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Swiss-cheese action on the totalization of action-operads

JULIEN DUCOULOMBIER

We prove that, if a pair of semicosimplicial spaces .X �c IX
�
o / arises from a colored

operad, then the semitotalization sTot.X �o / has the homotopy type of a relative
double loop space and the pair .sTot.X �c /I sTot.X �o // is weakly equivalent to an
explicit algebra over the two dimensional Swiss-cheese operad SC2 .

55P48, 55P47

Introduction

A multiplicative operad O is an operad under the associative operad As. In [15],
McClure and Smith build a cosimplicial space O� from the multiplicative operad O

and show that, under some conditions, its homotopy totalization is a double loop space.
V Turchin in [19] and, independently, Dwyer and Hess in [7] are able to identify the
space of double delooping and prove, under the assumption O.0/'O.1/' �, that

hoTot.O�/'�2 Operadh.AsIO/;

where Operadh.AsIO/ is the space of derived maps from the associative operad to O .

In order to prove this statement, Turchin introduces the categories of bimodules and
infinitesimal bimodules over an operad O , denoted respectively by BimodO and
IbimodO , such that hoTot.O�/ is weakly equivalent to Ibimodh

As.AsIO/. Then he
proves the following two weak equivalences:

Ibimodh
As.AsIO/'�Bimodh

As.AsIO/;

Bimodh
As.AsIO/'�Operadh.AsIO/:

This result was motivated by the following theorem of D Sinha: the space of long knots
Embc.RIRd / has the homotopy type of hoTot.K�

d
/, where Kd is a multiplicative

operad weakly equivalent to the little d –disk operad. The Swiss-cheese operad SCd is
a relative version of the little disc operad. It is a two-colored topological operad with
set of colors S D foI cg that has been introduced by A Voronov in [21]. In particular,
if f W A!X is a pointed continuous map, then the following pair is an SCd –space:

.�dX I�d .X IA// WD .�dX I hofib.�d�1A!�d�1X //:

Published: 1 July 2016 DOI: 10.2140/agt.2016.16.1683

http://msp.org
http://www.ams.org/mathscinet/search/mscdoc.html?code=55P48, 55P47
http://dx.doi.org/10.2140/agt.2016.16.1683


1684 Julien Ducoulombier

In this paper we make great use of the operad �0.SC1/, which is the operad of monoid
actions Act: it is a 2–colored operad whose algebras are the pairs of spaces .X IA/,
where X is a monoid and A a left X –module. The operad Act>0 is the nonunital
version of Act . Similarly to the uncolored case, there is a notion of an Act>0 –bimodule
and an Act>0 –infinitesimal bimodule. We prove that, if O is an operad under Act ,
then it gives rise to a pair of semicosimplicial spaces .Oc IOo/ such that the pair
.sTot.Oc/I sTot.Oo// is weakly equivalent to�

�2 Operadh.As>0IOc/I�
2
�
Operadh.As>0IOc/IOperadh.Act>0IO/

��
I

that is, it is an SC2 –space.

Organization of the paper The paper is divided into six sections. Section 1 is an
introduction. It describes the categories of colored operads, bimodules and infinitesimal
bimodules over an operad. An explicit description of a point X in BimodAct>0

and
IbimodAct>0

in terms of pairs of semicosimplicial spaces .Xc IXo/ is given. We
insist on the link between bimodule structures over Act>0 and monoidal structures on
semicosimplicial spaces introduced by McClure and Smith in [15].

Section 2 introduces the left adjoint functors to the forgetful functors from the categories
of bimodules and infinitesimal bimodules over an S –colored operad to the category
of S –sequences. These adjunctions will be used in Section 3 in order to define a
model category structure on BimodO and IbimodO . We also determine an explicit
cofibrant replacement of Act (resp. Act>0 ) in the model category IbimodAct>0

(resp.
BimodAct>0

) and prove the weak equivalence

Ibimodh
Act>0

.ActIM /' Ibimodh
As>0

.AsIMc/;

where M is an Act>0 –infinitesimal bimodule and Mc is its closed part.

In Section 4 we prove the first relative delooping theorem. From an Act>0 –bimodule
map �W Act!M, we extract two semicosimplicial spaces .Mc IMo/. We prove, under
some conditions, the following weak equivalence of pairs:

.sTot.Mc/I sTot.Mo//'�
�Bimodh

As>0
.As>0IMc/I�

�
Bimodh

As>0
.As>0IMc/IBimodh

Act>0
.Act>0IM /

��
:

Section 5 consists in considering a particular case where a double relative delooping
theorem holds. Namely let ˛W As! O be a map of operads and ˇW O ! B be a
map of O –bimodules. The two objects O and B are equipped with semicosimplicial
structures. Under some conditions, we prove the weak equivalence of pairs

.sTot.O/I sTot.B//'�
�2 Operadh.As>0IO/I�

2
�
Operadh.As>0IO/IOperadh

foIcg.Act>0IX /
��
;
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where X is a colored operad build out of O and B .

Section 6 is devoted to the proof of the main theorem: if O is an foI cg–operad under
Act such that O.0I c/'O.1I c/'O.1I o/' �, then we have the weak equivalence
of pairs

.sTot.Oc/I sTot.Oo//'�
�2 Operadh.As>0IOc/I�

2
�
Operadh.As>0IOc/IOperadh

foIcg.Act>0IO/
��
:

Convention By space we mean compactly generated Hausdorff space, and by abuse
of notation we denote by Top this category; see eg Section 2.4 in Hovey [14]. If X ,
Y and Z are spaces, then Top.X IY / is equipped with the compact-open topology in
order to have a homeomorphism Top.X ITop.Y IZ//Š Top.X �Y IZ/.

A semicosimplicial space X � is a family of topological spaces fX n j n� 0g endowed
with operations

d i
W X n

!X nC1 for i 2 f0; : : : ; nC 1g;

satisfying the cosimplicial relations dj d i Dd idj�1 for 0� i < j . By semitotalization
sTot.X �/ we mean the space of natural transformations from the semicosimplicial
space �� to X �. From a cosimplicial space, the semitotalization of the underlying
semicosimplicial space is also called the fat-totalization, which is a homotopy invariant.
Since the homotopy totalization of a cosimplicial space is weakly equivalent to the semi-
totalization (see Lemma 3.8 in Dror and Dwyer [6]), we will ignore the codegeneracies
in the present work. We denote weak equivalences by the symbol '.

1 Bimodules and infinitesimal bimodules
over a colored operad

In what follows we introduce the category of colored operads as well as the categories of
bimodules and infinitesimal bimodules over a colored operad. We focus on the operads
with two colors foI cg, called foI cg–operads. In particular, we define the foI cg–operad
Act>0 of monoid actions as in [13]. Besides, we characterize the bimodules and
infinitesimal bimodules over this operad in terms of semicosimplicial spaces.

1A The operad of (unital) monoid actions

Definition 1.1 Let S be a set. An S –sequence is a collection of topological spaces
fO.s1; : : : ; snI snC1/g

n2N
si2S

. The set S is called the set of colors. A map between two
S –sequences O1 and O2 is a collection of continuous maps

ffs1;:::;snIsnC1
W O1.s1; : : : ; snI snC1/!O2.s1; : : : ; snI snC1/g

n2N
si2S :

Algebraic & Geometric Topology, Volume 16 (2016)
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We denote by Coll.S/ the category of S –sequences.

Notation 1.2 If M is an foI cg–sequence, then we use the following notation in the
rest of the text:

M n
c DM.nI c/DM.c; : : : ; c„ ƒ‚ …

n

I c/ and M n
o DM.nC 1I o/DM.c; : : : ; c„ ƒ‚ …

n

; oI o/:

We denote by Mc the family fM n
c gn�0 and by Mo the family fM n

o gn�0 .

Definition 1.3 An S –operad is an S –sequence O endowed with operations

ıi W O.s1; : : : ; snI snC1/�O.s01; : : : ; s
0
mI si/

!O.s1; : : : ; si�1; s
0
1; : : : ; s

0
m; siC1; : : : ; snI snC1/;

for 1� i � n, and distinguished elements f�s 2O.sI s/gs2S satisfying associativity
and unit axioms [1]. We denote by x ıi y the operation ıi.xIy/ for x;y 2O . Define
OperadS to be the category of S –operads, where a map of S –operads is an S –sequence
map that preserves the operadic structure.

Let O be an S –operad and A D fAsgs2S be a family of topological spaces. The
endomorphism S –operad EndA (see [4]) is the family of spaces of continuous maps
defined by

EndA.s1; : : : ; snI snC1/D Top.As1
� � � � �Asn

IAsnC1
/:

The family A is called an O –space if there exists a map of S –operads O! EndA .

Definition 1.4 [13] Let S D fo; cg. The S –operad of monoid actions Act>0 is
given by the S –sequence

Act>0.nI c/D �nIc for n> 0; Act>0.nI o/D �nC1Io for n> 0;

and the empty set otherwise, with �nIc and �nIo each being the one-point topological
space. The compositions are as follows:

(1)

8<:
�nIc ıi �mIc D �nCm�1Ic ;

�nIo ıi �mIc D �nCm�1Io for i ¤ n;

�nIo ın �mIo D �nCm�1Io;

Similarly, the S –operad of unital monoid actions Act is given by the S –sequence

Act>0.nI c/D �nIc for n� 0; Act>0.nI o/D �nIo for n> 0;

and the empty set otherwise, with the same compositions. Consequently, the S –operad
Act (resp. Act>0 ) is generated by �0Ic , �2Ic and �2Io (resp. �2Ic and �2Io ).

Algebraic & Geometric Topology, Volume 16 (2016)
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An Act–space is a pair of topological spaces .X IA/ with X a topological monoid
with unit and A a left module over X .

The fcg–sequence given by the restriction of Act (resp. Act>0 ) to the color fcg is the
associative operad As (resp. the strict associative operad As>0 ). We use the notation
�n to refer to the one-point topological space As.n/.

The operad of monoid actions has been introduced by Hoefel, Livernet and Stasheff [13]
in the context of the recognition principle for relative loop spaces.

Definition 1.5 We define an action-operad to be an foI cg–operad O equipped with
a map �W Act !O .

1B Infinitesimal bimodules over a colored operad

Definition 1.6 Let O be an S –operad. An infinitesimal bimodule over the operad O

(or O –infinitesimal bimodule) is an S –sequence M endowed with operations

ıi W O.s1; : : : ; snI snC1/�M.s01; : : : ; s
0
mI si/

!M.s1; : : : ; si�1; s
0
1; : : : ; s

0
m; siC1; : : : ; snI snC1/;

ı
i
W M.s1; : : : ; snI snC1/�O.s01; : : : ; s

0
mI si/

!M.s1; : : : ; si�1; s
0
1; : : : ; s

0
m; siC1; : : : ; snI snC1/;

for 1 � i � n, satisfying associativity and unit relations [1]. A map between O –
infinitesimal bimodules is given by an S –sequence map preserving this structure. Let
IbimodO be the category of infinitesimal bimodules over O . We denote by x ıi y

(resp. x ıi y ) the operation ıi.xIy/ (resp. ıi.xIy/) with x 2 O and y 2M (resp.
x 2M and y 2O ).

Example 1.7 If �W O1! O2 is any S –operad map, then O2 is endowed with the
following O1 –infinitesimal bimodule structure:

ıi W O1 �O2

��id
���!O2 �O2

ıi
��!O2;

and
ı

i
W O2 �O1

id��
���!O2 �O2

ıi
��!O2:

Consequently, if A is an O –space, then EndA is an O –infinitesimal bimodule.

Definition 1.8 Let N and M be two S –sequences. The sequence M is of type N if

N.s1; : : : ; snI snC1/D∅ ) M.s1; : : : ; snI snC1/D∅:

Algebraic & Geometric Topology, Volume 16 (2016)



1688 Julien Ducoulombier

Proposition 1.9 Let M be an foI cg–sequence of type Act . The following assertions
are equivalent:

(i) M is an Act>0 –infinitesimal bimodule;

(ii) the families Mc and Mo are semicosimplicial spaces, and there exists a semi-
cosimplicial map hW Mc!Mo .

