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Exotic smoothings via large R4’s in Stein surfaces

JULIA BENNETT

We study the relationship between exotic R4 ’s and Stein surfaces as it applies to
smoothing theory on more general open 4–manifolds. In particular, we construct the
first known examples of large exotic R4 ’s that embed in Stein surfaces. This relies on
an extension of Casson’s embedding theorem for locating Casson handles in closed
4–manifolds. Under sufficiently nice conditions, we show that using these R4 ’s as
end-summands produces uncountably many diffeomorphism types while maintaining
independent control over the genus-rank function and the Taylor invariant.

57N13; 57R55

1 Introduction

There are relatively few techniques available for studying smoothing theory on open
4–manifolds. It was shown by Quinn [25] that every open 4–manifold admits at least
one smooth structure. While there are many examples that actually admit uncountably
many diffeomorphism classes of smooth structures, it is still unknown if this can be
expected in general. In particular, it is still conceivable that some open 4–manifold is
uniquely smoothable up to diffeomorphism. The goal of this paper is to extend existing
technology for understanding exotic open 4–manifolds by exploring the relationship
between exotic R4 ’s and Stein surfaces. We construct an uncountable family of
exotic R4 ’s with previously unknown properties, and we exploit these to gain a new
level of control over existing invariants of exotic smoothings on open 4–manifolds.

Historically, methods for finding infinite families of exotic open 4–manifolds relied
heavily on information about the behavior of smoothings on R4 . Gompf [14] defined
the first infinite collection of exotic R4 ’s, smooth 4–manifolds that are homeomorphic
but not diffeomorphic to R4 . Uncountably many exotic R4 ’s were later produced by
Taubes [27] by extending Donaldson theory and then applying the results in conjunction
with Freedman’s breakthroughs [8]. This was the first 4–manifold to exhibit such
uncountable behavior. Related families of smooth structures were subsequently defined
on more general open 4–manifolds by fixing some standard smooth structure and then
attaching infinitely many different R4 ’s using an operation introduced by Gompf [13]
called end-summing. Under sufficiently nice conditions, this resulted in infinitely many
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diffeomorphism classes (sometimes countable and sometimes uncountable) on the
same underlying 4–manifold. For example, see the work of Bižaca and Etnyre [2],
Taylor’s generalization [28], results from Gompf [15], and additional generalizations
by Ding [5], Fang [7], and Gompf and Stipsicz [22, Section 9.3]. The hypotheses
required for this procedure to succeed depended greatly on what was known about
the R4 ’s being attached. In most cases, the resulting diffeomorphism types were
distinguishable either by the Taylor invariant [28] (taking values in Z�0 [ f˙1g)
or a generalization of compact equivalence classes, as in Gompf [14], which are two
invariants that measure the complexity of embedded exotic R4 ’s in a given smooth
4–manifold. However, little information beyond these invariants was known about
the exotic open 4–manifolds that were produced. Additionally, it seems likely that
the methods for detecting exoticness were too coarse. At this stage, however, it was
not clear what additional structure could be expected from exotic R4 ’s that would be
helpful for obtaining a better understanding of this construction.

More recently, Gompf exploited the rich structure associated to Stein surfaces to study
open 4–manifolds [19]. A Stein surface is an open complex 4–manifold that admits
a proper biholomorphic embedding into some ambient CN . These have associated
adjunction inequalities that place restrictions on an invariant called the genus-rank
function. This invariant was introduced by Gompf [19], measuring the genera of
smoothly embedded homologically essential surfaces in a given smooth 4–manifold. In
the same article, exotic smooth structures on many handlebody interiors were defined by
replacing standard 2–handles with Casson handles. After embedding into Stein surfaces
and applying the associated adjunction inequalities, the resulting diffeomorphism types
were distinguished by their genus-rank functions. Despite the significant advancements
in the study of exotic 4–manifolds that have been facilitated by Stein surfaces, these
techniques had not previously been considered in the case of open 4–manifolds. These
developments from Gompf [19] demonstrated the importance of Stein surfaces to our
current setting.

This paper constructs exotic R4 ’s while maintaining control over their relationship
with Stein surfaces. Our primary interest will be in large R4 ’s, ie those that contain
smooth compact codimension-0 submanifolds that do not embed in the standard R4 .
For context, we note that both the Taylor invariant and compact equivalence class
measure the size of R4 ’s. In particular, all R4 ’s with either nonzero Taylor invariant or
a different compact equivalence class than the standard R4 are large. There are various
constructions of large R4 ’s appearing in the literature. For example, Gompf [14] defines
infinitely many large R4 ’s using topologically slice links and later [14; 15] constructs
doubly indexed uncountable families of large R4 ’s by analyzing compact equivalence
classes, Bižaca and Etnyre [2] and Taylor [28] find R4 ’s with arbitrarily large values
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of the Taylor invariant and sometimes uncountably many compact equivalence classes,
and Freedman and Taylor [11] produce a universal R4 containing all other R4 ’s as
end-summands. However, the connection between large R4 ’s and Stein surface has
never before been investigated. There do exist exotic R4 ’s that are contained in Stein
surfaces, but all previously known examples are necessarily small. (Most small R4 ’s
actually embed in C2 , and Gompf [16; 20] produces small R4 ’s that admit Stein
structures.)

We define the first collection of large R4 ’s that each come equipped with an embedding
into a Stein surface, chosen so that they still carry the information necessary for
manipulating both the Taylor invariant and compact equivalence classes.

Theorem 1.1 There exist uncountably many large R4 ’s that each admit a smooth
embedding into a Stein surface. Furthermore, these realize arbitrarily large (finite)
values of the Taylor invariant by uncountably many compact equivalence classes.

It turns out that the diffeomorphism type of each Stein surface only depends on the
Taylor invariant of the corresponding R4 . So we’ve produced an uncountable family
of large R4 ’s inside a countable family of Stein surfaces. It follows from Taylor [28,
Remark 4.5] that these R4 ’s fail to admit a handle decomposition without infinitely
many 3–handles, while Stein surfaces always admit a handle decomposition with no
3– or 4–handles. In particular, these R4 ’s do not admit Stein structures themselves.
This theorem is an immediate consequence of Theorem 3.4 and Corollary 3.5, which
provide much more detail about the structure of these R4 ’s. Corollary 3.9 obtains a
similar result in the case of infinite Taylor invariant.

These properties should not be expected generically from large R4 ’s. To emphasize this,
we produce another family that behaves similarly on the level of the Taylor invariant
but has a very different relationship with Stein surfaces.

Theorem 1.2 There exist exotic R4 ’s that realize arbitrarily large (finite) values of
the Taylor invariant and each contain a smooth compact codimension-0 submanifold
that does not smoothly embed into any Stein surface.

As we’ve stated it, this theorem is a slightly weakened version of Theorem 3.7. Its proof
relies on Lemma 3.6, which provides an explicit description of compact handlebodies
that fail to embed into any Stein surface (even when we allow the embedding to be
trivial on the level of second homology).

We begin illustrating the usefulness of these new R4 ’s by analyzing the behavior of
the genus-rank function under the end-sum operation. We observe that the adjunction
inequality associated to Stein surfaces can be preserved while end-summing with certain
large R4 ’s, even though they do not admit Stein structures themselves.
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Theorem 1.3 If a smooth 4–manifold is obtained by end-summing some Stein surface
with an R4 defined by Theorem 1.1, then it still satisfies the adjunction inequality
associated to this Stein surface.

Much stronger versions of this theorem can be found in Lemma 4.2 and Corollary 4.3.
Conversely, end-summing with the large R4 ’s produced by Theorem 1.2 can signifi-
cantly influence the genus-rank function. As seen in Example 4.4, this operation easily
modifies Stein surfaces so that they no longer satisfy the adjunction inequality.

Armed with this result, we systematically study the way end-summing with large R4 ’s
affects the Taylor invariant, compact equivalence classes, and the genus-rank function.
In the best case, we find that all three invariants can be controlled independently. To
start, we restrict our attention to two invariants.

Theorem 1.4 Suppose that X is an open topological 4–manifold that is the interior
of an oriented spin handlebody with all indices at most 2 and with 0 < ˇ2.X / <1.
There are smooth structures on X that realize infinitely many values of Taylor invariant
but all produce the same genus-rank function, and infinitely many genus-rank functions
occur in this way. Similarly, there are smooth structures on X that produce infinitely
many genus-rank functions but all realize the same arbitrarily large (finite) value of the
Taylor invariant.

After adding a technical requirement, we establish control over the missing invariant.

Addendum 1.5 If the standard smooth structure that X inherits as a handlebody
interior is compactly positive-definite, then each pair of Taylor invariant and genus-
rank function from this theorem is realized by smooth structures on X representing
uncountably many compact equivalence classes.

We also provide similar theorems for each pair of invariants under various relaxed
hypotheses. Additionally, we can sometimes exploit other nice properties of these R4 ’s
to realize each triple that occurs in these results by an uncountable family. Precise
statements of these different cases and many examples can be found in the second half
of Section 3.

The two contrasting families of R4 ’s produced in this paper rely on very different
constructions. The definition of the first family requires a careful study of Casson
handles, which is used to sharpen a standard cut-and-paste argument for constructing
large R4 ’s. More specifically, we introduce a new procedure for locating Casson
handles in closed 4–manifolds. While such a procedure already existed in various
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forms (see, for example, Casson’s embedding theorem [4], Quinn’s handle straightening
theorem [25], and Gompf’s exposition [17, Section 5]), our method is the first to provide
control over the topology of the Casson handles that are produced. After fixing our
initial setup, we give a complete characterization of when a single Casson handle
can be found without losing this extra control. We also investigate when multiple
Casson handles can be located simultaneously. Our answer turns out to be a substantial
extension of previous results. It is obtained by modifying Casson’s original embedding
theorem [4] using the Arf invariant associated to characteristic surfaces, which is
defined by Freedman and Kirby [9]. This can all be found in Section 2. The second
family is constructed by exhausting the universal R4 defined by Freedman and Taylor
[11] by smaller R4 ’s. After finding compact handlebodies that do not embed into any
Stein surface, the existence of the necessary compact submanifolds follows from a
technique used by Gompf [14] for embedding compact handlebodies into R4 ’s.

Organization Section 2 provides a careful introduction to Casson handles, describes
the procedure for locating Casson handles in closed 4–manifolds, and investigates
various applications of this procedure. In Section 3, we define the two families of R4 ’s
described above and study the implications of their different relationships to Stein
surfaces. Finally, Section 4 analyzes the effects of end-summing with these two families.

Conventions All handlebodies are assumed to be self-indexing and locally finite,
which means they can be constructed in a locally finite way by simultaneously attaching
all handles of a given index to the collection of handles that have strictly smaller index.
Every open 4–manifold is the interior of a handlebody meeting this description, and it
follows from Gompf [18, Appendix] that these requirements do not increase the highest
index handle required to describe a given open 4–manifold as a handlebody interior.
This paper will refer to 4–dimensional Stein domains, the compact analogue to open
Stein surfaces, as compact Stein surfaces. We direct the reader to [22, Section 11] for
more information about Stein surfaces, and also for the minimal amount of background
pertaining to contact structures that is required for this paper. As a convention, we
will not assume that embeddings are orientation-preserving unless explicitly stated.
However, all immersion are assumed to be generic and all homotopies are assumed
to be regular. The notation X† will be used to denote a smooth 4–manifold that is
obtained by equipping some topological 4–manifold X with a smooth structure †.
We will leave out the subscript when the smooth structure is clear from context, as is
the case for most of Section 2 and Section 3.

Acknowledgements The author would like to thank her advisor, Robert Gompf, for
his thoughtful guidance and many insightful suggestions. Much of this work was
completed while being supported by NSF Grant DMS-1148490.
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2 The first stage of embedded Casson handles

The goal of this section is to introduce a procedure for constructing Casson handles in
closed 4–manifolds, designed to provide some control over the topology of the Casson
handles that are produced.

We begin with a discussion about kinky handles. Recall that a kinky handle is obtained by
performing self-plumbings on the standard 2–handle. Suppose that k is a kinky handle
and D is the immersed disk produced by the plumbing operation. The diffeomorphism
type of k is uniquely determined by the signs associated to the double points of D . To
attach k to a framed circle, we first attach the standard 2–handle to this circle using
the framing that is obtained by adding �2 Self.D/ signed twists to the given framing.
Then we perform the necessary self-plumbings, so that k now attaches to this circle
in such a way that D pushes off along the given framing to a disk whose algebraic
intersection with D vanishes.

It will be helpful to also have an alternate description of kinky handles. Observe that
B4DD2�D2 is a regular neighborhood of the disk D2�0 and also of its union with
any collection of parallel disks p1�D2; : : : ;pg�D2 for points p1; : : : ;pg 2 int.D2/.
After equipping each disk with an orientation, this union is bounded by the oriented
link shown in the first diagram in Figure 1. Attaching 1–handles to B4 as shown in
the second diagram in Figure 1 produces a 4–manifold that is a regular neighborhood
of a smoothly immersed disk D , obtained by ambiently boundary summing D2 � 0

with each of these parallel disks using the 2–dimensional 1–handles shown in red.
The original choice of orientations defines an orientation on D , so we can arrange
for the signed double points of D to realize any desired configuration by choosing
the correct number of parallel disks and orienting them appropriately. Observe that
@D is the circle in @.B4[ .1–handles// shown in the final diagram in Figure 1. Thus,
every kinky handle is diffeomorphic to B4[ .1–handles/ and its attaching region is
a regular neighborhood of @D in @.B4 [ .1–handles//, provided we arrange for D

to have the appropriate signed double points. The 0–framing on @D from Figure 1
will be called the 0–framing on this attaching region. From this perspective, attaching
a kinky handle to a framed knot is equivalent to attaching B4 [ .1–handles/ along
this attaching region by identifying its 0–framing with the framing given on this knot.
Using Casson’s terminology, we will say that the frontier of a kinky handle is the subset
of its boundary obtained by removing its attaching region.

