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Steenrod squares on intersection cohomology
and a conjecture of M Goresky and W Pardon

DAVID CHATAUR

MARTINTXO SARALEGI-ARANGUREN

DANIEL TANRÉ

We prove a conjecture raised by M Goresky and W Pardon, concerning the range of
validity of the perverse degree of Steenrod squares in intersection cohomology. This
answer turns out to be of importance for the definition of characteristic classes in the
framework of intersection cohomology.

For this purpose, we present a construction of cupi –products on the cochain complex,
built on the blow-up of some singular simplices and introduced in a previous work.
We extend to this setting the classical properties of the associated Steenrod squares,
including Adem and Cartan relations, for any loose perversities. In the case of a PL-
pseudomanifold and range 2 xp , we prove that our definition coincides with Goresky’s
definition. We also show that our Steenrod squares are topological invariants which
do not depend on the choice of a stratification of X .

Several examples of concrete computation of perverse Steenrod squares are given,
including the case of isolated singularities, and more especially, we describe the
Steenrod squares on the Thom space of a vector bundle as a function of the Steenrod
squares of the base space and the Stiefel–Whitney classes of the bundle. We also
detail an example of a nontrivial square, Sq2

W H xp!H xpC2 , whose information is lost
if we consider it as taking values in H2xp , showing the interest of the Goresky–Pardon
conjecture.

55N33, 55S10, 57N80

Intersection cohomology was introduced by M Goresky and R MacPherson in [10] and
[11] in order to adapt Poincaré duality to singular manifolds and extend characteristic
classes to this paradigm. Steenrod squares on the intersection cohomology of a pseudo-
manifold X were already defined and studied by Goresky in [13]. For that, he uses a
sheaf introduced by Deligne and proves that the Steenrod construction of cupi –products
induces a morphism Sqi

G W H
r
xp.X IF2/!H rCi

2xp .X IF2/ for any Goresky–MacPherson
perversity xp such that 2 xp.`/� `�2 for any `, where F2 is the field with two elements.

Here we consider the blow-up zN �.X / of the normalized cochain complex on a filtered
version of the singular simplicial set associated to X . This notion of blow-up, which we
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defined in [4] and recall in Section 1, comes from a version adapted to differential forms
already existent in Brasselet, Hector, and Saralegi [3]. The elements of zN �.X / have a
perverse degree (see Definition 1.2) which allows the definition of a complex zN �xp .X /
for any loose perversity xp . In [4], we have proved that the blow-up zC �.X / gives
the Goresky–MacPherson intersection cohomology of the pseudomanifold X for the
complementary perversity when we are working over a field. With Proposition 1.5, the
blow-up zN �.X / inherits this property; we denote its cohomology by H �TW;�.X IF2/.

When the coefficients of zN �.X / are in F2 , we define a structure of cupi –products
[i W
zN �xp .X /˝ zN

�
xq .X /! zN

�
xpCxq.X / for any loose perversities xp and xq . This is done

following the work of C Berger and B Fresse in [1] (see also May [18]): we consider a
normalized, homogeneous bar resolution E.2/ of the symmetric group †2 and prove
that there exists a †2 –equivariant cochain map

 2W E.2/˝ zN
�
xp .X /˝ zN

�
xq .X /! zN

�
xpCxq.X /:

Such a map is called a structure of a perverse E.2/–algebra on zN �� .X /; its construction
comes from the existence of a diagonal on E.2/, established in [1]. Moreover, we
prove in Theorem A that the cupi –products arising from the existence of  2 verify
the two properties a[jaj aD a and a[i a0 D 0 if i � min.jaj; ja0j/, where jaj, ja0j
are the respective degrees of a and a0 .

The definition of perverse E.2/–algebras can be extended to perverse E.n/–algebras
for any n. As this work is concerned with Steenrod squares, we consider only perverse
E.2/–algebras over F2 . Nevertheless, it is clear that our methods of proof can be
enhanced to give a structure of perverse E1–algebras over Z on zN �� .X /. We will
come back on these points in a forthcoming paper.

As usual, Steenrod squares are defined on H k
TW; xp.X IF2/ by Sqi.a/D a[k�i a. Using

May’s presentation of Steenrod squares in [18], we see that the classical properties of
Steenrod squares are direct consequences of the structure of perverse E.2/–algebras.
We collect them, together with Adem and Cartan relations, in Theorem B. (One may
observe that the proof of the Adem relation on a tensor product needs a brief incursion
in the world of perverse E.4/–algebras over F2 .)

In Theorem B, we also answer positively to the problem asked by Goresky in [13,
page 493] and to the conjecture made by Goresky and Pardon in [12, Conjecture 7.5].
This problem concerns the range of the perversities: with the definition of Steen-
rod squares via the cupi –products, it is clear that Sqi sends H k

TW; xp.X IF2/ into
H kCi

TW;2 xp.X IF2/. We prove that, in fact, there is a lifting as a map,

Sqi
W H k

TW; xp.X IF2/!H kCi
TW;L. xp;i/.X IF2/;
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where L. xp; i/ is the loose perversity defined by L. xp; i/.`/Dmin.2 xp.`/, xp.`/C i/,
which is exactly [12, Conjecture 7.5]. This reveals an important fact because it allows
the lifting of Wu classes in intersection cohomology, in a lower part of the poset
of perversities.

In Theorem C, we prove that our definition of Steenrod squares coincides with Goresky’s
definition introduced in [13]. For doing that, we transform the blow-up zN �� into a
sheaf IN�

�
on X and prove that IN�

�
is isomorphic to the Deligne sheaf in the derived

category of sheaves on X . The rest of the proof comes from a unicity theorem for
Steenrod squares defined on an injective sheaf, established by Goresky [13].

We end this part of the work with examples of concrete computation of perverse Steenrod
squares, beginning with the case of isolated singularities. From it, we are able to write
the Steenrod squares on the intersection cohomology of the Thom space associated
to a vector bundle as a function of the Steenrod squares of the base space and the
Stiefel–Whitney classes of the bundle. We also detail an example of a nontrivial square
Sq2
W HTW; xp.X IF2/!HTW;L. xp;2/.X IF2/ whose information is lost if we consider it

as values in HTW;2 xp , showing the interest of the Goresky–Pardon conjecture. This last
example can also be seen as a tubular neighborhood of a stratum, which is the first step
in the study of intersection cohomology of pseudomanifolds.

In Theorem D, we prove that Steenrod squares, Sqi
WH r

TW; xp.X IF2/!H rCi
TW;L. xp;i/.X IF2/,

are topological invariants when X is a PL-pseudomanifold. This completes the re-
sult of [13] that the Steenrod squares are topological invariants as homomorphisms
H r
xp.X IF2/! H rCi

2 xp .X IF2/. The proof is combinatorial, using the description of
Steenrod squares made by Steenrod in [22].

We now emphasize some particularities which are important in the process of the proof
of the Goresky–Pardon conjecture. The main point is that our technique allows an
explicit construction of the cupi –products at the level of cochain complexes without
requiring the derived category for their definition. In the context of filtered objects,
observe first that the notion of filtered singular simplices is a natural one; see Remark 1.7.

The second modus operandi is the blow-up of these simplices. In differential geometry,
a blow-up is the replacement of a submanifold N of a manifold M by the boundary of
a tubular neighborhood of N in M . Its simplicial version can be illustrated as follows
in the case of �D�j0 ��j1 : we cut off a small open neighborhood of �j0 in � to
get z�D c�j0 ��j1 ; see Figure 1.

In the general case of �D�j0 � � � � ��jn , we use an inductive process which consists
in cutting off a small open neighborhood of the smallest stratum; see Figure 2.

The faces containing �ji�f1g as a factor, which play a fundamental role in the definition
of the perverse degree (see Definition 1.2), have been shadowed in these figures.
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Figure 1: �D�j0 ��j1 (left) has for blow-up z�D c�j0 ��j1 (right).
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Figure 2: �D�j0 ��j1 ��j2 (left) has for blow-up z�D c�j0 � c�j1 ��j2 (right).

The motivation for such process occurs when one determines the intersection coho-
mology of a pseudomanifold with differential forms: as these forms cannot be defined
on the singular strata, the only possibility is to define them on the regular part and
ask for some control in the neighborhood of strata. That is what we do here for
cochains. As observed in [8] by G Friedman and J E McClure, the classical way for
the definition of a cup-product (with back and front faces) does not fit with perverse
degrees. But one advantage of the blow-up is that we can define the cup-product (and
more generally, the cupi –products) stratum after stratum, on each factor of the product
c�j0 � � � � � c�jn�1 ��jn , from the classical definition and in a compatible way with
the perverse structure. Finally, this procedure reveals itself of an easy use and does
not lose any information in cohomology; it gives the same structure on cohomology as
Goresky’s definition as it is established in Section 4.

In Section 1, we recall basic notions concerning filtered face sets and their intersection
cohomology. Section 2 is devoted to the construction of a structure of a perverse E.2/–
algebra on the blow-up zN �.X / which corresponds to the building of cupi –products.
In Section 3, we establish the main properties of perverse Steenrod squares, including
the proof of the perverse range conjecture of Goresky and Pardon. The comparison
between our definition and Goresky’s definition of Steenrod squares in the case of a
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pseudomanifold is done in Section 4. The particular case of isolated singularities and
the treatment of Steenrod squares in the intersection cohomology of a Thom space are
presented in Section 5. An example of a square Sq2 in the intersection cohomology of
the total space of a fibration whose fiber is a cone is given in Section 6. This example
shows the interest of having a range of perversity in L. xp; i/ instead of 2 xp . Finally,
Section 7 is devoted to the topological invariance of our Steenrod squares.

All the cohomology groups appearing in this text are over the field with two elements, F2 .
If there is no ambiguity, we simplify the notation H�.X IF2/ in H�.X /.

Acknowledgements We thank the anonymous referee for her/his comments and sug-
gestions which have contributed to improve the organization and the writing. The third
author is partially supported by the MICINN grant MTM2013-41768-P, ANR-11-BS01-
002-01 “HOGT” and ANR-11-LABX-0007-01 “CEMPI”

1 Blow-up and perversity

In this section, we recall the basics of a simplicial version of intersection cohomology,
already introduced in [4].

Let �k be the standard simplex of RkC1 , whose vertices v0; : : : ; vk verify vi D

.t0; : : : ; tk/ with tj D 0 if j ¤ i and ti D 1. Let ıi W f0; 1; : : : ; k � 1g! f0; 1; : : : ; kg

be defined by

ıi.j /D

�
j if j < i;

j C 1 if j � i:

Such maps generate linear applications, still denoted ıi W �k�1!�k and defined by
ıi.vj /D vıi .j/ . More generally, any map � W f0; 1; : : : ; `g ! f0; 1; : : : ; kg generates a
linear application � W �`!�k .

We fix an integer n and consider the category ���Œn�F whose
� objects are the joins �D�j0 ��j1 � � � � ��jn , where �ji is the simplex of

dimension ji , possibly empty, with the conventions ��1 D∅ and ∅�X DX ;
� maps are the � W � D �j0 ��j1 � � � � ��jn ! �0 D �k0 ��k1 � � � � ��kn ,

of the shape � D �n
iD0

�i , with �i W f0; 1; : : : ; jig ! f0; 1; : : : ; kig an injective
order-preserving map for each i .

The category ���
Œn�;C
F is the full subcategory of ���Œn�F whose objects are the joins

�j0 ��j1 � � � � ��jn with �jn ¤ ∅; ie jn � 0. To any such element, we associate
its blow-up which is the map

�W z�D c�j0 � � � � � c�jn�1 ��jn !�D�j0 � � � � ��jn
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defined by

�.Œy0; s0�; : : : ; Œyn�1; sn�1�;yn/

D s0y0C .1� s0/s1y1C � � �C .1� s0/ � � � .1� sn�2/sn�1yn�1

C .1� s0/ � � � .1� sn�2/.1� sn�1/yn;

where yi 2 �
ji and Œyi ; si � 2 c�ji D .�ji � Œ0; 1�/=.�ji � f0g/. The prism z� is

sometimes also called the blow-up of �.

Observe that this blow-up is well defined thanks to the restriction to the subcate-
gory ���Œn�;CF . In the topological setting (see Remark 1.7), this restriction means that we
do not consider simplices entirely included in the singular part.

Definition 1.1 A filtered face set, of formal dimension n, is a contravariant functor K

from the category ���Œn�F to the category of sets; ie .j0; : : : ; jn/ 7! K.j0;:::;jn/ . The
restriction of the filtered face set K to ���Œn�;CF is denoted KC .

If K and K0 are filtered face sets, a filtered face map f W K ! K0 is a natural
transformation between the two functors K and K0 . We denote by ���Œn�F –Sets the
category of filtered face sets.

