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The membership problem for 3–manifold groups is solvable

STEFAN FRIEDL

HENRY WILTON

We show that the membership problem for finitely generated subgroups of 3–manifold
groups is uniformly solvable. That is, there is an algorithm that takes as input a
presentation for the fundamental group � of a compact 3–manifold, a finite generating
set for a subgroup � , and an element g 2 � , and determines whether or not g 2 � .

20E26, 57M05

1 Introduction

The classical group-theoretic decision problems were formulated by Dehn [11] in work
on the topology of surfaces. He considered, in particular, the following questions about
finite presentations hA jRi for a group � :

(1) the word problem, which asks for an algorithm to determine whether or not a
word in the generators A represents the trivial element of � ;

(2) the conjugacy problem, which asks for an algorithm to determine whether or not
two words in the generators A represent conjugate elements of � .

In this context, another question arises naturally:

(3) the membership problem, where the goal is to determine whether a given element
of a group lies in a specified subgroup.

Note that a solution to the conjugacy problem and also a solution to the membership
problem each give a solution to the word problem. The initial hope that these problems
might always be solvable was dashed by Novikov [30] and Boone [6], who showed
that there exist finitely presented groups for which the word problem is unsolvable.

It is therefore natural to ask for which classes of groups the above problems can be
solved. In this paper, we will discuss the case of 3–manifold groups, ie fundamental
groups of compact 3–manifolds. We now give a short summary of results on decision
problems for 3–manifold groups. We refer to the survey paper by Aschenbrenner and
the authors [4] for a much more detailed discussion.
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Our understanding of 3–manifold groups has expanded rapidly in recent years. In par-
ticular, it is a consequence of the geometrization theorem due to Perelman [31; 32; 33]
(see also Morgan and Tian [26; 27] and Bessières, Besson, Maillot, Boileau and
Porti [5]) and work of Hempel [16] that 3–manifold groups are residually finite, which
gives rise to a solution to the word problem. The first solution to the conjugacy problem
was given by Préaux [34; 35] (extending earlier work of Sela [38] on knot groups). A
conceptually easy solution for fundamental groups of orientable 3–manifolds is given
by the recent result of Hamilton, the second author and Zalesskii [14] that these groups
are “conjugacy separable.”

The word problem and the conjugacy problem for fundamental groups of orientable
3–manifold groups can thus be solved by translating the problem to dealing with the
corresponding problems for finite groups, which in turn can be solved trivially. The
same approach cannot work for the membership problem since 3–manifold groups
are not “subgroup separable;” see eg Burns, Karrass and Solitar [7] and Niblo and
Wise [29]. The main goal of this paper is to show that the membership problem has
nonetheless a uniform solution for 3–manifold groups. More precisely, we have the
following theorem.

Theorem 1 There exists an algorithm which takes as input a finite presentation � D
hA j Ri of a 3–manifold group, a finite set of words w1; : : : ; wk in A and a word z
in A, and which determines whether or not the element z 2 � lies in the subgroup of �
generated by w1; : : : ; wk .

The four main ingredients in the proof are the following:

(1) The resolution of the tameness conjecture by Agol [1] and Calegari and Gabai [8].

(2) An algorithm of Kapovich, Weidmann and Miasnikov [22] which deals with the
membership problem of the fundamental group of a graph of groups.

(3) Algorithms of Jaco, Letscher and Rubinstein [18], Jaco and Rubinstein [19], and
Jaco and Tollefson [20] which determine the prime decomposition and the JSJ
decomposition of a given triangulated 3–manifold.

(4) The virtually compact special theorem of Agol [2] and Wise [41; 42].

The paper is organized as follows. In Section 2, we recall the solutions to the word
problem and the conjugacy problem for 3–manifold groups. In Section 3, we discuss
our main theorem in more detail. In Section 4, we recall several basic results and
algorithms, and we give the proof of our main theorem in Section 5. Finally, in Section 6,
we will quickly discuss a slightly different approach to the proof of our main theorem,
and we will raise a few questions.
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Conventions All 3–manifolds and surfaces are assumed to be compact and connected.
We furthermore assume that all graphs are connected. Finally, we assume that all
classes of groups are closed under isomorphism.

Acknowledgements The authors wish to thank the referee for very carefully reading
earlier versions of the paper and for many helpful comments. The first author was
supported by the SFB 1085 “higher invariants” funded by the Deutsche Forschungsge-
meinschaft (DFG) at the University of Regensburg.

2 The word problem and the conjugacy problem
for 3–manifold groups

We start out introducing several definitions which we will need throughout this paper.

(1) Given a set A, we denote by F.A/ the free group generated by A. As usual,
we will freely go back and forth between words in A and elements represented
by these words in F.A/.

(2) A finite presentation hA j Ri is a finite set A together with a finite set R of
elements in F.A/. We follow the usual convention that, by hA jRi, we indicate
at the same time the finite data and also the group

F.A/=hhRii;

ie the quotient of F.A/ by the normal closure hhRii of R in F.A/. In the
notation, for the most part, we will not distinguish between elements in F.A/
and the elements they represent in hA jRi.

(3) A finite presentation for a group � is a finite presentation hA jRi isomorphic
to � . We say that a group � is finitely presentable if it admits a finite presentation.

Before we start with the solution to the membership problem for 3–manifold groups, it
is worth looking at the solution to the word problem and to the conjugacy problem.

Recall that a group � is called residually finite if, given any nontrivial g 2 � , there
exists a homomorphism f W �!G to a finite group G such that f .g/ is nontrivial. It
is consequence of the geometrization theorem [40; 31; 32; 33] and of work of Hempel
[16] that 3–manifold groups are residually finite.

The following well-known lemma thus gives a solution to the word problem for 3–
manifold groups.

Algebraic & Geometric Topology, Volume 16 (2016)



1830 Stefan Friedl and Henry Wilton

Lemma 2 There exists an algorithm which takes as input a finite presentation � D
hA j Ri and an element w 2 F.A/, and which, if � is residually finite, determines
whether or not w represents the trivial element.