This abstract description of kinky handles is useful when constructing Casson handles.
In particular, we can define a set of framed circles on the frontier of any kinky handle k

by first fixing an identification with the final diagram in Figure 1 (preserving attaching
regions) and then choosing a 0–framed meridian of each dotted circle in this diagram.
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Figure 1: An alternate description of kinky handles

We say that any set of framed circles obtained in this way is a collapsing set for k .
Attaching standard 2–handles to k along any collapsing set recovers the standard 2–
handle with its standard 0–framing. To avoid special cases, we will treat the standard
2–handle as a kinky handle with an empty collapsing set.

We provide a brief description of Casson handles, but encourage the reader to see
[8, Section 2], [19, Section 2], or [23, Chapter 7] for alternate descriptions and more
detailed exposition. To construct a Casson handle, we start with a 1–stage tower
.T1; @�/ consisting of a single kinky handle and its attaching region. Then we construct
a 2–stage tower T2 by attaching kinky handles to T1 along a collapsing set for T1 .
Next, we produce a 3–stage tower T3 by attaching kinky handles along collapsing
sets for each kinky handle attached in the previous step. Iterating this procedure
defines an n–stage tower Tn for every n 2 Z>0 . Thus, we obtain a nested sequence
T1 � T2 � T3 � � � � . A Casson handle CH is obtained by taking the infinite unionS1

iD1 Ti of any nested towers that are constructed in this manner and then removing
all boundary except the interior of @� . We refer to the immersed disk D corresponding
to T1 as the first-stage disk of CH. The remaining boundary of CH is the attaching
region of CH and it comes equipped with a 0–framing corresponding to the 0–framing
on @� . We can attach CH to a framed circle by identifying this 0–framing with the given
framing on the circle. The fundamental result of Freedman from [8] states that every
Casson handle is homeomorphic to the standard open 2–handle by a homeomorphism
that preserves attaching regions. So attaching Casson handles to a collection of 0–
and 1–handles and then removing the remaining boundary produces a smooth open
4–manifold that is homeomorphic (but possibly not diffeomorphic) to the result of
replacing each of these Casson handles with the standard open 2–handle. Following
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[19], any smooth structure constructed in this way will be called a Casson smoothing.
If the resulting smooth 4–manifold admits a Stein structure, then it is also referred to
as a Stein–Casson smoothing. A very useful property of Casson handles is that every
Casson handle embeds into the standard 2–handle by a smooth orientation-preserving
embedding that preserves attaching regions.

We turn our attention to locating Casson handles in closed 4–manifolds. We would like
to realize some preassigned configuration of double points in the first-stage disks of the
Casson handles we produce. We start with a smoothly immersed sphere S in a closed
4–manifold X . Observe that a regular neighborhood of S in X can be identified
with a smoothly embedded copy of B4 [ T1 for some 1–stage tower T1 attaching
to an .S �S/–framed unknot in @B4, with the diffeomorphism type of T1 uniquely
determined by the signs associated to the double points of S . If there are smoothly
embedded disjoint Casson handles in X that ambiently attach to B4 [ T1 along a
collapsing set on the frontier of T1 , then the interior of B4[T1 together with these
new Casson handles is the interior of a smoothly embedded copy of B4[CH for some
Casson handle CH whose first stage is T1 . We call the Casson handles attaching to T1

second-stage Casson handles because they are attaching to a 1–stage tower. So CH is
obtained from T1 by attaching these second-stage Casson handles and then removing all
remaining boundary except the interior of the attaching region of T1 . This construction
ensures that S is the union of the first-stage disk of CH and a smoothly embedded
unknotted disk in B4. Thus, the configuration of double points in S dictates the double
points in the first-stage disk of the resulting Casson handle CH. So we have reduced
our task to determining conditions on smoothly immersed spheres that guarantee the
existence of these second-stage Casson handles. Once completed, locating a smoothly
immersed sphere satisfying this criterion and realizing some desired configuration of
double points is equivalent to locating a Casson handle with that configuration of double
points in its first-stage disk. We will later consider this setup for multiple immersed
spheres in order to construct multiple Casson handles at once.

Under sufficiently nice conditions, the proof of Casson’s embedding theorem [4]
provides a procedure for finding second-stage Casson handles. We state this theorem
below using the terminology we have introduced.

Casson’s embedding theorem Suppose that D1; : : : ;Dn are smoothly immersed
disks in a smooth simply connected 4–manifold Y , with @D1; : : : ; @Dn disjointly
embedded in @Y . If Di �Dj D 0 for each i ¤ j and there are homology classes
ˇ1; : : : ; ˇn 2 H2.Y / such that each Di � ǰ D ıij and each ǰ � ǰ is even, then
D1[ � � � [Dn can be smoothly homotoped rel @ so that D1; : : : ;Dn are the first-stage
disks of smoothly embedded disjoint Casson handles CH1; : : : ;CHn in Y .
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Our primary application will only consider a single immersed disk, obtained from an
immersed sphere by removing the interior of a small B4 neighborhood around one
of its points. However, the homotopy of D1 [ � � � [Dn is not desirable because we
lose control over the double points of each Di . If D1; : : : ;Dn are initially disjoint
and Y � .D1[ � � � [Dn/ is simply connected, then it follows from the proof of this
theorem that the same result holds without needing to first perform a homotopy. When
Y admits a spin structure, the proof also ensures that these additional hypotheses can
actually replace the requirement that ˇ1; : : : ; ˇn exist and we again obtain this result
without needing to perform a homotopy. In either of these two cases, the Casson
handles are constructed by the method described in the previous paragraph, ie by
identifying a regular neighborhood of D1[ � � � [Dn with disjoint 1–stage towers and
then locating disjoint second-stage Casson handles in Y that are ambiently attaching
to this neighborhood along collapsing sets for each 1–stage tower. A key step in the
construction of these second-stage Casson handles is producing immersed disks in
Y � .D1[� � �[Dn/ that are bounded by these collapsing sets and each push-off by the
given framing to realize an even self-intersection number. Once these disks have been
located, the existence of the second-stage Casson handles only relies on the requirement
that Y �.D1[� � �[Dn/ is simply connected. Unfortunately, this proof fails to produce
these disks outside of the two situations we have described. In particular, this step
cannot be completed when Y �.D1[� � �[Dn/ is spin but Y is not spin. This situation
occurs, for example, if some Di is Poincaré dual to w2.Y / 2H 2.Y;Z2/.

By using tools provided by Freedman and Kirby [9] to choose appropriate collaps-
ing sets, we will sometimes be able to locate these disks used in the construction
of second-stage Casson handles even when the conditions necessary for the proof
of Casson’s embedding theorem are not satisfied. The results from [9] associate a
quadratic form zqW H1.F;Z2/!Z2 to any smoothly embedded orientable surface F in
a smooth oriented closed 4–manifold X , provided that F represents the Poincaré dual
to w2.X / 2H 2.X;Z2/. This quadratic form has the property that if B is a smoothly
immersed surface in X bounded by a circle a 2 H1.F;Z2/ with the interior of B

disjoint from F , then zq.a/ equals the modulo 2 self-intersection number of B obtained
by pushing B off along the normal framing induced by the embedding of a into F .
[9, Theorem 1] ensures that the Arf invariant of zq equals the modulo 2 reduction of
1
8
.F �F ��.X //. (A nice introduction to the Arf invariant is found in [26, Appendix].)

Unlike [9], we are interested in immersed spheres rather than embedded surfaces.

Definition 2.1 Let S be a smoothly immersed sphere in a smooth oriented closed
4–manifold X . We say that .X;S/ is a characteristic pair if S represents the Poincaré
dual to w2.X /2H 2.X;Z2/. The Arf invariant of a characteristic pair .X;S/, denoted
Arf.X;S/, is defined as the modulo 2 reduction of 1

8
.S �S � �.X //.
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Notice that the Arf invariant of a characteristic pair .X;S/ equals the Arf invariant
of the bilinear form zq associated to the surface F that is obtained by resolving each
double point of S . It is precisely this relationship that will supply the disks needed in
the construction of second-stage Casson handles when the proof of Casson’s embedding
theorem cannot be implemented.

Applying the methods we have introduced, we can now provide a criterion for determin-
ing if a smoothly immersed sphere in a closed 4–manifold decomposes as the union of
a smoothly embedded disk and the first-stage disk of a smoothly embedded Casson
handle.

Lemma 2.2 Let S be a smoothly immersed sphere in a smooth oriented closed 4–
manifold X with X�S simply connected. Suppose that either .X;S/ is a characteristic
pair with Arf.X;S/D 0, or .X;S/ is not a characteristic pair. Then there is a Casson
handle CH such that B4 [ CH admits a smooth orientation-preserving embedding
into X with S equal to the union of the first-stage disk of CH and a smoothly embedded,
unknotted disk in B4, where CH is attaching to B4 along an .S �S/–framed unknot
in @B4. If instead .X;S/ is a characteristic pair with Arf.X;S/¤ 0, then there is no
Casson handle with such an embedding.

We note that the content of this lemma primarily comes from the characteristic cases, as
the noncharacteristic case is essentially a corollary to the proof of Casson’s embedding
theorem.

Proof We begin with the case where .X;S/ is not a characteristic pair, ie the modulo 2

reduction of ŒS � 2 H2.X / is not dual to w2.X / 2 H 2.X;Z2/. The first step is to
construct an element ˇ 2 H2.X / with ŒS � � ˇ D 1 and ˇ � ˇ even. Observe that
H2.X IZ2/ŠH2.X /˝Z2 because the requirement that X �S is simply connected
forces X to also be simply connected. Since w2.X / is uniquely characterized by the
property that its pairing with any a 2 H2.X;Z2/ equals the square of a under the
standard Z2 –pairing on H2.X;Z2/, it follows that there is some y 2 H2.X / with
ŒS � � y C y � y odd. The fact that X � S is simply connected ensures the existence
of a class z 2 H2.X / with ŒS � � z D 1. If z � z is even, let ˇ D z . Otherwise, let
ˇ D y C .1� ŒS � � y/z . In either case, ŒS � � ˇ D 1 and ˇ � ˇ is even. Now choose
a small B4 neighborhood around a point in S . Observe that D D S � int.B4/ is a
smoothy immersed disk in the smooth simply connected 4–manifold Y DX � int.B4/.
Since D has a simply connected complement in Y and ˇ is obviously carried in Y ,
our earlier discussion ensures that proof of Casson’s embedding theorem now produces
a smoothly embedded Casson handle CH in Y whose first-stage disk is D . Hence, we
have located a smoothly embedded copy of B4[CH in X with S equal to the union
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of the first-stage disk D of CH and a smoothly embedded unknotted disk in B4. It is
clear that CH is attaching to B4 along an .S �S/–framed unknot in @B4.

Next, consider the case where .X;S/ is a characteristic pair with Arf.X;S/¤ 0. To
obtain a contradiction, we suppose that there is a Casson handle CH and smoothly
embedded copy of B4[CH in X meeting the necessary description. We can assume
that S �S D 1 by blowing up an appropriate number of times and ambiently connect
summing S with a CP1 from each CP2 or CP2 summand, ensuring that CH is
attaching to B4 along a 1–framed unknot in @B4. Then the interior of B4 [CH is
homeomorphic to CP2�fptg and, consequently, X is homeomorphic to CP2 # Y for
some Y with �.Y /D �.X /� 1D �.X /�S �S . Using the assumption that .X;S/
is a characteristic pair, notice that Y is even because H2.Y /D hŒS �i

? �H2.X / and
ŒS � � ˛ � ˛ � ˛ .mod 2/ for every ˛ 2 H2.X /. Recall that the Kirby–Siebenmann
invariant of a topological 4–manifold M , denoted ks.M /, is an invariant taking
values in Z2 that is additive under connected sum, vanishes if M admits a smooth
structure, and equals the modulo 2 reduction of 1

8
�.M / if M is even. So ks.X /D

ks.CP2/Cks.Y /D0CArf.X;S/¤0. However, this is clearly a contradiction because
X admits a smooth structure.

For the remainder of the proof, we suppose that .X;S/ is a characteristic pair with
Arf.X;S/D 0. The first step is to identify N .S/ with a smoothly embedded copy of
B4[T1 in X for some 1–stage tower T1 . Let f DS �S and let g denote the number
of double points of S . Consider the Kirby diagram in Figure 2, where the 1–handle
attaching spheres are identified in the usual way. Arrange for there to be exactly one
C1–framed (resp. �1–framed) 2–handle for each negative (resp. positive) double
point of S . Instead of passing to dotted circle notation, we make sense of the framing
coefficients by assuming reference arcs have been specified so that the 0–framing on
each 2–handle is given by its blackboard framing. Then we can fix an identification of
N .S/ with this Kirby diagram so that S is obtained by pushing a spanning disk for
each red curve shown on the top in Figure 3 into the 0–handle, attaching the obvious
3g 2–dimensional 1–handles, and capping off by the core of the f –framed 2–handle
and two (oppositely oriented) parallel copies of the core of each ˙1–framed 2–handle.

Notice that removing the f –framed 2–handle from N .S/ produces a 1–stage tower T1

whose attaching region agrees with the attaching region of the missing 2–handle.
So there is a smooth orientation-preserving embedding of B4 [ T1 into X with
N .S/ D B4 [ T1 that is defined by sending B4 to this f –framed 2–handle and
sending T1 to the union of the remaining handles. (Choosing our embedding in this
way will make it easier to work with circles on the frontier of T1 .) Observe that T1

must be attached to B4 along an f –framed unknot. Also note that S is the union of a
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Figure 2: A regular neighborhood of an immersed sphere

smoothly embedded unknotted disk in B4 and the smoothly immersed disk associated
to T1 .