Moreover, (i)) (ii) even if M is not of type Act .

Proof Let M be an Act>0 –infinitesimal bimodule. For n 2N , let hW M n
c !M n

o be
defined by h.x/D �2Io ı1 x . The semicosimplicial structure is given as follows (see
eg [1; 15; 17]):

d i
W M n

c !M nC1
c I x 7!

8<:
�2Ic ı2 x if i D 0;

x ıi �2Ic if i 2 f1; : : : ; ng;

�2Ic ı1 x if i D nC 1;

d i
W M n

o !M nC1
o I x 7!

8<:
�2Io ı2 x if i D 0;

x ıi �2Ic if i 2 f1; : : : ; ng;

x ınC1 �2Io if i D nC 1:

The reader can check that the relations (1) of Definition 1.4 and Definition 1.6 induce
the semicosimplicial relations.

Conversely, if hW Mc ! Mo is a semicosimplicial map, then let M.nI c/ D M n
c ,

M.nC 1I o/ D M n
o and the empty set otherwise. The left and right infinitesimal

module structures are defined by the above construction since Act>0 is generated by
�2Ic and �2Io as a colored operad.

It is proved in [19] that the category of semicosimplicial spaces is equivalent to the cat-
egory of As>0 –infinitesimal bimodules. Consequently, the collection Mo D fM

n
o gn�0

is an infinitesimal bimodule over As>0 . Since As>0 is generated by �2 as an operad,
the structure of Mo is given by:

(2)

8<:
�2 ı2 x D �2Io ı2 x; for x 2M n

o ;

�2 ı1 x D x ınC1 �2Io; for x 2M n
o ;

x ıi �2 D x ıi �2Ic ; for x 2M n
o and i 2 f1; : : : ; ng:

1C Bimodules over a colored operad

Definition 1.10 Let O be an S –operad. An S –sequence M is an O –bimodule if it

Algebraic & Geometric Topology, Volume 16 (2016)
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is endowed with operations

l W O.s1; : : : ; snI snC1/�M.s1
1 ; : : : ; s

1
p1
I s1/� � � � �M.sn

1 ; : : : ; s
n
pn
I sn/

!M.s1
1 ; : : : ; s

n
pn
I snC1/;

ı
i
W M.s1; : : : ; snI snC1/�O.s01; : : : ; s

0
mI si/

!M.s1; : : : ; si�1; s
0
1; : : : ; s

0
m; siC1; : : : ; snI snC1/;

for 1� i�n, satisfying associativity and unit axioms [1]. A map between O –bimodules
is an S –sequence map that preserves the bimodule structure. Let BimodO be the cate-
gory of O –bimodules. We denote by x.y1; : : : ;yn/ the operation l.x;y1; : : : ;yn/

with x 2O and yi 2M .

Example 1.11 If �W O1!O2 is any S –operad map, then O2 is endowed with the
following O1 –bimodule structure:

l W O1 �O2 � � � � �O2

��id�����id
�������!O2 � � � � �O2!O2

and
ı

i
W O2 �O1

id��
���!O2 �O2!O2:

Consequently, if A is an O –algebra, then EndA is an O –bimodule.

A priori there is no relation between an O –bimodule structure and an O –infinitesimal
bimodule structure because the left operations differ. However, if �W O !M is a
morphism of O –bimodules, then M is an O –infinitesimal bimodule, and the left
infinitesimal bimodule structure is given by

ıi W O.s1; : : : ; snI snC1/�M.s01; : : : ; s
0
mI si/

!M.s1; : : : ; si�1; s
0
1; : : : ; s

0
m; siC1; : : : ; snI snC1/;

.oIm/ 7! o.�.�s1
/; : : : ; �.�si�1

/;m; �.�siC1
/; : : : ; �.�sn

//;

where �s is the distinguished element in O.sI s/.

In [15], McClure and Smith define a monoidal structure on the category of semi-
cosimplicial spaces in order to recognize loop spaces. More precisely, they prove
that the group completion of the semitotalization of a monoid in this category has the
homotopy type of a loop space. We recall this construction since we need it to describe
Act>0 –bimodules under Act .

Proposition 1.12 [15, Proposition 2.2] Let X � and Y � be two semicosimplicial
spaces, and let X �Y be the semicosimplicial space whose mth space is given by� a

pCqDm

X p
�Y q

�.
�;

Algebraic & Geometric Topology, Volume 16 (2016)
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where � is the equivalence relation generated by .x; d0y/ � .d jxjC1x;y/. The
semicosimplicial structure is the following:

d i.x;y/D

�
.d ix;y/ if 0� i � jxj;

.x; d i�jxjy/ if jxj< i � jxjC jyjC 1:

The category of semicosimplicial spaces equipped with � is a monoidal category de-
noted by .Top�inj ;�/, with unit e being the constant semicosimplicial one-point space.

Proposition 1.13 Let M be an foI cg–sequence of type Act . The following assertions
are equivalent:

(i) M is an Act>0 –bimodule under Act;

(ii) in .Top�inj ;�/, the family Mc is a monoid with unit, the family Mo is an Mc –
left module and there exists a morphism of Mc –left modules hW Mc!Mo .

Moreover (i)) (ii) even if M is not of type Act .

Proof Let M be an Act>0 –bimodule equipped with an Act>0 –bimodule map
�W Act!M . Let M n

c DM.nI c/ and M n
o DM.nC 1I o/ for n 2N . The bimodule

structure induces, for i 2 f1; : : : ; ng, the cofaces

(3)
d i W M n

c !M nC1
c ; x 7! x ıi �2Ic ;

d i W M n
o !M nC1

o ; x 7! x ıi �2Ic ;

dnC1
W M n

o !M nC1
o ; x 7! x ınC1

�2Io;

satisfying the semicosimplicial relations and the following two operations:

(4)
M j

c �M l
c !M jCl

c ; .xIy/ 7! �2Ic.xIy/;

M j
c �M l

o !M jCl
o ; .xIy/ 7! �2Io.xIy/:

The map �W Act!M gives us the missing cofaces

(5)
d0 W M n

c !M nC1
c ; x 7! �2Ic.�.�1Ic/;x/;

dnC1
W M n

c !M nC1
c ; x 7! �2Ic.x; �.�1Ic//;

d0 W M n
o !M nC1

o ; x 7! �2Io.�.�1Ic/;x/;

inducing a semicosimplicial structure on Mc and Mo such that the two operations
defined in (3) make Mc into a monoid with unit and Mo into an Mc –left module.
The map

hW M n
c !M n

o ; x 7! �2Io.x; �.�1Io//

is a left Mc –module map.
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Conversely, let .Mc ;Mo; h/ be a triple satisfying the conditions of the proposition.
By the same argument as in Proposition 1.9, the constructions (3) and (4) define an
Act>0 –bimodule structure on M. In particular, if Mc and Mo coincide with the unit e ,
then the corresponding Act>0 –bimodule is Act . There exists a map �c from the unit
to Mc , for Mc is a monoid with unit. Let �o be the map from the unit to Mo given
by �o D h ı �c . The map �W Act!M so obtained is an Act>0 –bimodule map.

Example 1.14 This proposition implies that the category whose objects are monoids
in .Top�inj ;�/ is equivalent to the category of As>0 –bimodules under As considered
by Turchin. Furthermore, if we substitute Act>0 –bimodule by Act–bimodule and
semicosimplicial space by cosimplicial space, Proposition 1.13 is still true. From
now on, .X I �/ is a pointed topological space, and A is a subspace of X containing
the basepoint �. Let �X � and �.X IA/� be the two cosimplicial spaces defined
respectively by

�X n
WDX�n and �.X IA/n WDX�n

�A for n 2N;

and

d i
W �X n

!�X nC1; .x1; : : : ;xn/ 7!

8<:
.�;x1; : : : ;xn/ if i D 0;

.x1; : : : ;xi ;xi ; : : : ;xn/ if i 2 f1; : : : ; ng;

.x1; : : : ;xn;�/ if i D nC 1;

d i
W �.X IA/n!�.X IA/nC1;

.x1; : : : ;xn; a/ 7!

8<:
.�;x1; : : : ;xn; a/ if i D 0;

.x1; : : : ;xi ;xi ; : : : ;xn; a/ if i 2 f1; : : : ; ng;

.x1; : : : ;xn; a; a/ if i D nC 1:

The codegeneracies consist in forgetting a point, and the concatenation makes �X �

into a monoid with unit in .Top�inj ;�/, and �.X IA/� into a left �X �–module. The
left �X �–module map is defined by

hW �X n
!�.X IA/n; .x1; : : : ;xn/ 7! .x1; : : : ;xn;�/:

Proposition 1.13 states that these data are equivalent to an Act–bimodule map. So
the pair .�X �I�.X IA/�/ is the prototypical example of an Act –bimodule. The
evaluation maps,

�X ! Tot.�X �/; f 7! ffnW .t1I � � � I tn/ 7!.f .t1/; : : : ; f .tn//gn;

�.X IA/!Tot.�.X IA/�/; f 7! ffnW .t1I � � � I tn/ 7!.f .t1/; : : : ;f .tn/;f .1//gn;

induce homeomorphisms, due to the codegeneracies. Here �X and �.X IA/ are
the space of loops based on � and the space of paths with endpoint in the subspace
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A, respectively, and .t1I � � � I tn/ is a nondecreasing sequence; that is, ti � tiC1 for
1� i < n. As seen in the introduction, these two spaces are models for the homotopy
fiber �!X and A!X over the basepoint �, respectively.

It provides an example of an Act–bimodule map �W Act ! M such that the total-
ization of Mc (resp. Mo ) can be described as a loop space �X (resp. a relative
loop space �.X IA/) with explicit topological spaces X and A. We will prove that
we can generalize this result for any Act>0 –bimodule map �W Act!M using the
semitotalization. Let us notice that, in this particular case, the sequence of cosimplicial
spaces �A�!�X �!�.X IA/�!A!X gives rise, under totalization, to the dual
of the Barratt–Puppe sequence for the map A!X .

2 The free (infinitesimal) bimodule generated by
an S–sequence

In what follows, S is a set, O is an S –operad and M is an S –sequence. In order
to prove that sTot.Mo/ has the homotopy type of a relative loop space and to ex-
plicitly identify this space, we have to introduce a model category structure on the
categories IbimodO and BimodO . The easiest way is to use a transfer theorem (see eg
Theorem 3.4), which needs a left adjoint to the forgetful functor from the category of
(infinitesimal) bimodules over O to Coll.S/. In both cases, the first step consists in
introducing the category of trees, which encodes the (infinitesimal) bimodule structure.
Then we label the vertices by points in M or O . Similar constructions have been
considered in [5] and, more recently, [20].

By a tree we mean a planar rooted tree with an orientation towards the root, and let t

be such a tree.

� The set of its vertices is denoted by V .t/ and the set of its edges by E.t/.

� For a vertex v , the ordered set of its input edges is denoted by in.v/ and its
cardinality by jvj such that in.v/D fe1.v/; : : : ; ejvj.v/g. The output edge of v
is denoted by e0.v/, and a vertex without input edge is called univalent.

� The edges connecting two vertices are called inner edges, and the set of inner
edges is denoted by Eint.t/.

� An element e 2Eint.t/ is determined by a source vertex s.e/ and a target vertex
t.e/ induced by the orientation of the tree.

� An edge with no source is called a leaf, and the ordered set of leaves is denoted
by fl1; : : : ; lng.
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� The edge with no target is called the trunk, denoted by e0 , and its source, the
root, is denoted by r.

� Each leaf is connected to the trunk by a unique path composed of edges.

� An S –tree is a pair .t; f / where t is a planar tree and f W E.t/! S is called
an S –labeling of t.

v1

v2

r

v3

v4

l1 l2 l3 l4 l5 D e3.v4/

e0

e2.r/D e0.v4/

Figure 1: A planar tree: r is the root, e0 is the trunk, l1 is a leaf.

2A The free infinitesimal bimodule

Definition 2.1 The trees encoding the infinitesimal bimodule structure are constructed
as follows.