To any simplicial set Y , we can associate the F2 –vector space Cd .Y / generated by the
d –dimensional simplices of Y . The normalized chain complex Nd .Y / is the quotient
of Cd .Y / by the degeneracies si :

Nd .Y /D Cd .Y /=s0Cd�1.Y /C � � �C sd�1Cd�1.Y /:

We consider also the duals

N �.Y /D homF2
.N�.Y /;F2/ and C �.Y /D homF2

.C�.Y /;F2/:

Any face operator, ıi W �j`!�j`C1 for some `2 f0; : : : ; n�1g, induces a chain map

ı�i W N
�.c�j0/˝ � � �˝N �.c�j`C1/˝ � � �˝N �.�jn/

!N �.c�j0/˝ � � �˝N �.c�j`/˝ � � �˝N �.�jn/

defined by the identity on the factors in �ji for i ¤ `.

We denote also by ıi W �j0 � � � � ��j` � � � � ��jn !�j0 � � � � ��j`C1 � � � � ��jn the
operator defined by ıi W �j` ! �j`C1 and the identity maps. Additionally, for any
simplex � W �j0 � � � � ��j`C1 � � � � ��jn !KC , we define by @i� D � ı ıi a simplex
@i� W �

j0 � � � � ��j` � � � � ��jn !K , and a complex

zN �� DN �.c�j0/˝ � � �˝N �.c�jn�1/˝N �.�jn/:
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These previous considerations on face operators can easily be adapted to the case `D n.

A global section (or cochain) on K is a function which assigns to each simplex � 2KC
an element c� 2 zN

�
� such that c@i� D ı�i .c� / for all � 2 KC and all ıi 2 ���

Œn�;C
F .

(The restriction to ���Œn�;CF implies �jn ¤∅.)

The space of global sections is denoted by zN �.K/ and called the blow-up of N � over
the filtered face set K . Global sections have an extra degree, called the perverse degree,
that we describe now.

Let � W �j0 � � � � ��jn ! KC and ` 2 f1; : : : ; ng such that �jn�` ¤ ∅. For any
cochain c� 2N �.c�j0/˝ � � �˝N �.c�jn�1/˝N �.�jn/, its restriction

(1) c�;n�` 2N �.c�j0/˝ � � �˝N �.�jn�` � f1g/˝ � � �˝N �.c�jn�1/˝N �.�jn/

can be written c�;n�` D
P

k c0
�;n�`

.k/˝ c00
�;n�`

.k/, with

� c0
�;n�`

.k/ 2N �.c�j0/˝ � � �˝N �.c�jn�`�1/˝N �.�jn�` � f1g/ and

� c00
�;n�`

.k/ 2N �.c�jn�`C1/˝ � � �˝N �.�jn/.

Observe that each term of the tensor product in formula (1) has a finite canonical
basis, and the decomposition of c�;n�` can be canonically chosen as a function of the
associated basis of the tensor product.

Definition 1.2 If c�;n�` ¤ 0, the `–perverse degree kc�k` of c� is equal to

kc�k` D sup
k

fjc00�;n�`.k/j such that c0�;n�`.k/¤ 0g;

where jc00
�;n�`

.k/j denotes the usual degree of the cochain c00
�;n�`

.k/. If c�;n�` D 0 or
�jn�` D∅, we set kc�k` D�1.

The perverse degree of a global section c 2 zN �.K/ is the n–tuple

kck D .kck1; : : : ; kckn/;

where kck` is the supremum of the kc�k` for all � 2KC .

Intersection cohomology requires a notion of perversity that we now introduce, follow-
ing the convention of [15].

Definition 1.3 A loose perversity is a map xpW N!Z, i 7! xp.i/ such that xp.0/D 0.
A perversity is a loose perversity such that xp.i/� xp.i C 1/� xp.i/C 1 for all i 2N .
A Goresky–MacPherson perversity (or GM-perversity) is a perversity such that xp.1/D
xp.2/D 0.
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If xp1 and xp2 are two loose perversities, we set xp1 � xp2 if we have xp1.i/� xp2.i/ for
all i 2N . The poset of all loose perversities is denoted Pn

loose .

The lattice of GM-perversities, denoted Pn , admits a maximal element t called the
top perversity, defined by t.i/D i � 2 if i � 2, and t.0/D t.1/D 0.

To these posets, we add an element 1 which is the constant map to 1. We call it the
infinite perversity despite the fact that it is not a perversity in the sense of the previous
definition. Finally, we set yPn D Pn[f1g and yPn

loose D Pn
loose[f1g.

Definition 1.4 Let xp be a loose perversity. A global section c 2 zN �.K/ is called
xp–admissible if kcki � xp.i/ for any i 2 f1; : : : ; ng, and a global section c is of
xp–intersection if c and its differential ıc are xp–admissible.

We denote by zN �xp .K/ the complex of global sections of xp–intersection and by
H�xp .KI zN / its homology.

By using the same process with C � in place of N � , we obtain a second complex of
global sections of xp–intersection zC �xp .K/ of homology H�xp .KI zC /. Directly from [4,
Theorem A], we get an isomorphism between these two cohomologies.

Proposition 1.5 Let K be a filtered face set and xp a loose perversity. The canonical
surjection C�.�/ ! N�.�/ induces a quasi-isomorphism zN �xp .K/ ! zC �xp .K/ and,
therefore, an isomorphism H�xp .KI zN /ŠH�xp .KI zC /.

If there is no ambiguity, we denote by H�TW; xp.K/ this common value and called it
the Thom–Whitney cohomology (henceforth TW-cohomology) of K with coefficients
in F2 for the loose perversity xp .

The topological objects corresponding to the filtered face sets are locally conical,
stratified topological spaces. Here we only consider the case of pseudomanifolds
defined as follows.

Definition 1.6 An n–dimensional topological pseudomanifold is a nonempty topolog-
ical space with a filtration by closed subsets

∅DX�1 �X0 � � � � �Xn�2 DXn�1 ¤ Xn DX

such that XinXi�1 is an i –dimensional metrizable topological manifold, or the empty
set, for all i . Moreover, for each point x 2XinXi�1 with i ¤ n, there exist:
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(a) an open neighborhood V of x in X , endowed with the induced filtration;

(b) an open neighborhood U of x in XinXi�1 ;

(c) a compact topological pseudomanifold L D .Lj /0�j�n�i�1 with dimension
n� i � 1, whose cone VcLD .L� Œ0; 1Œ/=.L� f0g/ is endowed with the conic
filtration, ie . VcL/i D VcLi�1 for i � 0;

(d) a homeomorphism 'W U � VcL! V such that
(1) '.u; v/D u for any u 2 U , with v the cone point,
(2) '.U � VcLj /D V \XiCjC1 for any j 2 f0; : : : ; n� i � 1g.

The couple .V; '/ is called a conic chart of x and the filtered space L the link of x .

This definition makes sense with an induction on the dimension, starting from pseudo-
manifolds of dimension 0, which are discrete topological spaces by definition. Also,
one can prove that the subspace XnnXn�2 is dense.

Remark 1.7 The set of filtered singular simplices is the bridge between pseudo-
manifolds and the more general notion of filtered face sets. More precisely, for any
pseudomanifold X we define (see [4, Example 1.5]) the singular filtered face set by

ISingF .X /j0;:::;jn
D f� W �j0 � � � � ��jn !X j ��1Xi D�

j0 � � � � ��ji g:

Such simplex is called filtered.

If X is a pseudomanifold and KD ISingF .X /, we use the notations zN �xp .X /, zC
�
xp .X /

and H�TW; xp.X / for the Thom–Whitney complexes and their cohomology. (As Xn�1D

Xn�2 , the case i D 1 in Definition 1.4 is vacuous in this setting.)

We end this section with a reminder of Goresky–MacPherson cohomology (with
coefficients in F2 ) and its link with the blow-up. Let xp be a loose perversity. A filtered
simplex � W �D�j0 � � � � ��jn!X has a perverse degree k�kD .k�k0; : : : ; k�kn/,
where k�k` D dim.�j0 � � � � ��jn�`/, with k�k` D�1 if ��1Xn�` D∅.

A xp–admissible simplex of X is a filtered simplex � W � D �j0 � � � � ��jn ! X

such that k�k` � dim�� `C xp.`/ for any ` 2 f1; : : : ; ng. A xp–admissible chain
is a linear combination of xp–admissible simplices. A chain c is of xp–intersection
if c and its boundary @c are xp–admissible. Denote by C GM; xp

� .X / and N GM; xp
� .X /

the complexes of xp–intersection chains, by C �GM; xp.X / D hom.C GM; xp
� .X /;F2/ and

N �GM; xp.X /Dhom.N GM; xp
� .X /;F2/ their duals, and by H�GM; xp.X /DH.C �GM; xp.X //D

H.N �GM; xp.X // their homology, called the Goresky–MacPherson [10] intersection
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cohomology of X (henceforth GM-cohomology) with coefficients in F2 . This coho-
mology is isomorphic to the original Goresky–MacPherson cohomology in the case of
a pseudomanifold X and a GM-perversity xp see [4, Proposition A.29] and [15].

The GM and TW cohomologies are related in [4, Theorem B] that we recall here.

Proposition 1.8 Let X be a pseudomanifold, and let xp and xq be two perversities
such that xq � 0 and xp.i/C xq.i/ D i � 2 for any i 2 f2; : : : ; ng. Then there is an
isomorphism between the GM and the TW cohomologies: H�TW;xq.X /ŠH�GM; xp.X /.

2 Perverse E.2/–algebras and filtered face sets

Steenrod squares are built from an action of a normalized homogeneous bar resolu-
tion E.2/ of the symmetric group †2 on the normalized singular cochains. This is
the way the noncommutativity of the cup-product is controlled up to higher coherent
homotopies. This action enriches the multiplicative structure given by the cup-product.
We first review it in order to adapt this construction to the perverse setting.

Recall that the resolution E.2/ of F2 as a †2 –module is defined by

� � � ! E.2/i
d
��! E.2/i�1! � � �

with E.2/i D F2.ei ; �i/ and dei D d�i D ei�1 C �i�1 . (As we are using cochain
complexes, E.2/ is negatively graded.) From the isomorphism †2 Š fei ; �ig with �i

the generator of †2 , the (left) action of †2 defines a natural action on E.2/. This
action is extended to the tensor product E.2/˝ E.2/ as a diagonal action. Moreover,
the complex E.2/ is equipped with a †2 –equivariant diagonal DW E.2/! E.2/˝E.2/
defined by

D.ei/D

iX
jD0

ej ˝ �
j:ei�j ;

with �:ek D �k and �:�k D ek . This diagonal is essential for the definition of the
structure of the E.2/–algebra on zN �.K/. Finally, observe that, for any vector space V ,
there is a †2 –action on homF2

.V ˝2;V / defined by .�:f /.v1˝ v2/D f .v2˝ v1/.

Definition 2.1 An E.2/–algebra structure on a cochain complex A� is a cochain map
 W E.2/˝A˝2!A which is †2 –equivariant as map from E.2/ to homF2

.A˝2;A/.

If we denote  .ei ˝x1˝x2/ by x1[i x2 , the previous definition is equivalent to
(1)  .�i ˝x1˝x2/D  .ei ˝x2˝x1/D x2[i x1 , together with
(2) the Leibniz condition

ı.x1[i x2/D x1[i�1 x2Cx2[i�1 x1C ıx1[i x2Cx1[i ıx2:
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This means that an E.2/–algebra structure is given by a cochain map, called a cupi –
product [i W A

r ˝As!ArCs�i , satisfying the previous Leibniz condition.

Let L be a simplicial set. In [1], C Berger and B Fresse prove the existence of an
E.2/–action on the normalized cochain complex of L, ie the existence of a cochain map

 LW E.2/˝N �.L/˝2
!N �.L/; ei ˝x1˝x2 7! x1[i x2

which satisfies the requirements of Definition 2.1. As established by May in [18],
classical properties of cupi –products are a direct consequence of this E.2/–algebra
structure, except for two of them that we quote in the next definition. (We mention that
N �.L/ satisfies these two additional properties; see [1].)

Definition 2.2 An E.2/–algebra A� is nice if it satisfies the next two properties for
all x;x0 2A of respective degrees jxj and jx0j:

(i) x[jxj x D x ,

(ii) x[i x0 D 0 if i >min.jxj; jx0j/.

Observe this useful property of nice E.2/–algebras.