We locate the smoothly embedded orientable surface F obtained by resolving the
double points of S then fixing a collapsing set for T1 . We claim that F can be seen
in the Kirby diagram for N .S/ by pushing a spanning disk for the red curve shown
on the bottom in Figure 3 into the 0–handle, attaching the obvious 2g 2–dimensional
1–handles, and capping off by the core of the f –framed 2–handle. This follows
because S is obtained from the surface meeting this description by cutting out the grey
annuli shown on the bottom in Figure 3 (pushed into the interior of the 4–manifold
to sit on the surface) and then using each ˙1–framed 2–handle to replace it with the
standard model for a transverse double point of the appropriate sign. Notice that every
circle on F comes with a standard framing induced by its normal framing in F . It
follows from our description of F that there are circles x1;y1; : : : ;xg;yg on F that
represent a symplectic basis for H1.F / and push-off to the circles zx1; zy1; : : : ; zxg; zyg

shown on the top in Figure 4, sending this standard framing on x1;y1; : : : ;xg;yg to
the blackboard framing on zx1; zy1; : : : ; zxg; zyg . The circles zy1; : : : ; zyg equipped with
their blackboard framings form a collapsing set on the frontier of T1 .

Before proceeding, we study the quadratic form from [9] associated to the embedding
of F into X . Since F represents the dual to w2.X / 2 H 2.X;Z2/, this quadratic
form zqW H1.F;Z2/ ! Z2 is indeed well-defined. For each i D 1; : : : ;g , let ai

and bi denote the elements of H1.F;Z2/ represented by xi and yi respectively. Then
a1; b1; : : : ; ag; bg is a basis for H1.F;Z2/ with each ai � bj D ıij under the standard
pairing on H1.F;Z2/. The description in the previous paragraph ensures that N .F / is
obtained from N .S/ by removing the ˙1–framed 2–handles from the Kirby diagram
in Figure 2. So each zxi lies on @N .F /\@N .S/ and can be isotoped on @N .F / to the
attaching circle of one of these ˙1–framed 2–handles, with the blackboard framing
on zxi mapping to the 0–framing on this attaching circle. Thus, each zxi bounds a
smoothly embedded disk in X �F that realizes an odd self-intersection number using
the blackboard framing on zxi . Calling on the introduction of zq given earlier, this allows
us to conclude that each zq.ai/D 1 because the standard framing on xi pushes-off to
the blackboard framing on zxi . (Alternatively, this can be seen using the methods of
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Figure 3: Resolving an immersed sphere to an embedded surface

[22, Section 8.2].) Consequently, it follows from [26, Appendix] that Arf.zq/ can be
computed simply by counting the number of bi with zq.bi/D 1 and then reducing the
result modulo 2. On the other hand, [9, Theorem 1] discussed earlier guarantees that
Arf.zq/D Arf.X;S/D 0. This means that the number of bi with zq.bi/D 1 is even.
Without loss of generality, we can therefore assume that zq.bi/D 1 for i D 1; : : : ; 2k

and zq.bi/D 0 for i D 2kC 1; : : : ;g . (Technically, this assumption changes the way
that we initially identify N .S/ with the Kirby diagram in Figure 2.)

Our next task is to replace the collapsing set found above with one that can be obtained by
pushing-off circles on F whose image under zq vanishes. Consider the k disjoint circles
C1;C3; : : : ;C2k�1 with each Ci as shown on the bottom in Figure 4. Each Ci can be
pushed into the interior of N .S/ to lie on S\F , so that there is a self-diffeomorphism
'W S ! S obtained by Dehn twisting on each resulting circle. This extends to a
self-diffeomorphism 'W N .S/! N .S/ with '.F /D F . For each i D 1; : : : ;g , let
y0i D '.yi/ � F and let b0i 2 H1.F;Z2/ be the homology class it represents. The
circles zy1; : : : ; zyg with their blackboard framings map under ' to framed push-offs
zy0

1
; : : : ; zy0g of the circles y0

1
; : : : ;y0g on F with their standard framing. In particular,

the framed circles zy0
1
; : : : ; zy0g also form a collapsing set on the frontier of T1 because

' maps T1 � N .S/ to itself while keeping its attaching region fixed. Observe that
each b0i D biCaiCaiC1 for odd i D 1; : : : ; 2k�1, each b0i D biCai�1Cai for even
i D 2; : : : ; 2k , and each b0i D bi for i D 2kC 1; : : : ;g . By applying the fact that zq is
a quadratic form, it is now easy to verify that indeed zq.b0i/D 0 for each i D 1; : : : ;g .

Finally, we find the necessary Casson handle. Since X �S is simply connected, there
are smoothly immersed disks in X � int.N .S// bounded by zy0

1
; : : : ; zy0g . Recall that

each zq.b0i/D 0 and each zy0i is a framed push-off of y0i with its standard framing. Hence,
the introduction of zq given above allows us to conclude that each of these disks pushes
off along the framing on zy0i to realize an even self-intersection number. As described
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Figure 4: Modifying the push-off of a symplectic basis for H1.F /

earlier, the final step in proof of Casson’s embedding theorem can now be completed
to construct smoothly embedded disjoint second-stage Casson handles CH1; : : : ;CHg

in X ambiently attaching to N .S/ along zy0
1
; : : : ; zy0g using their framings. So there

is a smoothly embedded Casson handle CH in X obtained from T1 by attaching
CH1; : : : ;CHg and then removing all boundary except the interior of the attaching
region of T1 . Therefore, we have located a smoothly embedded copy of B4[CH with
CH attaching to an f –framed unknot in B4. Since the first-stage disk of CH is the
immersed disk corresponding to T1 , we can conclude that S is equal to the union of
the first-stage disk of CH and a smoothly embedded unknotted disk in B4.

We provide an example of the characteristic case with vanishing Arf invariant, although
its usefulness will not be clear until the next section. Generalizing this example will be
the first step in the proof of Theorem 3.4.

Example 2.3 Let X D CP2 #48 CP2 , let e0; e1; : : : ; e48 be the standard basis for
H2.X /, and let ˛ D 7e0C e1C � � �C e48 2H2.X /. It is easy to construct a smoothly
immersed sphere S representing ˛ in X that has only negative double points and
has a simply connected complement. Notice that .X;S/ is a characteristic pair with
Arf.X;S/D 0. So Lemma 2.2 provides a smoothly embedded copy of B4 [CH in
X for some Casson handle CH with only negative double points in its first-stage disk,
attaching to B4 along a �1–framed unknot in @B4. Furthermore, the topological sphere
generating the second homology of B4 [ CH represents the characteristic element
˛ 2H2.X /.

Though we will not need more generality for our applications, we observe that this
lemma can also be extended to a collection of smoothly immersed spheres to produce
multiple Casson handles simultaneously. Recall that any configuration of smoothly
immersed spheres in a smooth oriented 4–manifold has an associated graph with signed
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edges and weighted vertices. Conversely, every such graph corresponds to a handle
decomposition for a regular neighborhood of any matching configuration of spheres. A
sphere in one of these configurations has a double point if and only if there is a loop
at the vertex corresponding to this sphere in the matching graph. (Further discussion
about these relationships can be found in [22, Section 6.1].) The following corollary
compiles conditions to ensure that a given configuration of smoothly immersed spheres
can be capped off by second-stage Casson handles, as we did for a single sphere in the
previous lemma.

Corollary 2.4 Let S1; : : : ;Sn be smoothly immersed spheres in a smooth oriented
closed 4–manifold X with X � .S1[ � � � [Sn/ simply connected. Define G to be the
graph obtained by removing all loops from the graph corresponding to this configuration
of spheres. Suppose that either some .X;Si/ is a characteristic pair with Arf.X;Si/D0

or ambiently connect summing together any subset of S1; : : : ;Sn never results in a
smoothly immersed sphere that forms a characteristic pair with X . Then there are
Casson handles CH1; : : : ;CHn such that B4[ .1–handles/[CH1[ � � �[CHn admits
a smooth orientation-preserving embedding into X with each Si equal to the union of
the first-stage disk in CHi and a smoothly embedded disk in B4[ .1–handles/, where
CH1; : : : ;CHn are attaching to B4[ .1–handles/ in place of 2–handles in the standard
handle decomposition corresponding to G .

Proof We start by reducing to a more familiar setting. It is clear that N .S1[� � �[Sn/

can be identified with a smoothly embedded copy of B4 [ .1–handles/ [ T .1/
1
[

� � � [T .n/
1

, where T .1/
1
; : : : ;T .n/

1
are 1–stage towers attaching in place of 2–handles

in the standard handle decomposition corresponding to G . For each i D 1; : : : ; n,
let Di be the smoothly immersed disk in X associated to T .i/

1
. Also, let N D

B4[ .1–handles/�X . Then each Si is the union of Di and a smoothly embedded
disk in N . Also, each T .i/

1
has a collapsing set on its frontier. Let zy1; : : : ; zyg be

the framed circles on @N .S1[ � � � [Sn/ that form the union of these collapsing sets.
So ambiently attaching smoothly embedded disjoint second-stage Casson handles
in X � int.N .S1[ � � � [Sn// to N .S1 [ � � � [ Sn/ along zy1; : : : ; zyg produces the
necessary Casson handles CH1; : : : ;CHn , where each CHi is obtained from T .i/

1

by attaching the second-stage Casson handles to its frontier and then removing all
remaining boundary except the interior of the attaching region for T .i/

1
. Hence, it

suffices to locate these second-stage Casson handles.

Suppose first that some .X;Si/ is a characteristic pair with Arf.X;Si/ D 0. After
reordering, we assume that .X;S1/ is this characteristic pair. Again after reordering, we
also assume that there is a positive integer m with zy1; : : : ; zym contained in @N .S1/ and
zymC1; : : : ; zyg disjoint from @N .S1/. Since X � .S1[ � � � [Sn/ is simply connected,
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there are smoothly immersed disks in X�int.N .S1[� � �[Sn// bounded by zy1; : : : ; zyg .
Our discussion about Casson’s embedding theorem ensures these second-stage Casson
handles exist if each disk can be chosen so that it pushes off along the given framing to
realize an even self-intersection number. We apply the proof of Lemma 2.2 to .X;S1/

to modify the circles zy1; : : : ; zym so that they still form a collapsing set for T .1/
1

but
now each disk that is bounded by one of zy1; : : : ; zym must push-off as needed. Since S1

is characteristic, X � int.N .S1// admits a spin structure. So D2; : : : ;Dn are smoothly
immersed, disjoint disks whose union has a simply connected complement in the
smooth spin simply connected 4–manifold X � int.N [N .S1//. As discussed above,
the proof of Casson’s embedding theorem allows us to assume that zymC1; : : : ; zyg have
been chosen so that each zyj in this collection bounds a disk that pushes off as needed.
Thus, we can conclude that these second-stage Casson handles exist.

Next, suppose that ambiently connect summing together any subset of S1; : : : ;Sn

never results in a smoothly immersed sphere that forms a characteristic pair with X .
Let ˛i D ŒSi � 2 H2.X / for each i D 1; : : : ; n. Since X � .S1 [ � � � [Sn/ is simply
connected, there exists z1; : : : ; zn 2H2.X / with each ˛i �zj D ıij . Let ˛ 2H2.X / be
obtained by summing all ˛i for which zi � zi is odd. Notice that ˛ is represented by a
smoothly immersed sphere obtained by ambiently connect summing some combination
of S1; : : : ;Sn . As in the first paragraph of the proof of Lemma 2.2, our hypothesis
ensures that there exists some y 2 H2.X / with ˛ � y C y � y odd. If zi � zi is even,
let ˇi D zi . Otherwise, let ˇi D y C zi �

Pn
jD1. j̨ � y/zj . It is now easy to verify

that each ˛i � ǰ D ıij and each ǰ � ǰ is even. Notice that every homology class
in H2.X / is carried in X �N . In particular, each ǰ is the image of a homology class
ˇ0j 2H2.X �N / under the map induced by inclusion X �N ,!X . So the smoothly
immersed, disjoint disks D1; : : : ;Dn have a simply connected complement in the
smooth simply connected 4–manifold Y DX � int.N / and there are homology classes
ˇ0

1
; : : : ; ˇ0n 2H2.Y / with each Di �ˇ

0
j D ıij and each ˇ0j �ˇ

0
j even. As discussed above,

the proof of Casson’s embedding theorem now ensures that the necessary second-stage
Casson handles exist after possibly modifying the collection zy1; : : : ; zyg .

As an example of how this corollary can be applied, we look at spheres generating the
homology of nuclei in elliptic surfaces.