� The join j .v1I v2/ of two vertices v1 and v2 is the first common vertex shared
by the two paths joining v1 and v2 to the root. If j .v1I v2/D r , then v1 and v2

are said to be connected to the root, and if j .v1I v2/ 2 fv1I v2g, then they are
said to be connected. In Figure 1, the vertices v1 and v2 are connected whereas
the vertices v1 and v3 are connected to the root.

� Let d W V .T / � V .T / ! N be the distance defined as follows. The integer
d.v1I v2/ is the number of edges connecting v1 to v2 if they are connected,
otherwise d.v1I v2/D d.v1I v3/C d.v3I v2/ with v3 D j .v1I v2/. In Figure 1,
d.v1I r/D 2, d.v3I v4/D 1 and d.v1I v3/D 4.

� A pearl tree (or ptree) is a pair .t;p/ where t is a planar tree and p 2 V .t/ is
called the pearl, satisfying the property: if v 2 V .t/ n fpg, then d.vIp/ D 1.
An S –ptree is a pearl tree t together with an S –labeling of t ; see Figure 2.
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s10

s1 s13

s8
s9

s11
s5 s12

s2
s3

s4
s6 s7

v1 v2

r

p
l1

l2 l3 l4 l5 l6 l7

l8 l9

Figure 2: An S –ptree.

Construction 2.2 The S –sequence IbO.M / is defined as follows:

IbO.M /.s1; : : : ; snI snC1/

D

a
.t;f;p/2S–ptree

f .li /Dsi ;f .e0/DsnC1

�
M
�
f .e1.p//; : : : ; f .ejpj.p//If .e0.p//

�
�

Y
v2V .t/nfpg

O
�
f .e1.v//; : : : ; f .ejvj.v//If .e0.v//

��.
�

Here, � is the equivalence relation generated by

s1

s1
s1�s1�

Let x be a point in the space IbO.M /.s1; : : : ; snI snC1/ indexed by an S –ptree
.t; f;p/, and let y 2 O.s0

1
; : : : ; s0mI si/. The right infinitesimal module structure

consists of grafting the m–corolla indexed by y to the i th input of t , and contracting
the inner edge so obtained if its target does not coincide with the pearl, by using the
operadic structure of O , as in Figure 3.

s4

s5

s1 s2 s3

s2

s0
1

s0
2

s0
3

s4

s5

s1 s0
1

s0
2

s0
3

s3

m m

o

y

o ı2 y

ı2

Figure 3: The right infinitesimal module structure.

Similarly, let x be a point in the space IbO.M /.s0
1
; : : : ; s0mI si/ indexed by an S –

ptree .t; f;p/ and let y 2O.s1; : : : ; snI snC1/. The left infinitesimal module structure
consists in grafting the tree t to the i th input of the n–corolla indexed by y , and
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contracting the inner edge so obtained if its source does not coincide with the pearl, by
using the operadic structure of O . These maps pass to the quotient and are continuous.

There exists a map from the S –sequence M to IbO.M / that maps a point m 2

M.s1; : : : ; snI snC1/ to the pearl n–corolla whose leaves are labeled by s1; : : : ; sn and
the trunk by snC1 ; the pearl is indexed by m.

We denote by .t; f;p;g/ a point in IbO.M / indexed by .t; f;p/ and labeled by
gW V .t/!O tM .

Proposition 2.3 The functor IbO is the left adjoint to the forgetful functor:

IbO.�/W Coll.S/� IbimodO WU:

Proof Given an O –infinitesimal bimodule N and a map of S –sequences hW M!N ,
we prove that there exists a unique map zhW IbO.M /!N of O –infinitesimal bimodules
such that the following diagram commutes:

M
h

//

��

N

IbO.M /
!zh

;;

Let .t; f;p;g/ be a point in IbO.M /. The map zh is defined by induction on jV .t/j
as follows. If jV .t/j D 1, then the pearl p is the only vertex and t is a corolla. In this
case we define zh..t; f;p;g// D h.g.p//. Hence the commutativity of the previous
diagram is guaranteed.

If t has two vertices, then there exists a unique edge e connecting the pearl p to the
other vertex v . There are two cases to consider:

� if s.e/D p and e is the i th input of v , then let zh..t; f;p;g//D g.v/ ıi h.g.p//;

� if t.e/D p and e is the i th input of p , then let zh..t; f;p;g//D h.g.p// ıi g.v/.

Assume zh has been defined for jV .t/j D n� 2. Let .t; f;p;g/ 2 IbO.M / such that
t has nC 1 vertices. There exists an inner edge e connecting the pearl p to another
vertex v such that t.e/D p . Let .t 0; f 0;p;g0/ be the tree obtained by cutting off the
corolla corresponding to the vertex v ( t 0 has only n vertices ). We define

zh..t; f;p;g//D zh..t 0; f 0;p;g0// ıi g.v/:

Due to the associativity axioms of the infinitesimal bimodule structure of N , zh does
not depend on the choice of v , and zh is an infinitesimal bimodule map. The uniqueness
follows from the construction.
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2B The free bimodule

Definition 2.4 A tree with section (or stree) is a pair .t;V p.t// where t is a planar tree
and V p.t/ is a subset of V .t/, called the set of pearls, such that each path connecting
a leaf or an univalent vertex to the trunk passes by a unique pearl, and

j .vIp/ 2 fvIpg ) d.vIp/D 1

for all v 2 V .t/ n V p.t/ and all p 2 V p.t/. An S –tree with section (or S –tree) is
given by a triple .t;V p.t/; f / such that .t; f / is an S –tree and .t;V p.t// is a tree
with section.

s9

s12

s10

s1 s2 s3

s13

s4 s5 s6

s14

s7 s8

s11

r

v1

v2

p1
p2 p3

Figure 4: A tree with section.

Construction 2.5 The S –sequence BO.M / is defined as follows:

BO.M /.s1; : : : ; snI snC1/

D

a
.t;f;V p.t//2S–stree
f .li /Dsi;f .e0/DsnC1

� Y
v2V p.t/

M
�
f .e1.v//; : : : ; f .ejvj.v//If .e0.v//

�
�

Y
v2V .t/nV p.t/

O
�
f .e1.v//; : : : ; f .ejvj.v//If .e0.v//

��.
�

with � the equivalence relation generated by

s1

s1
s1�s1�

Let x 2BO.M /.s1; : : : ; snI snC1/ be indexed by a tree with section .t; f;V p.t//, and
let y 2O.s1; : : : ; snI si/. The right module structure consists of grafting the m–corolla
indexed by y to the i th input of t , and contracting the inner edge so obtained if its
target does not coincide with a pearl, by using the operadic structure of O .

Let y be a point in O.s1; : : : ; snI snC1/ and let xi 2BO.M /.si
1
; : : : ; si

ni
I si/ be indexed

by .ti ; fi ;V
p

i .t// for 1 � i � n. The left module structure consists of grafting each

Algebraic & Geometric Topology, Volume 16 (2016)



Swiss-cheese action on the totalization of action-operads 1697

tree ti to the i th input of the n–corolla indexed by y , and contracting the inner edges
whose source is not a pearl by using the operadic structure of O , as in Figure 5.

s3

s1 s2

s1

p1

l1

l5

l4

l6

l7

s2

k1 k2

s3

p1

l1

l5

l4

l6

l7

s2

k1 k2

p2

v3

l2 l3

p2

v3

l2 l3

v1

v2

p3

v1 ı1 v2

p3; ;

Figure 5: The left module structure.

These maps pass to the quotient and are continuous. Furthermore, there exists a map
from the S –sequence M to BO.M / which maps a point m 2M.s1; : : : ; snI snC1/

to the pearl n–corolla whose leaves are labeled by s1; : : : ; sn and the trunk by snC1 ;
the pearl is indexed by m. We denote by .t; f;V p.t/;g/ a point in BO.M / indexed
by .t; f;V p.t// and labeled by gW V .t/!O tM .

Proposition 2.6 The functor BO is the left adjoint to the forgetful functor:

BO.�/W Coll.S/� BimodO WU:

Proof Given an O –bimodule N and hW M !N a map of S –sequences, we prove
that there exists a unique map zhW BO.M /!N of O –bimodules such that the following
diagram commutes:

M
h

//

��

N

BO.M /
!zh

;;

Let .t;V p.t/; f;g/ be a point in BO.M / and let nb.t/ be the cardinality of the set
V .t/nV p.t/. The map zh is defined by induction on nb.t/. If nb.t/D 0, then the pearl
p is the only vertex, and t is a corolla. In this case, zh..t;V p.t/; f;g//D h.g.p//.
If nb.t/D 1, we denote by v the unique element of V .t/nV p.t/. There are two cases
to consider.
� If v is the source of an edge e that is connected to a pearl p , and e is the i th

input of p , then

zh..t;V p.t/; f;g//D h.g.p// ıi g.v/:

� If v coincides with the root, then all the pearls are connected to v . Let p1; : : : ;pk

be the set of ordered pearls. We define zh by

zh..t;V p.t/; f;g//D g.v/.h.g.p1//; : : : ; h.g.pk///:
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Assume zh has been defined for nb.t/Dn� 1. Let .t;V p.t/; f;g/2BO.M / such that
nb.t/D nC 1. There exists an inner edge e whose target is a pearl pi . Let v D s.e/

and let .t 0;V p.t/; f 0;g0/ be the tree obtained from .t;V p.t/; f;g/ by cutting off the
corolla corresponding to the vertex v . Consequently, nb.t 0/D n and zh can be defined
by induction as

zh..t;V p.t/; f;g//D zh..t 0;V p.t/; f 0;g0// ıi g.v/:

Due to the associativity axioms of the bimodule structure of N , zh does not depend
on the choice of v , and zh is a map of O –bimodules. The uniqueness follows from
the construction.

3 Cofibrant replacement of the operad of monoid actions in
the category of (infinitesimal) bimodules over Act>0

3A Model category structure on BimodO and IbimodO

In this section we define a model category structure on BimodO and IbimodO by using
the previous adjunctions. The references used for model categories are [8; 12; 14].
These structures have been considered by many authors in the context of operads
(symmetric or nonsymmetric), algebras over an operad, or left-right modules over
operads, most of them in the uncolored case; see eg Fresse [9], Berger and Moerdijk [2]
and Harper [10]. In order to be precise, we prefer to give the details of the model
category structure in our context, and we make use of this section to state lemmas that
will be useful for the sequel.

Theorem 3.1 [14, Theorem 2.4.24] The category Top is equipped with the following
model category structure.

Weak equivalences are the continuous maps f W X!Y such that f �
0
W �0.X /!

�0.Y / is a bijection and f �n W �n.X Ix/! �n.Y If .x// is an isomorphism, for
all x 2X and for all n> 0.

Serre fibrations are the continuous maps f W X ! Y having the homotopy
lifting property, ie for every CW-complex A, a lift exists in every commutative
diagram of the following form:

A� f0g //

��

X

��

A� Œ0; 1� //

9

;;

Y

Algebraic & Geometric Topology, Volume 16 (2016)



Swiss-cheese action on the totalization of action-operads 1699

Cofibrations are the continuous maps having the left lifting property with respect
to the acyclic Serre fibrations.

Moreover, this model category is cofibrantly generated. The cofibrations are generated
by the inclusions @�n!�n for n> 0, whereas the acyclic cofibrations are generated
by the inclusions of the horns ƒn

k
!�n for n> 0 and n� k � 0. We call this model

category the Serre model category.

Corollary 3.2 The category Coll.S/ inherits a cofibrantly generated model category
structure from the Serre model category in which a map is a cofibration, a fibration or a
weak equivalence if each of its components is.

Lemma 3.3 [12] Let A ,!B be a cofibration in the Serre model category. For every
space Y , the induced map Top.BIY /! Top.AIY / is a fibration.