Proof Let � D hA jRi be a finitely presented group and let w 2 F.A/. We suppose
that � is residually finite. If w represents the trivial element, then we will see this
eventually by writing down systematically all words which are products of conjugates
of elements in R[R�1 . On the other hand, if w does not represent the trivial word,
then by residual finiteness there exists a homomorphism f W �!G to a finite group
with f .g/¤ e . Since hA j Ri is a finite presentation, we can recursively enumerate
all homomorphisms from � to finite groups. After finitely many steps, we will thus
detect that g is indeed nontrivial.

As we mentioned in the introduction, Préaux, extending Sela’s work on knot groups
[38], proved that the conjugacy problem is solvable for the fundamental groups of
orientable [34] and nonorientable [35] 3–manifolds. (Note that, in contrast to many
other group properties, solvability of the conjugacy problem does not automatically
pass to finite extensions [10].)

It is natural to ask whether there also exists a solution to the conjugacy problem along
the lines of Lemma 2. In the following, we say that a group � is conjugacy separable
if, given any nonconjugate g; h 2 � , there exists a homomorphism f W � ! G to a
finite group G such that f .g/ and f .h/ are nonconjugate. A slight variation on the
proof of Lemma 2 also shows that the conjugacy problem is solvable if the given group
is conjugacy separable.

Hamilton, the second author and Zalesskii [14], building on the recent work of Agol [2]
and Wise [41; 42] and work of Minasyan [23], showed that fundamental groups of
orientable 3–manifolds are conjugacy separable. This result gives another solution to
the conjugacy problem for fundamental groups of orientable 3–manifolds.

3 The statement of the main theorem

Let C be a class of finitely presentable groups. We say that the membership problem
is solvable in C if there exists an algorithm which takes as input a finite presentation
hA j Ri, a finite set of words w1; : : : ; wk in A and a word z in A, and which, if
hA jRi is a presentation for a group � in C , determines whether or not the element
z 2 � lies in the subgroup generated by w1; : : : ; wk 2 � .

The following theorem is now a reformulation of our main theorem.

Theorem 3 The membership problem is solvable for the class of 3–manifold groups.
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In Section 2, we saw that separability properties of fundamental groups can be used
to solve the word problem and the conjugacy problem for fundamental groups of
(orientable) 3–manifolds.

The “right” notion of separability in the context of the membership problem is the
separability of subgroups. More precisely, in the following, we say that a subset � of
a group � is separable if, given any g 62 � , there exists a homomorphism f W �!G

to a finite group such that f .g/ 62 f .�/. We say that a group � is subgroup separable
if every finitely generated subgroup is separable. The proof of Lemma 2 can easily
be modified to show that the membership problem is solvable for the class of finitely
presentable groups which are subgroup separable.

Scott [37] showed that the fundamental groups of Seifert fibred 3–manifolds are
subgroup separable. Furthermore, it follows from work of Agol [2] and Wise [41; 42],
together with the proof of the tameness conjecture by Agol [1] and Calegari and Gabai
[8], that fundamental groups of hyperbolic 3–manifolds are subgroup separable. (The
precise references for this statement can be found in [3].)

On the other hand, there are many examples of fundamental groups of prime 3–
manifolds which are not subgroup separable; see eg [7; 29]. We thus see that we cannot
hope to prove Theorem 3 in the general case by appealing to separability properties only.

The key idea in the proof of Theorem 3 is to apply a theorem of Kapovich, Weidmann and
Miasnikov [22] which provides a solution to the membership problem for fundamental
groups of graphs of groups if various conditions are satisfied. We will apply this
theorem twice: once to reduce the problem to the case of prime 3–manifolds, and then
later on to deal with the case of prime 3–manifolds with nontrivial JSJ decomposition.

The proof of Theorem 3 is organized as follows. In Section 4, we will first make
some preliminary observations. In Section 5.1, we formulate the aforementioned main
theorem of [22], which we will use in Section 5.2 to argue that it suffices to prove our
main theorem for closed, orientable, prime 3–manifolds. In Sections 5.3, 5.4 and 5.5,
we will show that one can use the main theorem of [22] to deal with the fundamental
groups of closed, orientable, prime 3–manifolds with nontrivial JSJ decomposition.

4 Preliminary results

4.1 Basic algorithms

We start out with several basic lemmas which we will need time and again during the
paper. The statements of the lemmas are well known to experts, but we include proofs
for the reader’s convenience. At a first reading of the paper, it might nonetheless be
better to skip this section.
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Lemma 4 There exists an algorithm which takes as input two finite presentations
hA jRi and hA0 jR0i and which finds an isomorphism hA jRi ! hA0 jR0i, if such an
isomorphism exists.

Here, by “finds an isomorphism hA jRi! hA0 jR0i” we mean that the algorithm finds
a map A! F.A0/ which descends to an isomorphism hA jRi ! hA0 jR0i.

Proof Let � D hA jRi and � 0 D hA0 jR0i be finite presentations. We denote by T
the subgroup of F.A/ normally generated by R . We similarly define T 0 .

Note that a homomorphism 'W hAi ! hA0i descends to an isomorphism 'W �! � 0 if
and only if the following two conditions hold:

(1) for all r 2R , we have '.r/ 2 T 0 , and

(2) there exists a homomorphism  W hA0i!hAi such that  .r 0/2T for all r 0 2R0 ,
 .'.g//g�1 2 T for all g 2 A, and '. .g0//.g0/�1 2 T 0 for all g0 2 A0 .

We run the following Turing machines simultaneously:

(1) A Turing machine which produces a list of all words in A of � which represent
the trivial word, ie a Turing machine which produces a list of all elements of T .

(2) A Turing machine which produces a list of all homomorphisms 'W hAi ! hA0i,
ie a Turing machine which outputs all jAj–tuples of elements in hA0i.

(3) A Turing machine which produces a list of all words in A0 of � 0 which represent
the trivial word.

(4) A Turing machine which produces a list of all homomorphisms 'W hA0i ! hAi.