Example 2.5 Fix an even, positive integer n and let N.n/ denote the nucleus in the
elliptic surface E.n/. Recall that H2.N.n//DZ˚Z, generated by ˛1; ˛22H2.N.n//

satisfying ˛2
1
D 0; ˛2

2
D �n, and ˛1 � ˛2 D 1. There is a fishtail fiber S1 in N.n/

and a section S2 in N.n/ representing ˛1 and ˛2 respectively. In particular, S1 is a
smoothly immersed sphere with a unique double point, S2 is a smoothly embedded
sphere, S1 and S2 intersect exactly once, and E.n/�S1 [S2 is simply connected.
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None of S1 , S2 , or S1 # S2 form a characteristic pair with X because E.n/ is spin
and inclusion sends H2.N.n// to a direct summand of H2.E.n//. For any Casson
handle CH, define YCHDB4[CH[h with CH attaching to a 0–framed unknot in @B4

and a standard 2–handle h attaching to a �n–framed meridian of this unknot. Since
we’ve verified the necessary hypotheses, Corollary 2.4 ensures that some YCH smoothly
embeds into E.n/ in such a way that S1 and S2 are obtained by capping off smoothly
embedded disks in B4 by the first-stage disk of CH and the core of h. In particular,
YCH generates the homology of N.n/. Additionally, there is a topologically embedded
sphere in E.n/ representing ˛1 , and intersecting the section in N.n/ exactly once. In
the nD 2 case, we can use the discussion from Gompf and Mrowka [21] to locate three
disjoint copies of N.2/ in the K3 surface. So we obtain a pair consisting of a fishtail
fiber and a section in each of these three copies of N.2/. Gompf (unpublished) has also
observed that the union of these three pairs has a simply connected complement in the
K3 surface. (Each nucleus contains a second fishtail fiber, and it is routine to use this
to produce the nullhomotopies of the necessary meridians.) Then Corollary 2.4 allows
us to choose Casson handles CH1 , CH2 , and CH3 so that each has exactly one double
point in its first-stage disk and the disjoint union of YCH1

;YCH2
, and YCH3

smoothly
embeds into the K3 surface to generate its hyperbolic summand. Donaldson shows [6]
that E.2/ cannot be expressed as a connected sum with one of the summands equal to
S2�S2 , which means it is impossible to replace any one of CH1 , CH2 , or CH3 with
a standard 2–handle and still find these embeddings. So we have realized the smallest
number of kinks possible in the first-stage disk of each of these Casson handles.

This discussion can be applied to sharpen Freedman’s construction of the first large R4 ,
which is described in [13]. Although it is not clear at this stage what properties might
be useful, it is likely that this extra control could provide exotic R4 ’s contained in
connected sums of S2 �S2 ’s with some additional structure. On the other hand, this
corollary certainly does not apply if we instead choose n to be odd. In this case, the
second paragraph in the proof of Lemma 2.2 ensures that ˛1 cannot be represented by
any topologically embedded sphere in E.n/ because ˛1 is a characteristic element in
H2.E.n// and �.E.n//�˛2

1
D�8n is not divisible by 16.

Given a configuration of smoothly immersed spheres, it is generally difficult to deter-
mine when it is not possible to find Casson handles that admit an embedding as in
the previous corollary. There are some obvious examples where these Casson handles
cannot exist because taking an ambient connected sum of spheres in the configuration
would lead to a contradiction of Lemma 2.2. However, there are also examples where
such a contradiction does not arise but the necessary Casson handles still fail to exist.
This is illustrated in our final example of this section.
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Example 2.6 Let Y1 and Y2 each be a copy of CP2#8CP2 and let X DY1#Y2 . Also
let f1; e1; : : : ; e8; f2; e9; : : : ; e16 be the standard basis for H2.X /DH2.Y1/˚H2.Y2/.
Then there are smoothly immersed spheres S1 and S2 in X with S1 representing
3f1C e1C� � �C e8 and S2 representing 3f2C e9C� � �C e16 . These can be chosen to
each have exactly one double point and so that each Si is contained in the Yi summand
with Yi�Si simply connected. Notice that X�.S1[S2/ is also simply connected. Let
F1 , F2 , and F be the surfaces obtained by resolving the double points of S1;S2 , and
S1 # S2 , respectively. Since .Y1;F1/, .Y2;F2/, and .Y;F / are all characteristic pairs,
the corresponding quadratic forms zq1W H1.F1;Z2/ ! Z2 , zq2W H1.F2;Z2/ ! Z2 ,
and zqW H1.F;Z2/! Z2 from [9, Corollary 1] are each well-defined. [9, Theorem 1]
guarantees that Arf.zq1/DArf.zq2/D

1
8
.1�.�7//D1. After observing that zqDzq1˚zq2 ,

reversing the argument used in the proof of Lemma 2.2 ensures that there are not Casson
handles CH1 and CH2 corresponding to this configuration as in Corollary 2.4. However,
S1 and S2 are smoothly immersed spheres in X whose union has a simply connected
complement, neither Si is characteristic, and .X;S1 # S2/ is a characteristic pair with
vanishing Arf invariant.

3 Large R4’s in Stein surfaces

We now define a family of exotic R4 ’s that realize arbitrarily large (finite) values of
the Taylor invariant and each admit a smooth orientation-preserving embedding into a
compact Stein surface. To provide contrast, we also present a family of exotic R4 ’s that
fail to embed into any Stein surface and investigate the implications of the existence of
these two families.

We begin with an introduction to the Taylor invariant, first defined by Taylor [28].
Suppose that X is a smooth orientable open 4–manifold. Let E.X / denote the set of
flat topological embeddings eW B4 ,!X that restrict to a smooth embedding around
some point p 2 @B4. For each e 2 E.X /, fix Sp.e/ to be the collection of smooth
closed spin 4–manifolds with hyperbolic intersection form that contain a smoothly
embedded copy of the interior of e.B4/. Roughly speaking, the Taylor invariant is
computed by choosing the smallest second Betti number appearing in Sp.e/ for each
e 2 E.X /, dividing each in half, and then taking the supremum of the resulting integers.
However, it turns out that this definition fails to provide a meaningful invariant when X

is not spin. In order to address this issue, recall (see, for example, [24]) that X has
associated homology groups H lf

n .X;Z2/ and cohomology groups H n
c .X;Z2/. These

groups satisfy the duality relations H lf
n .X;Z2/ Š H 4�n.X;Z2/ and H n

c .X;Z2/ Š

H4�n.X;Z2/. Given an element in H 2.X;Z2/, we will say that its dual is the
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corresponding element in H lf
2
.X;Z2/ from the first duality isomorphism. An element

in H 2.X;Z2/ is said to be compactly supported if its dual is represented by a smoothly
embedded closed surface in X . Since the standard maps Hn.X;Z2/!H lf

n .X;Z2/ and
H n

c .X;Z2/!H n.X;Z2/ commute with these duality isomorphisms in the obvious
way, an element of H 2.X;Z2/ is compactly supported precisely when the original
cohomology class pulls back to an element in H 2

c .X;Z2/. (This whole discussion also
holds with coefficients in Z or any field.) If F is a smoothly embedded, closed surface
in X that represents the dual to w2.X / 2 H 2.X;Z2/, then X �F is spin. We can
now give a complete, precise definition of the Taylor invariant.

Definition 3.1 Suppose that X is a smooth orientable 4–manifold. If X is spin, then
the Taylor invariant of X is defined as

 .X /D sup
e2E.X /

min
N2Sp.e/

1
2
ˇ2.N /:

If X is not spin but w2.X / is compactly supported, then the Taylor invariant of X ,
still denoted  .X /, is the supremum of  .X �F /�dimZ2

H1.F;Z2/ with F ranging
over all smoothly embedded closed surfaces in X that represent the dual to w2.X /.
If w2.X / is not compactly supported, then the Taylor invariant of X is defined to be
 .X /D�1.

It follows from this definition that the Taylor invariant takes values in Z[f˙1g. It
is easy to verify that Sp.e/ is nonempty for any e 2 E.X / when X is spin, ensuring
that this invariant is indeed well-defined. Notice that it does not depend on a choice of
orientation.

All of the R4 ’s presented in this section are large because they have nonzero Taylor
invariant. We remark that it is still unknown if there exists a large R4 admitting a Stein
structure or a small R4 not admitting a Stein structure. [28, Remark 4.5] ensures that
all Stein R4 ’s have vanishing Taylor invariant, as any R4 with nonvanishing Taylor
invariant has infinitely many 3–handles in any handle decomposition. So the former
would provide the first example of a large R4 with vanishing Taylor invariant. In
particular, our examples do not admit Stein structures. As mentioned above, small
exotic R4 ’s admitting Stein structures were produced by Gompf [16; 20].

An important tool for building open 4–manifolds is an operation called end-summing.
This operation is essentially the noncompact analogue to boundary summing. We
present the definition of end-summing that is given by Gompf [14], but note that there
are multiple equivalent definitions appearing in the literature.
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Definition 3.2 Let X1 and X2 be smooth oriented noncompact 4–manifolds. Suppose
1W Œ0;1/!X1 and 2W Œ0;1/!X2 are smooth properly embedded rays with tubular
neighborhoods �1 and �2 , respectively. The end-sum of X1 and X2 along 1 and 2

is defined as
X1['1

I �R3
['2

X2;

where '1W
�
0; 1

2

�
�R3 ! �1 and '2W

�
1
2
; 1
�
�R3 ! �2 are orientation-preserving

diffeomorphisms that respect the R3 –bundle structures.

The resulting diffeomorphism type generally depends on the rays 1 and 2 , but does
not depend on any other choices made in the definition. Notice that it is important to
fix an orientation on both 4–manifolds before end-summing, or else the operation is
not well-defined. When end-summing with open Stein surfaces, we will always assume
that their complex orientations have been fixed. It follows from [3] that end-summing
Stein surfaces together produces another Stein surface.

End-summing was originally defined only for R4 ’s, and its behavior is simpler in
this case. End-summing a smooth oriented open 4–manifold X with some (possibly
exotic) oriented R4 produces a smooth oriented 4–manifold X 0 that is homeomorphic
(but possibly not diffeomorphic) to X . Furthermore, this homeomorphism X 0!X

can be chosen so that it restricts to an embedding on X that is isotopic to the identity.
Using any homeomorphism meeting this description, we can uniquely (up to isotopy)
transport the smooth structure of X 0 to a smooth structure on the underlying topological
4–manifold of X . In summary, end-summing a smooth oriented open 4–manifold with
an oriented R4 defines a new smooth structure on the same underlying topological
4–manifold. The resulting smooth 4–manifold is oriented by the orientation on this
underlying topological 4–manifold, and this agrees with the orientation induced by X 0 .
It follows from [14, Appendix] that the isotopy class of the smooth structure produced
by this operation does not depend on the choice of ray used in the R4 . Similarly,
simultaneously end-summing X with multiple R4 ’s uniquely defines an isotopy class
that only depends on the choice of rays in X . A slightly stronger statement from that
appendix ensures the diffeomorphism type of an oriented R4 , which we will denote
by either \n

iD1 Ri or R1\ � � � \Rn , that results from simultaneously end-summing the
standard R4 with each oriented (possibly exotic) R4 from some (possibly infinite)
collection fRig

n
iD1

is independent of any choice of rays. When n is finite, \n
iD1 Ri

is diffeomorphic to the result of inductively end-summing Ri with Ri�1 for each
1< i � n. We will often use \n R to denote \n

iD1 Ri when each Ri is a copy of R.

In order to end-sum with exotic R4 ’s in ambient 4–manifolds, we will require the
definition of shaved embeddings from [14].
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Definition 3.3 Let R be an R4 and let X be any smooth 4–manifold. We say that a
smooth embedding i W R ,! X is shaved if i.R/D int.B/ for some flat topological
4–ball B in X with a (nonempty) subset U � @B that is a smooth codimension-1
submanifold of X . Given orientations on R and X , we say that R is a shaved R4 in X

if R � X and inclusion defines a smooth shaved orientation-preserving embedding
of R into X .

If R1 and R2 are shaved R4 ’s in smooth connected oriented open 4–manifolds
X1 and X2 respectively, then it easy to verify that R1\R2 admits a smooth shaved
orientation-preserving embedding into any end-sum of X1 and X2 . Similarly, R1\R2

admits a smooth shaved orientation-preserving embedding into X1 # X2 . (For example,
these claims follow from the solution to [22, Exercise 9.4.8(a)].) The same discussion
holds for finite iterated end-sums, and extends in the obvious way to the case of infinite
end-sums provided they are all performed simultaneously as described above.

We are prepared to define the family of exotic R4 ’s described earlier, providing some
additional structure as well. The usefulness of this extra structure will be illustrated
in the next section, but it is worth noting that either of the final two properties below
ensures each of these R4 ’s contains an uncountable family of distinct R4 ’s sharing
its Taylor invariant. Our construction is closely related to [28, Example 5.10], which
finds R4 ’s that satisfy properties (1), (3), and (4) below but may not satisfy property (2).
In particular, that example provides no information about the relationship between the
resulting R4 ’s and Stein surfaces.

Theorem 3.4 There are exotic R4 ’s realizing arbitrarily large (finite) values of the
Taylor invariant that each admit a smooth embedding into a compact Stein surface.
More specifically, there is a smooth oriented 4–manifold L homeomorphic to R4 that
satisfies the following properties:

(1)  .L/ is an arbitrarily large integer, each  .\n L/ is finite for n 2 Z>0 , and
limn!1  .\n L/D1.

(2) There is a compact connected Stein surface S such that each \n L for n 2

Z>0[f1g admits a smooth shaved orientation-preserving embedding into an
open Stein surface Sn obtained by simultaneously end-summing the standard R4

with n copies of the interior of S .
(3) There is a smooth oriented open simply connected 4–manifold Zn for each

n 2 Z>0 with an even, positive-definite, unimodular intersection form such that
Zn�int.Yn/ is orientation-preserving diffeomorphic to \n L�int.Kn/ for some
smooth compact codimension-0 submanifolds Yn �Zn and Kn � \n L.

