cut off (torus)� I from V by
Lemma 2.18. Hence, the region cut by a copy of V2 from V which is homeomorphic to
(torus)� I would be attached to the product region in W between the thick level FW2

and the genus-two component of FW2
to complete W2

1
; see Figure 5 or Figure 6(b)

or (c). That is, @�W2
1
\ @�V ¤∅.

This means that if H1 is isotopic to H2 , then the isotopy cannot take W1
1

into W2
1

,
that is, it takes V1

2
into W2

1
since the isotopy takes the inner thin level of H1 into

that of H2 . But @�V1
2
\ @M � @�W if it is nonempty (for example, we can refer
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to Figure 6(c)). Since the isotopy cannot change @�V1
2
\ @M , we conclude that H1

cannot be isotopic to H2 in M. Therefore, F is critical by Lemma 3.1. This completes
the proof of the claim.

By the claim, we can assume that both @�V 01 and @�V 02 are connected or both @�V 01
and @�V 02 are disconnected. If V1 is isotopic to V2 in V , then FV1

would be isotopic
to FV2

in V in any case, violating the assumption. Hence, V1 is not isotopic to V2

in V .

Suppose that both @�V 01 and @�V 02 are connected. If Vi is separating in V 0i , then it
must cut off a solid torus from V 0i since V 0i is a genus-three compression body such that
@�V 0i consists of a genus-two surface. Hence, we can take a meridian disk V 0i of the
solid torus that Vi cuts off from V 0i so that it would miss Vi . Moreover, V 0i \Wi D∅
by Lemma 2.8. That is, we get the V –face fV 0i ;Vi ;Wig. Hence, we can assume that Vi

is nonseparating without changing the isotopy class of Hi and the embedding of FVi

in V up to isotopy by Lemma 2.16. Since V1 is not isotopic to V2 in V and both disks
are nonseparating in V , F is critical by Kim [12, Theorem 1.1].

Hence, we can assume that both @�V 01 and @�V 02 are disconnected, that is, each Vi

cuts off (torus)�I from V 0i , so also does in V , for i D 1; 2. We claim that the distance
defined in Definition 3.2 between .V1;W1/ and .V2;W2/ is 1.

For the sake of contradiction, assume that the distance is finite. Then we get a sequence
of V – and W –faces �0; : : : ; �n such that

(1) .V1;W1/��0 and .V2;W2/��n ,

(2) �i�1 shares a weak reducing pair with �i for i D 1; : : : ; n,

similar to the proof of Lemma 3.1. Since V1 is not isotopic to V2 in V , there must
be a V–face among �0; : : : ; �n . Let �k be the first V–face, that is, it contains V1 .
Here, every V –face contains a nonseparating V –disk and the boundary of it must be a
nonseparating loop in the punctured torus that the boundary of the separating V –disk
in the V–face cuts off from F by Lemma 2.9. But the condition that V1 cuts off
(torus)� I from V means that there cannot be such a nonseparating V–disk in �k ,
leading to a contradiction.

Hence, the distance between .V1;W1/ and .V2;W2/ is 1, that is, F is critical by
Lemma 3.3. This completes the proof of Lemma 3.4.

The next lemma deals with the case where the inner thin level consists of a torus.
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Lemma 3.5 Let .V;WIF / be a weakly reducible unstabilized genus-three Heegaard
splitting in an orientable irreducible 3–manifold. If every weak reducing pair of F

gives the same generalized Heegaard splitting obtained by weak reduction up to isotopy
such that the inner thin level consists of a torus and the embedding of each thick level
in the relevant compression body is unique up to isotopy, then D.F / is contractible.

Proof Let .V;W / be a weak reducing pair for .V;WIF / and T the inner thin level
of the generalized Heegaard splitting obtained by weak reduction.

If one of V or W , say V , cuts off a solid torus from V , then @W cannot belong to the
once-punctured torus that @V cuts off from F by Lemma 2.8. Hence, we can take a
nonseparating disk V 0 from the solid torus and we can assume that V 0\.V [W /D∅.
Of course, the generalized Heegaard splitting obtained by weak reduction along .V;W /

is the same as the one obtained along .V 0;W / and the embeddings of thick levels in
the relevant compression bodies are the same up to isotopy by Lemma 2.16. Hence,
without loss of generality, there are three types of the generalized Heegaard splittings
obtained by weak reductions as follows, where these cases come from the shape of the
two compression bodies sharing the inner thin level.