Now suppose there exists an isomorphism �! � 0 . It is clear that, after finitely many
steps, we will find a pair 'W hAi ! hA0i and  W hA0i ! hAi such that the following
conditions hold:

(1) for all r 2R we have '.r/ 2 T 0 ,

(2) for all r 0 2R0 we have  .r 0/ 2 T ,

(3) for all g 2 A we have  .'.g//g�1 2 T , and

(4) for all g0 2 A0 we have '. .g0//.g0/�1 2 T 0 .

In the following, we say that a subgroup � of a group � is a retract if there exists a
retraction r W � ! � , ie a homomorphism with r.g/D g for all g 2 � . Almost the
same argument as in Lemma 4 also proves:
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Lemma 5 There exists an algorithm which takes as input two finite presentations
� D hA jRi and � 0 D hA0 jR0i, and which finds a map f W �! � 0 and a left-inverse
gW � 0! � to f , if � is isomorphic to a retract of � 0 .

We also have the following lemma.

Lemma 6 There exists an algorithm which takes as input a finite presentation � D
hA j Ri and two finite sets of words X and Y in A, and which certifies that the two
sets X and Y generate the same subgroup of � , if this is indeed the case.

Proof The algorithm enumerates all elements in hX; hhRiii�F.A/, and it enumerates
all elements in hY; hhRiii � F.A/. Note that X and Y generate the same subgroup
of � if and only if X � hY; hhRiii and Y � hX; hhRiii. If this is indeed the case, then
this will be verified after finitely many steps.

Lemma 7 There exists an algorithm which takes as input two finite presentations
� D hA jRi and � D hB j Si, a homomorphism f W �!� and a finite set of elements
in � which generate a finite-index subgroup �0 � � , and which gives as output a set
of coset representatives for �0 WD f �1.�0/ in � and a finite presentation hA0 j R0i
together with an isomorphism hA0 jR0i ! �0 .

Proof We start out with the following claim.

Claim There exists an algorithm which takes as input a finite presentation � DhB jSi
and a finite set X of elements in � such that �0 D hXi is a finite-index subgroup
of � , and which finds a homomorphism 'W �!G to a finite group G and a subgroup
G0 �G such that �0 D '�1.G0/.

Proof of claim First, note that there indeed exist a homomorphism 'W �!G onto
a finite group and a subgroup G0 of G such that �0 D '�1.G0/. For example, we
could take G to be the quotient of � by the core of hXi and G0 the image of �0 in
this quotient. (Recall that, given a subgroup H of � , the core of H is given by the
normal subgroup

T
g2� gHg

�1 ; if H is a finite-index subgroup of � , then the core
is also a finite-index subgroup of � .)

The algorithm now goes through all epimorphisms from � to finite groups G . For
each epimorphism 'W � ! G onto a finite group we also consider all finite-index
subgroups G0 �G . We then calculate a set of coset representatives for G0 �G . By
enumerating the elements in �0 and determining their images under ' , we can then
find preimages of the coset representatives; ie we can find a set of coset representatives
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for '�1.G0/. Using the Reidemeister–Schreier process, we can then determine a finite
set of generators Y for '�1.G0/. If X and Y generate the same group, then this will
be certified by the algorithm of Lemma 6. By the above discussion, this algorithm will
terminate after finitely many steps. This concludes the proof of the claim.

Now suppose we are given two finite presentations � D hA jRi and � D hB j Si, a
homomorphism f W �! � and a set of elements in � which generate a finite-index
subgroup �0 � � . We apply the above claim to �0 � � . We write H WD .' ı f /.�/.
Note that H0 WD .' ı f /.�0/ D .' ı f /.�/ \ '.�0/. We can evidently find coset
representatives for H0 �H . As in the proof of the claim, we can furthermore find
preimages of the coset representatives under the map ' ı f , which are then coset
representatives for �0 � � . Using the Reidemeister–Schreier process, we can now find
a finite presentation hA0 jR0i together with an isomorphism hA0 jR0i ! �0 .

Lemma 8 There exists an algorithm which, given a finite presentation � D hA jRi,
determines a list of all finite-index subgroups; more precisely, it provides a list of
finite presentations �i D hAi j Ri i and monomorphisms fi W �i ! � such that any
finite-index subgroup of � agrees with fi .�i / for some i .

Proof Given a finite presentation � DhA jRi we can list all homomorphisms to finite
groups. Furthermore, given a homomorphism �!G to a finite group and a subgroup
G0 �G , we saw in the previous proof that we can determine coset representatives for
f �1.G0/� � , and the Reidemeister–Schreier procedure gives a finite presentation for
f �1.G0/ together with a map to � . As we saw in the proof of the previous lemma,
any finite-index subgroup of � arises that way.

Lemma 9 There exists an algorithm which, given a finite presentation � D hA j Ri
and a finite set of elements X � F.A/, certifies that the subgroup hXi � � is normal,
if this is the case.

Proof Let � D ha1; : : : ; al j r1; : : : ; rmi be a finite presentation, and let X D
fg1; : : : ; gkg � F.A/. Note that g1; : : : ; gk generate a normal subgroup in � if
and only if aigja�1i lie in hX; hhRiii for any i and j .

But if this is the case, then this can be certified by enumerating all elements in hX; hhRiii,
and after finitely many steps, we will have verified that all the elements aigja�1i indeed
lie in hX; hhRiii.

Lemma 10 There exists an algorithm which, given two finitely presented groups,
� D hA j Ri and � D hB j Si, and a finite set of elements X � � , certifies that the
subgroup hXi � � is normal and that �=hXi Š � .
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Proof Let X D fg1; : : : ; gkg be a finite set of elements in a finite presentation
� D ha1; : : : ; al j r1; : : : ; rmi. We first apply the algorithm from the proof of Lemma 9
which allows us to certify that hg1; : : : ; gki � � is normal. If �=hg1; : : : ; gki is
isomorphic to � , then the group given by the finite presentation

ha1; : : : ; al j r1; : : : ; rm; g1; : : : ; gki

is isomorphic to � . But by Lemma 4, the existence of such an isomorphism can be
certified after finitely many steps.