(4) Each \n L for n 2 Z>0 admits a smooth shaved orientation-preserving embed-
ding into #n CP2 .
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Proof We construct L using a standard cut-and-paste argument, but apply Lemma 2.2
to maintain control over the first stage of the Casson handle located during this con-
struction. If d is any integer with d > 1 and d � ˙1 .mod 8/, then there exists a
positive integer s with d2 � 1 D 16s . We start by fixing any pair .d; s/ of positive
integers satisfying this equality. Let X DCP2 #16sCP2 and let e0; e1; : : : ; e16s be the
standard basis for H2.X /. It is easy to construct a smoothly immersed sphere S in X

representing the element ˛Dde0Ce1C� � �Ce16s 2H2.X / that has gD 1
2
.d�1/.d�2/

negative double points and no positive double points. This can be chosen so that there
is a smoothly embedded sphere in X intersecting S exactly once, ensuring that X �S

is simply connected. Observe that .X;S/ is a characteristic pair with Arf.X;S/D 0

because

1
8
.S �S � �.X //D 1

8
..�d2

C 16s/� .�1C 16s//D�1
8
.d2
� 1/D�2s:

So S satisfies the hypotheses of Lemma 2.2 with S �SD�d2C16sD�1. Thus, there is
a neighborhood W �X of S that is equal to the interior of the smoothly embedded copy
of B4[CH, where CH is a Casson handle attaching to a �1–framed unknot in @B4

whose first-stage disk has g negative double points and no positive double points. Let
T1 denote the 1–stage tower of CH. Notice that W is homeomorphic to CP2�fptg. In
particular, there is a flat proper topological embedding j W S3 � Œ0;1/ ,!W . We call
on Quinn’s stable homeomorphism theorem [10, Theorem 8.1A] to arrange for j to be
smooth on a neighborhood of p�.0;1/�S3�Œ0;1/ for some point p2S3 . Define C

to be the subset of W obtained by removing j .S3�.a;1// for some a2R>0 , and then
choose C 0 to be any smooth compact codimension-0 submanifold of W containing C .
Next, recall that the standard 2–handle can be written as T1[ .2–handles/ with these
standard 2–handles attaching to any collapsing set on the frontier of T1 . So there
is a smooth orientation-preserving embedding of CH into the standard 2–handle
that sends the interior of T1 in CH to the interior of T1 in this description. Using
the standard handle decomposition for CP2 , this extends to a smooth orientation-
preserving embedding i W W ,! CP2 that induces an isomorphism on the level of
second homology.

As illustrated in Figure 5, we can now define .L;K/D .CP2�i.C /;CP2�int.i.C 0///.
Notice that L and K each inherit both a smooth structure and an orientation from
CP2 . It easily follows from the Mayer–Vietoris sequence and Seifert–van Kampen
theorem that H2.L/ D 0 and �1.L/ D 1. By construction, L is simply connected
at infinity because its unique end is homeomorphic to S3 �R. Hence, Freedman’s
criterion from [8, Corollary 1.2] ensures that L is indeed homeomorphic to R4 . It is
clear from our construction that L is a shaved R4 in CP2 .
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X CP 2

C Z

C 0 Y

i.C / L

i.C 0/ K

Figure 5: Constructing a large R4 in CP 2

We will work backwards to verify that properties (1)–(4) are satisfied. Since L is a
shaved R4 in CP2 , it is immediate from the discussion after our definition of end-
summing that property (4) holds. Next, we consider property (3). Let .Z;Y / D
.X � C;X � int.C 0//, so that Z and Y each inherit both a smooth structure and
orientation from X . Applying the Mayer–Vietoris sequence and Seifert–van Kampen
theorem again, we find that H2.Z/D h˛i

? and �1.Z/D 1. Since ˛ is characteristic
with ˛ �˛ D�1, we can conclude that Q

Z
is even, positive-definite, and unimodular.

Observe that L�int.K/ is orientation-preserving diffeomorphic to Z�int.Y / because
L� int.K/ D i.C 0 �C / and Z � int.Y / D C 0 �C . This is illustrated in Figure 5.
Now set Zn for each n 2 Z>0 equal to the result of simultaneously end-summing
the standard R4 with n copies of Z (using an arbitrary choice of rays). For each
n2Z>0 , let Yn�Zn (resp. Kn� \n L) be the result of ambiently boundary summing
together the copies of Y (resp. K ) coming from each copy of Z (resp. L) used in the
construction of Zn (resp. \n L). It is clear that these ambient boundary sums can be
performed so that each Yn �Zn and Kn � \n L are the necessary pairs to ensure that
property (3) holds. Note also that each Q

Zn
has rank 16sn.

We turn to property (2). This is the step that requires the first-stage disk of CH to
have only negative double points, as we arranged for in the first paragraph. Notice
that W is the interior of a smoothly embedded B4 [ T1 [ CH1[ � � � [ CHg � X ,
where T1 is attaching to a �1–framed unknot in @B4 and each CHi is a second-stage
Casson handle attaching to the frontier of T1 . Let A�W be the result of smoothly
isotoping B4[T1 into its own interior using the collared neighborhood of its boundary.
Since A is compact, we can arrange for A to be contained in the interior of C �W

by choosing a 2R>0 sufficiently large during the construction of C . This ensures that
L is a shaved R4 in CP2� i.A/. We will now use relative Kirby calculus to see that
CP2� i.A/ is the interior of a compact Stein surface. Observe that Figure 6 provides
a handle decomposition for CP2 with i.A/ equal to the union of the 0–handle, all 1–
handles, and the single �1–framed 2–handle, so that CP2� i.A/ is the interior of the
relative handlebody S described by Figure 7. Reversing the orientation on this relative
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Figure 6: Handle decomposition of CP 2 Figure 7: S DCP 2� int.i.A//
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Figure 8: S � (open 4–ball)

handlebody, removing the interior of its 4–handle, and then turning the result upside-
down (reversing its orientation again) produces a description of S � .open 4–ball/ as
the relative handlebody in Figure 8. We fill the new S3 boundary with B4 (in the
only way possible) simply by blowing down the 4–manifold described by bracketed
handles along the h1i–framed 2–handle in the final diagram of Figure 8. This results
in a description of S as the handlebody shown in Figure 9. Since the 0–framed link
in the final diagram of Figure 9 is Legendrian in .S3; �std/ and each component has
Thurston–Bennequin number equal to 1, the criterion in [16] ensures that S is indeed
a compact Stein surface. Hence, CP2 � i.A/ is an open Stein surface that is the
interior of the compact Stein surface S . Using our discussion after the definition of
end-summing, we can now conclude that property (2) holds as well.

We end with property (1). Since S is a handlebody with no handles of index 1, 3,
or 4 and each of the g 2–handles in Figure 9 has even framing, the double of S is
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Figure 9: Filling with B4 to obtain a description of S as a handlebody

diffeomorphic to #g S2 �S2 . So L admits a smooth shaved orientation-preserving
embedding into #g S2�S2 . Then our discussion after the definition of end-summing
can again be applied to conclude that each \n L for n 2 Z>0 admits a smooth em-
bedding into #.ng/S2 � S2 . In particular,  .\n L/ � ng <1 for each n 2 Z>0 .
On the other hand, it follows from another standard cut-and-paste argument (see, for
example, [2] or [28]) using property (3), the rank of each H2.Zn/ that was computed
above, and Furuta’s 10

8
–inequality [12, Theorem 1] that  .\n L/ > 2ns . In particular,

choosing s to be sufficiently large ensures that  .L/ is an arbitrarily large integer.
Also, limn!1  .\n L/D1. So each claim in property (1) holds as well.

The following corollary finds R4 ’s that display the opposite behavior from those
produced in [20]. Specifically, the R4 ’s from [20] form an uncountable collection
contained in C2 that each inherit a Stein structure.

Corollary 3.5 There is a compact Stein surface S that contains uncountably many dif-
feomorphism types of exotic R4 ’s that each fail to admit a Stein structure. Furthermore,
these R4 ’s all realize the same value of the Taylor invariant, and S can be chosen so
that this value is an arbitrarily large integer.

Proof Let L be an R4 constructed by Theorem 3.4 to realize an arbitrarily large
(finite) value of the Taylor invariant. Choose S to be the corresponding compact Stein
surface. By a standard argument (see, for example, [28]) that applies Taubes’s extension
of Donaldson theory [27], we can use property (3) above to conclude that there are
uncountably many diffeomorphism types of shaved R4 ’s in L that each have Taylor
invariant equal to the Taylor invariant of L. Each of these R4 ’s admits a smooth
shaved orientation-preserving embedding into S . As noted earlier, [28, Remark 4.5]
ensures that none of these R4 ’s admit a Stein structure.
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The exotic R4 ’s produced by this corollary are actually distinguishable by their compact
equivalence classes. Alternatively, it is possible to modify this construction to arrange
for these R4 ’s to all realize the same compact equivalence class but still represent
distinct diffeomorphism classes. We will define compact equivalence classes and
discuss this in more detail in the next section.

Next, we produce R4 ’s that behave similarly on the level of the Taylor invariant but do
not interact nicely with Stein surfaces or definite 4–manifolds. These are defined from
an exhaustion of the exotic R4 , denoted by U , that was introduced by Freedman and
Taylor [11]. Finding exotic R4 ’s by exhausting U was first done in [11, Corollary D]
and was subsequently studied more carefully [14], but neither considered embeddings
into Stein surfaces. We remark that U is typically referred to as the universal R4

because it is characterized as the unique R4 that contains every R4 as an end-summand.

Lemma 3.6 Suppose that K is a topologically slice knot in S3 that has a Legendrian
representative in .S3; �std/ with Thurston–Bennequin number equal to 1. Let K be
the knot in S3 obtained from K by switching all crossings, isotoped so that the two
knots are disjoint and not linking. Then the handlebody YK defined by attaching
0–framed 2–handles to B4 along both K and K smoothly embeds into U but does
not smoothly embed into any Stein surface (either open or compact). In particular, this
holds whenever K is the positive (untwisted) Whitehead double of a Legendrian knot
in .S3; �std/ with nonnegative Thurston–Bennequin number.

Proof It easily follows from [14, Lemma 1.1] that YK admits a smooth embedding into
some R4 , so that the universal property of U guarantees a smooth embedding of YK

into U . To obtain a contradiction, suppose that YK also admits a smooth embedding
into some Stein surface S . By passing to the interior of the appropriate component, we
can assume that S is both connected and open. Construct handlebodies XK and XK by
attaching a 0–framed 2–handle to B4 along K and K , respectively. Notice boundary
summing XK and XK produces YK . Our requirement on the Thurston–Bennequin
number of K ensures that the interior S 0 of XK is also an open Stein surface, so
that the result S 00 of end-summing S and S 0 (using any choice of rays) is again an
open Stein surface [3]. Since XK DXK , restricting the embedding of YK into S to
either XK or XK (depending on whether it is orientation-preserving or orientation-
reversing) provides a smooth orientation-preserving embedding of XK into the copy
of S in S 00 . Isotoping XK into its own interior using the collared neighborhood of
its boundary defines a smooth orientation-preserving embedding of XK into the copy
of S 0 in S 00 . Using these two embeddings, ambiently boundary sum XK � S � S 00
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and XK � S 0 � S 00 to produce a new smoothly embedded copy of YK in S 00 . After
choosing the appropriate orientations on K and K , the knot K # K is smoothly slice.
The corresponding slice disk ensures the existence of a smoothly embedded sphere
in YK representing the sum of a generating pair for H2.YK /D Z˚Z. This sphere
includes under the new embedding of YK to a smoothly embedded homologically
essential sphere with trivial square in S 00 . However, it is well-known that this cannot
happen in a Stein surface. So we have reached the necessary contradiction. The final
claim from the statement follows from the proof of [1, Theorem 3.4] and the well-known
fact that all Whitehead doubles are topologically slice.

Theorem 3.7 There are exotic R4 ’s realizing arbitrarily large (finite) values of the
Taylor invariant that each contain a smooth compact codimension-0 submanifold that
does not smoothly embed into any Stein surface (either open or compact) or any
smooth closed definite 4–manifold. These compact submanifolds each admit a smooth
embedding into U.

Proof It is immediate from Lemma 3.6 that there is a smooth compact codimen-
sion-0 submanifold C1 in U that does not smoothly embed into any Stein surface.
(Alternatively, it is possible to prove the existence of C1 directly by returning to the
definition of U from [11].) The universal property of U guarantees that there is also a
smooth compact codimension-0 submanifold C2 in U that does not smoothly embed
into any smooth closed definite 4–manifold, as there are several known constructions
of exotic R4 ’s that have a submanifold satisfying these requirements; eg end-sum
one of the R4 ’s constructed in [14] with itself using two different orientations. To
define the necessary R4 ’s, fix an exhaustion E0 �E1 �E2 � � � � of U with each Ei

equal to the interior of a topological 4–ball in U . Choose this exhaustion so that
each Ei contains both C1 and C2 . Then each Ei is an R4 (inheriting its smooth
structure from U ) that has the necessary compact submanifold. Observe also that each
 .Ei/ <1 because each Ei admits a smooth embedding into a smooth closed spin
4–manifold with hyperbolic intersection form, obtained by doubling a smooth compact
codimension-0 submanifold of U . It is clear that limi!1  .Ei/D  .U /D1.

Comparing the previous theorem to Gompf’s results [19] can sometimes produce two
nondiffeomorphic smooth structures on the same underlying topological 4–manifold,
distinguishable by the existence of a smooth compact codimension-0 submanifold that
does not smoothly embed into a Stein surface. In particular, we generalize the first
statement of [19, Theorem 3.4] without using either the genus function or the Taylor
invariant, which were both necessary to the proof given in that paper.
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Corollary 3.8 Every open topological 4–manifold can be smoothed so that it contains
a smooth compact codimension-0 submanifold that does not smoothly embed into any
Stein surface. As a result, every open topological 4–manifold X that topologically
embeds into a 4–dimensional handlebody with all indices at most 2 admits at least
two diffeomorphism classes of smooth structures. In particular, the interior of any 4–
dimensional handlebody with all indices at most 2 admits at least two diffeomorphism
classes of smooth structures.

Proof Suppose that X is an open topological 4–manifold. [10, Section 8.2] produces
a smooth structure † on X . It follows from Theorem 3.7 that U contains a smooth
compact codimension-0 submanifold that does not smoothly embed into any Stein
surface. If X is orientable, the necessary smooth structure †0 on X is obtained by
end-summing X† with U (using any orientations and any choice of rays). If X is
nonorientable, fixing an orientation on a tubular neighborhood of some smooth properly
embedded ray  in X† allows us to still perform this end-sum operation to obtain the
necessary smooth structure †0 on X . So the first claim holds.