Case (a) V and W are nonseparating in V and W , respectively, that is, the negative
boundaries of the two compression bodies are connected (see Figure 6(a)).

Case (b) V cuts off (torus) � I from V and W is nonseparating in W , that is,
the negative boundary of one compression body is connected but that of the other is
disconnected (see Figure 6(b)).

Case (c) V and W each cut off (torus)� I from V and W , respectively, that is, the
negative boundaries of the two compression bodies are disconnected (see Figure 6(c)).

These three cases are mutually exclusive by the assumption that the generalized Hee-
gaard splitting obtained by weak reduction is unique up to isotopy. Note that there is
the symmetric case for Case (b) when W cuts off (torus)�I from W , but the shape of
the generalized Heegaard splitting is just the one obtained by turning the figure upside
down.

In Case (a), @V [ @W is nonseparating in F since the inner thin level consists of a
torus.

Let us consider the generalized Heegaard splitting obtained by weak reduction along
.V;W /. Here, we can see that the preweak reduction along .V;W / is exactly the same
as the weak reduction along .V;W /. Hence, it consists of two splittings .V1;V2IFV /

and .W1;W2IFW / such that @�V2 D @�W1 D T . Let V 0 (resp W 0 ) be the region
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(a) (b) (c)
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FV W

FW

cleaning

cleaning

cleaning

a torus
in ²�V

a torus
in ²�W

a torus
in ²�V

Figure 6: The GHSs for the three cases.

between @CV and FV in V (resp @CW and FW in W ). Then we can see that V

and W are nonseparating compressing disks of V 0 and W 0 , respectively. Since V 0

and W 0 are genus-three compression bodies with negative boundary consisting of a
genus-two surface, V and W are uniquely determined in V 0 and W 0 , respectively, up
to isotopy. Hence, we get the induced isotopy classes of V and W in V and W from
the isotopy classes of V and W in V 0 and W 0 , respectively. Moreover, the uniqueness
of the isotopy classes of the embeddings of the thick levels of the generalized Heegaard
splitting obtained by weak reduction from .V;WIF / in the relevant compression
bodies forces the choice of the induced isotopy classes of V and W in V and W to be
unique. This means that we can consider the weak reducing pair .V;W / as the fixed
pair .V ;W / even though we’ve chosen an arbitrary weak reducing pair consisting of
nonseparating disks.

Let us consider an arbitrary weak reducing pair .V �;W �/ for .V;WIF /.

If both V � and W � are nonseparating, then .V �;W �/ must be .V ;W / by the previous
argument, and therefore @V �[ @W � is nonseparating in F . This means that we can
take a band–sum of two parallel copies of V � in V , say V 0 , and a band–sum of two
parallel copies of W � in W , say W 0 , such that fV 0;V � D V ;W � DW ;W 0g forms
a 3–simplex.

If exactly one of V � and W � is nonseparating, say V � , then W � must cut off a
solid torus from W (otherwise, W � cuts off (torus)� I from W and therefore the
generalized Heegaard splitting obtained by weak reduction along .V �;W �/ would be
the symmetric case of Case (b) or Case (c), violating the uniqueness of the generalized
Heegaard splitting obtained by weak reduction up to isotopy). Here, @V � belongs to
the genus-two component of F�@W � by Lemma 2.8 and therefore we can take a band–
sum of two parallel copies of V � in V which misses W �, say V 0. If we choose the
meridian disk of the solid torus which W � cuts off from W so that it would miss W �,
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say zW , then zW also misses V � and V 0. That is, fV 0;V �; zW ;W �g forms a 3–simplex
in DVW.F / and the weak reducing pair .V �; zW / consisting of nonseparating disks
must be .V ;W / by the previous argument.

If both V � and W � are separating, then we can find a weak reducing pair . zV ; zW /

consisting of nonseparating disks, where zV (resp zW ) comes from the meridian disk
of the solid torus which V � (resp W � ) cuts off from the corresponding compression
body. Here, we can assume that zV [ zW misses V �[W � , that is, fV �; zV ; zW ;W �g

forms a 3–simplex in DVW.F /. If we apply the previous argument to . zV ; zW /, then
. zV ; zW / would be .V ;W /.