4.2 Preliminary observations on the membership problem

Here we will prove two elementary lemmas dealing with the membership problem.

Lemma 11 There exists an algorithm which takes as input a finite presentation � D
hA j Ri, a finite set X � � such that hXi is a finite-index subgroup of � , and an
element g 2 � , and decides whether or not g 2 � lies in hXi.

Proof By the proof of Lemma 7, we can find a homomorphism f W �!G to a finite
group and a subgroup G0 �G such that �0 D f �1.G0/. Now, given g 2 � , we only
have to determine whether or not f .g/ lies in G0 , which can be done trivially.

Before we state our next lemma we need to give two more definitions:

(1) We say that a group � is virtually isomorphic to a retract of a group � if there
exists a finite-index subgroup �0 of � which is isomorphic to a retract of � .

(2) A class C of groups is recursively enumerable if there exists a Turing machine
that outputs a list of finite presentations, all presenting groups in the class C ,
such that any group in C is isomorphic to at least one of the groups defined by
those finite presentations.

Lemma 12 Let C;D be classes of finitely presentable groups, and suppose that every
group in C is virtually isomorphic to a retract of a group in D . If

(1) the membership problem is solvable in D , and

(2) D is recursively enumerable,

then the membership problem is also solvable in C .
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Proof Let � D hA j Ri be a finite presentation of a group in C . Using Lemma 8,
we may enumerate all subgroups of finite index in � . Because D is recursively
enumerable, we will, by Lemma 5, eventually find a finite-index subgroup �0 of � , a
finite presentation hB j Si for a group � in D , a homomorphism f W �0! � and a
left-inverse gW �! �0 to f . Note that f is, in particular, injective.

Let H be a finitely generated subgroup of � D hA j Ri, specified by a finite set of
elements. By Lemma 7, we may compute a generating set for H0 DH \�0 and a
set of coset representatives h1; : : : ; hk for H0 in H . Now, if g 2 � , then for each i ,
we may determine whether or not h�1i g 2 �0 by Lemma 11. If there is no such i ,
then evidently g … H . Otherwise, if h�1i g 2 �0 , then by using the solution to the
membership problem in f .�0/ � � , we may determine whether or not h�1i g 2H0 .
The lemma now follows from the observation that g 2H if and only if h�1i g 2H0
for some i .

5 The membership problem for 3–manifold groups

5.1 The theorem of Kapovich, Weidmann and Miasnikov

We first recall that a graph of groups G is a finite graph with vertex set V D V.G/ and
edge set E DE.G/, together with vertex groups Gv for v 2 V , edge groups He for
e 2 E , and monomorphisms ieW He ! Gi.e/ and teW He ! Gt.e/ . Also recall that
Serre [39] associated, to a graph G of finitely presented groups, a finitely presented
group referred to as the fundamental group of G .

We also need the following definitions:

(1) A decorated group is a pair .G; fHigi2I /, where G is a group and fHigi2I is
a finite set of subgroups of G indexed by I . We refer to G as the vertex group
and to each Hi for i 2 I as an edge group.

(2) We say that two decorated groups .G; fHigi2I / and .K; fLj gj2J / are isomor-
phic, written as

.G; fHigi2I /Š .K; fLj gj2J /;

if there exists an isomorphism 'W G!K , a bijection  W I ! J , and elements
kj 2K and j 2 J such that '.Hi /D k .i/L .i/k�1 .i/ for any i 2 I .

(3) A subdecoration of a decorated group .G; fHigi2I / is a pair .G; fHj gj2J /,
where J � I is a subset.
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(4) A finite decorated group presentation is a pair

.hA jRi; fhXi j Si i; figi2I /;

where hA j Ri is a finite presentation, I is a finite set, each hXi j Si i is a
finite presentation, and each fi W hXi j Si i ! hA jRi is a monomorphism. Note
that a finite decorated group presentation .hA jRi; fhXi j Si i; figi2I / defines a
decorated group .hA jRi; ffi .hXi j Si i/gi2I /.

(5) A finite presentation for a decorated group .G; fHigi2I / is a finite decorated
group presentation .hA jRi; fhXi j Si i; figi2I / such that

.G; fHigi2I /Š .hA jRi; ffi .hXi j Si i/gi2I /:

We say that a decorated group is finitely presentable if it admits a finite decorated
group presentation.

We say that a class P of decorated groups is recursively enumerable if there exists
a Turing machine that outputs a list of finite decorated group presentations, each
presenting a group in P , such that any decorated group in P is isomorphic to a
decorated group defined by one of those finite decorated group presentations.

Given a class P of decorated groups, we say that a graph of groups with vertex groups
fGvgv2V and edge groups fHege2E is based on P if, given any vertex v , the pair
.Gv; fie.He/ge2E;i.e/Dv/ is equivalent to a subdecoration of a decorated group in P .

Theorem 13 (Kapovich, Weidmann and Miasnikov) Let P be a class of decorated
groups such that the following hold:

(I) There is an algorithm which determines, for each finite decorated group presen-
tation .hA j Ri; fhXi j Si i; figi2I / of a decorated group in P , each i 2 I , and
each finite set Y � F.A/, whether or not a given element in hA jRi lies in the
double coset hfi .Xi /ihY i � hA jRi.

(II) The membership problem is solvable for the class of all vertex groups in P .

(III) Every edge group is slender, meaning that every subgroup of an edge group is
finitely generated.

(IV) There is an algorithm which computes, for each finite decorated group presenta-
tion .hA jRi; fhXi jSi i; figi2I / of a decorated group in P , each i 2 I , and each
finite set Y �F.A/, a finite generating set for the intersection hfi .Xi /i\hY i �
hA jRi.

(V) The class P is recursively enumerable.

Then the membership problem is solvable for the class of fundamental groups of all
graphs of groups based on P .
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Proof In this proof we assume some familiarity with [22]. We start out with the
following claim.