Lemma 2.3 Let A be a nice E.2/–algebra. If a 2Ad and b 2Ad , we have

a[d b D b[d a:

Proof Property (ii) of Definition 2.2 and the Leibniz rule imply

ı.a[dC1 b/D 0

D a[d bC b[d aC ıa[dC1 bC a[dC1 ıb

D a[d bC b[d a:

We recall now from [1] the construction of the tensor product of E.2/–algebras. Let
 i W E.2/˝A˝2

i !Ai be E.2/–algebras for i D 0; 1. We use the diagonal D of E.2/
for the construction of an E.2/–action on the tensor product A0˝A1 , as the following
composite, denoted by ˆ, where Sh are the appropriate shuffle maps:

E.2/˝ .A0˝A1/
˝2 Sh

// E.2/˝A˝2
0
˝A˝2

1

D˝id˝id
// E.2/˝ E.2/˝A˝2

0
˝A˝2

1

Sh
��

A0˝A1 E.2/˝A˝2
0
˝ E.2/˝A˝2

1

 0˝ 1
oo
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We have to verify that the map ˆ satisfies the two conditions stated after Definition 2.1.
Condition (2) is the compatibility with the differentials, which is direct here because
ˆ is the composite of maps that are compatible with the differentials. Thus, we are
reduced to condition (1). Recall from the definition of the diagonal of E.2/:

D.ei/D

iX
jD0

ej ˝ �
j:ei�j and D.�i/D

iX
jD0

�:ej ˝ �
jC1:ei�j D

iX
jD0

�j ˝ �
j:�i�j :

A computation from the definition of ˆ gives

ˆ.�i ˝ a0˝ a1˝ b0˝ b1/D

iX
jD0

 0.�j ˝ a0˝ b0/˝ 1.�
j:�i�j ˝ a1˝ b1/

and

ˆ.ei ˝ b0˝ b1˝ a0˝ a1/D

iX
jD0

 0.ej ˝ b0˝ a0/˝ 1.�
j:ei�j ˝ b1˝ a1/:

If j is even, we have

 1.�
j:ei�j ˝ b1˝ a1/D  1.ei�j ˝ b1˝ a1/

D  1.�i�j ˝ a1˝ b1/D  1.�
j:�i�j ˝ a1˝ b1/:

A similar computation in the case where j is odd gives

ˆ.�i ˝ a0˝ a1˝ b0˝ b1/Dˆ.ei ˝ b0˝ b1˝ a0˝ a1/:

Now consider a family of E.2/–algebras  i W E.2/˝A˝2
i !Ai with i D 0; : : : ; n. As

DW E.2/! E.2/˝ E.2/ is the diagonal of a bar resolution, it is a cochain map, it is
coassociative [1], and we may iterate it as follows:

D2.ei/D

iX
jD0

D.ej /˝ �
j:ei�j D

iX
jD0

jX
kD0

ek ˝ �
k:ej�k ˝ �

j:ei�j :

If we set i1 D k , i2 D j � k and i3 D i � j , this last expression can be written as

D2.ei/D
X

.i1;i2;i3/
i1Ci2Ci3Di

ei1
˝ � i1:ei2

˝ � i1Ci2 :ei3
:

More generally, an induction gives

Dn�1.ei/D
X

.i1;:::;in/
i1C���CinDi

ei1
˝ � i1:ei2

˝ � � �˝ � i1C���Cin�1:ein
:
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As in the previous case of two E.2/–algebras, the action of E.2/ on
Nn

iD0 Ai is
obtained from appropriate shuffle maps and the iteration Dn�1 of the diagonal. By
using the notation in cupi –products, this structure is defined as the map

(2) E.2/˝
� nO

iD0

Ai

�̋ 2
ˆ
��!

nO
iD0

Ai

which sends the element ei ˝
�Nn

iD0 xi

�
˝
�Nn

iD0 yi

�
toX

.i1;:::;in/
i1C���CinDi

.x1[i1
y1/˝ .x2[

i1

i2
y2/˝ � � �˝ .xn[

i1C���Cin�1

in
yn/;

where we set, for j � 0,

(3) x[
j
i y D

�
x[i y if j is even,
y [i x if j is odd.

Up to shuffle maps, ˆ is obtained as a composite and tensor product of equivariant
cochain maps; thus it satisfies the requirements of Definition 2.1. Moreover, as we
establish below, the tensor product of nice E.2/–algebras is a nice E.2/–algebra.

Lemma 2.4 Any tensor product of nice E.2/–algebras is a nice E.2/–algebra for the
product structure coming from the diagonal of E.2/.

Proof By coassociativity of the diagonal of E.2/, it is sufficient to reduce the proof
to the case of the tensor product of two nice E.2/–algebras A and B .

Let x D
P

k ak˝bk 2 .A˝B/d and x0D
P
` a0
`
˝b0

`
2 .A˝B/d

0

with d � d 0 . We
set f D d Cm with m� 0. One computes

x[f x0 D
X

f1Cf2Df

X
k;`

.ak [f1
a0`/˝ .bk [

f1

f2
b0`/:

If the element .ak [f1
a0
`
/˝ .bk [

f1

f2
b0
`
/ of this sum is not equal to zero, we must have

f1 �min.jak j; ja
0
`j/ and f2 �min.jbk j; jb

0
`j/;

which implies f Df1Cf2DdCm�jak jCjbk jDd and mD 0. We have established
property (ii) of Definition 2.2. As for property (i), we consider

x[d x D
X

f1Cf2Dd

X
k;k0

.ak [f1
ak0/˝ .bk [

f1

f2
bk0/:
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As above, if the element .ak [f1
ak0/˝ .bk [

f1

f2
bk0/ of this sum is not equal to zero,

we must have

f1 �min.jak j; jak0 j/ and f2 �min.jbk j; jbk0 j/:

Suppose min.jak j; jak0 j/ D jak j, then we have jbk0 j � jbk j, because jak j C jbk j D

jak0 jCjbk0 j, and also dDjak jCjbk jDf1Cf2�jak jCjbk0 j; these imply jbk jD jbk0 j.
Thus the nonzero elements of this sum must be of the form .ak[d�r ak0/˝.bk[

d�r
r bk0/

with jak j D jak0 j D d � r and jbk j D jbk0 j D r . With Lemma 2.3, if ak ¤ ak0 , the
term .ak [d�r ak0/˝ .bk [

d�r
r bk0/ also appears as .ak0 [d�r ak/˝ .bk0 [

d�r
r bk/.

Their sum is equal to zero. With the same argument applied to the case bk ¤ bk0 , we
have reduced the previous expression to

x[d x D
X

k

.ak [d�r ak/˝ .bk [r bk/D
X

k

ak ˝ bk D x;

and Property (i) of Definition 2.2 is established.

We come back to the intersection setting and recall [4] that a perverse cochain complex
is a functor defined on yP n with values in the category of cochain complexes. A functor
from yP n

loose with values in the category of cochain complexes is called a generalized
perverse cochain complex. For instance, if K is a filtered face set, the association
xp 7! zN �xp .K/ is a (generalized) perverse cochain complex, and this association is natural
in K .

Definition 2.5 Let A�� be a generalized perverse cochain complex. We denote by
'
xq
xpW A

�
xp!A�xq the morphism associated to xp � xq . A perverse E.2/–algebra structure

on A�� is a family of cochain maps  xp;xqW E.2/˝A�xp˝A�xq !A�xpCxq satisfying

(i) a compatibility condition with perversities: for any loose perversities xp1 , xq1 ,
xp2 and xq2 , with xp1 � xp2 and xq1 � xq2 , the following diagram is commutative:

E.2/˝A�
xp1
˝A�

xq1

 xp1;xq1
//

id˝'
xp2
xp1
˝'
xq2
xq1
��

A�
xp1Cxq1

'
xp2Cxq2
xp1Cxq1
��

E.2/˝A�
xp2
˝A�

xq2

 xp2;xq2
// A�
xp2Cxq2

(ii) a †2 –equivariance as a map from E.2/ to .hom.A�xp˝A�xq ;A
�
xpCxq// xp;xq with the

following †2 –action on the codomain: to any family � xp;xqW A
�
xp˝A�xq !A�xpCxq ,

we associate the family .��/ xp;xqWA
�
xp˝A�xq!A�xpCxq defined by .��/ xp;xq.x1̋ x2/D

�xq; xp.x2˝x1/.
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Equivalently, a perverse E.2/–algebra structure on A�� is entirely determined by maps,
called perverse cupi –products [i W A

r
xp˝As

xq!ArCs�i
xpCxq , satisfying the previous Leibniz

condition and the compatibility conditions with the poset structure of perversities. (The
two settings are related by x[i y D  xp;xq.ei ˝x˝y/.) Nice perverse E.2/–algebras
are defined as in Definition 2.2.

When A�� is a perverse cochain complex and the sum xpCxq replaced by the sum of GM-
perversities xp˚xq in Definition 2.5, we say that A�� is a GM-perverse E.2/–algebra.

Let K be a filtered face set and � W �D�j0 ��j1 � � � � ��jn !K . With the tensor
product of E.2/–algebras recalled in (2) and the structure of nice E.2/–algebras defined
on the normalized cochain complex in [1], we get a structure of a nice E.2/–algebra
on the tensor product zN �.K/� DN �.c�j0/˝ � � � ˝N �.c�jn�1/˝N �.�jn/. The
next theorem establishes the compatibility of this structure with the perverse degrees.

Theorem A Let K be a filtered face set and xp a loose perversity. The generalized
perverse cochain complex xp 7! zN �xp .K/ is a nice perverse E.2/–algebra, natural in K ,
for the filtered face maps.

Recall that a continuous map f W X D .Xj /0�j�n! Y D .Yj /0�j�n between pseudo-
manifolds is a stratum preserving stratified map if, for any stratum S 0 of Y 0 , f �1.S 0/

is a union of strata of X , and f �1.Yn�`/ D Xn�` for any ` � 0. As any stratum-
preserving stratified map induces a filtered face set map, ISingF .X /! ISingF .Y /,
(see [4, Example 1.5]) the next result is a direct consequence of Theorem A.

Corollary 2.6 Let X be a pseudomanifold and xp a loose perversity. The generalized
perverse cochain complex xp 7! zN �xp .ISingF .X // is a nice perverse E.2/–algebra,
natural in X by stratum-preserving stratified maps.

Proof of Theorem A A cochain c 2 zN �.K/ associates to any simplex � W � D

�j0 � � � � ��jn !KC an element c� 2N �.c�j0/˝� � �˝N �.c�jn�1/˝N �.�jn/.

If we set .c [i c0/� D c� [i c0� , by naturality of the structure of an E.2/–algebra on
N �.c�j0/˝� � �˝N �.c�jn�1/˝N �.�jn/, we get a global section c[i c0 2 zN �.K/.
More precisely, we have a †2 –equivariant cochain map

E.2/˝ zN �.K/˝2
! zN �.K/

entirely defined by ei ˝ c ˝ c0 7! c [i c0 , which gives to zN �.K/ a structure of an
E.2/–algebra. The niceness of this structure is a direct consequence of Lemma 2.4.

The naturality in K comes from the naturality of the E.2/–algebra structure on a tensor
product, already mentioned, and from the naturality of the association K 7! zN �xp .K/;
see [4, Proposition 1.36].
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We now study the behavior of this structure with the perverse degree. The perversity
degree is a local notion, so we let c; c0 2N �.c�j0/˝ � � �˝N �.c�jn�1/˝N �.�jn/

with jn � 0, and ` 2 f1; : : : ; ng such that �jn�` ¤∅. We denote by cn�` and c0
n�`

the respective restrictions of c and c0 to

N �.c�j0/˝ � � �˝N �.�jn�` � f1g/˝ � � �˝N �.c�jn�1/˝N �.�jn/:

We decompose c and c0 as c D
Pm

sD0 cs
0
˝ � � � ˝ cs

n and c0 D
Pm0

tD0 c0t
0
˝ � � � ˝ c0tn ,

and likewise their restrictions as

cn�`D

mX
sD0

cs
0˝� � �˝�

�
n�`c

s
n�`˝� � �˝cs

n and c0n�`D

mX
tD0

c0t0˝� � �˝�
�
n�`c

0t
n�`˝� � �˝c0tn ;

where ��
n�`

is induced by the inclusion �jn�`�f1g ,! c�jn�` . By definition, we have

kck` D sup
s
fjcs

n�`C1˝ � � �˝ cs
nj such that cs

0˝ � � �˝ �
�
n�`c

s
n�` ¤ 0g:

Define y��
n�`

as follows:

N �.c�j0/˝ � � �˝N �.c�jn�`/˝ � � �˝N �.c�jn�1/˝N �.�jn/

y��
n�`
Did˝��

n�`
˝id

��

N �.c�j0/˝ � � �˝N �.�jn�` � f1g/˝ � � �˝N �.c�jn�1/˝N �.�jn/

As the cupi –product is natural, we have y��
n�`

.c [i c0/Dy��
n�`

.c/[i y�
�
n�`

.c0/.