Next, suppose that X topologically embeds into a 4–dimensional handlebody H with
all indices at most 2. If X is orientable, set zX D X . Otherwise, set zX equal to the
orientable double cover of X . Choose zH analogously for H and let � W zH ! H

denote the corresponding covering map (equal to the identity in the orientable case).
So X inherits a smooth structure †00 from a Casson smoothing on the interior of H

produced by [19, Lemma 3.2], with this Casson smoothing chosen so that its lift under �
smoothly embeds into some Stein surface. Notice that zX topologically embeds into zH
and � restricts to a covering map �X W

zX !X . Then †00 lifts to a smooth structure
z†00D��

X
†00 on zX and zX z†00 smoothly embeds into this Stein surface. For z†0D��

X
†0 ,

it is clear that zX z†0 and zX z†00 are not diffeomorphic. As needed, this means that X†0

and X†00 are also not diffeomorphic. The final sentence of the statement clearly follows
as well.

Our final corollary of this section uses Theorem 3.4 to produce an exotic R4 with
infinite Taylor invariant that smoothly embeds into an open Stein surface, and then
applies Theorem 3.7 to conclude that this property distinguishes it from U . The results
from [19, Section 7] allow us to subsequently locate uncountably many R4 ’s meeting
this description. This technique is discussed in more detail at the end of the next
section. Combining all of the known work about exotic R4 ’s actually produces many
examples with infinite Taylor invariant, some of which are also not diffeomorphic to U .
For example, it is straightforward to modify [28, Example 5.10] to find uncountably
many R4 ’s in CP2 with infinite Taylor invariant. However, it is again unclear how
any of these previous constructions relate to Stein surfaces.
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Corollary 3.9 There is an exotic R4 , denoted L1 , with infinite Taylor invariant that
admits a smooth embedding into an open Stein surface. Additionally, every smooth
compact codimension-0 submanifold of L1 admits a smooth embedding into a finite
connected sum of CP2 ’s. Either of these properties is sufficient to distinguish the
diffeomorphism type of L1 from the diffeomorphism type of U . Furthermore, L1
contains uncountably many diffeomorphism types of exotic R4 ’s that also have infinite
Taylor invariant.

Proof Let L1 D \1L, where L is any exotic R4 produced by Theorem 3.4. It is
clear from properties (1), (2) and (4) of Theorem 3.4 that  .L1/D1 and the necessary
embeddings exist. On the other hand, Theorem 3.7 guarantees that U does not satisfy
either of these properties. Finally, [19, Theorem 7.1] locates the necessary R4 ’s inside
of L1 to ensure the final claim holds as well.

Determining when constructions of R4 ’s with infinite Taylor invariant provide a new
description of U seems to be a difficult problem in general. For example, equipping L1
with the orientation induced from the orientation on L allows us to define L1\L1 .
Notice that L1 �L1\L1 �U . It mimics the behavior of U in the following diffeo-
morphisms: L1\.L1\L1/Šdiff L1\L1Šdiff .L1\L1/\L1 . This new exotic R4

also shares the property with U that it contains a smooth compact codimension-0
submanifold that does not smoothly embed into any smooth closed definite 4–manifold;
eg apply the argument from [22, Theorem 9.4.3] to copies of L and L in L1\L1 .
In particular, L1\L1 is certainly not diffeomorphic to L1 . On the other hand, it
is possible that L1\L1 still shares the property with L1 that it admits a smooth
embedding into some Stein surface.

4 The Taylor invariant, the genus-rank function, and com-
pact equivalence classes

To illustrate the usefulness of the R4 ’s defined in the previous section, we consider their
applications to constructing and manipulating smooth structures on open 4–manifolds.
In particular, we show that the genus function can be preserved while end-summing with
arbitrarily large R4 ’s, or at least only disrupted in a small, controlled way. Conversely,
we also see that this statement is false for the universal R4 . Our observations will
facilitate a procedure for independently controlling the Taylor invariant, the genus-rank
function, and compact equivalence classes, often realizing infinitely many values of
one invariant while keeping the other two fixed.

We start with definitions of the genus and genus-rank functions, following those given
in [19].
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Definition 4.1 Let X be a smooth oriented 4–manifold with torsion subgroup T �

H2.X /. The genus function GW H2.X / ! Z�0 is the function assigning to each
˛ 2 H2.X / the smallest possible genus of a smoothly embedded compact oriented
surface F representing ˛ . If H2.X /=T is a free abelian group, then the corresponding
genus-rank function is the function Z�0!Z�0[f1g that sends each g 2Z�0 to the
rank of the rational span in H2.X /=T of all ˛ 2H2.X / with both G.˛/ and j˛ �˛j
less than or equal to g .

Notice that the genus-rank function is defined whenever X is homeomorphic to the
interior of a handlebody with only finitely many 3–handles. The genus-rank function
is an invariant of the diffeomorphism type of X , and changing the smooth structure
on X can effect this invariant. In particular, we will frequently be able to distinguish
smooth structures on the same underlying topological 4–manifold by the smallest
g 2 Z�0 on which their genus-rank functions have a nonzero value. We call this
integer the first characteristic genus of the corresponding genus-rank function. (As in
[19], characteristic genera can also be defined more generally.) Although the genus-
rank function is sometimes denoted by  , we will reserve that symbol for the Taylor
invariant.

Stein surfaces come equipped with an adjunction inequality that provides lower bounds
on the genus function; see, for example, [19, Section 2]. If X is a smooth oriented open
4–manifold that admits a smooth orientation-preserving embedding i W X ,! S for
some Stein surface S (oriented by its complex structure), then it inherits the adjunction
inequality associated to S . More specifically, every ˛ 2H2.X / with i�.˛/¤ 0 must
satisfy

2G.˛/� 2� ˛ �˛Cjhc1.S/; i�.˛/ij:

It is precisely this observation that is used in [19] to produce pointwise upper bounds
on the genus-rank function, and to subsequently distinguish large families of smooth
structures on handlebody interiors.

Our first task is to consider how end-summing with exotic R4 ’s effects the genus-rank
function. Recall from the previous section that simultaneously end-summing a smooth
oriented open 4–manifold with a collection of oriented R4 defines a new smooth
structure on the same underlying topological 4–manifold. As above, the resulting
smooth 4–manifold is oriented by the orientation on this underlying topological 4–
manifold. The new genus-rank function is pointwise bounded below by the genus-rank
function realized by the original smooth structure. The challenge seems to be finding
upper bounds. To address this issue, the following lemma allows us to end-sum with
certain large R4 ’s while preserving any adjunction inequalities that are inherited from
embeddings into Stein surfaces.
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Lemma 4.2 Suppose that L is an oriented R4 constructed by Theorem 3.4. If X†0

is a smooth oriented 4–manifold produced by simultaneously end-summing a smooth
oriented open 4–manifold X† with each oriented R4 from some (possibly infinite)
collection f\ni

L j ni 2 Z>0 [ f1ggN
iD1

, then the genus function on X†0 satisfies
every adjunction inequality inherited from a smooth orientation-preserving embedding
of X† into an open Stein surface that sends each ray used in the end-sum operation to
a smooth properly embedded ray in the Stein surface.

Proof We proceed by induction on N . First consider the case where N D 1, so
that the smooth structure †0 on X is obtained by end-summing X† with \n L for
nD n1 2Z>0[f1g. Let  be the ray in X† used to perform this end-sum operation.
Suppose that i W X† ,! S is a smooth orientation-preserving embedding of X† into
an open Stein surface S that sends  to a smooth properly embedded ray  0 in S .
Property (2) of Theorem 3.4 ensures that \n L sits inside of an open connected Stein
surface Sn as a shaved R4 . Let S 0 be obtained by end-summing S and Sn along
the ray  0 in S and an arbitrary ray in Sn . Then S 0 admits a Stein structure by [3].
Using the fact that \n L is a shaved R4 in Sn , we can find a smooth embedding
pW Œ0; 1�! S 0 whose intersection with S � S 0 is the ray  0 and whose intersection
with \n L� Sn � S 0 is some smooth properly embedded ray in \n L. The union of
i.X†/�S �S 0 , \k L�Sn�S 0 , and an open regular neighborhood of this path p is
a smoothly embedded copy of X†0 in S 0 . The Stein structure on S 0 can be chosen so
that this embedding is orientation-preserving and so that c1.S

0/D c1.S/˚ c1.Sn/ 2

H 2.S 0/DH 2.S/˚H 2.Sn/. Thus, we’ve constructed a smooth orientation-preserving
embedding i 0W X†0 ,! S 0 that is an extension of the embedding i W X† ,! S . For any
˛ 2H2.X /, observe that H2.S

0/DH2.S/˚H2.Sn/ and

hc1.S
0/; i 0�.˛/i D hc1.S/˚ c1.Sn/; i�.˛/˚ 0i D hc1.S/; i�.˛/i:

Also, i�.˛/ D 0 if and only if i 0�.˛/ D 0. It follows that the adjunction inequality
on X† inherited from the embedding i W X† ,! S is also inherited by X†0 from the
embedding i 0W X†0 ,!S 0 . So the statement holds when N D1. Furthermore, if i sends
a collection of smooth properly embedded rays in X† to smooth properly embedded
rays in S , then this collection can be smoothly isotoped in X† so that i 0 sends each to
a smooth properly embedded ray in S 0 . Now induction provides the necessary result
when N is finite. If N D1, then the result follows because every smoothly embedded
compact oriented surface in X†0 is contained in some X†00 sitting inside X†0 that is
obtained from X† by performing end-sums with only finitely many \ni

L.

As an immediate corollary, we can preserve the adjunction inequality on Stein surfaces
while end-summing with R4 ’s that realize arbitrarily large values of the Taylor invariant.
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Corollary 4.3 There is a large, oriented R4 , denoted by L, with the property that
any smooth oriented 4–manifold X†0 produced by simultaneously end-summing an
open Stein surface X† with each R4 from some (possibly infinite) collection f\ni

L j

ni 2 Z>0[f1ggN
iD1

satisfies the adjunction inequality associated to this Stein surface.
Furthermore, L can be chosen so that  .L/ is an arbitrarily large positive integer,
limn!1  .\n L/ D 1, each  .\n L/ <1 for n 2 Z�0 , and L does not admit a
Stein structure.

Proof The first claim follows from Lemma 4.2 because the identity on X† obvi-
ously sends every smooth properly embedded ray to a smooth properly embedded ray.
Property (1) of Theorem 3.4 guarantees the claims about the Taylor invariant of L.
As above, [28, Remark 4.5] ensures that such an L does not admit a Stein structure
because  .L/ > 0.

The behavior of the exotic R4 ’s in Lemma 4.2 is not what we should expect in general.
Our next example illustrates the different ways that end-summing with large R4 ’s can
effect the genus function.

Example 4.4 Let X be obtained by connect summing infinitely many copies of
S2 �S2 and let †std denote the standard smooth structure on X . Arrange for X to
have a unique end by performing this sum in the appropriate way. End-summing X†std

with any exotic R4 will always produce the standard smooth structure again (see,
for example, [28, Remark 6.5]), but [19, Example 3.6] constructs uncountably many
diffeomorphism classes of Casson smoothings on X . These diffeomorphism classes
are distinguished by the corresponding genus-rank functions (or their relative versions).
Any smooth 4–manifold obtained by equipping X with one of these Casson smooth-
ings admits a smooth orientation-preserving embedding into a Stein surface, and the
inherited adjunction inequality ensures that it does not contain a smoothly embedded
homologically essential sphere with trivial square. Therefore, Lemma 4.2 allows us
to repeatedly end-sum each of these new smooth 4–manifolds with large R4 ’s and
never recover the standard smooth structure on X . These R4 ’s can be chosen to
have arbitrarily large (finite) values of the Taylor invariant or to have infinite Taylor
invariant. With a bit more care, we can arrange for each Casson smoothing to be Stein,
each element of the standard basis for H2.X / to realize equality in the corresponding
adjunction inequalities, and one Casson handle from infinitely many S2�S2 summand
in each smoothing to be some fixed Casson handle CH0 . Now end-summing with these
exotic R4 ’s actually preserves the value of each genus function on this basis.

On the other hand, consider the R4 ’s produced by Theorem 3.7. These each have finite
Taylor invariant but form an exhaustion of U , and it follows from the construction
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of U in [11] that we can choose some E from this exhaustion so that end-summing
any of these Stein–Casson smoothings on X with E allows any one of the CH0 ’s
to be isotoped to a standard 2–handle. This defines at least one standard copy of
S2 �S2�fptg. End-summing instead with \n E for any n 2 Z>0[f1g, which still
has finite Taylor invariant when n is finite, produces smooth 4–manifolds that each
have at least n standard copies of S2�S2�fptg. When nD1, we can even conclude
that each resulting smooth structure lies in the same isotopy class as †std ; eg apply
the proof of [11, Theorem 3]. Similarly, end-summing any of these Stein–Casson
smoothings with U also recovers the standard smooth structure. In reference to the
discussion at the end of the previous section, it follows that \1E might be another
good candidate to provide an alternate description of U .

Next, we introduce compact equivalence classes and some relevant terminology. Like
the Taylor invariant, compact equivalence classes are designed to measure the com-
plexity of shaved R4 ’s in smooth 4–manifolds. Our definition extends the one given
in [14] to smooth 4–manifolds that are not necessarily homeomorphic to R4 .