This means that an arbitrary weak reducing pair .V �;W �/ of .V;WIF / belongs to
some 3–simplex of the form †V 0W 0 D fV

0;V ;W ;W 0g in DVW.F / containing the
fixed 1–simplex fV ;W g, where V 0 � V and W 0 �W are band–sums of two parallel
copies of V and W in V and W respectively by Lemma 2.17.

Claim A DVW.F /D
S

V 0;W 0 †V 0W 0 for all possible V 0 and W 0 .

Proof of Claim A Since
S

V 0;W 0 †V 0W 0 � DVW.F / is obvious, we will prove that
every simplex of DVW.F / belongs to some †V 0W 0 .

By definition of DVW.F / and the assumption that every weak reducing pair belongs
to some †V 0W 0 , we don’t need to consider vertices or 1–simplices in DVW.F /.

If there is a 2–simplex � in DVW.F /, then it must be a V –face or a W –face. Otherwise,
we can assume that �� DV.F / without loss of generality and there must be a vertex
in DW.F / such that � forms a 3–simplex in DVW.F / together with this vertex by
the definition of DVW.F /. Hence, three vertices of the 3–simplex come from DV.F /,
violating Lemma 2.17. Without loss of generality, suppose that � is a V–face. That
is, there is a nonseparating V–disk and a separating V–disk in � by Lemma 2.9.
If the W–disk of � is separating, then it cannot cut off (torus)� I from W by the
uniqueness of the generalized Heegaard splitting obtained by weak reduction (otherwise,
the generalized Heegaard splitting obtained by weak reduction along a weak reducing
pair containing the W –disk would be that of the symmetric case of Case (b) or Case
(c)), that is, it cuts off a solid torus from W . Hence, we can choose a meridian disk zW
of the solid torus which the W –disk cuts off from W and it misses three vertices of �
by Lemma 2.8. Hence, � and zW form a 3–simplex in DVW.F /. If the W –disk of �
is nonseparating, then the boundary of this W –disk must be contained in the genus-two
component which the boundary of the separating V–disk of � cuts off from F by
Lemma 2.8 and the boundary of the nonseparating V–disk of � must be contained
in the genus-one component by Lemma 2.9. Hence, it is easy to find a band–sum
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of two parallel copies of the W–disk in W so that it misses the three disks of �,
say W 0 , that is, � and W 0 form a 3–simplex in DVW.F /. In any case, � belongs to
a 3–simplex †, but † must contain a weak reducing pair consisting of nonseparating
disks by Lemma 2.17. Since the choice of such a weak reducing pair is unique as
.V ;W / by the previous argument, † is of the form †V 0W 0 , leading to the result.

If there is a 3–simplex †0 in DVW.F /, then it must contain a weak reducing pair
consisting of nonseparating disks by Lemma 2.17. But we can see that this weak
reducing pair must be .V ;W / by the previous argument. Therefore, †0 is of the
form †V 0W 0 , proving the claim.

We don’t need to consider higher-dimensional simplices in DVW.F / by Lemma 2.17.
This completes the proof of Claim A.

By Claim A, DVW.F / D
S

V 0;W 0 †V 0W 0 for all possible V 0 and W 0 . Hence, we
can see that DVW.F /\DV.F / is a star-shaped graph since every 3–simplex †V 0W 0

intersects DV.F / in an edge and the intersections coming from these 3–simplices have
the common vertex V . The symmetric argument also holds for DVW.F /\DW.F /.
Moreover, we can see that if †V 0W 0 ¤†V 00W 00 , then †V 0W 0\†V 00W 00 is either (i) the
weak reducing pair fV ;W g, (ii) the V–face fV 0 D V 00;V ;W g or (iii) the W–face
fV ;W ;W 0 DW 00g.

Claim B D.F / is contractible.

Proof of Claim B Consider D.F /. We have

D.F /D DV.F /[DVW.F /[DW.F /;

where the following hold:

(1) DVW.F /\DV.F / is a star-shaped graph,

(2) DVW.F /\DW.F / is a star-shaped graph, and

(3) DV.F /\DW.F /D∅.

In [16, Section 5], McCullough proved that DV.F / and DW.F / are contractible
(Theorem 2.6) in the sense that they are CW–complexes. Moreover, we can consider
DVW.F / as a CW–complex. Recall that DVW.F /D

S
V 0;W 0 †V 0W 0 for all possible

V 0 and W 0 by Claim A, where †V 0W 0 is the 3–simplex fV 0;V ;W ;W 0g. Hence,
we can construct DVW.F / from discrete 0–cells (the vertices of the two star-shaped
graphs DVW.F /\DV.F / and DVW.F /\DW.F /), followed by 1–cells (consider the
edges of each †V 0W 0 ), followed by 2–cells (consider the faces of each †V 0W 0 ), and
finally followed by 3–cells (consider each †V 0W 0 itself) via attaching maps as in the
inductive definition of CW–complex.
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Figure 7: DVW.F / is contractible.