� If y��
n�`

.c/D 0 or y��
n�`

.c0/D 0, we have y��
n�`

.c/[i y�
�
n�`

.c0/D 0, and thus

kc [i c0k` D�1:

� Suppose now y��
n�`

.c/¤ 0 and y��
n�`

.c0/¤ 0. By definition of the cupi –product,
y��
n�`

.c/[iy�
�
n�`

.c0/ is a sum of tensor products whose elements are of two kinds:

(1) cs
j [fj c0tj with j ¤ n� `, or

(2) y��
n�`

.cs
n�`

/[fn�`
y��
n�`

.c0t
n�`

/.

As jcs
j [fj c0tj j � jc

s
j j C jc

0t
j j � fj , the cochain degree decreases and we obtain, for

each `,
kc [i c0k` � kck`Ckc

0
k`

by definition of the perverse degree; see Definition 1.2. Therefore, we have

kc [i c0k � kckCkc0k:
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Now, the rule of Leibniz implies

kı.c [i c0/k �max.kıckCkc0k; kıc0kCkck; kckCkc0k/:

Thus, if kck � xp , kıck � xp , kc0k � xq and kıc0k � xq , we have kc[i c0k � xpCxq and
kı.c[i c0/k � xpCxq . This implies that the E.2/–algebra structure on zN �.K/ induces
equivariant cochain maps

E.2/˝ zN �xp .K/˝ zN
�
xq .K/! zN

�
xpCxq.K/:

This means that zN �
�
.K/ is a perverse E.2/–algebra.

3 Steenrod perverse squares

From the existence of perverse cupi –products, we define Steenrod squares, as in the
classical case. In the next statement, when i > 0, the fact that the loose perversity image
of Sqi is L. xp; i/, defined by L. xp; i/.`/Dmin.2 xp.`/; xp.`/C i/, answers positively a
conjecture of Goresky and Pardon; see [12, Conjecture 7.5]. More explicitly, we prove
the existence of a dashed arrow which lifts the square Sqi :

H rCi
TW;L. xp;i/

��

H r
TW; xp

Sqi

//

99

H rCi
TW;2 xp

We still denote by Sqi this lifting.

Theorem B Let K be a filtered face set and xp , xq loose perversities The perverse
cupi –products induce natural perverse squares, defined by Sqi.x/ D x [jxj�i x for
x 2H jxjTW; xp.K/, which satisfy the following properties:

(1) If i < 0, then Sqi.x/D 0.

(2) If i � 0, then we have

Sqi
W H r

TW; xp.K/!H rCi
TW;L. xp;i/.K/;

where L. xp; i/Dmin.2 xp; xpC i/, and
(i) Sqi.x/D 0 if i > jxj;

(ii) Sqjxj.x/D x2 ;
(iii) Sq0

D id;
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(iv) if x 2H
jxj
TW; xp.K/ and y 2H

jyj
TW;xq.K/, one has the (internal) Cartan formula

Sqi.x[y/D
X

i1Ci2Di

Sqi1.x/[Sqi2.y/ 2H
jxjCjyjCi
TW;r .K/;

with r Dmin.2 xpC 2xq; xpCxqC i/ and [D[0 ;
(v) for any pair .i; j / with i < 2j , one has the Adem relation

SqiSqj
D

Œi=2�X
kD0

� j�k�1

i�2k

�
SqiCj�kSqk ;

and SqiSqj sends H�TW; xp into H�CiCj
TW;r with rDmin.4 xp; 2 xpCi; xpCiCj /.

Before proving this theorem, we establish a technical property on the tensor product of
two nice E.2/–algebras, which is the keystone in the proof of Theorem B.

Lemma 3.1 Let A and B be two nice E.2/–algebras and A˝B their tensor product
equipped with the E.2/–algebra structure coming from the diagonal of E.2/. Let
x;x0 2A and y;y0 2B be such that jxjC jyj D jx0jC jy0j D d , jyj � r and jy0j � r .
Then, for any k 2 f0; : : : ; d � ig such that .x [d�k�i x0/˝ .y [d�k�i

k
y0/ ¤ 0, we

have jy [d�k�i
k

y0j � r C i .

Proof Suppose d � k � i even. If .x [d�k�i x0/˝ .y [k y0/ ¤ 0, we must have
k �min.jyj; jy0j/ and d � k � i �min.jxj; jx0j/, which implies

d � i �min.jxj; jx0j/� k:

Suppose min.jxj; jx0j/D jxj. Then we have

jyjC jy0j � d C i Cmin.jxj; jx0j/D jyjC jy0j � .jxjC jyj/C i Cjxj D jy0jC i;

which implies

jy [k y0j � jyjC jy0j � k � jyjC jy0j � d C i Cmin.jxj; jx0j/� jy0jC i � r C i:

A similar argument gives the result in the case min.jxj; jx0j/D jx0j. Also, the proof is
analogous to the previous one if d � k � i is odd, since jy0[k yj � jy0jC jyj � k .

Directly from the definition of cupk –products, the inequalities jyj � r and jy0j � r

imply jy [k y0j � 2r . Thus, the bound jy [k y0j � r C i obtained in Lemma 3.1 is
exactly what is needed for the proof of the Goresky–Pardon conjecture, as we show in
the beginning of the next proof.
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Proof of Theorem B Let i � 0. From their definition as particular cupi –products,
the Steenrod squares have their image in the intersection cohomology with loose
perversity 2 xp . We first prove that the loose perversity 2 xp can be replaced by L. xp; i/.
We take over the arguments and the method used at the end of the proof of Theorem A by
considering a cocycle c 2N �.c�j0/˝� � �˝N �.c�jn�1/˝N �.�jn/, ` 2 f1; : : : ; ng
such that �jn�` ¤∅, and the restriction cn�` of c to

N �.c�j0/˝ � � �˝N �.�jn�` � f1g/˝ � � �˝N �.c�jn�1/˝N �.�jn/:

First observe that, by naturality, we have .c [jcj�i c/n�` D cn�` [jcn�`j�i cn�` .

� If cn�` D 0, we have .c [jcj�i c/n�` D 0 and kc [jcj�i ck` D�1.

� If cn�` ¤ 0, then we let A D N �.c�j0/˝ � � � ˝ N �.�jn�` � f1g/ and let
B DN �.c�jn�`C1/˝ � � �˝N �.c�jn�1/˝N �.�jn/, and so we decompose
cn�` in a canonical form, cn�` D

P
s c0s

n�`
˝ c00s

n�`
2 A ˝ B . Now, using

Lemma 3.1, we know that

.c0sn�` [jcn�`j�k�i c0tn�`/˝ .c
00s
n�` [

jcn�`j�k�i

k
c00tn�`/¤ 0

implies

jc00sn�` [
jcn�`j�k�i

k
c00tn�`j � xp.`/C i

for any pair of indices .s; t/ in the writing of cn�` . This implies kc[jcj�i ck �

xpC i , as stated.

The condition on the perversity of the differential of c [jcj�i c is immediate here
because c is a cocycle, and the naturality follows from the fact that the lifting already
exists at the level of the spaces of cocycles.

The properties (1), (2i), (2ii) and (2iii) are a direct consequence of Theorem A and
[18, Section 5].

Let A and B be two nice E.2/–algebras. By definition of the diagonal action of E.2/
on the tensor product, we have a Cartan external formula

Sqi.a˝ b/D
X

i1Ci2Di

Sqi1.a/˝Sqi2.b/

for a 2A and b 2 B . In our case, each factor, A and B , satisfies the Cartan internal
formula. Therefore, the Cartan internal formula on A˝B is a direct consequence of
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the next equalities:

Sqi..a˝ b/[ .a0˝ b0//

D.1/ Sqi..a[ a0/˝ .b[ b0//

D.2/

X
i1Ci2Di

Sqi1.a[ a0/˝Sqi2.b[ b0/

D.3/

X
j1Cj2Ck1Ck2Di

.Sqj1.a/[Sqj2.a0//˝ .Sqk1.b/[Sqk2.b0//;

andX
i1Ci2Di

Sqi1.a˝ b/[Sqi2.a0˝ b0/

D.2/

X
s1Cs2Ct1Ct2Di

.Sqs1.a/˝Sqs2.b//[ .Sqt1.a0/˝Sqt2.b0//

D.1/

X
s1Cs2Ct1Ct2Di

.Sqs1.a/[Sqt1.a0//˝ .Sqs2.b/[Sqt2.b0//;

where D.1/ comes from the definition of the cup-product on a tensor product, D.2/
from the application of the Cartan external formula and D.3/ from the Cartan internal
formula on each factor.

For Adem’s formula (2v), we recall some properties in order to track the perversity
conditions. The classical proof uses the bar resolution E.4/ of F2 as a †4 –module,
and the existence of a †4 –equivariant cochain map E.4/˝N �.L/˝4!N �.L/ for
any simplicial set L, called an E.4/–algebra. As these objects appear just in this part
of proof, we do not recall them in detail, referring to [1, Section 1]. We mention only
the points related to the control of perversities.

Denote by !W E.2/˝ E.2/˝ E.2/! E.4/ the cochain map induced by the wreath
product †2�†2�†2!†4 . Let A be an E.2/ and an E.4/–algebra whose structure
maps are respectively denoted by  2 and  4 . By definition, we say that A is an
Adem-object [18] if there is a commutative diagram

E.2/˝ E.2/˝2˝A˝4 !˝id
//

Sh
��

E.4/˝A˝4  4
// A

E.2/˝ .E.2/˝A˝2/˝2

id˝ ˝2
2

// E.2/˝A˝2

 2

88

where Sh is the appropriate shuffle map.

Algebraic & Geometric Topology, Volume 16 (2016)



Intersection cohomology and Steenrod squares 1871

Let �D�j0�� � ���jn and ADN �.c�j0/˝� � �˝N �.c�jn�1/˝N �.�jn/. Because
N �.L/ is an Adem-object for any simplicial set L, and because the tensor product of
two nice E.2/–algebras which are Adem-objects is an Adem-object [18, Lemma 4.2,
page 174], A is an Adem-object.

In Theorem A, we prove that  2 restricts to a map E.2/˝A xp˝Axq!A xpCxq . Exactly
the same argument can be used for  4 , replacing c[i c0 by  4.˛i˝c1˝c2˝c3˝c4/

for each ˛i 2 E.4/ in the last part of the proof of Theorem A. Thus  4 restricts to
a map E.4/˝A xp1

˝A xp2
˝A xp3

˝A xp4
! A xp1Cxp2Cxp3Cxp4

, and we get an Adem
formula for intersection cohomology.

Successive applications of Lemma 3.1 show that the nonzero terms in the right-hand
side of the Adem relation belong to intersection cohomology in perversities less than,
or equal to, min.4 xp; 2 xpC2j ; 2 xpC i; xpC iC j /�min.4 xp; 2 xpC i; xpC iC j /, since
i < 2j . The same argument applied to the left-hand side implies that the nonzero terms
belong also to intersection cohomology in the same range of perversities.

Remark 3.2 Previous definitions and results can be adapted to the context of GM-
perversities. By restricting to GM-perversities xp and xq such that xp C xq � t , the
cupi –products are defined by

[i W A
r
xp˝As

xq!ArCs�i
xp˚xq ;

where the sum xp ˚ xq is taken in the lattice Pn ; see [14] or [4, Section 2.1]. The
Steenrod squares introduced in Section 3,

Sqi
W H r

TW; xp!H rCi
TW;r ;

are therefore defined for GM-perversities xp and r such that min.2 xp; xpC i/� r .

4 Comparison with Goresky’s construction

As this section is concerned with isomorphisms between different definitions of Steenrod
squares in intersection cohomology, in some crucial points, we keep all the information
in the notation of cohomology groups.

In [11] (see also [2]), the intersection cohomology on a pseudomanifold X is introduced
by the use of a sheaf due to Deligne. The Deligne sheaf P xp is defined by a sequence
of truncations starting from the constant sheaf on XnnXn�2 . As we are not using this
specific construction, we do not recall it, sending the reader to the previous references.
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In [13], Goresky has already defined Steenrod squares Sqi
G on the intersection cohomol-

ogy H�.X IP xp/ of a topological pseudomanifold X in the case of a GM-perversity xp .
In this section, we prove that the two Steenrod squares, Sqi and Sqi

G , coincide.

Recall the filtered face set ISingF .X / introduced in Remark 1.7. The next result
connects Goresky’s definition of Steenrod squares on H�.X IP xp/ to our definition
of Steenrod squares on the TW-cohomology of the filtered face set ISingF .X /, de-
noted H�TW; xp.X /.