Definition 4.5 Let †1 and †2 be smooth structures on an oriented topological 4–
manifold X . We write †1 �†2 if every flat topological embedding e1W B

4 ,!X†1

that is smooth around some p1 2 @B
4 corresponds to a flat topological embedding

e2W B
4 ,!X†2

that is smooth around some p2 2 @B
4 with the property that interiors

of e1.B
4/ and e2.B

4/ are orientation-preserving diffeomorphic. If †1 �†2 �†1 ,
then we say that †1 and †2 are compactly equivalent.

The relation � descends to a partial ordering on compact equivalence classes. Similarly,
the Taylor invariant is well-defined on compact equivalence classes on spin 4–manifolds.
More precisely, the Taylor invariant is monotonic with respect to the ordering defined
by � if the underlying topological 4–manifold is spin. However, we will see that same
value of the Taylor invariant can often be realized by distinct compact equivalence
classes.

Typical methods for changing the compact equivalence class of a given smooth structure
require it to come with some embeddings into smooth closed definite 4–manifolds.
Our next definition introduces one of the more general version of this condition.

Definition 4.6 Let † be a smooth structure on an oriented topological 4–manifold X .
We say that † is compactly positive-definite (resp. compactly negative-definite) if every
†–smooth compact codimension-0 submanifold of X admits a †–smooth orientation-
preserving embedding into a smooth closed simply connected positive-definite (resp.
negative-definite) 4–manifold.
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On open topological 4–manifolds admitting a smooth structure that is either com-
pactly negative-definite or compactly positive-definite, there are at least two essentially
different ways to end-sum with exotic R4 ’s to produce uncountably many new diffeo-
morphism types. As we will see below, these two methods can be differentiated by
whether the compact equivalence class is the same for all resulting smooth structures.

In our first application of Lemma 4.2, we end-sum with exotic R4 ’s to manipulate the
Taylor invariant while maintaining control over the genus-rank function. Conversely,
we also use methods from [19] to modify the genus-rank function without changing
the Taylor invariant.

Theorem 4.7 Suppose that X is an open connected topological 4–manifold that is
the interior of an oriented handlebody H with all indices at most 2, 0< ˇ2.X / <1,
and w2.X / 2H 2.X;Z2/ is compactly supported. Then there are smooth structures
on X that realize infinitely many (arbitrarily large and finite) values of Taylor invariant
but all produce the same genus-rank function, and infinitely many genus-rank functions
occur in this way. If X is spin, then there are also smooth structures on X that produce
infinitely many genus-rank functions but all realize the same arbitrarily large (finite)
value of the Taylor invariant.

Thus, we can independently control the Taylor invariant and genus-rank function under
sufficiently nice conditions. Using techniques from the proof of [19, Lemma 7.3],
we can sometimes realize each of these pairs by uncountably many distinct compact
equivalence classes.

Addendum 4.8 If the standard smooth structure that X inherits as a handlebody
interior is compactly positive-definite, then each pair of Taylor invariant and genus-rank
function from this theorem is realized by smooth structures on X whose compact
equivalence classes have the order type of R�0 .

Proof of Theorem 4.7 and Addendum 4.8 We will construct these smooth structures
by end-summing Casson smoothings on X from [19] with R4 ’s from Theorem 3.4.
In order to do this while sometimes realizing uncountably many compact equiva-
lence classes, we must first consider these R4 ’s more carefully. Fix some L from
Theorem 3.4, a positive real number t0 , and a homeomorphism hW R4! L. Apply
Quinn’s stable homeomorphism theorem [10, Theorem 8.1A] to isotope h so that it
is smooth on a neighborhood of the positive real line in R4 . For each t 2 R�0 , let
Bt �R4 denote the standard ball of radius t0Ct and let Lt denote the interior of h.Bt /.
We can chose t0 large enough that K1 �Lt0

�L, where K1 is the compact set from
property (3) of Theorem 3.4. It is easy to conclude that each Lt is an oriented R4

that also satisfies properties (1)–(4) of Theorem 3.4. In particular, Lemma 4.2 holds
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with L replaced by any Lt because it only requires property (2). We can now freely
apply the properties ensured by Theorem 3.4 and the conclusion of Lemma 4.2 to Lt

throughout this proof.

We proceed to define the necessary smooth structures on X . First, equip X with the
orientation it inherits as a handlebody interior. Apply the hypothesis that ˇ2.X /¤ 0

to construct a collection f†a j a 2 Z>0g of Casson smoothings on X corresponding
to the handle decomposition from H using the procedure from the proof of [19,
Theorem 3.4]. This procedure inductively constructs each †a so that X†a

inherits
enough adjunction inequalities to ensure that the first characteristic genus of its genus-
rank function is strictly larger than the first characteristic genus of the genus-rank
function on any X†a0 with a0 < a. Let †std denote the standard smooth structure that
X inherits as a handlebody interior, and fix a smooth properly embedded ray  in X†std

that is contained in the interior of some 0–handle from H . Also fix the corresponding
smooth properly embedded ray a in each X†a

. For each a; n 2 Z>0 and t 2 R�0 ,
define †a;n;t to be the smooth structure on X obtained by end-summing X†a

with
\n Lt along the ray a in X†a

and an arbitrary ray in \n Lt . It now suffices to verify
that these smooth structures realize the necessary invariants.

We start by considering the genus-rank functions that are produced by these new
smoothings. For each a 2 Z>0 , let ga 2 Z�0 be the first characteristic genus of the
genus-rank function on X†a

. As described above, any †a and †a0 for a > a0 can
be distinguished because X†a

inherits enough adjunction inequalities from smooth
orientation-preserving embeddings into Stein–Casson smoothings on X to ensure that
ga>ga0 . Each of these embeddings for a given X†a

restricts to the identity away from
its Casson handles, so that each sends a to some smooth properly embedded ray in the
corresponding Stein–Casson smoothing on X . Hence, Lemma 4.2 ensures that each
X†a;n;t

inherits these same adjunction inequalities as X†a
. So the genus-rank function

on each X†a;n;t
sends ga0 to zero if a0< a. On the other hand, the genus-rank function

on each X†a;n;t
is pointwise bounded below by the genus-rank function on X†a

. In
particular, the genus-rank function on each X†a;n;t

sends ga to a nonzero integer.
Therefore, any †a;n;t and †a0;n0;t 0 produce distinct genus-rank functions if a¤ a0 . In
addition, these pointwise lower bounds coupled with the hypothesis that ˇ2.X / <1

guarantee that each collection f†a;n;t jn2Z>0; t 2R�0g for a fixed a2Z>0 produces
only finitely many distinct genus-rank functions.

Next, we turn to the Taylor invariant. Our goal is to find upper and lower bounds on each
 .X†a;n;t

/ that only depend on n, although our lower bounds will sometimes need to
depend on a as well. For each n2Z>0 , consider the smooth structure †0n on X that is
obtained by end-summing X†std with \n L along the ray  in X†std and an arbitrary ray
in \n L. We will use the proof of [28, Theorem 6.4] to verify that each  .X†0

n
/ <1.
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This theorem applies to X†std because H has no 3–handles, ˇ2.X / <1, and w2.X /

is compactly supported. Its proof produces smooth 4–manifolds M.�/ for �2Z>0 that
each have finite Taylor invariant. It is straight-forward to construct a smooth embedding
of any X†0

n
into some M.�/, sending duals of w2.X / to duals of w2.M.�//. As

needed, this means that each  .X†0
n
/ �  .M.�// < 1 for some � 2 Z>0 . Next,

recall that every Casson handle admits a smooth orientation-preserving embedding
into the standard 2–handle that preserves attaching regions. So each X†a

admits a
smooth orientation-preserving embedding into X†std that sends a to  . It follows that
each X†a;n;t

admits a smooth orientation-preserving embedding into X†0
n

that maps
duals of w2.X / to duals of w2.X /. Therefore, each  .X†a;n;t

/�  .X†0
n
/ <1. In

particular, the Taylor invariant realized by any given †a;n;t has a finite upper bound
that is only dependent on the parameter n 2 Z>0 . On the other hand, the Taylor
invariant realized by each †a;n;t is bounded below by  .\n Lt0

/ � da , where da

is equal to the Z2 –dimension of H1.F;Z2/ for some smoothly embedded closed
surface F in X†a

that is dual to w2.X /. This lower bound depends on the choice
of both a; n 2 Z>0 , but it can be replaced by the lower bound  .\n Lt0

/ when X is
spin. Property (1) of Theorem 3.4 ensures that both lower bounds grow to be arbitrarily
large if we let n tend to infinity while fixing a. So we can conclude that any collection
f†a;n;t j t 2 R�0g for a fixed a; n 2 Z>0 realizes only finitely many values of the
Taylor invariant, and the smallest Taylor invariant realized by this collection grows to
be arbitrarily large (but finite) as n tends to infinity for a fixed a. If X is spin, then any
f†a;n;t j a 2Z>0; t 2R�0g for a fixed n 2Z>0 also realizes only finitely many values
of the Taylor invariant and the smallest Taylor invariant realized by this collection still
grows to be arbitrarily large, but finite, as n tends to infinity.

The rest of this proof will be a counting argument that applies the observations from
the previous two paragraphs to verify that the necessary invariants have indeed been
realized, starting with the claims made in the original statement. For any fixed a 2Z>0

and t 2 R�0 , the collection f†a;n;t j n 2 Z>0g produces only finitely many distinct
genus-rank functions. So each contains smooth structures that realize infinitely many
(arbitrarily large and finite) values of the Taylor invariant but all produce the same
genus-rank function. Since infinitely many distinct genus-rank functions are produced
in this way, the first sentence holds.

Next, suppose that X is spin. For any fixed n 2 Z>0 and t 2 R�0 , the collection
f†a;n;t j a 2 Z>0g realizes only finitely many values of the Taylor invariant. So each
contains smooth structures that produce infinitely many distinct genus-rank functions
but all realize the same value of the Taylor invariant. Arbitrarily large (finite) values
of the Taylor invariant are realized in this way. Therefore, the second sentence is also
true. We have completed the proof of the original statement.
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Before proceeding to the addendum, we analyze the compact equivalence classes that
are realized by these new smooth structures. For the remainder of this proof, we suppose
that †std is compactly positive-definite. We claim that †a;n;t 0 �†a;n;t if and only if
t 0 � t . Our argument will follow the proof of [19, Lemma 7.3]. One direction is clear.
To see the other direction, suppose to the contrary that some †a;n;t 0 �†a;n;t for t 0 > t .
In particular, this means that \n Lt embeds into X†a;n;t

by a smooth orientation-
preserving embedding whose image has compact closure. Then there exists smooth
compact codimension-0 submanifolds K1 �X†a

and K2 � \n Lt with the property
that \n Lt admits a smooth orientation-preserving embedding into the result K of
boundary summing K1 and K2 . Recall from above that each X†a

admits a smooth
orientation-preserving embedding into X†std , ensuring that K1�X†a

admits a smooth
orientation-preserving embedding into some smooth closed simply connected positive-
definite 4–manifold P . It then follows that K admits a smooth orientation-preserving
embedding into P # .\n Lt /. Putting it all together, we’ve shown that \n Lt admits
a smooth orientation-preserving embedding into a smooth compact codimension-0
submanifold of P # .\n Lt /. After reversing orientation, a standard argument (see, for
example, [5]) applying Taubes’s extension of Donaldson theory in [27] and property (3)
from Theorem 3.4 produces the necessary contradiction. So our claim holds.

We are now prepared to find the smooth structures described in the addendum. Since
any collection f†a;n;t j t 2 R�0g for a fixed a; n 2 Z>0 realizes only finitely many
values of the Taylor invariant and produces only finitely many distinct genus-rank
functions, each has a subcollection Ca;n of smooth structures that all realize the same
genus-rank function and Taylor invariant but represent uncountably many distinct
compact equivalences classes. Furthermore, each Ca;n can be chosen so that these
compact equivalence classes have the order type of R�0 . For any fixed a 2 Z>0 ,
the subcollections Ca;n realize infinitely many (arbitrarily large and finite) values of
the Taylor invariant as n tends to infinity but only finitely many distinct genus-rank
functions. So there are infinitely many distinct genus-rank functions that are each
produced by smooth structures on X realizing infinitely many (arbitrarily large and
finite) values of the Taylor invariant, with each pair occurring for compact equivalence
classes with the order type of R�0 .

Suppose next that X is spin. For each fixed n 2 Z>0 , the subcollections Ca;n realize
infinitely many distinct genus-rank functions as a tends to infinity, but only finitely
many values of the Taylor invariant. Hence, some arbitrarily large (finite) value of the
Taylor invariant is realized by smooth structures on X that produce infinitely many
distinct genus-rank functions, and again each pair occurs for compact equivalence
classes with the order type of R�0 . This completes the proof of the addendum.
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In the preceding proof, we ensured the necessary invariants were realized by producing
sufficient bounds. As the next example illustrates, we can sometimes compute these
invariants more explicitly.

Example 4.9 Let X D S2 � R2 . Following [19, Theorem 3.10], we can choose
Stein–Casson smoothings f†a j a 2Z>0g on X so that the first characteristic genus of
the genus-rank function on each X†a

is a. Furthermore, the existence of a smoothly
embedded, homologically essential surface of genus strictly smaller than a in some
X†a

would violate the adjunction inequality associated to the Stein structure on X†a
.

Now construct †a;n;t for each a; n 2 Z>0; t 2 R�0 as in the preceding proof. The
first characteristic genus of the genus-rank function on each X†a;n;t

is equal to a

because each still satisfies this adjunction inequality. So the genus-rank function on
each X†a;n;t

is completely determined by the value of a, and different values of a

will produce distinct genus-rank functions. Observe next that each X†a;n;t
has the

peculiar property it contains a smoothly embedded copy of \n Lt and also admits a
smooth embedding into \n Lt . This means that each  .X†a;n;t

/D  .\n Lt /. Then
there is some tn 2R�0 for each n 2Z>0 such that each  .X†a;n;t

/D  .\n L/ for all
t � tn , ensuring that the Taylor invariant realized by any †a;n;t for t � tn is completely
determined by n. As in the preceding proof, the compact equivalence class of any
†a;n;t and †a;n;t 0 are the same if and only if t D t 0 . In summary, we’ve found infinitely
many genus-rank functions that are each produced by smooth structures on X realizing
the same infinitely many (arbitrarily large and finite) values of the Taylor invariant, and
each pair occurs for uncountably many compact equivalence classes. Notice that we
have significantly more control in this situation than we did in the preceding proof.