First, we prove that DVW.F / itself is contractible. It is sufficient to prove that there
is a strong deformation-retraction of DVW.F / into V , that is, a continuous map
hW DVW.F /�I!DVW.F / such that (i) h.x; 0/Dx for x2DVW.F /, (ii) h.x; 1/DV

for x 2 DVW.F /, and (iii) h.V ; t/D V for 0� t � 1.

Let us consider the star-shaped graph DVW.F / \ DV.F /. Recall that DVW.F / DS
V 0;W 0 †V 0W 0 . If we deformation-retract the star-shaped graph DVW.F /\DV.F /

into the center point V continuously, then each †V 0W 0 becomes fV ;W ;W 0g continu-
ously, that is, DVW.F / becomes the W–facial cluster containing the weak reducing
pair .V ;W / continuously (see the first arrow of Figure 7). We take this process as
hW DVW.F /�

�
0; 1

3

�
! DVW.F /.

Next, if we deformation-retract the star-shaped graph DVW.F / \ DW.F / into the
center point W , then the W–facial cluster containing .V ;W /, similarly, becomes
.V ;W / continuously (see the second arrow of Figure 7). We take this process as
hW DVW.F /�

�
1
3
; 2

3

�
! DVW.F /.

Finally, if we deformation-retract .V ;W / into V , then it becomes V continuously.
We take this process as hW DVW.F /�

�
2
3
; 1
�
! DVW.F /.

We will use the following lemma.

Lemma 3.6 (Hatcher [10, Exercise 23 of Chapter 0]) A CW–complex is contractible
if it is the union of two contractible subcomplexes whose intersection is also contractible.

Then we can see that DV.F /[DVW.F / is also a CW–complex. Moreover, each of
DV.F / and DVW.F / is a subcomplex of DV.F /[DVW.F /. Therefore, DV.F /[

DVW.F / is contractible by Lemma 3.6 since DV.F / is contractible by Theorem 2.6,
DVW.F / is contractible by the previous observation, and DV.F / \ DVW.F / is a
star-shaped graph which is contractible. Hence, we can see that D.F /D .DV.F /[

DVW.F //[DW.F / is also contractible by Lemma 3.6.

This completes the proof of Claim B.
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Case (b) V cuts off (torus)� I from V and W is nonseparating in W .

In this case, @W belongs to the genus-two component of F � @V by Lemma 2.8.
Hence, we can take a separating disk W 0 �W by a band–sum of two parallel copies
of W such that W 0 misses V . Here, we get a 2–simplex �DfV;W;W 0g in DVW.F /.
Let " be the W –facial cluster containing � guaranteed by Lemma 2.15.

The generalized Heegaard splitting obtained by weak reduction along .V;W / consists
of two splittings .V1;V2IFV / and .W1;W2IFW / such that @�V2 \ @�W1 D T ,
where FV comes from the genus-two component of FV , @�V2 consists of a torus,
and @�W1 consists of two tori.

Let V 0 (resp W 0 ) be the region between @CV and FV in V (resp @CW and FW

in W ). Then we can see that V is a separating compressing disk of V 0 and W is a
nonseparating compressing disk of W 0 . Since V 0 is a genus-three compression body
with negative boundary consisting of a torus and a genus-two surface and W 0 is a
compression body with negative boundary consisting of a genus-two surface, V and W

are uniquely determined in V 0 and W 0 , respectively, up to isotopy. Hence, we get
the induced isotopy classes of V and W in V and W from the isotopy classes of V

and W in V 0 and W 0 , respectively. Moreover, the uniqueness of the isotopy classes of
the embeddings of the thick levels of the generalized Heegaard splitting obtained by
weak reduction from .V;WIF / in the relevant compression bodies forces the choice
of the induced isotopy classes of V and W in V and W to be unique. This means
that we can consider the weak reducing pair .V;W / as the fixed one .V ;W / even
though we’ve chosen an arbitrary weak reducing pair consisting of a V–disk cutting
off (torus)� I from V and a nonseparating W –disk.