Theorem C Let X be an n–dimensional topological pseudomanifold. For any GM-
perversity xq , there exists an isomorphism ��

xq W H
�
TW;xq.X /!H�.X IPxq/. Moreover,

if xp is a GM-perversity such that 2 xp � t , then the following diagram commutes:

H r
TW; xp.X /

Sqi

//

�r
xp

��

H rCi
TW;L. xp;i/.X /

// H rCi
TW;2 xp.X /

�
rCi
2xp
��

H r .X IP xp/
Sqi

G
// H rCi.X IP2 xp/

The previous statement implies that

�rCi
L. xp;i/ ıSqi

ı .�r
xp/
�1
W H r .X IP xp/!H rCi.X IPL. xp;i//

is a lift of the Steenrod squares defined by Goresky,

Sqi
GW H

r .X IP xp/!H rCi.X IP2 xp/:

Therefore the Goresky–Pardon conjecture has a positive answer.

From the functor zN � , we define a presheaf on X by

IN�xp.U /D zN
�
xp .ISingF .U //

for any open set U of X . Denote by Cov.U / the directed set of open covers of U ,
ordered by inclusions. For any U 2 Cov.U /, ISingF;U .U / is the subfiltered face
set of ISingF .U / whose elements have a support included in an element of U . The
sheafification of IN�xp is given by

IN�xp.U /D lim
U2Cov.U /

zN �xp .ISingF;U .U //I

see [9, Exemple 3.9.1] in the case of singular cochains. The cupi –products introduced
in Section 3 on zN �� .ISingF;U .U // induce cupi –products on IN�

�
.U / by definition of

the last one as a direct limit.
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Theorem C is a direct consequence of Lemmas 4.1 and 4.3. First, we connect the
definition of Steenrod squares on ISingF .X / with a definition involving the sheaf IN�

�

on X .

Lemma 4.1 For any n–dimensional topological pseudomanifold X and any GM-
perversity xp , we have a commutative diagram:

H r
TW; xp.X /

Sqi

//

Š

��

H rCi
TW;L. xp;i/.X /

Š

��

H r .X I IN xp/
Sqi

// H rCi.X I INL. xp;i//

The vertical maps are isomorphisms induced by the canonical map IN�
�
! IN�

�
.

Proof For any U 2 Cov.X /, the restriction map

rU W IN�xp.X /! zN
�
xp .ISingF;U .X //

is compatible with the inclusions of open covers. This gives the morphism

IN�xp.X /! �.X; IN�xp/ WD lim
U2Cov.X /

zN �xp .ISingF;U .X //

induced by the canonical map IN�� ! IN�� . By taking the direct limit of the quasi-
isomorphisms of Lemma 4.2, we get an isomorphism

H�
�

lim
U2Cov.U /

zN �xp .ISingF;U .U //
�
ŠH�. zN �xp .ISingF .U ///DH�TW; xp.U /:

In a second step, by following the lines of [9, Exemple 3.9.1.], we prove that the sheaf
IN�xp is soft. The elements of IN0

x0.U / are x0–admissible vertices; they are the vertices of
the regular part and the map N 0.U /! IN0

x0.U / can be considered as the restriction to
the regular part. Also, in this degree 0, the presheaves N 0 and IN0

x0 are clearly sheaves,
and N 0.U /! IN0

x0.U / is a morphism of sheaves of rings. Observe also that IN�xp.U /
is an IN0

x0.U /–module for the cup-product. As the sheaf N 0 is soft, and as (see [9,
Théorème 3.7.1.]) any sheaf of modules over a soft sheaf of rings is soft, we deduce
the softness of IN�xp . Thus the hypercohomology is the cohomology of the space of
sections of the sheaf, and we get a series of isomorphisms

H�.X I IN�xp/ŠH�.�.X; IN�xp//ŠH�. zN �xp .ISingF .X ///DH�TW; xp.X /:
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By definition of the cupi –products on IN�
�

, the following diagram commutes:

INr
xp.X /˝ INs

xq.X /
[i

//

'

��

INrCs�i
xp˚xq .X /

'

��

�.X; INr
xp/˝�.X; INs

xq/
[i
// �.X; INrCs�i

xp˚xq /

With the properties already established, the vertical maps are quasi-isomorphisms
induced by the canonical map IN�� ! IN�� . The stated result is now a consequence of
the definition of Steenrod squares from cupi –products.

Lemma 4.2 Let X be an n–dimensional pseudomanifold and U an open cover of X .
The canonical inclusion �W ISingF;U .X / ! ISingF .X / induces an isomorphism in
intersection cohomology for any GM-perversity xp .

Proof With Proposition 1.5, we can replace zN �.�/ by the blow-up zC �.�/ al-
ready studied in [4]. Let xq be the GM-perversity defined by xp.k/Cxq.k/Dk�2. Recall
from [4, Theorem B] that, for any filtered face set K , there exists a quasi-isomorphism
evalW zC �xp .K/! hom.C GM;xq

� .K/;F2/, defined as follows: for any ˆ 2 zC �xp .K/ and
� W �j0 � � � � ��jn !K , we have

ˆ� D
X

j

ˆ0;�;j ˝ � � �˝ˆn;�;j 2 C �.c�j0/˝ � � �˝C �.�jn/;

and we set

eval.ˆ/.�/D
X

j

ˆ0;�;j .Œc�
j0 �/ � � �ˆn;�;j .Œ�

jn �/;

where Œ�� is the maximal simplex. Applying to KD ISingF .X / and KD ISingF;U .X /,
we get the following diagram, whose commutativity follows directly from the definitions
of the maps:

H�TW; xp.ISingF .X //
eval�

//

��TW
��

H�GM;xq.ISingF .X //

��GM
��

H�TW; xp.ISingF;U .X //
eval�

// H�GM;xq.ISingF;U .X //

We know that the two evaluation maps eval� are quasi-isomorphisms, and we have
to prove that the map ��TW , induced by the inclusion �, is an isomorphism. With the
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commutativity of the previous diagram and the fact that the homology is over a field, it
is sufficient to prove that

�GM;�W H
GM;xq
� .ISingF;U .X //!H

GM;xq
� .ISingF .X //

is an isomorphism. Set C xq� .X /D C GM;xq
� .ISingF .X //. Recall from [4, Lemma A.16]

the existence of a chain map which is the classical subdivision sdW C xq� .X /! C xq� .X /,
and for any integer m, the existence of a homomorphism T W C xq� .X /!C xq�C1.X / such
that @T CT @D id�sdm . By construction, for any element c 2C xq� .X /, there is an inte-
ger m such that sdmc 2C GM;xq

� .ISingF;U .X //. Moreover, if c 2 C GM;xq
� .ISingF;U .X //,

then T c 2 C GM;xq
� .ISingF;U .X //. Also, if c is a cycle, sdmc is a cycle as well, and

the two homology classes Œc� and Œsdmc� are equal. This implies the surjectivity and
injectivity of �GM;� through a classical argument.

The second step in the proof of Theorem C is the comparison of the two definitions of
Steenrod squares, respectively associated to the sheaf IN�

�
and to the Deligne sheaf P�

�
.

This is a consequence of the comparison of the two associated cupi –products done in
the next lemma.

Lemma 4.3 Let X be an n–dimensional topological pseudomanifold, and let xp and xq
be GM-perversities such that xp˚xq � t , where xp˚xq is the smallest GM-perversity r

such that xpCxq � r . Then for any i , there is a commutative square

IN�
xp.X /˝ IN�

xq.X /
[i

//

��

IN�
xp˚xq.X /

��

P�
xp.X /˝P�

xq.X /
[i

// P�
xp˚xq.X /

in the derived category of sheaves on X , linking the two cupi –products, such that
vertical arrows are isomorphisms.

Proof Let S� be a differential graded sheaf on the pseudomanifold X . We denote
by S�

k
the restriction of S� to the open set XnXn�k for k 2 f2; : : : ; nC 1g. Recall

the conditions (AX1) of [2, 2.3]:

(a) S� is bounded, Si D 0 for i < 0 and S�
2

is quasi-isomorphic to the ordinary
singular cohomology.

(b) For any k 2 f2; : : : ; ng and any x 2 Xn�knXn�k�1 , we have Hi.S/x D 0 if
i > xp.k/.

(c) The attachment map ˛k W S�
kC1
!Rik�S�k , induced by the canonical inclusion

XnXn�k !XnXn�k�1 , is a quasi-isomorphism up to xp.k/.
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If S� is soft, from [20, Remark 2.3.], we may replace condition (c) by the following
equivalent one:

(c 0 ) For any k 2 f2; : : : ; ng, j � xp.k/ and x 2Xn�knXn�k�1 , the restriction map
induces an isomorphism

lim
��!Ux

H j .�.UxIS�//
Š
��! lim

��!Ux
H j .�.UxnXn�k IS�//;

where Ux varies into a cofinal family of neighborhoods of x in XnXn�k�1 .

On the regular part, the sheaf IN�
�

is the sheafification of N � and thus computes the
singular cohomology. Therefore, condition (a) is satisfied for IN�. In order to prove
that the sheaf IN�

�
satisfies the axioms (b) and (c 0 ), we use the isomorphism established

in Lemma 4.1,
H�.X I IN�/ŠH�TW;�.X /:

Let x 2Xn�knXn�k�1 . The cohomology H�.IN�/x is determined by the following
isomorphisms:

H�.IN�/x D lim
��!Ux

H�.�.UxI IN�//Š lim
��!Ux

H�TW;�.Ux/;

where the direct limits are taken over the open neighborhoods Ux of x . (The first
equality is the definition of the stalk at a point.) Moreover, these limits can also
be obtained from a restriction to a cofinal family of trivializing open neighborhoods
Ux ŠRn�k � cL, where L is the link of x . Thus axiom (b) now follows from
H�TW; xp.R

n�k � cL/DH�TW; xp.cL/D 0 if �> xp.k/; see [4, Corollary 1.47].

The verification of (c 0 ) is quite similar. As in [20, Proof of Theorem 7.1.], we are
reduced to analyzing the map

lim
��!Ux

H�.UxI IN�/! lim
��!Ux

H�.UxnXn�k I IN�/;

where the direct limit is taken over a cofinal family UxŠRn�k�cL of trivializing open
neighborhoods of x . We consider the following commutative diagram, whose horizontal
maps are induced by the canonical inclusions and vertical maps are isomorphisms:

H�.UxI IN�/ //

Š
��

H�.UxnXn�k I IN�/

Š
��

H�.Rn�k � cLI IN�/ //

Š

��

H�.Rn�k � .cL�fvg/I IN�/

Š

��

H�.cLI IN�/ // H�.cL�fvgI IN�/
Š

// H�.LI IN�/
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Finally, we note that the composite at the bottom is an isomorphism when � � xp.k/,
as shows the classical computation of the intersection cohomology of a cone. Modulo
the vertical isomorphisms, this is exactly the axiom (c 0 ).

Therefore, the sheaf IN�
�

satisfies conditions (AX1), and by [2, Theorem 2.5], there
exists a quasi-isomorphism between IN�

�
and P�

�
; see also [11]. As a consequence,

these two sheaves have a common injective resolution, and we may apply to it the
uniqueness of cupi –products established by Goresky in [13, Proposition 3.6].

From the previous results on cupi –products, we get an isomorphism of algebras of
cohomology with coefficients in F2 .

Corollary 4.4 If X is an n–dimensional pseudomanifold, there are isomorphisms of
perverse algebras

H�TW;�.X /ŠH�.X I IN�/ŠH�.X IP�/:

Moreover, if X is compact and PL, one has also an isomorphism of algebras

H�.X IP�/ŠH t��
n��.X IF2/;

with the intersection product on the last term.

Proof The two first isomorphisms are consequences of the previous results on cupi –
products. The last one is established by Friedman in [6].

If we are interested only by the cup-product [0 , we may consider versions of the
sheaves IN and P over any field. In this case, the previous corollary is still true for
any field and not only for F2 . With more work of this type, one also should be able to
show the existence of an isomorphism between our definition of cup-product and the
definition of Friedman and McClure [8].

5 Pseudomanifolds with isolated singularities

In this section, we determine Steenrod squares on the intersection cohomology of
pseudomanifolds with isolated singularities. In this case, if the pseudomanifold is of
dimension n, the perversity xp is determined by one number, xp.n/. Recall now that the
intersection cohomology of a cone cY on a space Y is given by H r

TW; xp.cY /DH r .Y /,
if r � xp.n/ and 0 otherwise.