The techniques used in the proof of Theorem 4.7 can be adapted to construct smooth
structures that realize infinite Taylor invariant.

Theorem 4.10 Suppose that X is an open connected topological 4–manifold that is
the interior of an oriented handlebody H with all indices at most 2, ˇ2.X /¤ 0, and
w2.X / 2H 2.X;Z2/ is compactly supported. Then there are smooth structures on X

that produce infinitely many genus-rank functions but all realize infinite Taylor invariant.
If ˇ2.X /D1, then uncountably many genus-rank functions occur in this way.

Proof It follows immediately from [19, Theorem 3.4] that there are Casson smoothings
on X producing infinitely many distinct genus-rank functions, and we can apply [19,
Theorem 3.5] to arrange for the cardinality to be uncountable when ˇ2.X /D1. Let L

be a large, oriented R4 from Theorem 3.4. Then construct new smooth structures by end-
summing each of these Casson smoothings on X with \1L. Each resulting smooth
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structure clearly realizes infinite Taylor invariant. As in the proof of Theorem 4.7
and Addendum 4.8, these end-sums can be performed so that any two can still be
distinguished by the genus-rank functions they produce. (These genus-rank functions
cannot be distinguished by their first characteristic genera alone in the uncountable
case, but the argument still goes through identically.)

Example 4.11 As in Example 4.4, let X be the connected sum of infinitely many
copies of S2 �S2 and let †std be its standard smooth structure. Again, perform these
connected sums so that X has a unique end. Then Theorem 4.10 defines smooth
structures on X that produce uncountably many distinct genus-rank functions but all
realize infinite Taylor invariant. At least on the standard basis for H2.X /, we can follow
Example 4.4 to arrange for the genus function from each resulting smooth structure
to agree with the genus function from a Stein–Casson smoothing on X . However,
it seems to be unknown if any Stein–Casson smoothing on X also realizes infinite
Taylor invariant. For example, consider L1 from Corollary 3.9. It is immediate from
the construction of L1 that it smoothly embeds into X†std , but it is not clear if L1
smoothly embeds into any Stein–Casson smoothing on X . For comparison, note that
Example 4.4 ensures U smoothly embeds into X†std but does not smoothly embed
into any Stein–Casson smoothing on X .

Even if w2.X / 2 H 2.X;Z2/ is not compactly supported, we can still control the
genus-rank function while realizing uncountably many distinct compact equivalence
classes. However, the Taylor invariant will always equal �1 in this situation.

Theorem 4.12 Suppose that X is an open connected topological 4–manifold that is
the interior of an oriented handlebody H with all indices at most 2, 0< ˇ2.X / <1,
and the standard smooth structure that X inherits as a handlebody interior is compactly
positive-definite. Then there are smooth structures on X that all produce the same
genus-rank function but represent compact equivalence classes with the order type
of R�0 , and infinitely many genus-rank functions occur in this way.

Proof Using a fixed n2Z>0 , construct smooth structures f†a;n;t j a2Z>0; t 2R�0g

on X as in the proof of Theorem 4.7 and Addendum 4.8. The bounds produced in that
proof on the resulting genus-rank functions still hold. Similarly, the claims made about
compact equivalence classes are also still true. Therefore, we can choose subcollections
Ca � f†a;n;t j t 2R�0g for each a 2Z>0 so that each contains smooth structures that
all produce the same genus-rank function but represent compact equivalence classes
with the order type of R�0 . Infinitely many genus-rank functions occur in this way.
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Example 4.13 Let Y D #m CP2 for some m2Z>0 . Construct an open 4–manifold
X by puncturing Y and then end-summing with infinitely many orientable R2 –bundles
over nonorientable surfaces. Choose these R2 –bundles so that each has positive,
odd Euler number. Now w2.X / 2 H 2.X;Z2/ is not compactly supported, so we
lose all control over the Taylor invariant. However, notice that each of these R2 –
bundles (equipped with their standard smooth structures) smoothly embeds into a finite
connected sum of CP2 ’s. So the standard smooth structure on X is compactly positive-
definite. Since ˇ2.X /Dm<1 and this standard smooth structure is inherited from
a handlebody with all indices at most 2, Theorem 4.12 defines new smooth structures
on X that all produce the same genus-rank function but realize uncountably many
compact equivalence classes. This can be done for infinitely many distinct genus-rank
function.

By forfeiting control over the genus-rank function, we can more carefully consider the
relationship between compact equivalence classes and the Taylor invariant.

Theorem 4.14 Suppose that X is an open connected topological 4–manifold that
is the interior of an oriented handlebody H and the standard smooth structure that
X inherits as a handlebody interior is compactly positive-definite. Then there are
smooth structures on X that represent compact equivalence classes with the order type
of R�0 . If H has finitely many 3–handles, ˇ2.X / <1, and w2.X / 2H 2.X;Z2/ is
compactly supported, then these can be chosen to all realize the same arbitrarily large
(finite) value of the Taylor invariant.

Proof For some fixed a 2 Z>0 , define a collection f†a;n;t j n 2 Z>0; t 2 R�0g

of smooth structures on X using the procedure in the proof of Theorem 4.7 and
Addendum 4.8 but with the modification that †a is simply this standard smooth
structure on X . The claims made in that proof about the resulting compact equivalence
classes still hold. Thus, there are subcollections Cn � f†a;n;t j t 2 R�0g for each
n 2Z>0 that realize compact equivalence classes with the order type of R�0 . Suppose
next that H has finitely many 3–handles, ˇ2.X / <1, and w2.X / 2H 2.X;Z2/ is
compactly supported. Since [28, Theorem 6.4] still applies, the bounds on the Taylor
invariant that are used in the proof of Theorem 4.7 and Addendum 4.8 also still hold.
Therefore, these subcollections can be chosen so that the smooth structures in each Cn

all realize the same value of the Taylor invariant. As needed, infinitely many (arbitrarily
large and finite) values of the Taylor invariant occur in this way.

Remark 4.15 The requirement that H has finitely many 3–handles could be replaced
by the few essential 3–handles condition [28].
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Example 4.16 Let X be the interior of the handlebody obtained by boundary summing
together fHig

1
iD0

with each Hi constructed by attaching a 1–framed 2–handle to
B4 [ .1–handle/ along the simplest knot that links the corresponding dotted circle
2i C 1 times. Observe that X is compactly positive-definite because CP2 can be
obtained from any Hi by attaching a 2– and 4–handle. Since H2.X;Z2/DH2.X /D0,
it is clear that X satisfies all hypotheses from Theorem 4.14. Therefore, there are
smooth structures on X representing uncountably many compact equivalence classes
that all realize the same arbitrarily large (finite) value of the Taylor invariant. Notice
that the genus-rank function provides no information in this case.

We can sometimes improve the applications presented in this section by realizing each
combination of invariants by uncountably many distinct diffeomorphism types. This is
achieved using the method introduced in [19, Section 7], which produces uncountable
families of smooth structures by starting with a compactly negative-definite smooth
structure on an open topological 4–manifold and then end-summing with small R4 ’s.
Our argument relies on the fact that the R4 ’s used in the proof of each theorem above
embed into smooth closed simply connected negative-definite 4–manifolds.

Theorem 4.17 Suppose that X is an open connected topological 4–manifold that
satisfies the hypotheses of Theorem 4.7, 4.10, 4.12, 4.14 or Addendum 4.8, as the
interior of a handlebody H. If also the standard smooth structure that X inherits as
the interior of H is compactly negative-definite, then each combination of genus-rank
function, Taylor invariant, and compact equivalence class realized by this theorem or
addendum can be chosen so that it occurs for uncountably many diffeomorphism classes
of smooth structures on X .

Proof Let † be any smooth structure on X that is constructed by Theorem 4.7,
4.10, 4.12, 4.14 or Addendum 4.8, applied to X as the interior of H . Recall that
† is produced by end-summing some smoothing †a on X with some \n Lt for
n 2 Z>0[f1g, where Lt is an R4 contained in some L produced by Theorem 3.4.
The smooth structure †a is either a Casson smoothing corresponding to H or the
standard smoothing that X inherits as a handlebody interior. In either case, X†a

admits
a smooth orientation-preserving embedding into this standard smooth structure on X .
It follows from property (4) of Theorem 3.4 that \n Lt admits a smooth orientation-
preserving embedding into #n CP2 . Using our new hypothesis, we can now easily
conclude that † is compactly negative-definite. Hence † satisfies the hypothesis of
[19, Theorem 7.1]. So we obtain uncountably many diffeomorphism classes of smooth
structures on X by applying that theorem to †. Its proof ensures that every smooth
4–manifold obtained by equipping X with one of these new smooth structures admits a
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smooth embedding into X† and vice versa. Both embeddings are topologically isotopic
to the identity, so it is clear that each of these new smooth structures realizes the same
genus-rank function, Taylor invariant, and compact equivalence class as †.

Example 4.18 This example provides a construction of compact spin 4–dimensional
handlebodies whose interiors are both compactly positive-definite and compactly
negative-definite but do not smoothly embed into S4 , each of which has all indices
at most 2 and nonzero second Betti number. Suppose that K is an amphichiral
knot in S3 D @B4 with unknotting number and 4–ball genus both equal to 1, such
as the figure-8 knot or the 63 knot. Then let HK be the handlebody obtained by
attaching a 0–framed 2–handle to B4 along K . Notice immediately that HK does
not smoothly embed into S4 because K is not smoothly slice. Our requirement on the
unknotting number ensures that K bounds a smoothly immersed disk with a single
double point, and we can arrange for either sign on this double point. First consider
the case where the double point is positive. Resolve this singularity using CP2 , so
that K bounds a smoothly embedded disk D in B4 # CP2 whose normal framing
induces the 0–framing on K . Capping off with a 4–handle produces CP2 , and we
can see HK smoothly embedded in CP2 as the union of this 4–handle and a tubular
neighborhood of D . Starting with a negative double point and undergoing the same
procedure instead with CP2 produces a smooth embedding of HK into CP2 . Each
of these embeddings is actually orientation-reversing, but HK still admits a smooth
orientation-preserving embedding into both CP2 and CP2 (either by reversing the
orientation on both target manifolds or by observing that HK admits an orientation-
reversing self-diffeomorphism). So the oriented open topological 4–manifold XK

obtained as the interior of the handlebody HK inherits a smooth structure that is
both compactly positive-definite and compactly negative-definite. Since ˇ2.XK /D 1

and w2.XK /D 0 2H 2.XK ;Z2/, it follows that XK satisfies all hypotheses of both
Theorem 4.7 and Addendum 4.8 (and also Theorems 4.10, 4.12 and 4.14) as the interior
of HK . Therefore, we can construct smooth structures on XK with independent control
over the resulting genus-rank functions, Taylor invariants, and compact equivalence
classes. Furthermore, Theorem 4.17 finds uncountably many distinct diffeomorphism
classes of smooth structures on XK realizing any triple that occurs in this way. This
procedure can clearly be generalized to more complicated knots and links with similar
unknotting properties.

We conclude this section with what seems to be the biggest family of exotic R4 ’s,
but note that this corollary could instead be obtained by combining previously known
results about R4 ’s in the appropriate way. As in Corollary 3.5, none of these R4 ’s
admit a Stein structure themselves. However, for each fixed finite value of the Taylor
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invariant, all of the representatives produced by this corollary do smoothly embed into
some fixed compact Stein surface. On the other hand, it is quite possible that many of
the representatives with infinite Taylor invariant do not embed into any Stein surface.

Corollary 4.19 There are uncountably many compact equivalence classes on R4 that
each contain uncountably many diffeomorphism types, and these compact equivalence
classes all realize the same arbitrarily large (finite) value of the Taylor invariant. Addi-
tionally, there are uncountably many compact equivalence classes on R4 with infinite
Taylor invariant and at least one contains uncountably many diffeomorphism types.

Proof The first claim follows immediately by applying Theorems 4.14 and 4.17 to
X DR4 . Next, consider L1 from Corollary 3.9. Since L1 is compactly negative-
definite, [19, Theorem 7.1] finds uncountably many R4 ’s with infinite Taylor invariant
in the same compact equivalence class as L1 . To realize uncountably many compact
equivalence classes with infinite Taylor invariant, choose a handlebody (which will
have infinitely many 3–handles) from which L1 inherits its smooth structure, reverse
orientation, then apply the first part of Theorem 4.14 to the result. Each resulting
compact equivalence class has infinite Taylor invariant because each has a representative
that contains L1 .

Remark 4.20 The theorems in this section could be stated in more generality. First of
all, if a given homeomorphism type does not satisfy the hypotheses of some theorem
above but has a sufficiently nice finite cover that does, then these methods can be adapted
[19] to produce smooth structures whose diffeomorphism types are distinguishable
by the invariants realized by their lifts to this cover. As above, we can independently
control the values of these invariants. Secondly, following [19, Corollary 7.4], the
compactly negative-definite or compactly positive-definite conditions only need to hold
on a closed noncompact subset Y that has a smooth compact 3–manifold boundary.
After throwing away duplicates, there are still uncountably many resulting smooth
structures and they are distinguishable by the diffeomorphism types of their restrictions
to Y . For example, we might construct uncountably many smooth structures that can
be differentiated by the compact equivalence class of their restriction to Y .
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