Claim If a class of decorated groups P satisfies condition I, then it also satisfies
(I 0 ) There is an algorithm which determines, for each finite decorated group pre-

sentation .hA j Ri; fhXi j Si i; figi2I / of a decorated group in P , each i 2 I ,
and each finite set Y � F.A/, whether or not, for a given element a , we have
J WD ahfi .Xi /i \ hY i ¤∅ and, if J ¤∅, gives as output an element in J .

Proof of claim First note that, if G and H are subgroups of a group � and if b 2 � ,
then it follows trivially that bG \H ¤∅ if and only if

b�1 2GH WD fgh j g 2G; h 2H g:

So we can determine whether or not J WDahfi .Xi /i\hY i¤∅ if P satisfies condition I.
Suppose that J ¤∅. We now have to find an element in J . This means that we have
to find an element in

ahfi .Xi /; hhRiii \ hY; hhRiii � F.A/:

But we can just enumerate all elements in ahfi .Xi /; hhRiii and in hY; hhRiii, and since
the intersection is nontrivial, we will eventually find an element which lies in both sets.
This concludes the proof of the claim.

It now follows from conditions I 0 , II and IV that any graph of finitely presented
groups based on P is “benign” in the sense of [22, Definition 5.6]. The solvability
of the membership problem follows from [22, Theorem 5.13] combined with the
following claim.

Claim There exists an algorithm which takes as input a finite presentation hA j Ri
for the fundamental group of a graph of groups in C , and which gives as output a
finite presentation of a graph of groups based on P together with an isomorphism from
hA jRi to the fundamental group of the graph of groups.

Proof of claim Let hA j Ri be a finite presentation for the fundamental group of a
graph of groups in C . By assumption, the class P of decorated groups is recursively
enumerable. It is clear that one can then also recursively enumerate the class of all
decorated groups which are subdecorations of decorated groups in P . It follows
from Lemma 4 that the class of isomorphisms between edge groups in P is also
recursively enumerable. It is now straightforward to see that the class of graphs of
groups based on P is also recursively enumerable. By Lemma 4, we will eventually
find an isomorphism from hA jRi to the finite presentation of the fundamental group
of a graph of groups based on P . This proves the claim and, thus, the theorem.
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We then have the following immediate corollary. See also [22, Corollary 5.16].

Corollary 14 Let C be a recursively enumerable class of groups for which the mem-
bership problem is solvable. Then the membership problem is solvable for the class of
groups which are isomorphic to finite free products of groups in C .

Proof We denote by P the class of decorated groups .G; feg/ with G 2 C . It
follows easily from our assumptions that conditions I–V of Theorem 13 are satisfied
for P . By Theorem 13, the membership problem is solvable for the class of groups
which are isomorphic to fundamental groups of graphs of groups based on P . The
corollary now follows from the observation that, if the underlying graph is a tree,
then the corresponding fundamental group is, in this case, just the free product of the
vertex groups.

5.2 The reduction to the case of closed, orientable, prime 3–manifolds

The goal of this section is to prove the following proposition.

Proposition 15 If the membership problem is solvable for the class of fundamental
groups of all closed, orientable, prime 3–manifolds, then it is also solvable for the class
of fundamental groups of all 3–manifolds.

In the following we say that a class M of 3–manifolds is recursively enumerable
if there exists a Turing machine that outputs a list of finite simplicial spaces, each
representing a manifold in M, such that any manifold in M is homeomorphic to one
of those simplicial spaces. In the proof of Proposition 15, we will need the following
theorem, which is basically a combination of work of Moise [24; 25] and Jaco and
Rubinstein [19], or alternatively, Jaco and Tollefson [20].

Theorem 16 The class of closed, orientable, prime 3–manifolds is recursively enu-
merable.

Proof By Moise’s theorem [24; 25], every 3–manifold N admits a finite triangulation;
ie N can be written as a finite simplicial complex.

Note that there exists an algorithm which checks whether or not a given finite simplicial
complex represents a closed orientable 3–manifold. Indeed, one only needs to check
whether the link of each vertex is a 2–sphere, and whether the third homology group
is nonzero. Furthermore, by work of Jaco and Rubinstein [19], and also by Jaco and
Tollefson [20, Algorithm 7.1], there exists an algorithm which, given a triangulated
closed, orientable 3–manifold N , determines whether or not the manifold is prime.
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We thus go through all finite simplicial complexes, and we keep the ones which represent
closed, prime 3–manifolds. By Moise’s theorem, any 3–manifold will eventually appear
in this list of finite simplicial complexes.

Proof of Proposition 15 Let N be a 3–manifold. Note that N admits a finite
cover M which is orientable. We denote by W DM [@MD@M M the double of M
which is now a closed, orientable 3–manifold. Note that the “folding map” W !M is a
retraction onto M . This implies, in particular, that the folding induces a homomorphism
�1W ! �1M which is a left inverse to the inclusion induced map �1M ! �1W .
Furthermore, it is a consequence of the Kneser–Milnor prime decomposition theorem
that W is the connected sum of finitely many prime 3–manifolds; in particular, �1W
is the free product of fundamental groups of closed, orientable, prime 3–manifolds.

We now write

M WD class of all 3–manifolds,
Mor
WD class of all orientable 3–manifolds,

Mor
WD class of all closed, orientable 3–manifolds,

Mor
pr WD class of all closed, orientable, prime 3–manifolds:

We furthermore denote by G;Gor;Gor and Gor
pr the corresponding classes of fundamental

groups. By assumption, the membership problem is solvable in Gor
pr .

It follows, from Theorem 16, that Mor
pr is recursively enumerable. Using the 2–skeleton

of a triangulation, one can write down a presentation for the fundamental group of any
finite connected simplicial complex. It follows that Gor

pr is also recursively enumerable.
It is now a consequence of the aforementioned Kneser–Milnor prime decomposition
theorem, and from Corollary 14, that the membership problem is solvable for Gor .

It follows from the above discussion that any group in G is virtually isomorphic to
a retract of a group in Gor . Since any group in Gor is the free product of finitely
many groups in Gor

pr , and since Gor
pr is recursively enumerable, Gor is also recursively

enumerable. Thus, by Lemma 12, the membership problem is solvable in G .