Theorem 3.4 [2, Section 2.5] Let C1 be a cofibrantly generated model category and
let I (resp. J ) be the set of generating cofibrations (resp. acyclic cofibrations). Let
LW C1� C2 WR be a pair of adjoint functors. Assume that C2 has small colimits and
small limits. Define a map f in C2 to be a weak equivalence (resp. a fibration) if R.f /

is a weak equivalence (resp. fibration). If we have that

(i) the functor R preserves filtered colimits,

(ii) C2 has a functorial fibrant replacement, and

(iii) for each fibrant object X 2 C2 we have a functorial path object Path.X / with
X
'
�! Path.X /� X � X (a weak equivalence followed by a fibration) a

factorization of the diagonal map,

then C2 is equipped with a cofibrantly generated model category .LI;LJ / with LI D

fL.u/ j u 2 Ig and LJ D fL.v/ j v 2 J g. Furthermore, .L;R/ is a Quillen pair.

Application 3.5 For the adjunction IbO.�/W Coll.S/� IbimodO WU , the identity
induces a functorial fibrant replacement since all the objects of Coll.S/ are fibrants.
From an O –infinitesimal bimodule M, a functorial path object Path.M / is given by
the following S –sequence:

Path.M /.s1; : : : ; snI snC1/D Top.Œ0; 1�IM.s1; : : : ; snI snC1//:

The O –infinitesimal bimodule structure and the functoriality of Path.�/ are induced
by that of M. The factorization of the diagonal map is given pointwise:

M
f1
��! Path.M /

f2
��!M �M:
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The map f1 maps a point m 2M.s1; : : : ; snI snC1/ to the constant path in m. Due
to the homotopy between a path h and the constant path in h.0/, the map f1 is
a weak equivalence. The map f2 maps a point h 2 Path.M /.s1; : : : ; snI snC1/ to
the pair .h.0/I h.1// 2 .M �M /.s1; : : : ; snI snC1/. This map is a fibration since
Path.M /.s1; : : : ; snI snC1/ is a path object in the Serre model category.

Similarly, the adjunction BO.�/W Coll.S/� BimodO WU induces a cofibrantly gener-
ated model category on BimodO .

Definition 3.6 The O –infinitesimal bimodule M is obtained from the O –infinitesimal
bimodule N by attaching cells if M is obtained as a pushout diagram of the form

(6)

IbO.A/
� �

IbO.i/

//

zf
��

IbO.B/

��

N // M

with i a cofibration in Coll.S/, f W A!N an S –sequence map called the attaching
map and zf the O –infinitesimal bimodule map induced by f ; see Proposition 2.3.

Similarly, an O –bimodule M is obtained from an O –bimodule N by attaching cells
if M is obtained as a pushout diagram of the form

(7)

BO.A/
� �

BO.i/

//

zf
��

BO.B/

��

N // M

with i a cofibration in Coll.S/, f W A!N an S –sequence map called the attaching
map and zf the O –bimodule map induced by f ; see Proposition 2.6. In both cases,
the map N !M so defined is a cofibration.

Definition 3.7 Let A, B and C be three topological spaces and f W A! B be a
continuous map. The space of continuous maps gW C ! B such that gjA D f is
denoted by Topf ..C;A/;B/.

Lemma 3.8 [19] Let M and N be two O –infinitesimal bimodules. If M is obtained
from N by attaching cells as in (6), then one has the homeomorphism

Ibimodg
O
..M;N /IY /Š Coll.S/gıf ..B;A/IY /;

with f the attaching map and gW N ! Y an O –infinitesimal bimodule map.
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Similarly, let M and N be two O –bimodules. If M is obtained from N by attaching
cells as in (7), then one has the homeomorphism

Bimodg
O
..M;N /IY /Š Coll.S/gıf ..B;A/IY /;

with f the attaching map and gW N ! Y an O –bimodule map.

Definition 3.9 (i) As in [19] (see also [8, Lemma 4.24]), if A and B are O –
infinitesimal bimodules (resp. O –bimodules), and Ac is a cofibrant replacement of A,
then IbimodO.A

c IB/ (resp. BimodO.A
c IB/) is independent, up to weak equiva-

lences, of the choice of a cofibrant replacement of A since every O –infinitesimal
bimodule (resp. O –bimodule) B is fibrant. This space is called the space of derived
O –infinitesimal bimodule (resp. O –bimodule) maps from A to B and is denoted by

Ibimodh
O.AIB/ .resp. Bimodh

O.AIB//:

(ii) Similarly, Berger and Moerdijk define a model category structure on the category of
S –colored operads in [2], and Operadh

S .AIB/ denotes the space of derived S –operad
maps from A to B .

(iii) If C is the category BimodAct>0
(resp. OperadfoIcg ), then for any cofibrant model

A of Act>0 , the family Ac gives rise to a cofibrant replacement of As>0 in the
category BimodAs>0

(resp. Operad). As a consequence, the homotopy fiber of the
projection onto the closed part is independent (up to weak equivalences) of the choice
of a cofibrant model. By abuse of notation, we denote by

ph
1 W Bimodh

Act>0
.Act>0IM /! Bimodh

As>0
.As>0IMc/;(8)

ph
2 W Operadh

foIcg.Act>0IO/! Operadh.As>0IOc/;(9)

the projections onto the closed part whenever a cofibrant model of Act>0 is fixed.
Furthermore, if the Act>0 –bimodule M and the foI cg–operad O are endowed with a
map from Act , then all the spaces and maps are pointed. In this case, define

�.Bimodh
As>0

.As>0IMc/IBimodh
Act>0

.Act>0IM //

and
�.Operadh.As>0IOc/IOperadh

foIcg.Act>0IO//

to be respectively the homotopy fiber of the projection ph
1

and ph
2

. They are called
relative loop spaces.

Hence, in order to describe the spaces of derived maps and the relative loop spaces, we
need to understand specific cofibrant replacement in the different categories involved.
This is the aim of the two following subsections.
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3B Cofibrant replacement of Act in IbimodAct>0

Proposition 3.10 A cofibrant replacement of the Act>0 –infinitesimal bimodule Act
is the Act>0 –infinitesimal bimodule N4 given by

N4.nI c/D�n for n� 0 and N4.nI o/D�n�1
� Œ0; 1� for n> 0;

where the structure is defined, for 1 � i � n (resp. 1 � i � n� 1) in the first (resp.
second) map, by

�ı
i
�2Ic WN4.nIc/!N4.nC 1Ic/; .t1I � � � I tn/ 7! .t1I � � � I ti I ti I � � � I tn/;

�ı
i
�2Ic WN4.nIo/!N4.nC 1Io/; .t1I � � � I tn�1/� t 7! .t1I � � � I ti I ti I � � � I tn�1/� t;

�ı
n
�2IoWN4.nIo/!N4.nC 1Io/; .t1I � � � I tn�1/� t 7! .t1I � � � I tn�1I1/� t;

�2Ic ı2�WN4.nIc/!N4.nC 1Ic/; .t1I � � � I tn/ 7! .0I t1I � � � I tn/;

�2Ic ı1�WN4.nIc/!N4.nC 1Ic/; .t1I � � � I tn/ 7! .t1I � � � I tnI1/;

�2Io ı2�WN4.nIo/!N4.nC 1Io/; .t1I � � � I tn�1/� t 7! .0I t1I � � � I tn�1/� t;

�2Io ı1�WN4.nIc/!N4.nC 1Io/; .t1I � � � I tn/ 7! .t1I � � � I tn/� 1:

Here, .t1I � � � I tm/ is a nondecreasing sequence; that is, ti � tiC1 for 1� i <m.

Proof Since Act>0 is generated as a colored operad by �2Ic and �2Io with the relations
(1) of Definition 1.4, the previous structure makes N4 into an Act>0 –infinitesimal
bimodule. Let N4N be the sub-Act>0 –infinitesimal bimodule of N4 generated by

fN4.nI c/gNnD0 t fN4.nI o/g
N
nD1 with N 2N:

That is, N4N�1.N I c/ is the boundary of the space N4.N I c/, whereas N4N�1.N I o/

is composed of all the faces of dimension N � 1 in N4.N I o/ except �N�1�f0g. By
convention, N4�1 is the infinitesimal bimodule IbAct>0

.∅/, and @�0 D∅. The space
N40 is obtained from N4�1 by the attaching cells

IbAct>0
.@A/ //

��

IbAct>0
.A/

��

N4�1
// N40

with A.0I c/D�0 and the empty set otherwise.

Let B and C be the foI cg–sequences given by B.N I o/D�N�1 � f0g, C.N I o/D

�N�1 � Œ0; 1�, C.N I c/ D �N and the empty set otherwise. For N 2 N>0 , the
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�2Ic ı2�

�2Ic ı1�

�ı1 �2Ic

�2Io ı1�

�2Ic ı2�

�ı2 �2Ic

�2Ic ı1�

�ı1 �2Ic

�2Io ı1�

�2Io ı2�

�ı1 �2Io

�2Io ı2�

�ı2 �2Io

�ı1 �2Ic

0 1

.0I 0/

.0I 1/

.1I 1/ .0I 0I 0/

.0I 1I 1/

.0I 0I 1/

.1I 1I 1/

�� 0 �� 1 1� 0

0� 0

1� 1

0� 1 .0I 0/� 1

.0I 1/� 1 .0I 1/� 1

.0I 0/� 1

N4.1I c/ N4.2I c/ N4.3I c/

N4.1I o/ N4.2I o/ N4.3I o/

Figure 6: The structure of N4.

infinitesimal bimodule N4N is obtained from N4N�1 by the sequence of attaching cells:

IbAct>0
.@B/ //

��

IbAct>0
.B/

��

N4N�1
// ƒ

and

IbAct>0
.@C / //

��

IbAct>0
.C /

��

ƒ // N4N

The attaching map @B!N4N�1 is the restriction to the boundary of the map

i W �N�1
!N4.N I o/; .t1I � � � I tN�1/ 7! .t1I � � � I tN�1/� 0:

This step consists in adding the missing face of dimension N�1. The homeomorphisms
N4N�1.N I o/! @.�N�1 � Œ0; 1�/ n Int.�N�1 � f0g/ and B.N I o/! �N�1 � f0g

give rise to a homeomorphism from ƒ.N I o/ to @N4.N I o/D @C.N I o/, yielding the
right hand side attaching map. For N � n, N4N .nI k/ D N4.nI k/ with k 2 foI cg.
Consequently, limN N4N DN4 , and N4 is cofibrant. The weak equivalence between
N4 and Act is due to the convexity of N4 in each degree.
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Remark 3.11 According to Definition 3.9, the sequence given by �.n/DN4.nI c/D
�n inherits an As>0 –infinitesimal bimodule structure, and it is a cofibrant replacement
of As in the model category IbimodAs>0

; see also [19, Proposition 3.2].

Theorem 3.12 Let M be an Act>0 –infinitesimal bimodule. One has

Ibimodh
Act>0

.ActIM /' Ibimodh
As>0

.AsIMc/' sTot.Mc/:

Proof From Proposition 3.10 and the previous remark, a cofibrant replacement of Act
in the model category IbimodAct>0

is given by N4 , and a cofibrant replacement of the
associative operad As in the model category IbimodAs>0

is given by �. Since Mc is
an infinitesimal bimodule over As>0 (see Proposition 1.9), Definition 3.9 induces

Ibimodh
As>0

.AsIMc/' IbimodAs>0
.�IMc/

and
Ibimodh

Act>0
.ActIM /' IbimodAct>0

.N4IM /:

Let i be the inclusion defined by

i W IbimodAs>0
.�IMc/ ,! IbimodAct>0

.N4IM /;

which sends a point f WD ffnIc W �
n!M.nI c/gn2N to the map g defined by

gnIc W�
n
!M.nI c/; .t1I � � � I tn/ 7! fnIc.t1I � � � I tn/;

gnIoW�
n�1
� I !M.nI o/; .t1I � � � I tn�1/� t 7! �2Io ı1 fn�1Ic.t1I � � � I tn�1/:

The space IbimodAs>0
.�IMc/ is a deformation retract of IbimodAct>0

.N4IM / with
the homotopy

H W IbimodAct>0
.N4IM /� Œ0; 1�! IbimodAct>0

.N4IM /

sending a point .f �u/ to the map H.f Iu/ given by

H.f Iu/nIc W�
n
!M.nI c/; .t1I � � � I tn/ 7! fnIc.t1I � � � I tn/;

H.f Iu/nIoW�
n�1
� I !M.nI o/; .t1I � � � I tn�1/� t

7! fnIo

�
.t1I � � � I tn�1/� .tuC .1�u//

�
:

The map H is continuous, and H.f I 1/D f . Furthermore,

H.f I 0/nIo
�
.t1I � � � I tn�1/� t

�
D fnIo

�
.t1I � � � I tn�1/� 1

�
D fnIo

�
�2Io ı1 .t1I � � � I tn�1/

�
D �2Io ı1 fn�1Ic.t1I � � � I tn�1/:
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So H.f I 0/ is in the image of the inclusion map i ; also, for all f 2 IbimodAs>0
.�IMc/

and for all u 2 Œ0; 1�, we have H.i.f /Iu/D i.f /. Indeed,�
H.i.f /Iu/

�
nIo
..t1I � � � I tn�1/� t/D i.f /nIo

�
.t1I � � � I tn�1/� .tuC .1�u//

�
D .�2Io ı1 fn�1Ic/.t1I � � � I tn�1/

D i.f /nIo..t1I � � � I tn�1/� t/:

Corollary 3.13 Let M denote an Act>0 –bimodule such that M.0I c/ ' � and let
�W Act!M be a map of Act>0 –bimodules. The following weak equivalences hold:

Ibimodh
Act>0

.ActIM /' Ibimodh
As>0

.AsIMc/'�Bimodh
As>0

.As>0IMc/:

Similarly, let O denote an action-operad such that O.0I c/ ' O.1I c/ ' �. The
following weak equivalences hold:

Ibimodh
Act>0

.ActIO/' Ibimodh
As>0

.AsIOc/'�
2 Operadh

foIcg.As>0IOc/:

Proof It is a consequence of Theorem 3.12 together with [19, Theorem 6.2] and
[19, Theorem 7.2].