Algebraic & Geometric Topology, Volume 16 (2016)



1878 David Chataur, Martintxo Saralegi-Aranguren and Daniel Tanré

Proposition 5.1 Let xp be a GM-perversity and X an n–dimensional pseudomanifold
obtained from a triangulated manifold with boundary .W; @W / by attaching cones on
the connected components .@uW /u2I of @W ; ie X is the pushout:

@W D
F

u2I @uW
�
//

��

W

��F
u2I c.@uW / // X

We filter the pseudomanifold X by ∅� fvu j u 2 Ig �X , where vu is the cone point
of c.@uW /. Then the following properties are satisfied:

(i) The cochain complex zN �xp .X / is quasi-isomorphic to the pullback in the category
of cochain complexes N �.W /˚N�.@W /��xp.n/N

�.@W /, where ��xp.n/N �.@W /

is the usual truncation (see [2, 1.10]),

.��xp.n/N
�.@W //r D

8<:
N r .@W / if r < xp.n/;

ZN xp.n/.@W / if r D xp.n/;

0 if r > xp.n/;

in which Z denotes the vector space of cocycles. Moreover, the GM-perverse
E.2/–algebra xp 7! zN �xp .X / is quasi-isomorphic to the pullback in the category of
GM-perverse E.2/–algebras, defined by xp 7!N �.W /˚N�.@W /��xp.n/N

�.@W /,
with the E.2/–algebra structure on N �.�/ defined in [1].

(ii) The intersection cohomology of X is determined by

H k
TW; xp.X /D

8<:
H k.W / if k � xp.n/;

Ker.H k.W /!H k.@W // if k D xp.n/C 1;

H k.W; @W / if k > xp.n/C 1:

(iii) If .˛; ��˛/ 2N �.W /˚N�.@W / ��xp.n/N
�.@W / is a cocycle of xp–intersection

and i is a positive integer, we have

Sqi.˛; ��˛/D .Sqi˛; ��Sqi˛/ 2H�Ci
TW;L. xp;i/.X /:

Proof (i) Starting from a triangulation of .W; @W /, we may suppose that X , W , @W
and

F
u2I c.@uW / are triangulated in such a way that any simplex of the triangulation

of X is filtered, with filtration ∅� fvu j u 2 Ig �X .

Let Y be one of the spaces above and Y � the associated triangulated space. In [7,
Chapters 3 and 5], Friedman proves that the cochains C �GM; xp.Y / and C �GM; xp.Y

� / are
quasi-isomorphic for any GM-perversity xp . Let xp and xq be two GM-perversities such
that xp.k/Cxq.k/D k � 2. There exists a quasi-isomorphism between C �GM;xq.Y / and
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zC �xp .Y /; see [4, Theorem B] or Proposition 1.8. Recall also from Proposition 1.5 the
existence of a quasi-isomorphism between zC �xp .Y / and zN �xp .Y /. Thus, the isomorphism

C �GM;xq.X
� /Š C �.W � /˚.

L
u2I C�.@uW � //

�M
u2I

C �GM;xq.c.@uW /� /

�
;

obtained by construction of the triangulations, gives quasi-isomorphisms

C �GM;xq.X /' C �.W /˚C�.@W /

�M
u2I

C �GM;xq.c.@uW //

�
' C �.W /˚C�.@W /

�M
u2I

��t.n/�xq.n/C
�.@uW /

�
' C �.W /˚C�.@W / ��t.n/�xq.n/

C �.@W /

'N �.W /˚N�.@W / ��t.n/�xq.n/
N �.@W /:

Therefore, we have obtained a quasi-isomorphism

zN
�
xp .X /'N �.W /˚N�.@W / ��xp.n/N

�.@W /:

We now investigate the structure of the E.2/–algebra. In [1], C Berger and B Fresse
prove that a restriction map N �.Y /! N �.Z/, induced by an inclusion Z ,! Y ,
is a morphism of E.2/–algebras. Therefore, we obtain functors from the lattice of
GM-perversities (and 1) to GM-perverse E.2/–algebras, defined by xp 7! zN �xp .X /,
xp 7!N �.W /, xp 7!N �.@W / and xp 7! ��xp.n/N

�.@W /. Restriction maps define GM-
perverse E.2/–algebra maps between zN �xp .X / and the three other GM-perverse E.2/–
algebras. From them, we obtain a GM-perverse E.2/–algebra map

(4) zN
�
xp .X /!N �.W /˚N�.@W / ��xp.n/N

�.@W /;

whose codomain is a pullback in the category of GM-perverse E.2/–algebras; see [1].
We have proved above that this last map is a quasi-isomorphism for each xp , and the
first item of the statement is established.

(ii) An element of the previous sum is of the type .˛; ��˛/, with ��˛ of degree less
than, or equal to, xp.n/. This means that, if ˛ is of degree k , we must have�

��˛ D 0 if k > xp.n/;

��˛ is a cocycle if k D xp.n/:

This immediately implies that H k
TW; xp.X / D H k.W / if k � xp.n/ and also that

H k
TW; xp.X /DH k.W; @W / if k> xp.n/C1. In degree kD xp.n/C1, the xp–intersection

cohomology of X is formed of the elements of H k.W / which are in the image of
H k.W; @W /, ie the kernel of H k.W /!H k.@W /.
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(iii) The quasi-isomorphisms between zN �xp .X / and N �.W /˚N�.@W /��xp.n/N
�.@W /

define a map of GM-perverse E.2/–algebras, and therefore they are compatible with the
cupi –products. Also, the right-hand complex of (4) can be used for the determination
of cupi –products; ie we have

.˛; ��˛/[i .ˇ; �
�ˇ/D .˛[i ˇ; �

�˛[i �
�ˇ/;

from which we deduce the announced formula for Steenrod squares.

Remark 5.2 We give a direct proof of the Goresky–Pardon conjecture in the case of
isolated singularities. Let .˛; ��˛/ be a cocycle in N k.W /˚N k.@W / ��xp.n/N

k.@W /.
The perverse degree of the Steenrod square Sqj .˛; ��˛/ D .˛; ��˛/ [k�j .˛; �

�˛/

satisfies the inequality

k.˛; ��˛/[k�j .˛; �
�˛/k �.1/ j�

�˛[k�j �
�˛j �.2/ kC j �.3/ xp.n/C j ;

where

� �.1/ comes from the fact that the perverse degree of a cochain is less than or
equal to its usual degree,

� �.2/ is a consequence of ja[i bj � jajC jbj � i ,

� �.3/ uses ��˛ D 0 if k > xp.n/.

Remark 5.3 The fact that the image of H�TW; xp.X / by Sqi is in perversity L. xp; i/D
min.2 xp; xp C i/ is perfectly in phase with the characterization of the intersection
cohomology of X , written in Proposition 5.1(ii). This remark follows from these
observations for a cocycle .˛; ��˛/ 2N k.W /˚N k.@W / ��xp.n/N

k.@W /:

� If k � xp.n/, then by definition of the Steenrod squares in H�.W /, we have
jSqi.˛/j D kC i � xp.n/C i .

– If i � xp.n/, this implies jSqi.˛; ��˛/j � L. xp; i/.n/.
– If i > xp.n/, we have Sqi.˛; ��˛/D .Sqi˛; ��Sqi˛/D 0.

� If k > xp.n/, then ��˛ D 0 and jSqi.˛; ��˛/j D kC i > xp.n/C i � L. xp; i/.n/.

In conclusion, Sqi respects the caesuras in the determination of the perverse cohomolo-
gies H�TW; xp.X / and H�TW;L. xp;i/.X /. Moreover, in degrees k � xp.n/, the Steenrod
squares on H k

TW; xp.X / coincide with the Steenrod squares on H k.W /.
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Example 5.4 (Steenrod squares on the intersection cohomology of the suspension of a
manifold) Let X be an .n�1/–dimensional manifold and xp a GM-perversity. The
following pushout defines †X as in Proposition 5.1:

X�1 tX1
��1t�1

//

��

X � Œ�1; 1�

��

cX�1 t cX1
// †X

where �1W X1 D X � f1g ! X � Œ�1; 1� and ��1W X�1 D X � f�1g ! X � Œ�1; 1�

are the canonical injections. From (i) of Proposition 5.1, we know that zN �xp .†X / is
quasi-isomorphic to the cochain complex

(5) N �.X � Œ�1; 1�/< xp.n/˚f˛ 2N xp.n/.X � Œ�1; 1�/ j d ��1.˛/D d ��
�1.˛/D 0g

˚ .Ker ��1 \Ker ��
�1/

> xp.n/;

in which the superscript refers to the degree. For instance, .A/<k is the set of elements
of A of degree less than k .

The suspension †X can also be obtained as a cofiber, X1tX�1!X � Œ�1; 1�!†X ,
which gives a short exact sequence

0! .Ker ��1 \Ker ��
�1/ ,!N �.X � Œ�1; 1�/

.��
1
;��
�1
/

������!N �.X1/˚N �.X�1/! 0:

The morphism of E.2/–algebras [1], N �.†X /! N �.X � Œ�1; 1�/, lifts as a quasi-
isomorphism of cochain complexes, N �.†X /! .Ker ��

1
\Ker ��

�1
/. From (5) and the

previous observation, we deduce the intersection cohomology of the suspension †X as

H k
TW; xp.†X /D

8<:
H k.X / if k � xp.n/;

0 if k D xp.n/C 1;

H k.†X /DH k�1.X / if k > xp.n/C 1:

With Remark 5.3, we know that, in degrees k � xp.n/, the Steenrod squares on
H k

TW; xp.†X / coincide with the Steenrod squares on H k.X /. Moreover, the inter-
section of kernels being endowed with the induced structure of an E.2/–algebra of
N �.X�Œ�1; 1�/, the quasi-isomorphism N �.†X /! .Ker ��

1
\Ker ��

�1
/ is a morphism

of E.2/–algebras; see [1]. Thus, in degrees k > xp.n/C 1, the Steenrod squares on
H k

TW; xp.†X / coincide with the Steenrod squares on H k.†X /, which are the suspen-
sions of the Steenrod squares on X .

We consider now the case of the Thom space of a vector bundle, Rm!E! B .
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Example 5.5 (Steenrod squares on the intersection cohomology of a Thom space) Let
Rm!DE

g
�! B be the disk-bundle of associated sphere-bundle Sm�1! SE

f
�! B .

The Thom space Th.E/ is built from the disk-bundle along the process described
in Proposition 5.1. We filter Th.E/ by the point of compactification. Let xp be a
GM-perversity entirely determined in this case by the number xp.n/ with nD dim E .
In this example, we prove that the Steenrod squares on H�TW; xp.Th.E// are entirely
determined by the Steenrod squares on the base space and the Stiefel–Whitney classes
of the bundle.

Denote by c 2 H m.B/ the Euler class and by � 2 H m.Th.E// the Thom class.
Let j W DE ! Th.E/ be the canonical map, and recall that the Thom isomorphism
T hW H k�m.B/! H k.Th.E// Š H k.DE ;SE/ is defined by T h.
 / D g�.
 /[ � .
The Euler and the Thom classes are connected by the two exact sequences

� � � // H k.Th.E//
j�
// H k.DE/ // H k.SE/ // H kC1.Th.E// // � � �

� � � // H k�m.B/
�[c

//

T h

OO

H k.B/
f �
//

g�

OO

H k.SE/ // H kC1�m.B/ //

T h

OO

� � �

and the fact that j �.�/ D g�.c/. From Proposition 5.1, we know that the complex
zN �xp .Th.E// is quasi-isomorphic to

N � DN �.B/˚N�.SE/ ��xp.n/N
�.SE/

Š N< xp.n/.B/˚f˛ 2N xp.n/.B/ j df �.˛/D 0g

˚Ker.N k.B/
f �

���!N k.SE//
> xp.n/:

Thus we recover (see [16, page 77]) the intersection cohomology of the Thom space,

H k
TW; xp.Th.E//DH k.N /D

8<:
H k.B/ if k � xp.n/;

.Im .�[ c//k if k D xp.n/C 1;

H k�m.B/ŠT h H k.Th.E// if k > xp.n/C 1:

� If k� xp.n/C1, the Steenrod squares Sqi
W H k
xp .Th.E//!H kCi

L. xp;i/.Th.E// coincide
with the Steenrod squares Sqi

W H k.B/!H kCi.B/; see Remark 5.3.

� Let k > xp.n/C1 and 
 2H k�m.B/. The (classical) internal Cartan formula gives

Sqj .g�.
 /[ �/D

jX
`D0

Sqj�`.g�.
 //[Sq`.�/D
jX
`D0

g�.Sqj�`.
 //[g�.!`/[ �;

where the !` are the Stiefel–Whitney classes of the fibration f ; see [19, page 91].
Set � D g�.
 /[ � D T h.
 / 2 H k.Th.E//. In this range of degrees, the Steenrod
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squares on Th.E/, denoted by SqTh , and the Steenrod squares on B , denoted by SqB ,
are related by

Sqj
Th.�/D

jX
`D0

g�.Sqj�`
B

.
 /[!`/[ �:

With the Thom isomorphism T hW H k�m.B/!H k.Th.E// the previous formula can
be written as

Sqj
Th.�/D T h

� jX
`D0

Sqj�`
B

.T h�1.�//[!`

�
:

6 Example of a fibration with fiber a cone

In this section, we construct an example showing the interest of the lifting of the image
of Sqi to the perversity L. xp; i/ instead of 2 xp . As the case of Sq1 was analyzed in
[12], we choose an example with Sq2 .