5.3 The JSJ decomposition of 3–manifolds

In this paper, by a hyperbolic 3–manifold we mean a compact, orientable 3–manifold
such that the boundary is a, possibly empty, union of tori, and that the interior admits
a complete hyperbolic structure. By a Seifert fibred manifold we always mean an
orientable Seifert fibred manifold.
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If N is a closed, orientable, prime 3–manifold, then the geometrization theorem of
Thurston [40] and Perelman [31; 32; 33] says that there exists a collection of incom-
pressible tori such that N cut along the tori consists of components which are either
Seifert fibred or hyperbolic. A minimal collection of such tori is furthermore unique
up to isotopy. The elements of a minimal collection of such tori are called the JSJ tori
of N, and the components of N cut along the JSJ tori are the JSJ components of N. In
particular, the geometrization theorem thus shows that �1.N / is the fundamental group
of a graph of groups, where the vertex groups are fundamental groups of hyperbolic
3–manifolds and Seifert fibred manifolds, and where the edge groups correspond to
the boundary tori of the JSJ components.

We now consider the following classes of decorated groups:

Phyp D
all decorated groups isomorphic to .�1.N /; f�1.Ti /gi2I /, where
N is a hyperbolic 3–manifold and fTigi2I are the boundary tori of N;

Psfs D
all decorated groups isomorphic to .�1.N /; f�1.Ti /gi2I /, where
N is a Seifert fibred 3–manifold and fTigi2I are the boundary tori of N;

Pcl D
all decorated groups isomorphic to .�1.N /;∅/, where
N is a closed 3–manifold which is hyperbolic or Seifert fibred.

(Note that the definitions of these classes do not depend on the choice of base points and
path connecting the base points. In the first two examples of decorated groups, the set
of boundary components of N is I D �0.@N /.) We also write P D Phyp[Psfs[Pcl .

We recall that, in order to prove Theorem 3, it suffices by Proposition 15 to show that
the membership problem is solvable for the class of fundamental groups of closed,
orientable, prime 3–manifolds. By the geometrization theorem, it therefore suffices to
prove the membership problem for the class of fundamental groups of graphs of groups
which are based on P .

We now argue that P satisfies properties I to V from Theorem 13.

(I) In Theorems 20 and 23, we will see that fundamental groups of Seifert fibred
manifolds and hyperbolic 3–manifolds are double coset separable, ie that any
product GH of finitely generated groups G and H is separable. An argument
as in the proof of Lemma 2 will then show that P satisfies condition I.

(II) The proof of condition I also shows that condition II holds.

(III) It is obvious that condition III holds.

(IV) In Proposition 27, we will show that P satisfies condition IV.
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It suffices, therefore, to verify condition V, which is a consequence of the following
theorem of Jaco and Tollefson [20], also proved in Jaco, Letscher and Rubinstein [18].

Theorem 17 The classes Phyp;Psfs and Pcl are recursively enumerable. In particular,
P D Phyp[Psfs[Pcl is recursively enumerable.

Proof First note that any hyperbolic 3–manifold and any Seifert fibred manifold ap-
pears as the JSJ component of a closed, orientable, prime 3–manifold. By Theorem 16,
the class of closed, orientable, prime 3–manifolds is recursively enumerable. For
each such triangulated 3–manifold, we can determine the JSJ components using the
algorithm of Jaco and Tollefson [20] and also Jaco, Letscher and Rubinstein [18]. We
can thus recursively enumerate the class of all JSJ components of closed, orientable,
prime 3–manifolds; in particular, by the above, we can recursively enumerate the class
of 3–manifolds which are either hyperbolic or Seifert fibred.

For the manifolds with nontrivial boundary, we can furthermore, by [20, Algorithm 8.1],
decide whether or not the 3–manifold is Seifert fibred.

The theorem is now an straightforward consequence of the above algorithms.

5.4 Subgroups of fundamental groups of Seifert fibred manifolds
and of hyperbolic 3–manifolds

In this section, we will recall well-known results about subgroups of fundamental groups
of Seifert fibred manifolds and of hyperbolic 3–manifolds. We will, in particular, see
that the class of decorated groups P from Section 5.3 satisfies conditions I and II. We
will also need some of the results from this section in the next section when we deal
with condition IV.

In the following, given a subgroup � of a group � , we say that � is a virtual retract
of � if there exists a finite-index subgroup �0 which contains � such that � is a
retract of �0 .

The following theorem is proved implicitly by Scott [37].

Theorem 18 Any finitely generated subgroup of a surface group is a virtual retract.

Note that finitely generated subgroups which are virtual retracts are, in particular,
separable; see eg [3, Chapter 5.2, (H.10)]. The above theorem thus implies that surface
groups are subgroup separable. For the record, we note that this furthermore implies
the following theorem; see [37] for details.
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Theorem 19 Fundamental groups of Seifert fibred manifolds are subgroup separable.

In fact, a somewhat stronger statement holds true. In order to state the result, we
recall that a group � is called double-coset separable if, given any finitely generated
subgroups G;H � � , the product GH � � is separable. The following theorem was
proved by Niblo [28] building on the aforementioned work of Scott [37].

Theorem 20 If N is a Seifert fibred manifold, then �1.N / is double-coset separable.

We now turn to the study of fundamental groups of hyperbolic 3–manifolds. The first
key result is the tameness theorem of Agol [1] and Calegari and Gabai [8]:

Theorem 21 Let N be a hyperbolic 3–manifold and � � � WD �1.N / a finitely
generated subgroup. Then precisely one of the following holds:

(1) either � is a relatively quasiconvex subgroup of � , or

(2) there exists a finite-index subgroup �0 of � which contains � as a normal
subgroup with �0=� Š Z.

We will not be concerned with the precise definition of “relatively quasiconvex”. We
will use Theorem 21 only in conjunction with the following theorem, which is a
consequence of work of Haglund [13] and the virtually compact special theorem, which
was proved by Wise [41; 42] for hyperbolic 3–manifolds with boundary and by Agol
[2] for closed hyperbolic 3–manifolds. (See also [9] or [36]. We refer to [3] for details
and precise references.)