3C Cofibrant replacement of Act>0 in BimodAct>0

Proposition 3.14 A cofibrant replacement of the Act>0 –bimodule Act>0 is the
Act>0 –bimodule � defined, for n> 0, by

�.nI c/D Œ0I 1�n�1 and �.nI o/D Œ0I 1�n�1;

whose bimodule structure is given, for 1� i � n (resp. 1� i � n� 1) in the first (resp.
second) map, by

�ı
i
�2Ic W�.nI c/!�.nC 1I c/; .t1; : : : ; tn�1/ 7! .t1; : : : ; ti�1; 0; ti ; : : : ; tn�1/;

�ı
i
�2Ic W�.nI o/!�.nC 1I o/; .t1; : : : ; tn�1/ 7! .t1; : : : ; ti�1; 0; ti ; : : : ; tn�1/;

�ı
n
�2IoW�.nI o/!�.nC 1I o/; .t1; : : : ; tn�1/ 7! .t1; : : : ; tn�1; 0/;

�2Ic.�I�/W�.nI c/��.mI c/!�.nCmI c/;

.t1; : : : ; tn�1/I .t
0
1; : : : ; t

0
m�1/ 7! .t1; : : : ; tn�1; 1; t

0
1; : : : ; t

0
m�1/;

�2Io.�I�/W�.nI c/��.mI o/!�.nCmI o/;

.t1; : : : ; tn�1/I .t
0
1; : : : ; t

0
m�1/ 7! .t1; : : : ; tn�1; 1; t

0
1; : : : ; t

0
m�1/:

Proof Since Act>0 is generated as a colored operad by �2Ic and �2Io with the
relations (1) of Definition 1.4, the previous structure induces an Act>0 –bimodule
structure on �. For N > 0 let �N be the sub-Act>0 –bimodule of � generated
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by f�.nI k/ j n 2 f1; : : : ;N g; k 2 foI cgg. In other words, the spaces �N�1.nI c/

and �N�1.nI o/ are the .N�2/–skeletons of �.nI c/ and �.nI o/, respectively. By
convention, �0 is the Act>0 –bimodule BAct>0

.∅/. The bimodule �N is obtained
from �N�1 by the attaching cells

BAct>0
.@A/ //

��

BAct>0
.A/

��

�N�1
// �N

with A the foI cg–sequence defined by A.N I c/DA.N I o/D Œ0I 1�N�1 and the empty
set otherwise.

For N � n, �N .nI k/ D �.nI k/ with k 2 foI cg. Consequently, limN �N D �,
and thus � is cofibrant. The weak equivalence between � and Act>0 is due to the
convexity of � in each degree.

Remark 3.15 According to Definition 3.9, the sequence given by �c.n/D�.nI c/
inherits an As>0 –bimodule structure, and it is a cofibrant replacement of As>0 in the
model category BimodAs>0

; see [19, Proposition 4.1].

4 Relative delooping of sTot.Mo/

Let M be an Act>0 –bimodule endowed with a map �W Act!M . Since the semi-
cosimplicial space Mo is not a monoid in .Top�inj ;�/ (see Proposition 1.12), Mo

is not a bimodule over As>0 , and we can not expect that its semitotalization has the
homotopy type of a loop space. However, we will use the left module structure on
Mo to prove that the pair .sTot.Mc/I sTot.Mo// has the homotopy type of an SC1 –
space. The first step consists in showing that sTot.Mo/ is weakly equivalent to the
homotopy fiber of the map (8) of Definition 3.9. The next definition gives a model of
this homotopy fiber using the cofibrant replacement � of Act>0 .

Definition 4.1 Let �W Act!M be an Act>0 –bimodule map, and let �� I be the
foI cg–sequence defined by

.�� I/.nI c/D�.nI c/� Œ0; 1� and .�� I/.nI o/D�.nI o/� f1g for n> 0:

A relative loop in M is an foI cg–sequence map g from �� I to M defined by

gnIc W �.nI c/� Œ0; 1�!M.nI c/ and gnIoW �.nI o/� f1g !M.nI o/ for n> 0;
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satisfying

gnIc.x ı
i
�2Ic I t/D gn�1Ic.xI t/ ı

i
�2Ic for x 2�.n� 1I c/ and 1� i � n� 1;

gnIc.�2Ic.xIy/I t/

D �2Ic.glIc.xI t/Ign�lIc.yI t// for x 2�.l I c/ and y 2�.n� l I c/;

gnIo.x ı
i
�2Ic I 1/D gn�1Io.xI 1/ ı

i
�2Ic for x 2�.n� 1I o/ and 1� i � n� 2;

gnIo.x ı
n�1
�2IoI1/D gn�1Io.xI1/ı

n�1
�2Io for x 2�.n� 1I o/;

gnIo.�2Io.xIy/I 1/

D �2Io.glIc.xI 1/Ign�lIo.yI 1// for x 2�.l I c/ and y 2�.n� l I o/;

with the boundary conditions gnIc.xI 0/D �.�nIc/ for x 2�.nI c/. This model for the
space of relative loops is denoted by �.BimodAs>0

.�c IMc/IBimodAct>0
.�IM //.

Theorem 4.2 If M is an Act>0 –bimodule endowed with a map of Act>0 –bimodules
�W Act!M, then

sTot.Mo/'�.Bimodh
As>0

.As>0IMc/IBimodh
Act>0

.Act>0IM //:

Proof It is a consequence of Proposition 4.4 and Proposition 4.5.

Notation 4.3 Let M be an Act>0 –bimodule endowed with a map �W Act!M . The
foI cg–sequence M � given by

M �.nI c/D �.�nIc/ for n� 0; M �.nI o/DM.nI o/ for n> 0;

and the empty set otherwise, inherits from M an Act>0 –bimodule structure with a
map �W Act!M � .

Proposition 4.4 We have the following weak equivalence:

sTot.Mo/' Bimodh
Act>0

.Act>0IM
�/:

Proof As seen in the first section, sTot.Mo/' Ibimodh
As>0

.AsIMo/ using the struc-
ture (2). The first step of the proof consists in building an alternative cofibrant replace-
ment z� of As in the category of infinitesimal bimodules over As>0 such that there
exists a map �W BimodAct>0

.�IM �/! IbimodAs>0
. z�IMo/. Let us recall that a point

g 2 BimodAct>0
.�IM �/ is described by

gnIc W�.nI c/!M �.nI c/; x 7! �.�nIc/ for n> 0;

gnIoW�.nI o/!M �.nI o/ for n> 0;
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satisfying

gnIo.x ı
i
�2Ic/D gn�1Io.x/ ı

i
�2Ic for x 2�.n� 1I o/ and i ¤ n� 1;

gnIo.x ı
n�1
�2Io/D gn�1Io.x/ ı

n�1
�2Io for x 2�.n� 1I o/;

gnIo.�2Io.xIy//D �2Io.glIc.x/Ign�lIo.y//

D �2Io.�.�lIc/Ign�lIo.y// for x 2�.l I c/ and y 2�.n� l I o/:

Define � to be the equivalence relation on Œ0; 1�n generated by

.t1; : : : ; tn/� .t
0
1; : : : ; t

0
n/ () there exists i 2 f1; : : : ; ng

such that
ti D t 0i D 1 and tj D t 0j for j > i:

We denote by z� the sequence f z�.n/D Œ0; 1�n=�gn�0 .

The map g induces a sequence map zg WD fzgnC1W
z�.n/!M �.nC 1I o/DM n

o gn�0 .
Indeed, if .t1; : : : ; tn/� .t 01; : : : ; t

0
n/, then there exists i such that tiD t 0i D 1 and tj D t 0j

for j > i . So the following equalities hold:

gnC1Io.t1; : : : ; tn/D gnC1Io.t1; : : : ; ti�1; 1; tiC1; : : : ; tn/

D gnC1Io

�
�2Io

�
.t1; : : : ; ti�1/I .tiC1; : : : ; tn/

��
D �2Io.giIc.t1; : : : ; ti�1/Ign�iIo.tiC1; : : : ; tn//

D gnC1Io.t
0
1; : : : ; t

0
n/:

This equivalence relation is the usual way to describe a simplex as a quotient of the
cube. So there exists an homeomorphism between z�.n/ and �n . For this work we will
just prove that z� is a cofibrant replacement of As as an As>0 –infinitesimal bimodule.
The infinitesimal bimodule structure is given, for 1� i � n, by

(i) �ıi �2W
z�.n/! z�.nC 1/; .t1; : : : ; tn/ 7! .t1; : : : ; ti�1; 0; ti ; : : : ; tn/;

(ii) �2 ı1�W
z�.n/! z�.nC 1/; .t1; : : : ; tn/ 7! .t1; : : : ; tn; 0/;

(iii) �2 ı2�W
z�.n/! z�.nC 1/; .t1; : : : ; tn/ 7! .1; t1; : : : ; tn/:

This structure satisfies the infinitesimal bimodule axioms over As>0 , and it makes zg
into an As>0 –infinitesimal bimodule map. Furthermore, z� is a cofibrant replacement
of the As>0 –infinitesimal bimodule As, as we will now show.

Cofibrant Let z�n be the sub-As>0 –infinitesimal bimodule of z� generated by
f z�.i/ j 0� i � ng for n2N . By convention, z��1 is the As>0 –infinitesimal bimodule
IbAs>0

.∅/. Let us notice that the boundary of z�.n/ is determined by z�.n� 1/ and
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its infinitesimal bimodule structure. Indeed, the map Œ0; 1�n ! z�.n/ preserves the
boundary, and by definition, a point in @Œ0; 1�n has one of the following forms:

.t1; : : : ; tl�1; 0; tlC1; : : : ; tn/ or .t1; : : : ; tl�1; 1; tlC1; : : : ; tn/:

In the first case, the class of such a point lies in z�n�1 by the axioms (i) and (ii). In the
second case, we have the following identification:

Œ.t1; : : : ; tl�1; 1; tlC1; : : : ; tn/�D Œ.1; : : : ; 1„ ƒ‚ …
l

; tlC1; : : : ; tn/�

D �2 ı2 Œ.1; : : : ; 1„ ƒ‚ …
l�1

; tlC1; : : : ; tn/�:

Consequently, z�n is obtained from z�n�1 by the pushout diagram

(10)

IbAs>0
.@A/ //

zq
��

IbAs>0
.A/

��

z�n�1
// z�n

where A is the sequence given by A.n/D Œ0; 1�n and the empty set otherwise. The
attaching map is the restriction of the quotient map qW Œ0; 1�n ! Œ0; 1�n= � to the
boundary. Moreover, if n � i , then z�n.i/ D z�.i/, and the map @A ! A is a
cofibration. So limn

z�n D z�, and thus z� is cofibrant.