Proposition 6.1 There exists a pseudomanifold X and a GM-perversity xp with an
explicit nontrivial perverse square

0¤ Sq2
W H 6

TW; xp.X /!H 8
TW;L. xp;2/.X /;

whose composition with the canonical map H 8
TW;L. xp;2/.X /!H 8

TW;2 xp.X / is zero.

Proof To begin with, we describe the general strategy of the proof. The first step is
the construction of a fibration S7 �S4!E

'
�!CP .2/, with a nontrivial differential

on a generator a7 of H 7.S7 � S4/, in the Serre spectral sequence. Secondly, we
consider the fiberwise conification c.S7�S4/!X

 
�!CP .2/ of the fibration ' . The

space X is a pseudomanifold. A GM-perversity xp on X is determined by the value
xp.12/D k , and we denote it by xk . (As xp is a GM-perversity, we have k � 10.) In our
fibration, depending on the value of k , the element a7 is a class of xp–intersection or
it is not; more precisely, we get H 8

TW;xk.X /¤ 0 if k D 6 and H 8
TW;xk.X /D 0 if k D 8.

This property generates a nontrivial Steenrod square Sq2
W H 6

TW; xp.X /!H 8
TW;L. xp;2/.X /

such that the composite with the canonical map

H 6
TW; xp.X /

Sq2

���!H 8
TW;L. xp;2/.X /!H 8

TW;2 xp.X /

is the zero map. Details are as follows.

� First, we observe, from the cellular approximation theorem and the construction
of K.Z; 8/, that the classifying map of the top class CP .2/�S4!K.Z; 8/ lifts as
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a map f W CP .2/�S4! S8 . We denote by p1W E! CP .2/�S4 the pullback of
the Hopf fibration S15 ! S8 along f . We compose p1 with the trivial fibration
p2W CP .2/�S4!CP .2/ and obtain a fibration

'W E!CP .2/;

whose fiber F is S7 �S4 . To show this last point, consider the commutative diagram:

F //

��

E //

p1

��

S15

��

2 3

S4 //

��

CP .2/�S4 f
//

p2

��

S8

1

� // CP .2/

The rectangle formed of 1 and 2 is a pullback. As 1 is a pullback, we deduce [17,
Section III.4] that 2 is a pullback. Therefore, the rectangle formed of 2 and 3 is a
pullback, and the triviality of the map S4! S8 implies that F is S7 �S4 .

We study now the Serre spectral sequence of the fibration ' . We denote by a4 , a7

and a7 � a4 the generators of the reduced cohomology of S7 �S4 , and by x and x2

the generators of the reduced cohomology of CP .2/. An inspection of the degrees in
the differentials dr W E

s;t
r !E

sCr;t�rC1
r shows that the only differential which can

be potentially nontrivial is

d4W E
0;7
4
DE

0;7
2
D F2a7!E

4;4
4
DE

4;4
2
D F2.x

2
˝ a4/:

By definition of S7 ! E ! CP .2/ � S4 as a pullback of the Hopf fibration, we
already know [21, Section III.4] that the top class a7 of S7 transgresses on the product
x2 � a4 . This gives d4.a7/D x2˝ a4 in the Serre spectral sequence of the fibration
'W E!CP .2/.

We continue with the determination of the image of the cohomology class x ˝ a4

by Sq2 in H�.CP .2//˝H�.S7 �S4/. From the external Cartan formula, we have

Sq2.x˝ a4/D Sq2.x/˝ a4CSq1.x/˝Sq1.a4/Cx˝Sq2.a4/:

The last two terms are zero for degree reasons. The equality Sq2.x/D x2 gives

Sq2.x˝ a4/D x2
˝ a4:
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� The second step is the fiberwise conification c.S7 �S4/!X
 
�!CP .2/ of the

fibration ' . If x2CP .2/, we denote by .S7�S4/x the fiber over x and by vx the cone
point of the cone c..S7�S4/x/. A continuous section � of  , defined by �.x/D vx ,
identifies CP2 to a closed subspace of X . We filter X by ∅ � X0 D CP .2/ � X .
Observe that the singular set in X is CP .2/ and that the link of a singular point is
S7 �S4 .

Let xk be a GM-perversity. The intersection cohomology H�TW;xk.X / is the abutment
(see [5, Theorem 3.5]) of a Serre spectral sequence with

xk
E

r;s
2
DH r .CP .2//˝H s

TW;xk.c.S
7
�S4//:

We may replace the right-hand term of this tensor product by its value and obtain

xk
E

r;s
2
DH r .CP .2//˝H s.S7

�S4/

if s � k and 0 otherwise. The existence of a morphism E ! X over the identity
on CP .2/ gives a morphism of spectral sequences, . xkE

r;s
� ; d�/! .E

r;s
� ; d�/. From

our previous determination of the Serre spectral sequence .Er;s
� ; d�/ associated to

the fibration 'W E! CP .2/, we deduce that the differentials d� of xkE
r;s
� are zero,

except d4.a7/D x2˝ a4 if 7 � k . Thus, in perversity k < 7, as the class a7 is not
of xk –intersection, the class x2˝ a4 survives and H 8

TW;xk.X /¤ 0. But if k D 8, the
class a7 is of x8–intersection and kills the element x2˝ a4 (which is the only element
of degree 8 in the E2 –term). Thus H 8

TW;x8.X /D 0.

The square Sq2 , that we have previously determined, arises in the GM-perversity x4,
and we have

Sq2
W H 6

TW;x4.X /D F2.x˝ a4/!H 8
TW;x4.X /D F2.x

2
˝ a4/:

Observe that x6DL.x4;x4C2/ is a GM-perversity and thus, with the argument above, Sq2

still survives as map from H 6
TW;x4 to H 8

TW;x6 DH 8
TW;x4 . But, for the GM-perversity

x8 D 2�x4, as H 8
TW;x8.X / D 0, this square Sq2 disappears if we express it as a map

from H 6
TW;x4 to H 8

TW;2�x4 .

7 Topological invariance of the Steenrod squares
in intersection cohomology

In the case of PL-pseudomanifolds, we know from [13] that the Steenrod squares are
topological invariants, as homomorphisms H r

TW; xp.X /!H rCi
TW;2 xp.X /. In this section,

we prove that the lifting we have introduced before, Sqi
W H r

TW; xp.X /!H rCi
TW;L. xp;i/.X /,

is also a topological invariant. The proof is based on the original combinatorial
description of Steenrod squares made in [22].
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Theorem D Let X be an n–dimensional PL-pseudomanifold and xp a GM-perversity.
Then the Steenrod squares Sqi

W H�TW; xp.X /! H�Ci
TW;L. xp;i/.X / do not depend on the

stratification of X .

Theorem D is a direct consequence of Proposition 7.1 and Proposition 7.9. Before stating
and proving these two results, we need to introduce some material. First, recall from
[15, page 150] and [7, Chapter 2] the existence of a PL-pseudomanifold X � which is an
intrinsic coarsest stratification of X , together with a stratified map �W X !X � defined
by the identity map; see [4, Definition A.18]. In [15], H King proves that � induces a
quasi-isomorphism between the Goresky–MacPherson chain (and cochain) complexes.
Here we consider the map �, induced by � , between the Thom–Whitney complexes.

Proposition 7.1 Let X be an n–dimensional PL-pseudomanifold, and let xp be a
GM-perversity. Then the canonical map �W X ! X � induces a quasi-isomorphism
�W zN �xp .X

�/! zN �xp .X /.

Construction of � , the local step

Before giving the proof, we detail the construction of � based on the effect of
�W X !X � on filtered simplices of X . Let � W � D �j0 � � � � � �jn ! X be a
filtered simplex of X . Suppose that

� for some integer 0� i � n� 1, the set �.�j0 � � � � ��ji /n�.�j0 � � � � ��ji�1/

is included in an i –stratum of X which “disappears” inside an .iC1/–stratum
of X � ,

� for the other indices `¤ i , the corresponding strata of �.�/ stay unmodified.

Then the filtered simplex � W � D �j0 � � � � ��jn ! X becomes a filtered simplex
of X � , namely � ı � W �.i/D�k0 � � � � ��kn !X � , with

(6)
�

k` D j` if ` < i or ` > i C 1;

ki D�1 and kiC1 D ji C jiC1C 1:

This process is called an elementary amalgamation. The simplex � ı � W �! X �

can, in general, be written as a filtered simplex after a finite number of elementary
amalgamations. As we work with blow-ups, we need to consider two cases, depending
if i C 1D n or not. We write

zN �.�/DN �.c�j0/˝ � � �˝N �.c�ji /˝N �.c�jiC1/˝ � � �˝N �.�jn/
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and

zN �.�.i//D

8<:
N �.c�j0/˝ � � �˝N �.c∅/

˝N �.c�jiCjiC1C1/˝ � � �˝N �.�jn/
if i ¤ n� 1;

N �.c�j0/˝ � � �˝N �.c∅/˝N �.�jn�1CjnC1/ if i D n� 1:

We define below two morphisms,

˛W N �.c�aCbC1/!N �.c�a/˝N �.c�b/

and
ˇW N �.c�aCbC1/!N �.c�a/˝N �.�b/;

which correspond to the cases i ¤ n� 1 and i D n� 1.

Let v be the cone point of c∅. We use ˛ and ˇ for the definition of a morphism
�i W zN

�.�.i//! zN �.�/ as follows. If ˆD
P

j ˆ0;j ˝� � �˝ˆn;j 2
zN �.�.i//, then

for i ¤ n� 1, we set

(7) �i.ˆ/D
X

j

ˆi;j .Œv�/ �ˆ0;j ˝� � �˝ˆi�1;j ˝˛.ˆiC1;j /˝ˆiC2;j ˝� � �˝ˆn;j ;

and for i D n� 1,

(8) �i.ˆ/D
X

j

ˆn�1;j .Œv�/ �ˆ0;j ˝ � � �˝ˆn�2;j ˝ˇ.ˆn;j /:

These �i are the local ingredients used in the (global) definition of �, stated below.

Construction of ˛W N *.c�aCbC1/!N *.c�a/˝N *.c�b/

We define ˛ by its values on the elements of a basis. If L is one of the simplicial
complexes, c�a , c�b or c�aCbC1 , we denote by f1F g the dual basis of N �.L/

obtained from the basis of faces F of L.

If we represent by Fa the faces of �a and by Fb the faces of �b , a face of c�aCbC1

is of the type c.Fa �Fb/ or Fa �Fb , where Fa and Fb can also be the empty set. A
linear map ˛ is entirely determined by8<:
˛.1c.Fa�Fb//D 1cFa

˝ 1cFb
the cases Fa D∅ and Fb D∅ being included,

˛.1Fa�Fb
/D 1cFa

˝ 1Fb
if Fb ¤∅; the case Fa D∅ being included,

˛.1Fa
/D 1Fa

˝ 1vb
C 1Fa

˝ 1Vb
;

where 1Vb
is the sum of 1p when p runs in the set of vertices of �b and vb is the

cone point of c�b .
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Construction of ˇW N *.�aCbC1/!N *.c�a/˝N *.�b/

With the previous notation, the linear map ˇ is defined by�
ˇ.1Fa�Fb

/D 1cFa
˝ 1Fb

if Fb ¤∅; the case Fa D∅ being included,
ˇ.1Fa

/D 1Fa
˝ 1Vb

:

These maps satisfy the next properties whose proofs are postponed until after the proof
of Proposition 7.1.

Lemma 7.2 The two morphisms, ˛W N �.c�aCbC1/! N �.c�a/˝N �.c�b/ and
ˇW N �.�aCbC1/! N �.c�a/˝N �.�b/, are compatible with the differentials and
the restrictions to faces of �a and �b .

Lemma 7.3 The morphism �i W zN
�.�.i//! zN �.�/ is compatible with the differen-

tials and the restrictions to faces of the �j` . Moreover, it respects the perverse degree,
ie �i. zN

�
xp .�.i///� zN

�
xp .�/ for any GM-perversity xp .

Construction of �W zN *.X*/! zN *.X/, the global step

Let � W �� D �j0 � � � � ��jn ! X be a filtered simplex of X , with blow-up z�� D
c�j0 � � � � � �jn . As we have noted before, the domain of the filtered simplex
� ı � W ��ı� D �

k0 � � � � ��kn ! X � has a different decomposition, obtained by a
succession of elementary amalgamations. We denote by z��ı� the associated blow-up.