Theorem 22 Let N be a hyperbolic 3–manifold and � � � WD �1.N / a finitely
generated subgroup. If � is a relatively quasiconvex subgroup of � , then � is a virtual
retract of � .

The combination of Theorems 21 and 22 implies that the fundamental group of a hyper-
bolic 3–manifold is subgroup separable; we refer to [3, Chapter 5.2, (H.10) and (H.11)]
for details. In fact, by work of Wise and Hruska, the following stronger result holds.

Theorem 23 If N is a hyperbolic 3–manifold, then �1.N / is double-coset separable.

Proof Let N be a hyperbolic 3–manifold and let G and H be finitely generated
subgroups of � D �1.N /. We need to prove that the double-coset GH is separable.
Suppose, therefore, that g 2 � nGH .
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Suppose first that G is a virtual fibre in � . Replacing � by a subgroup of finite index,
we may assume that we have an epimorphism

�W �! Z

with kernel G . Then �.g/ … �.H/. For any n such that �.g/ … nZ and �.H/� nZ,
the concatenation

�
�
! Z! Z=nZ

separates g from GH, as required.

We may therefore assume that both G and H are relatively quasiconvex in � . By
a result of Hruska [17, Corollary 1.6], G and H are both quasi-isometrically em-
bedded, and therefore the double coset GH is separable by a theorem of Wise [41,
Theorem 16.23].

5.5 Computing generating sets for intersections

In order to prove Theorem 3, it now suffices to show that the class of decorated groups P
which we introduced in Section 5.3 satisfies condition V. We will deal with this issue
in this section.

Lemma 24 There exists an algorithm which takes as input a finite decorated group
presentation … D .hA j Ri; fhXi j Si i; figi2I / and a finite subset Y of F.A/, and
which, if … represents a decorated group in Phyp , gives as output a finite generating
set for hfi .Xi /i \ hY i, for each i 2 I , as a subgroup of hA jRi.

Proof Let …D .hA jRi; fhXi j Si i; figi2I / be a finite decorated group presentation,
and let Y be a finite subset of F.A/. We suppose that .hA j Ri; fhfi .Xi /igi2I / is
isomorphic to .�1.N /; f�1.Ti /gi2I /, where N is a hyperbolic 3–manifold and the Ti
for i 2 I are the boundary components of N . Let i 2 I . We write P D hfi .Xi /i and
� D hY i � � . By Theorems 21 and 22, precisely one of the following happens:

(a) there exists a finite-index subgroup �0 of � and a retraction r W �0! � , or

(b) there exists a finite-index subgroup �0 and a homomorphism pW �0! Z such
that � D kerp .

In the former case, the algorithms of Lemmas 8 and 5 will find such �0 and r . In the
latter case, again a naïve search using the Reidemeister–Schreier algorithm together
with Lemma 10 will find such �0 and p . In either case, by Lemma 7, we can compute
generators for P0 D �0\P .
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In case (b), we have � \P D kerpjP0
, which can be computed by standard linear

algebra. In case (a), we note that � \P D r.P0/\P0 . Using the solution to the word
problem in � (see Lemma 2), we can determine whether or not all generators of r.P0/
and P0 commute; ie we can determine whether or not Œr.P0/; P0�D 1.

First suppose that Œr.P0/; P0� D 1. Recall that P0 is the fundamental group of a
boundary torus of a hyperbolic 3–manifold. It is well known (see eg [3, Theorem 3.1])
that this implies that P0 is a maximal abelian subgroup of �0 . It now follows that
r.P0/� P0 , which implies that � \P D r.P0/.

Now suppose that Œr.P0/; P0� ¤ 1. The fact that N is hyperbolic implies, by [3,
Corollary 3.11], that the centralizer of any nonidentity element in �0 is abelian. It now
follows that r.P0/\P0 D 1, and so � \P D 1.

We now also consider the following class of decorated groups:

Pproduct D
all decorated groups isomorphic to .�1.S1 �†/; f�1.Ti /gi2I /, where
† is a surface and fTigi2I D �0.@N / are the components of @.S1 �†/.

We then have the following lemma.

Lemma 25 There exists an algorithm which takes as input a finite decorated group
presentation … D .hA j Ri; fhXi j Si i; figi2I / and a finite subset Y of F.A/, and
which, if … represents a subdecoration for a decorated group in Pproduct , gives as output
a finite generating set for hfi .Xi /i \ hY i, for each i 2 I , as a subgroup of hA jRi.

Proof Let .hA jRi; fhXi j Si i; figi2I / be a finite decorated group presentation and
Y a finite subset of F.A/. We suppose that .hA j Ri; fhfi .Xi /igi2I / is isomorphic
to .�1.S1 �†/; f�1.Ti /gi2I /, where † is a surface and fTigi2I are some boundary
components of S1�†. Let i 2 I . We write � DhA jRi, P Dhfi .Xi /i and � DhY i.

By Theorem 18, every finitely generated subgroup of the surface group �1.†/ is a
virtual retract. It follows easily that every finitely generated subgroup of �1.S1�†/D
Z � �1.†/ is a virtual retract. Therefore, the algorithms of Lemmas 8 and 5 will
find a finite-index subgroup �0 of � and a retraction r W �0! � . As in the proof of
Lemma 24, we can compute generators for P0 D �0\P .

Again, we note that � \P D r.P0/\P0 . An explicit computation again determines
whether or not Œr.P0/; P0� D 1. If so, then just as before, because P0 is maximal
abelian, we have r.P0/� P0 , and so r.P0/D � \P . If not, then by the commutative
transitivity of �1.†/, we deduce that �\P D r.P0/\P0 is contained in the centre Z0
of �0 , and so it suffices to compute r.P0/\Z0 . But now r.P0/\Z0 can be seen in
the abelianization of �0 , and so it can be computed by elementary linear algebra.
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Lemma 26 There exists an algorithm which takes as input a finite decorated group
presentation … D .hA j Ri; fhXi j Si i; figi2I / and a finite subset Y of F.A/, and
which, if … represents a decorated group in Psfs , gives as output a finite generating set
for hfi .Xi /i \ hY i, for each i 2 I , as a subgroup of hA jRi.