This construction implies that z�.m/ is a CW-complex. We recall that if A.n/D Œ0; 1�n

and the empty set otherwise, then the points in IbAs>0
.A/.m/ are the pairs .t Ix/ with

x 2A.n/ and t a fcg–tree satisfying the following conditions:

(11)

8<:
t has m leaves,
for all v 2 V .t/ n fpg; we have jvj> 1; and
jpj D n:

We denote by trn
m the number of fcg–trees satisfying the conditions in (11). The space

z�0.m/ is the disjoint union of tr0
m points, that is, a CW-complex. Assume z�n�1.m/ is

a CW-complex for all m� 0. For m�n�1, we have that z�n.m/D z�n�1.m/D z�.m/
is a CW-complex. The pushout (10) implies that z�n.n/ D z�.n/ is a CW-complex.
Finally, for m> n, the space z�n.m/ is obtained from the CW-complex z�n�1.m/ by
attaching trn

m cells of dimension n according to the infinitesimal bimodule structure
over As>0 , and is thus a CW-complex.

Contractible The map qW Œ0; 1�n ! z�.n/ is a continuous map between compact
CW-complexes. Since the fiber of q over a point .t1; : : : ; ti�1; 1; tiC1; : : : ; tn/, with
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tj ¤ 1 for j > i , is homeomorphic to the contractible space Œ0; 1�i�1 , the map q is a
weak equivalence [18, Main Theorem]. Hence z�.n/ is contractible.

Since z� is a cofibrant replacement of As as an infinitesimal bimodule over As>0 , the
semitotalization sTot.Mo/ is weakly equivalent to IbimodAs>0

. z�IMo/, and we have
a map

�W BimodAct>0
.�IM �/! IbimodAs>0

. z�IMo/; g 7! zg:

In order to prove that � is a weak equivalence, we will introduce two towers of fibrations.
For k � 0, define Ak and Bk to be the subspaces

Ak �

kC1Y
iD1

Top.�.i I c/IM �.i I c//„ ƒ‚ …
reduced to a point

�

kC1Y
iD1

Top.�.i I o/IM �.i I o//

and

Bk �

kY
iD0

Top. z�.i/IM i
o/;

with Ak satisfying the Act>0 –bimodule relations and Bk the As>0 –infinitesimal bi-
module relations. In other words, Ak and Bk are the spaces BimodAct>0

.�kC1IM
�/

and IbimodAs>0
. z�k IMo/, respectively, where �kC1 is the sub-Act>0 –bimodule

introduced in the proof of Proposition 3.14. The projection

kC1Y
iD1

Top. z�.i/IM i
o/!

kY
iD1

Top. z�.i/IM i
o/

induces a map BkC1! Bk . From Lemma 3.3, the following map is a fibration:

Top. z�.kC 1/IM kC1
o /! Top.@ z�.kC 1/IM kC1

o /:

The space BkC1 is obtained from Bk by the following pullback diagram:

BkC1
//

��

Top. z�.kC 1/IM kC1
o /

��

Bk
// Top.@ z�.kC 1/IM kC1

o /

Since the fibrations are preserved by pullbacks, BkC1! Bk is a fibration. Similarly,
the next pullback square makes the map AkC1!Ak induced by the projection into
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a fibration:

AkC1

��

// Top.�.kC 2I c/IM �.kC 2I c//�Top.�.kC 2I o/IM �.kC 2I o//

��

Ak
// Top.@�.kC 2I c/IM �.kC 2I c//�Top.@�.kC 2I o/IM �.kC 2I o//

So we consider the two towers of fibrations

A0 �A1 � � � �  �Ak  �AkC1 � � � �  �;

B0 � B1 � � � �  � Bk  � BkC1 � � � �  �

such that
A1 D limk Ak ' holimk Ak ' BimodAct>0

.�IM �/;

B1 D limk Bk ' holimk Bk ' IbimodAs>0
. z�IMo/:

By restriction, the map � induces a map between the two towers

A0

�0
��

A1
oo

�1
��

� � �oo Ak
oo

�k
��

AkC1
oo

�kC1
��

� � �oo

B0 B1
oo � � �oo Bk

oo BkC1
oo � � �oo

with � D limk �k D holimk �k . Consequently, � is a weak equivalence if each �k is a
weak equivalence. We will prove this result by induction on k .

First, note that �0 and �1 coincide with the identity. They are weak equivalences. Now
assume that �k�1 is a weak equivalence. We consider the following diagram, where g

is a point in Ak�1 , FA is the fiber over g and FB the fiber over �k�1.g/:

Ak�1

�k�1
��

Ak
oo

�k
��

FA
oo

�g
��

Bk�1 Bk
oo FB

oo

Since the two left horizontal arrows are fibrations, the map �k is a weak equivalence if
the induced map �g is a weak equivalence.

The fiber FA is homeomorphic to the space TopgkC1Io
��
Œ0; 1�k I @Œ0; 1�k

�
IM.kC1I o/

�
by Lemma 3.8. Similarly, z�k is obtained from z�k�1 by the pushout diagram (10).
So the fiber FB is homeomorphic to Top�k�1.g/kıq

��
Œ0; 1�k I @Œ0; 1�k

�
IM.k C 1I o/

�
,

and we have the following commutative square:

FA
//

�g

��

TopgkC1Io
��
Œ0; 1�k I @Œ0; 1�k

�
IM.kC 1I o/

�
id

FB
// Top�k�1.g/kıq

��
Œ0; 1�k I @Œ0; 1�k

�
IM.kC 1I o/

�
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Consequently, �k is a weak equivalence.

Proposition 4.5 The space �.Bimodh
As>0

.As>0IMc/IBimodh
Act>0

.Act>0IM // is
weakly equivalent to the space Bimodh

Act>0
.Act>0IM

�/.

Proof In this proof, � will serve as a cofibrant model of the Act>0 –bimodule Act>0 .
Through the following inclusion, we can consider BimodAct>0

.�IM �/ as a subspace
of �.BimodAs>0

.�c IMc/IBimodAct>0
.�IM //:

i W BimodAct>0
.�IM �/!�.BimodAs>0

.�c IMc/IBimodAct>0
.�IM //;

g 7!

�
zgnIc W�.nI c/� Œ0; 1�!M.nI c/I .xI t/ 7! �.�nIc/;

zgnIoW�.nI o/� f1g !M.nI o/I .xI 1/ 7! gnIo.x/:

In order to show that i is a weak equivalence, we introduce two towers of fibrations.
One of them is the tower Ak of Proposition 4.4. The second one is defined by

Ck �

kC1Y
iD1

Top.�.i I c/� Œ0; 1�IM.i I c//�

kC1Y
iD1

Top.�.i I o/IM.i I o//;

satisfying the relations of Definition 4.1. The map CkC1 ! Ck induced by the
projection is a fibration due to Lemma 3.3 and the following pullback diagram:

CkC1
//

��

Top
�
�.kC 2I c/� Œ0; 1�IM.kC 2I c/

�
�

Top
�
�.kC 2I o/IM.kC 2I o/

�

��

Ck
//
Top

�
@0.�.kC 2I c/� Œ0; 1�/IM.kC 2I c/

�
�

Top
�
@�.kC 2I o/IM.kC 2I o/

�
Here,

@0.�.kC 2I c/� Œ0; 1�/D�.kC 2I c/� f0g[ @�.kC 2I c/� Œ0; 1�:

The restriction of the inclusion i induces a map between the two towers:

A0

i0

��

A1
oo

i1

��

� � �oo Ak
oo

ik

��

AkC1
oo

ikC1

��

� � �oo

C0 C1
oo � � �oo Ck

oo CkC1
oo � � �oo
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We will prove that i is a weak equivalence by induction on k . If k D 0, a point in C0

is a pair .g1Ic Ig1Io/, and the points in the image of i0 are the pairs satisfying

g1Ic W �.1I c/� Œ0; 1�!M.1I c/; .�I t/ 7! �.�1Ic/:

Since g1Ic.�I 0/D �.�1Ic/ for any pair in C0 , the inclusion i0 induces the following
deformation retract:

H W C0�Œ0; 1�!C0; yD..g1Ic Ig1Io/I t1/ 7!

�
H.y/1Ic.�I t/D g1Ic.�I t.1� t1//;

H.y/1Io.�I 1/D g1Io.�I 1/:

From now on, we assume that ik�1 is a weak equivalence for k � 1. We consider the
following diagram, where g is a point in Ak�1 , FA is the fiber over g and FC the
fiber over ik�1.g/:

Ak�1

ik�1

��

Ak
oo

ik

��

FA
oo

ig

��

Ck�1 Ck
oo FC

oo

Since the two left horizontal arrows are fibrations, the map ik is a weak equivalence if
the induced map ig is a weak equivalence.

A point in FC is defined by a pair .gkC1Ic IgkC1Io/ satisfying the relations seen in
Definition 4.1. Since gkC1Ic is in the fiber over ik�1.g/, the map sends all the faces of
�.kC 1I c/� Œ0; 1� to �.�kC1Ic/, except for the face �.kC 1I c/�f1g. Furthermore,
they are no interaction between gkC1Ic and gkC1Io .

On the other hand, the points in the image of ig coincide with the pair .gkC1Ic IgkC1Io/

such that

gkC1Ic W �.kC 1I c/� Œ0; 1�!M.kC 1I c/; .xI t/ 7! �.�kC1Ic/:

In order to prove that ig induces a deformation retract, we introduce the homotopy
(also described in [11, Proposition 0.16])

H W
�
�.kC 1I c/� Œ0; 1�

�
� Œ0; 1�!�.kC 1I c/� Œ0; 1�

illustrated by the following picture:

�
.k
C

1
I
c
/

H. I 0/

Œ0I 1�

H. I t/ H. I 1/
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In other words, the points in the image of ig coincide with the pairs such that

gkC1Ic.xI t/D gkC1Ic

�
H..xI t/I 1/

�
for x 2�.kC 1I c/ and t 2 Œ0; 1�:

Finally, the deformation retract H2W FC � Œ0; 1�! FC is given by

y D ..gkC1Ic IgkC1Io/I t1/

7!

�
H2.y/kC1Ic.xI t/D gkC1Ic

�
H..xI t/I t1/

�
for x2�.kC 1I c/ and t2 Œ0; 1�;

H2.y/kC1Io.xI 1/D gkC1Io.xI 1/ for x2�.kC 1I o/:

Thus, the space �.BimodAs>0
.�c IMc/IBimodAct>0

.�IM // is weakly equivalent to
BimodAct>0

.�IM �/.

5 Double relative delooping: a particular case

First of all we recall that, for any pointed continuous map f W A!X , the homotopy
fiber hofib.f / and the loop space �X based at � are weakly equivalent to the pullback
diagrams (I) and (II):

Top
�
Œ0; 1�IX

�
.ev0Iev1/

��

��A
id�f

// X �X

.I/

Top
�
Œ0; 1�IX

�
.ev0Iev1/

��

��� // X �X

.II/

By the double relative loop space �2.X IA/, we mean the loop space of the homotopy
fiber hofib.f /. Since finite colimits commute, the double loop space can also be
defined by the homotopy fiber of the continuous map �f .