Let us consider an arbitrary weak reducing pair .V �;W �/ for .V;WIF /. If W � cuts
off (torus) � I from W , then the generalized Heegaard splitting obtained by weak
reduction along .V �;W �/ would be the symmetric case of Case (b) or Case (c), vio-
lating the uniqueness of the generalized Heegaard splitting obtained by weak reduction
up to isotopy. Hence, W � does not cut off (torus)�I from W . Moreover, if V � does
not cut off (torus)� I from V , then V � is nonseparating in V or it cuts off a solid
torus from V , that is, the generalized Heegaard splitting obtained by weak reduction
along .V �;W �/ would be that of Case (a) or the symmetric case of Case (b), leading
to a contradiction by the same argument. Therefore, V � cuts off (torus)� I from V .
If W � is nonseparating in W , then we take W �� DW � . If W � is separating, then
we take W �� to be the meridian disk of the solid torus that W � cuts off from W and
W ��\V �D∅ by Lemma 2.8. If we apply the arguments in the previous paragraph to
the weak reducing pair .V �;W ��/, then .V �;W ��/ would be .V ;W / and therefore
the weak reducing pair .V �;W �/ belongs to the W –facial cluster ". This means that
every weak reducing pair of .V;WIF / belongs to the W –facial cluster ".
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Claim C DVW.F /D ".

Proof of Claim C It is sufficient to show that every simplex of DVW.F / belongs
to ".

By definition of DVW.F / and the assumption that every weak reducing pair belongs
to ", we don’t need to consider vertices or 1–simplices in DVW.F /.

If we use the same argument in the proof of Claim A, then we can see that if there
is a 2–simplex � in DVW.F /, then it must be a V–face or a W–face. If � is a
V–face, then a V–disk of � cuts off a solid torus from V and the other V–disk is
a meridian disk of the solid torus by Lemma 2.9, that is, the generalized Heegaard
splitting obtained by weak reduction along any weak reducing pair in � would be
that of Case (a) or the symmetric case of Case (b), violating the uniqueness of the
generalized Heegaard splitting obtained by weak reduction up to isotopy.

Hence, � must be a W–face. In this case, the V–disk of �, say V 0 , must cut off
(torus)�I from V by the uniqueness of the generalized Heegaard splitting obtained by
weak reduction up to isotopy and there is a nonseparating W –disk in � by Lemma 2.9,
say zW . If we use the previous argument, then the weak reducing pair .V 0; zW / would
be .V ;W / and therefore �� ", leading to the result.

If there is a 3–simplex † in DVW.F /, then it must contain a V –face by Lemma 2.17,
that is, we get a contradiction, similar to the previous V –face case.

We don’t need to consider higher-dimensional simplices in DVW.F / by Lemma 2.17.
This completes the proof of Claim C.

Similarly to Case (a), we can prove that D.F / is contractible.

Case (c) Each of V and W cuts off (torus)� I from V or W , respectively.

The generalized Heegaard splitting obtained by weak reduction along .V;W / consists
of two splittings .V1;V2IFV / and .W1;W2IFW / such that @�V2\@�W1DT , where
FV and FW come from the genus-two components of FV and FW , respectively, and
both @�V2 and @�W1 consist of two tori.

Let V 0 (resp W 0 ) be the region between @CV and FV in V (resp @CW and FW in
W ). Then we can see that V and W are separating compressing disks of V 0 and W 0 ,
respectively. Since V 0 and W 0 are genus-three compression bodies with negative
boundary consisting of a torus and a genus-two surface, V and W are uniquely
determined in V 0 and W 0 respectively up to isotopy. Hence, we get the induced isotopy
classes of V and W in V and W from the isotopy classes of V and W in V 0 and W 0 ,
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respectively. Moreover, the uniqueness of the isotopy classes of the embeddings of
the thick levels of the generalized Heegaard splitting obtained by weak reduction from
.V;WIF / in the relevant compression bodies forces the choice of the induced isotopy
classes of V and W in V and W to be unique. This means that we can consider
the weak reducing pair .V;W / as the fixed one .V ;W / even though we’ve chosen
an arbitrary weak reducing pair consisting of disks which cut off (torus)� I ’s in the
relevant compression bodies.