Proof Let .hA jRi; fhXi j Si i; figi2I / be a finite decorated group presentation and
Y a finite subset of F.A/. We suppose that .hA jRi; fhfi .Xi /igi2I / is isomorphic to
.�1.N /; f�1.Ti /gi2I /, where N is a Seifert fibred space and fTigi2I are the boundary
components of N . Let i 2 I . We write � D hA jRi, P D hfi .Xi /i and � D hY i.

By [15, Theorem 11.10], there exists a finite cover of N which is a product S1 �†.
Using Lemma 8, we now enumerate all finite-index subgroups of � . We can furthermore
enumerate all fundamental groups of products S1 �†, where † is a surface, and
using an obvious generalization of Lemma 4, we will eventually find a finite-index
subgroup �0 of � , a presentation hA jRi of �1.S1 �†/, where † is a surface, and
an isomorphism gW �0! � WD hA jRi such that g.P \�0/ is the fundamental group
of a boundary component of S1 �†.

Using Lemma 7, we can find a generating set Y0 for � \ �0 , a finite presentation
hX0 j S0i, and an isomorphism f0W hX0 j S0i! P \�0 . We now apply the algorithm
of Lemma 25 to the finite decorated group presentation .hA jRi; fhX0 j S0i; f0g/ and
the finite set Y0 . The algorithm then gives us a generating set for .�\�0/\.P \�0/D
.� \�0/\P .

Note that .�\�0/\P is a finite index subgroup of �\P , which in turn is a subgroup
of P Š Z2 . It is now straightforward to list the (finitely many) subgroups of P Š Z2

which contain .� \�0/\P as a finite index subgroup. For each of these subgroups,
we pick a finite number of generators, and using the fact that � is subgroup separable
(see Theorem 19), we can check whether the generators lie in P and in � .

We are now ready to prove that the class P of decorated groups satisfies condition IV.
More precisely, we have the following proposition.

Proposition 27 There exists an algorithm which takes as input a finite decorated group
presentation … D .hA j Ri; fhXi j Si i; figi2I / and a finite subset Y of F.A/, and
which, if … represents a decorated group in P , gives as output a finite generating set
for hfi .Xi /i \ hY i, for each i 2 I , as a subgroup of hA jRi.

Proof Let .hA jRi; fhXi j Si i; figi2I / be a finite decorated group presentation which
represents a decorated group in P , and let Y � F.A/ be a finite set. Let i 2 I . By
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the solution to the word problem for hA jRi we can determine whether or not fi .Xi /
generates the trivial group. If it does, then there is nothing to show.

Now suppose that fi .Xi / does not generate the trivial group. By definition of P , it
follows that … represents an element in Phyp , or it represents an element in Psfs .

Using Theorem 17 and an obvious generalization of Lemma 4, we can now certify that
.hA jRi; fhfi .Xi /igi2I / is isomorphic to a subdecoration of a decorated group in Phyp ,
or we can certify that .hA j Ri; X/ is isomorphic to a subdecoration of a decorated
group in Psfs . (It follows from basic facts in 3–manifold topology that only one of the
two cases can occur, but this fact is irrelevant for the proof of this proposition.) In the
former case, we now apply the algorithm from Lemma 24, while in the latter case, we
apply the algorithm from Lemma 26

6 Alternative approaches and open questions

In the proof of our main theorem, we used two big theorems on fundamental groups of
hyperbolic 3–manifolds: the tameness theorem of Agol [1] and Calegari and Gabai
[8], and Theorem 22, which is a consequence of the virtually compact special theorem
of Agol [2] and Wise [41; 42]. The tameness theorem is indispensable: it is needed to
control geometrically infinite subgroups. However, it is quite possible that one could
also prove Theorem 1 without appealing to the virtually compact special theorem. For
example, Gitik [12] and Kapovich [21] showed that the membership problem is solvable
for quasiconvex subgroups of word-hyperbolic groups. It is now straightforward to see
that one can prove our main theorem by appealing to this result, using Theorem 22 only
for hyperbolic 3–manifolds with nonempty boundary. It is now an interesting question
whether one can also replace Theorem 22 by more general methods from geometric
group theory.

In the following we consider the class of decorated presentations of toral relatively
hyperbolic groups. That is, we consider

HD
all decorated groups isomorphic to .�; f�igi2I /, where � is a group which
is hyperbolic relative to the finite collection of f.g. abelian subgroups f�igi2I .

It is now fairly straightforward to see that one can prove our main theorem without
referring to Theorem 22 if one can give affirmative answers to the following three
questions. The first is a generalization of the above-mentioned work of Gitik and
Kapovich to the toral relatively hyperbolic setting.

Question 28 Does there exist an algorithm which takes as input a finite decorated
group presentation …D .hA j Ri; fhXi j Si i; figi2I / and a finite subset Y of F.A/,
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and which, if … represents a decorated group in H and if Y generates a relatively
quasiconvex subgroup of hA jRi, determines whether or not a given element in hA jRi
lies in hY i � hA jRi?

The second question generalizes the first question to double cosets.

Question 29 Does there exist an algorithm which takes as input a finite decorated
group presentation …D .hA jRi; fhXi j Si i; figi2I /, a finite subset Y of F.A/ and an
index i 2 I , and which, if … represents a decorated group in H and if Y generates a
relatively quasiconvex subgroup of hA jRi, determines whether or not a given element
in hA jRi lies in the double coset hfi .Xi /ihY i � hA jRi?

The final question asks for an algorithm to compute the intersection of a relatively
quasiconvex subgroup and a maximal parabolic subgroup.

Question 30 Does there exist an algorithm which takes as input a finite decorated
group presentation …D .hA j Ri; fhXi j Si i; figi2I / and a finite subset Y of F.A/,
and which, if … represents a decorated group in H , gives as output a finite generating
set for hfi .Xi /i \ hY i, for each i 2 I , as a subgroup of hA jRi?
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