From now on, let O be a multiplicative operad; that is, there exists an operad map
˛W As!O . Let B be an O –bimodule equipped with an O –bimodule map ˇW O!B .
If we assume that B.0/ ' �, we know from [19, Theorem 6:2] and the As>0 –
bimodule map ˇ ı ˛W As! B that sTot.B/ is weakly equivalent to the loop space
�Bimodh

As>0
.As>0IB/. Since B is not an operad, we can not expect that its semito-

talization has the homotopy type of a double loop space. However, we will prove that
Bimodh

As>0
.As>0IB/ has the homotopy type of a relative loop space by building an

foI cg–operad X from the pair .OIB/ as follows:

(12) X.nI c/DO.n/ for n� 0; X.nI o/D B.n� 1/ for n> 0;
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and the empty set otherwise. The operadic structure is defined by

ıi WX.nI c/�X.mI c/!X.nCm� 1I c/; .xIy/ 7! x ıi y;

ıi WX.nI o/�X.mI c/!X.nCm� 1I o/; .xIy/ 7! x ıi y;

ınWX.nI o/�X.mI o/!X.nCm� 1I o/; .xIy/ 7! ˛.�2/.xIy/;

using the operadic structure of O , the right O –bimodule structure of B , and the left
O –bimodule structure of B , respectively. The operadic axioms are satisfied except the
unit axiom. This axiom holds under the assumption

(13) ˛.�2/
�
ˇ ı˛.�0/Ix

�
D ˛.�2/

�
xIˇ ı˛.�0/

�
D x for x 2X.mI o/:

Under this assumption, X is an action-operad with

�W Act!X;
�.�iIc/D ˛.�i/;

�.�iIo/D ˇ ı˛.�i�1/:

Theorem 5.1 Under assumption (13), Bimodh
As>0

.As>0IB/ is weakly equivalent to
the relative loop space �.Operadh.As>0IO/IOperadh

foIcg.Act>0IX //.

Proof It is a consequence of Propositions 5.5 and 5.6.

Definition 5.2 In order to describe the homotopy fiber the map (9) of Definition 3.9,
we need a cofibrant replacement of Act>0 as a colored operad. Since Act>0 is cofibrant
as an foI cg–sequence, we know from [3] that the Boardman–Vogt resolution of Act>0 ,
denoted by BV .Act>0/ or just WA in our case, is the object we are looking for. We
recall the construction here.

� Let treeo
n be the subset of foI cg–trees consisting of trees .t; f / with n leaves,

where f is an foI cg–labeling of t with the trunk labeled by o and satisfying, for all
v 2 V .t/,

f .e0.v//D c D) f .ei.v//D c for all i 2 f1; : : : ; jvjg

f .e0.v//D o D) jvj> 0; f .ejvj.v//D o andf .ei.v//D c for i 2 f1; : : : ; jvj�1g:

� The operad WA is the foI cg–sequence given by

WA.nI c/ WDa
t2fcg–tree

Y
v2V .t/

Act>0

�
f .e1.v/; : : : ; f .ejvj.v//If .e0.v//

�
�

Y
e2Eint.t/

Œ0; 1�
.
� ;

WA.nI o/ WDa
t2treeo

n

Y
v2V .t/

Act>0

�
f .e1.v/; : : : ; f .ejvj.v//If .e0.v//

�
�

Y
e2Eint.t/

Œ0; 1�
.
� ;
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and the empty set otherwise. The equivalence relation � is generated by contracting
the inner edges indexed by 0, using the operadic structure of Act>0 and the following
relation:

� � �;
t1

t1 t1

t2

max.t1I t2/

A point in WA.nI o/ will be denoted by ŒT I fteg�, where T is an element in treeo
n such

that each vertex has at least two inputs and te 2 Œ0; 1� for each inner edge e 2Eint.T /.
Similarly, a point in WA.nI c/ is denoted by ŒT I fteg� with T an element in fcg–tree.
We will use the notation v1 < v2 if v1 and v2 are two distinct, connected vertices such
that d.v1I r/ < d.v2I r/.

The operadic composition ıi of two points ŒT I fteg� and ŒT 0I ft 0eg� consists of grafting
the tree T 0 to the i th leaf of T and labeling the new inner edge by 1.

� It is well known that the operad D WD fD.n/ D WA.nI c/gn>0 is a cofibrant
replacement of As>0 as an operad. It is usually called the Stasheff operad.

The operad WA has been introduced in [13] so as to recognize A1–spaces and A1–
maps. The next definition is a description, using the cofibrant replacement WA, of the
relative loop space �.Operadh.As>0IO/IOperadh

foIcg.Act>0IX //.

Definition 5.3 Define �.Operad.DIXc/IOperadfoIcg.WAIX // as the space of maps
given, for n> 0, by

gnIc W WA.nI c/� Œ0; 1�!X.nI c/ and gnIoW WA.nI o/� f1g !X.nI o/;

satisfying the relations

gnIc.x ıi yI t/D glC1Ic.xI t/ ıi gn�lIc.yI t/

for x 2WA.l C 1I c/;y 2WA.n� l I c/ and i 2 f1; : : : ; l C 1g;

gnIo.x ıi yI 1/D glC1Io.xI 1/ ıi gn�lIc.yI 1/

for x 2WA.l C 1I o/;y 2WA.n� l I c/ and i 2 f1; : : : ; lg;

gnIo.x ılC1 yI 1/D glC1Io.xI 1/ ılC1 gn�lIo.yI 1/

for x 2WA.l C 1I o/ and y 2WA.n� l I o/;

and the boundary condition gnIc.xI 0/D �.�nIc/ for x 2WA.nI c/.

Notation 5.4 Let ˛W As>0 ! O be a map of operads, ˇW O ! B be a map of
O –bimodules and �W Act>0 ! X the corresponding map of foI cg–operads. The
foI cg–sequence X � given by

X �.nI c/D �.�nIc/ for n� 0; X �.nI o/D B.n� 1/ for n> 0;
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and the empty set otherwise, inherits from X an foI cg–operadic structure endowed
with a map �W Act>0!X �.

Proposition 5.5 Under assumption (13), the space Bimodh
As>0

.As>0IB/ is weakly
equivalent to Operadh

foIcg.Act>0IX
�/.

Proof By assumption, B is an As>0 –bimodule. The first step of the proof consists
of building a cofibrant replacement zD of As>0 as an As>0 –bimodule such that there
exists a map �W OperadfoIcg.WAIX �/! BimodAs>0

. zDIB/. Let us recall that a point
g 2 Operad.WAIX �/ is described by

gnIc WWA.nI c/!X �.nI c/; x 7! �.�nIc/ for n> 0;

gnIoWWA.nI o/!X �.nI o/ for n> 0;

satisfying, notably for x 2WA.lC1I o/, y 2WA.n� l I c/ and 1� i � l , the relation

(14) gnIo.x ıi y/D glC1Io.x/ ıi gn�lIc.y/D glC1Io.x/ ıi �.�n�lIc/:

Define � to be the equivalence relation on WA.nI o/ generated by

ŒT I fteg�� ŒT I fleg�()

�
te D le 8e 2Eint.T / with f .e/D o; and
te D le if Àe1 < e such that te1

D le1
D 1 and f .e1/D c:

We will denote by zD the sequence f zD.n/DWA.nC 1I o/=�gn>0 . By convention,
zD.0/ is the empty set.

Due to relation (14), the map g induces a sequence map zg WD fzgnW zD.n/!B.n/gn>0 .

Let us prove that zD is a cofibrant replacement of As>0 as an As>0 –bimodule. The
bimodule structure is given, for 1� i � n, by

(i) �ıi �2W zD.n/! zD.nC 1/; ŒT I fteg� 7! ŒT I fteg� ıi ı2Ic ,

(ii) �2.�I�/W zD.n/� zD.m/! zD.nCm/;
�
ŒT1I fteg�I ŒT2I fleg�

�
7! ŒT1I fteg� ınC1 ŒT2I fleg�;

where ınIc is the n–corolla in fcg–trees and ınIo is the n–corolla in treeo
n . This

structure satisfies the bimodule axioms over As>0 , and it makes zf into an As>0 –
bimodule map. Furthermore zD is a cofibrant replacement.

Cofibrant Let zDn be the As>0 –bimodule generated by f zD.i/gn
iD1

for n > 0.
By convention, zD0 is the As>0 –bimodule BAs>0

.∅/. Let us notice that the map
WA.nC 1I o/! zD.n/ preserves the boundary, and a point in @WA.nC 1I o/, by
definition, has the form ŒT I fteg� such that there exists e1 2Eint.T / with te1

D 1 and
either f .e1/ D o or f .e1/ D c . If f .e1/ D o, then ŒT I fteg� has a decomposition
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ŒT1I ft
1
e g� ıjT1j

ŒT2I ft
2
e g�. The image lies in zDn�1 by axiom (ii). If f .e1/D c , then

ŒT I fteg� has a similar decomposition ŒT1I ft
1
e g�ıi ŒT2I ft

2
e g� with i < jT1j and jT2j> 1,

and we have the identification

ŒT I fteg�D Œ.T1I ft
1
e g/ıi.T2I ft

2
e g/�D Œ.T1I ft

1
e g/ıiıjT2jIc �D Œ.T1I ft

1
e g/ıiıjT2j�1Ic �ı

i
�2:

Hence ŒT I fteg� lies in zDn�1 . Consequently, zDn is obtained from zDn�1 by the
pushout diagram

(15)

BAs>0
.@A/ //

zq
��

BAs>0
.A/

��

zDn�1
// zDn

where A is the sequence given by A.n/DWA.nC 1I o/ and the empty set otherwise.
The attaching map is the restriction of the quotient map qW WA.nC 1I o/! zD.n/
to the boundary. Furthermore, if i � n, then zDi.n/D zD.n/, and the map @A! A

is a cofibration. So limi zDi D zD , and thus zD is cofibrant. Like in the proof of
Proposition 4.4, these sequences of pushout diagram imply that, for each n, the space
zD.n/ is a CW-complex.

Contractible The map qW WA.nC 1I o/! zD.n/ is a continuous map between com-
pact CW-complexes. Since the fiber of q over a point is homeomorphic to a product of
polytopes that is contractible, the map q is a weak equivalence; see [18, Main Theorem].
Hence zD.n/ is contractible for n> 0.

Since zD is a cofibrant replacement of As>0 as a bimodule over itself, the space
Bimodh

As>0
.As>0IB/ is weakly equivalent to BimodAs>0

. zDIB/, and the assignment
�.g/D zg defines a map

�W OperadfoIcg.WAIX �/! BimodAs>0
. zDIB/; g 7! zg:

In order to prove that � is a weak equivalence, we introduce two towers of fibrations.
Define A0

k
and B0

k
to be the subspaces

A0k �

kC1Y
iD1

Top.WA.i I c/IX �.i I c//„ ƒ‚ …
reduced to a point

�

kC1Y
iD1

Top.WA.i I o/IX �.i I o//

and

B0k �

kY
iD1

Top. zD.i/IB.i//;
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with A0
k

satisfying the operadic relations and B0
k

the As>0 –bimodule relations for
k>0. In other words, A0

k
and B0

k
are respectively the space Operad.WAkC1IX

�/ and
BimodAs>0

. zDk IB/, where WAkC1 is the suboperad of WA generated by fWA.i I c/ j
1 � i � k C 1g and fWA.i I o/ j 1 � i � k C 1g. Since WA.1I c/ and WA.1I o/ are
reduced to the unit, the factors Top

�
WA.1I c/IX �.1I c/

�
and Top

�
WA.1I o/IX �.1I o/

�
are one point spaces and can be ignored. So we consider the two towers

A01 �A02 � � � �  �A0k  �A0kC1 � � � � ;

B01 � B02 � � � �  � B0k  � B0kC1 � � � �

such that

A01 D lim
k

A0k ' holim
k

A0k ' OperadfoIcg.WAIX �/;

B01 D lim
k

B0k ' holim
k

B0k ' BimodAs>0
.zDIB/:

By restriction, the map � induces a map between the two towers

A0
1

�1

��

A0
2

oo

�2

��

� � �oo A0
k

oo

�k

��

A0
kC1

oo

�kC1

��

� � �oo

B0
1

B0
2

oo � � �oo B0
k

oo B0
kC1

oo � � �oo

with � D limk �k D holimk �k . We will prove that � is a weak equivalence if each �k
is a weak equivalence by induction on k . First, note that �1 coincides with the identity.
It is a weak equivalence. Next, assume that �k�1 is a weak equivalence. We consider
the following diagram, where g is a point in A0

k�1
, FA0 is the fiber over g and FB0

the fiber over �k�1.g/:

A0
k�1

�k�1

��

A0
k

oo

�k

��

FA0
oo

�g

��

B0
k�1

B0
k

oo FB0
oo

Since the two left horizontal arrows are fibrations, the map �k is a weak equivalence if
the induced map �g is a weak equivalence.