Let us consider an arbitrary weak reducing pair .V �;W �/ for .V;WIF /. If one of
V � and W � does not cut off (torus)� I from V or W , then the generalized Heegaard
splitting obtained by weak reduction along .V �;W �/ would be that of Case (a) or
(possibly the symmetric case of) Case (b), violating the uniqueness of the generalized
Heegaard splitting obtained by weak reduction up to isotopy. Therefore, V � and W �

must cut off (torus)� I from V and W , respectively. If we apply the arguments in
the previous paragraph to the weak reducing pair .V �;W �/, then .V �;W �/ would
be .V ;W /. Hence, DVW.F / is just .V ;W / itself.

Therefore, D.F / is contractible. This completes the proof of Lemma 3.5.

Now we deal with the case where the inner thin level consists of two tori.

Lemma 3.7 Let .V;WIF / be a weakly reducible unstabilized genus-three Heegaard
splitting in an orientable, irreducible 3–manifold. If every weak reducing pair of F

gives the same generalized Heegaard splitting obtained by weak reduction up to isotopy
such that the inner thin level consists of two tori and the embedding of each thick level
in the relevant compression body is unique up to isotopy, then D.F / is contractible.

Proof Let us consider a weak reducing pair .V;W / for .V;WIF /. Here, V and W

are nonseparating but @V [ @W is separating in F as we checked in the proof of
Lemma 2.16 by the assumption that the inner thin level consists of two tori. This
means that @V [ @W cuts off two twice-punctured tori from F . The generalized
Heegaard splitting obtained by weak reduction along .V;W / consists of two splittings
.V1;V2IFV / and .W1;W2IFW / such that @�V2 D @�W1 D FV W D T1[T2 , where
each Ti is a torus.

Let V 0 (resp W 0 ) be the region between @CV and FV in V (resp @CW and FW in W ).
Then we can see that V and W are nonseparating compressing disks of V 0 and W 0 ,
respectively. Since V 0 and W 0 are genus-three compression bodies with negative
boundary consisting of a genus-two surface, V and W are uniquely determined in V 0

and W 0 , respectively, up to isotopy. Hence, we get the induced isotopy classes of V

and W in V and W from the isotopy classes of V and W in V 0 and W 0 , respectively.
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Moreover, the uniqueness of the isotopy classes of the embeddings of the thick levels
of the generalized Heegaard splitting obtained by weak reduction from .V;WIF / in
the relevant compression bodies forces the choice of the induced isotopy classes of V

and W in V and W to be unique. This means that we can consider the weak reducing
pair .V;W / as the fixed one .V ;W / even though we’ve chosen an arbitrary weak
reducing pair. Hence, DVW.F / is just .V ;W / itself.

Therefore, D.F / is contractible; the argument is similar to Case (c) of Lemma 3.5.
This completes the proof.

Lemma 3.1, Lemma 3.4, Lemma 3.5 and Lemma 3.7 prove Theorem 1.1.
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V
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�W1

�W1

V1

�V2

V �W1
V

N.V /\F

�V2

W

W2

�W1

W
FV F V

N.W /\F

�W1

�W1

V1

�V2

VV �W1

F W FW

N.V /\F

�V2

�V2

W2

�W1

W �V2
W

Figure 8: The GHSs for Figure 6(a). (We omit the symmetric case for the
second figure.)
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Appendix: The GHSs obtained by preweak reductions

We give descriptive figures of all possible cases of the GHSs obtained by preweak
reductions from an unstabilized genus three Heegaard splitting .V;WIF / of an ir-
reducible 3–manifold M , where these preweak reductions give GHSs of the form
.V1;V2/[ .W1;W2/ for @�V2 \ @�W1 ¤ ∅. Note that we only consider the case
@�V1 D @�W2 D∅ because @�V1 and @�W2 do not affect the shape of V2 and W1

and the inner thin level.

Note that N.V / and N.W / in Figures 8–11 mean product neighborhoods of V and W

in V and W , respectively.

FV F V

� @�V

N.W /\F

�W1

�W1

V1

�V2

V �W1 V

FW

N.V /\F

�V2

W

W2

�W1

W
FV F V

� @�V N.W /\F

�W1

�W1

V1

�V2

V �W1
V

F W FW

N.V /\F

W2

�W1

�V2

�V2

�V2 WW
Figure 9: The GHSs for Figure 6(b). (We omit the symmetric cases where
W cuts off (torus)� I from W .)
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Figure 10: The GHS for Figure 6(c).
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V
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Figure 11: The GHS for Figure 4.
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