From Lemma 3.8, the space TopgkC1Io
�
.WA.k C 1I o/I @WA.k C 1I o//IB.k/

�
is

homeomorphic to the fiber FA0 . Similarly, zDk is obtained from zDk�1 by the pushout
diagram (15). So the space Top�k�1.g/kıq

�
.WA.kC 1I o/I @WA.kC 1I o//IB.k/

�
is
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homeomorphic to the fiber FB0 , and we have the following commutative square:

FA0

�g

��

// TopgkC1Io
�
.WA.kC 1I o/I @WA.kC 1I o//IB.k/

�
id

FB0
// Top�k�1.g/kıq

�
.WA.kC 1I o/I @WA.kC 1I o//IB.k/

�
Consequently, �k is a weak equivalence.

Proposition 5.6 Under assumption (13), the space Operadh
foIcg.Act>0IX

�/ is weakly
equivalent to the relative loop space �.Operadh.As>0IXc/IOperadh

foIcg.Act>0IX //.

Proof Using the following inclusion, we can consider OperadfoIcg.WAIX �/ as a
subspace of �.Operad.DIXc/IOperadfoIcg.WAIX //.

i W OperadfoIcg.WAIX �/!�.Operad.DIXc/IOperadfoIcg.WAIX //

g 7!

�
zgnIc W WA.nI c/� Œ0; 1�!X.nI c/; .xI t/ 7! �.�nIc/

zgnIoW WA.nI o/�f1g !X.nI o/; .xI 1/ 7! gnIo.x/

In order to show that i is a weak equivalence, we introduce two towers of fibrations.
One of them is the tower A0

k
of Proposition 5.5. The second one is defined by

C 0k �

kC1Y
iD1

Top.WA.i I c/� Œ0; 1�IX.i I c//�
kC1Y
iD1

Top.WA.i I o/IX.i I o//;

satisfying the relations of Definition 5.3. Since WA.1I c/ and WA.1I o/ are reduced to
the unit, the factors Top.WA.1I c/� Œ0; 1�IX.1I c// and Top.WA.1I o/IX.1I o// are
the one point space and can be ignored. The restriction to the space A0

k
of the inclusion

i induces a map between the two towers as follows:

A0
1

i1

��

A0
2

oo

i2

��

� � �oo A0
k

oo

ik

��

A0
kC1

oo

ikC1

��

� � �oo

C 0
1

C 0
2

oo � � �oo C 0
k

oo C 0
kC1

oo � � �oo

Since the space �.Operad.DIXc/IOperadfoIcg.WAIX // is weakly equivalent to the
limit of C 0

k
, the map i is a weak equivalence if each ik is a weak equivalence. We

will prove this result by induction on k .

If k D 1, a point in C 0
1

is a pair .g2Ic Ig2Io/, whereas the points in the image of i1
coincide with the pairs satisfying

g2Ic W WA.2I c/� Œ0; 1�!X.2I c/; .xI t/ 7! �.�2Ic/:
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Since g2Ic.xI 0/D �.�1Ic/ for any pair in C 0
1

, the inclusion i1 induces the following
deformation retract:

H W C 01�Œ0; 1�!C 01; yD ..g2Ic Ig2Io/It1/ 7!

�
H.y/2Ic.ı2Ic I t/Dg2Ic.ı2Ic It.1�t1//;

H.y/2Io.ı2IoI1/Dg2Io.ı2IoI1/:

From now on we assume that ik�1 is a weak equivalence for k � 2. We consider the
following diagram, where g is a point in A0

k�1
, FA0 the fiber over g and FC 0 the

fiber over ik�1.g/:

A0
k�1

ik�1

��

A0
k

oo

ik

��

FA0
oo

ig

��

C 0
k�1

C 0
k

oo FC 0
oo

Since the two left horizontal arrows are fibrations, the map ik is a weak equivalence if
the induced map ig is a weak equivalence.

A point in the fiber FC 0 is defined by a pair .gkC1Ic IgkC1Io/ satisfying the relations
of Definition 5.3. Since the pair is in the fiber over ik�1.g/, the map gkC1Ic sends all
the faces of WA.kC1I c/� Œ0; 1� to �.�kC1Ic/, except for the face WA.kC1I c/�f1g.

On the other hand, the points in the image of ig coincide with the pairs .gkC1Ic IgkC1Io/

such that

gkC1Ic W WA.kC 1I c/� Œ0; 1�!X.kC 1I c/; .xI t/ 7! �.�kC1Ic/:

In order to prove that ig induces a deformation retract, we consider a lift H 0 in the
following diagram:

@
�
WA.kC 1I c/� Œ0; 1�

�
� Œ0; 1�

t .WA.kC 1I c/� Œ0; 1�/� f0g
//

��

WA.kC 1I c/� Œ0; 1�

.WA.kC 1I c/� Œ0; 1�/� Œ0; 1�

H 0

44

Here, the horizontal arrow is the inclusion on the factor .WA.kC1I c/�Œ0; 1�/�f0g and
sends a point ..xI t1/I t2/2 @.WA.kC1I c/�Œ0; 1�/�Œ0; 1� to .xI .1�t2/t1/. Such a lift
exists since the vertical arrow is an acyclic cofibration and the space WA.kC1I c/�Œ0; 1�
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is fibrant. The homotopy H 0 is illustrated by the following picture:
W

A
.k
C

1
I
c
/

H 0. I 0/

Œ0; 1�

H 0. I t/ H 0. I 1/

In other words, the points in the image of ig coincide with the pairs such that

gkC1Ic.xI t/D gkC1Ic.H
0..xI t/I 1//D �.�kC1Ic/

for x 2WA.kC 1I c/ and t 2 Œ0; 1�. Finally, the deformation retract

H2W FC 0 � Œ0; 1�! FC 0

sends a point y D ..gkC1Ic IgkC1Io/I t1/ to�
H2.y/kC1Ic.xI t/D gkC1Ic.H

0..xI t/I t1// for x 2WA.kI c/ and t 2 Œ0; 1�;

H2.y/kC1Io.xI 1/D gkC1Io.xI 1/ for x 2WA.kC 1I o/:

Consequently, we have that �.Operad.DIXc/IOperadfoIcg.WAIX // is weakly equiv-
alent to OperadfoIcg.WAIX �/.

Corollary 5.7 Let ˛W As ! O be a map of operads and ˇW O ! B be a map of
O –bimodules. Under assumption (13), if B.0/' � and O.0/'O.1/' �, then the
pair .sTot.O/I sTot.B// is weakly equivalent to the SC2 –space�

�2 Operadh.As>0IO/I�
2
�
Operadh.As>0IXc/IOperadh

foIcg.Act>0IX /
��
;

where X is the operad given by relations (12).

6 Double relative delooping: general case

In this section, O is an foI cg–operad endowed with a map of operads �W Act! O

that makes O into an Act>0 –bimodule under Act . We denote by .Oc IOo/ the pair
of semicosimplicial spaces associated to O ; see Proposition 1.13. In Section 4, we
proved that the pair .sTot.Oc/I sTot.Oo// is weakly equivalent to�

�Bimodh
As>0

.As>0IOc/I�
�
Bimodh

As>0
.As>0IOc/IBimodh

Act>0
.Act>0IO/

��
;

under the assumption O.0I c/' �.

If we assume that O.1I c/' �, then Bimodh
As>0

.As>0IOc/'�Operadh.As>0IOc/.
Similarly, Marcy D Robertson shows in [16] that the derived space of bimodule maps
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is weakly equivalent to the loop space of the derived space of operadic maps. More
precisely, in our context, we have the following proposition.

Proposition 6.1 Let O be an action-operad with O.1I c/'O.1I o/' �. The space
Bimodh

Act>0
.Act>0IO/ is weakly equivalent to �Operadh

foIcg.Act>0IO/.

Sketch of proof The proof is the same as in [19, Theorem 7.2]. According to the
notation of Turchin, BD is a cofibrant replacement of As>0 in the model category
BimodAs>0

such that there exists a map

�c W �Operad.DIOc/! BimodAs>0
.BDIOc/; f 7! �fc :

Using towers of fibrations as we do in Sections 4 and 5, Turchin proves that �c is
a weak equivalence. The construction of the map �c is obtained from a polytope
subdivision BD.n/DfBD.T /gT indexed by fcg–trees with n leaves. More precisely,
for any fcg–tree T with n leaves, the space BD.T / is the product of the following
two spaces:

�D.T /D
Y

v2V .T /

D.jvj/;

�N.T /D fftvgv2V .T / j tv 2 Œ0; 1� and tv1
� tv2

if v1 < v2g � Œ0; 1�
jV .T /j:

A point in BD.T / is denoted by fxvI tvg with fxvg 2 �D.T / and ftvg 2 �N.T /.
For any f 2�Operad.DIOc/, the map �fc is defined on each polytope BD.T / by
induction on the number of vertices of T using the operadic structure of Oc :

�
f
T Ic
W BD.T /!O.nI c/

fxvI tvg 7! fjr j.xr I tr /
�
�
f
T1Ic

.fx1
I t1
g/; : : : ; �

f
Tjr jIc

.fxjr jI t jr jg/
�
;

with Ti the subtree of T whose trunk coincides with the i th input edge of the root
of T .

In our case, a cofibrant replacement of Act>0 in the model category BimodAct>0
is

the foI cg–sequence

BDfoIcg.nI c/D BDfoIcg.nI o/D BD.n/ for n> 0;

and the empty set otherwise, with the obvious Act>0 –bimodule structure. The space
BDfoIcg.nI o/ has a polytope subdivision fBDfoIcg.T /gT indexed by treeo

n . The space
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BDfoIcg.T / is the product of the following two spaces:

�D.T /D
Y

v2V .T /

WA
�
nIf .e0.v//

�
;

�N.T /D fftvgv2V .T / j tv 2 Œ0; 1� and tv1
< tv2

if v1 < v2g � Œ0; 1�
jV .T /j:

A point in BDfoIcg.T / is denoted by fxvI tvg. For any f 2�Operad.WAIO/, the
map �f is defined by �f

nIc
as before, and �f

nIo
by induction on the number of vertices

of T using the operadic structure of O :

�
f
T Io
W BDfoIcg.T /!O.nI o/

fxvI tvg 7! fjr jIo.xr I tr /
�
�
f
T1Ic

.fx1
I t1
g/; : : : ; �

f
Tjr jIo

.fxjr jI t jr jg/
�
;

with Ti the subtree of T whose trunk coincides with the i th input edge of the root of T .
It defines a map from �OperadfoIcg.WAIO/ to BimodAct>0

.BDfoIcgIO/, which is
a weak equivalence using the same arguments as Turchin in [19].

Theorem 6.2 Assume O is an foI cg–operad such that O.0I c/ ' O.1I c/ ' � and
O.1I o/'�. If �W Act!O is a map of foI cg–operads, the pair .sTot.Oc/I sTot.Oo//

is weakly equivalent to the SC2 –space�
�2 Operadh.As>0IOc/I�

2
�
Operadh.As>0IOc/IOperadh

foIcg.Act>0IO/
��
:

Proof By [19, Theorem 7.2], we know that the space sTot.Oc/ is weakly equivalent
to �2 Operad.DIOc/. Proposition 6.1 implies that the projection of � onto the closed
part gives rise to the commutative diagram

�OperadfoIcg.WAIO/
�

//

�.p2/

��

BimodAct>0
.�IO/

p1

��

�Operad.DIOc/
�c
// BimodAs>0

.�c IOc/;

where p1 and p2 are respectively the maps (8) and (9). Since the homotopy fibers
commute with the homotopy limits, we have the following:

�.BimodAs>0
.�c IOc/IBimodAct>0

.�IO//

' hofib
�
BimodAct>0

.�IO/
p1
���! BimodAs>0

.�c IOc/
�

' hofib
�
�OperadfoIcg.WAIO/

�.p2/
����!�Operad.DIOc/

�
'� hofib

�
OperadfoIcg.WAIO/

p2
���! Operad.DIOc/

�
'�2

�
Operad.DIOc/IOperadfoIcg.WAIO/

�
:
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