These elementary amalgamations give a finite sequence of decompositions �.i`/0�`�m

such that �.0/D�j0 � � � � ��jn D�� and �.m/D�k0 � � � � ��kn D��ı� . Two
consecutive terms correspond to an elementary amalgamation, ie �.i`/D�x0�� � ���xn

and �.i`C1/D�
y0 � � � � ��yn , with�

yu D xu if u< i` or u> i`C 1;

yi` D�1 and yi`C1 D xi` Cxi`C1
C 1:

Recall the map �i` W zN
�.�.i`C1//! zN

�.�.i`// defined in (7) and (8). We set

�� D �i0
ı � � � ı �im�1

:

Finally, by Lemma 7.2, we have a map �W zN �.X �/! zN �.X /, defined on � W �!X

and ˆ 2 zN �.X �/, by

�.ˆ/� D �� .ˆ�ı� /:
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Proof of Proposition 7.1 By Lemma 7.3, the previous map �W zN �.X �/! zN �.X /
is a cochain map which restricts as �W zN �xp .X �/! zN

�
xp .X /.

There also exists a map evalN W
zN �.X /! hom.N GM

� .X /;F2/ defined as follows.
For any ˆ2 zN �.X / and � W �j0 �� � ���jn!X , with ˆ� D

P
j ˆ0;j˝� � �˝ˆn;j 2

N �.c�j0/˝ � � �˝N �.�jn/, we set

evalN .ˆ/.�/D
X

j

ˆ0;j .Œc�
j0 �/ � � �ˆn;j .Œ�

jn �/:

Let xq be the GM-perversity such that xpCxqD t . We have that the canonical morphism
��W C�.�/! N�.�/ induces ��W hom.N GM;xq

� .�/;F2/! hom.C GM;xq
� .�/;F2/ and

z�W zN �xp .�/! zC
�
xp .�/. The previous map evalN is connected with the morphism eval,

introduced in the proof of Lemma 4.2, by �� ı evalN D eval ı z� . As z� and eval
are quasi-isomorphisms (see Proposition 1.5 and Proposition 1.8), we know that the
composite �� ı evalN is a quasi-isomorphism. Now consider the following diagram:

(9)

zN �xp .X
�/�

evalN
//

��

hom.N GM;xq
� .X �/;F2/

��
//

N�.�/
��

hom.C GM;xq
� .X �/;F2/

C�.�/

��

zN �xp .X /
evalN

// hom.N GM;xq
� .X /;F2/

��
// hom.C GM;xq

� .X /;F2/

The right-hand square is commutative by naturality of �� . We prove now the commu-
tativity of the left-hand one. Let ˆ 2 zN �xp .X �/, and let � W �� D�j0 � � � � ��jn !X

be a filtered simplex, with associated filtered simplex � ı � W ��ı� ! X � . We have
to check

(10) .N �.�/ ı evalN .ˆ//.�/D evalN .�.ˆ//.�/:

For a given � , we can decompose � in a finite number of elementary amalgamations
and thus replace �� W zN �.��ı� /! zN �.�� / by �i W zN �.�.i//! zN �.�/, as defined
in (7) and (8). Set ˆ�ı� D

P
j ˆ0;j ˝� � �˝ˆn;j 2

zN �.�.i// and suppose i ¤ n� 1.
By definition (7), we have

�.ˆ/� D �� .ˆ�ı� /D �i.ˆ�ı� /

D

X
j

ˆi;j .Œv�/ �ˆ0;j ˝ � � �˝ˆi�1;j ˝˛.ˆiC1;j /˝ˆiC2;j ˝ � � �˝ˆn;j ;

and the right-hand side of (10) is equal to

evalN .�.ˆ//.�/D
X

j

�
ˆ0;j .Œc�

j0 �/ � � �ˆi�1;j .Œc�
ji �/ �ˆi;j .Œv�/

�˛.ˆiC1;j /.Œc�
ji �˝ Œc�jiC1 �/ � � �ˆn;j .Œ�

jn �/
�
:
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We determine now the left-hand side of (10):

.N �.�/ ı evalN .ˆ//.�/D evalN .ˆ/.� ı �/

D

X
j

�
ˆ0;j .Œc�

j0 �/ � � �ˆi�1;j .Œc�
ji�1 �/ �ˆi;j .Œv�/

�ˆiC1;j .Œc�
jiCjiC1C1�/ � � �ˆn;j .Œc�.jn�/

�
:

Thus the left-hand and the right-hand sides coincide by definition of ˛ . A similar
argument gives the result when i D n� 1.

We have established above that the two horizontal lines of the commutative square (9)
are quasi-isomorphisms. The right-hand vertical map is a quasi-isomorphism also; see
[15]. Thus �W zN �xp .X �/! zN

�
xp .X / is a quasi-isomorphism.

Proof of Lemma 7.2 We first consider the map ˛ and its behavior with restriction
maps. Let ra and rb be faces of �a and �b , respectively, including the cases raD∅
or rb D∅. Then the diagram

N �.c�aCbC1/
˛
//

Res
��

N �.c�a/˝N �.c�b/

Res
��

N �.craCbC1/
˛
// N �.cra/˝N �.crb/

commutes, where the two vertical maps are given by the restriction map. To verify this
assertion, we consider two faces, Fa of ra and Fb of rb , and check the commutativity
for the cochain 1c.Fa�Fb/ , the other cases being similar:

Res.˛.1c.Fa�Fb///D Res.1cFa
˝ 1cFb

/D 1cFa
˝ 1cFb

D ˛.1c.Fa�Fb//D ˛.Res.1c.Fa�Fb///:

Now, comes the differential. Let L be a finite simplicial complex endowed with a
partial order of its vertices such that the vertices of any simplex are simply ordered.
In the cone cL, the cone point is the greatest element. In the sequel, we adopt the
following; see [22, page 292].

Steenrod’s convention

A symbol, such as F , G or r , will denote, ambiguously, either .1/ a simplex of L, or
.2/ the array of vertices of the simplex ordered as in L, or .3/ the orientation of the
simplex determined by this order, or .4/ the elementary cochain which attaches C1 to
this oriented simplex and 0 to all others. The ambiguity can usually be resolved by
examining the context in which the symbol is used.

Algebraic & Geometric Topology, Volume 16 (2016)



Intersection cohomology and Steenrod squares 1891

With this convention, the definition of ˛W N �.c�aCbC1/! N �.c�a/˝N �.c�b/

can be written as8<:
˛.c.Fa �Fb//D cFa˝ cFb the cases Fa D∅ and Fb D∅ being included,
˛.Fa �Fb/D cFa˝Fb if Fb ¤∅; the case Fa D∅ being included,
˛.Fa/D Fa˝ vbCFa˝Vb;

where Vb denotes the sum of the vertices of �b . The definition of the coboundary
with this convention is also specified in [22, page 296]. Let Fa D .a0; : : : ; ak/ be
a nonempty face of a simplex �a ; we denote by cFa D .a0; : : : ; ak ; va/ the face
obtained from the adjunction of the cone point va . It is important to observe that, in
this setting, the differential of a face F (viewed as a cochain) depends on the simplicial
complex in which we do the computation. For instance, the differentials ıa in �a and
ıca in c�a are linked by 8<:

ıca.cFa/D c.ıaFa/;

ıcaFa D ı
aFaC cFa;

ıcava D cVa;

where Va is the sum of the vertices of �a . If Fb is a nonempty face in �b , the
differential ıa�b in �a ��b is defined by8<:

ıa�b.Fa �Fb/D .ı
aFa/�FbCFa � .ı

bFb/;

ıa�bFa D ı
aFaCFa �Vb;

ıa�bFb D Va �FbC ı
bFb:

The differential on c.�a ��b/D .c�a/��b can be deduced from the combination
of the previous equalities; we denote it by ıc.a�b/ . We make the notations uniform by
setting ıca˝cb and ıca˝b to the product differentials on N �.c�a/˝N �.c�b/ and
N �.c�a/˝N �.�b/, respectively. We now verify the compatibility of ˛ with the
differentials by considering the various cases:

� Suppose Fa ¤∅ and Fb ¤∅:

.ıca˝cb/.˛.c.Fa �Fb///D .ı
ca˝cb/.cFa˝ cFb/

D ıca.cFa/˝ cFbC cFa˝ ı
cb.cFb/

D cıaFa˝ cFbC cFa˝ cıbFb

D ˛.c..ıaFa/�Fb//C˛.c.Fa � .ı
bFb///

D ˛.c.ıa�b.Fa �Fb///

D ˛.ıc.a�b/c.Fa �Fb//;
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.ıca˝cb/˛.Fa �Fb/D .ı
ca˝cb/.cFa˝Fb/

D .ıcacFa/˝FbC cFa˝ .ı
cbFb/

D .cıaFa/˝FbC cFa˝ .ı
bFb/C cFa˝ cFb

D ˛..ıaFa/�Fb/C˛.Fa � .ı
bFb//C˛.c.Fa �Fb//

D ˛.ıa�b.Fa �Fb/C c.Fa �Fb//

D ˛.ıc.a�b/.Fa �Fb//:

� Suppose Fa ¤∅ and Fb D∅:

.ıca˝cb/˛.cFa/D .ı
ca˝cb/.cFa˝ vb/D .ı

cacFa/˝ vbC cFa˝ ı
cbvb

D .cıaFa/˝ vbC .cFa/˝ cVb D ˛.c.ı
aFaCFa �Vb//

D ˛.c.ıa�bFa//D ˛.ı
c.a�b/cFa/;

.ıca˝cb/˛.Fa/D .ı
ca˝cb/.Fa˝ vbCFa˝Vb/

D ıcaFa˝ .vbCVb/CFa˝ ı
cb.vbCVb/

D .ıaFa/˝ .vbCVb/C cFa˝ vbC cFa˝VbC 0

D ˛.ıaFa/C˛.cFa/C˛.Fa �Vb/

D ˛.ıcaFaC cFa/

D ˛.ıc.a�b/Fa/:

(We have used ıcaFa D ı
aFaC cFa and ıcb.vbCVb/D 0. For the last one, observe

that vbCVb is the nontrivial cocycle in degree 0.)

� Suppose Fa D∅ and Fb ¤∅:

.ıca˝cb/˛.cFb/D .ı
ca˝cb/.va˝ cFb/D cVa˝ cFbC va˝ cıbFb

D ˛.c.Va �Fb//C˛.cı
bFb/D ˛.cı

a�bFb/

D ˛.ıc.a�b/cFb/;

.ıca˝cb/˛.Fb/D .ı
ca˝cb/.va˝Fb/D cVa˝FbC va˝ ı

cbFb

D cVa˝FbC va˝ ı
bFbC va˝ cFb

D ˛.Va �Fb/C˛.ı
bFb/C˛.cFb/

D ˛.ıc.a�b/Fb/:

Algebraic & Geometric Topology, Volume 16 (2016)



Intersection cohomology and Steenrod squares 1893

� Suppose Fa D Fb D∅:

.ıca˝cb/˛.c∅/D .ıca˝cb/.va˝ vb/D cVa˝ vbC va˝ cVb

D ˛.cVaC cVb/D ˛.cVaCbC1/

D ˛.ıc.a�b/c∅/:

As for the map ˇW N �.�aCbC1/!N �.c�a/˝N �.�b/, its description with Steen-
rod’s convention is written:�

ˇ.Fa �Fb/D cFa˝Fb if Fb ¤∅; the case Fa D∅ being included,
ˇ.Fa/D Fa˝Vb:

The proof of its compatibility with restriction maps is totally similar to the proof done
for ˛ . Therefore, we are reduced to check the compatibility of ˇ with the differentials.
As before, we list the different cases:

� Suppose Fa ¤∅ and Fb ¤∅:

.ıca˝b/.ˇ.Fa �Fb//D .ı
ca˝b/.cFa˝Fb/D .ı

cacFa/˝FbC cFa˝ .ı
bFb/

D .cıaFa/˝FbC cFa˝ .ı
bFb/

D ˇ..ıaFa/�Fb/Cˇ.Fa � .ı
bFb//

D ˇ.ıa�b.Fa �Fb//:

� Suppose Fa ¤∅ and Fb D∅:

.ıca˝b/.ˇ.Fa//D .ı
ca˝b/.Fa˝Vb/D .ı

caFa/˝VbCFa˝ .ı
bVb/

D .ıaFa/˝VbC .cFa/˝VbC 0D ˇ.ıaFaCFa �Vb/

D ˇ.ıa�bFa/:

� Suppose Fa D∅ and Fb ¤∅:

.ıca˝b/.ˇ.Fb//D .ı
ca˝b/.va˝Fb/D .cVa/˝FbC va˝ .ı

bFb/

D ˇ.Va �Fb/Cˇ.ı
bFb/D ˇ.ı

a�bFb/:

Proof of Lemma 7.3 The compatibilities with restriction maps and differentials being
local, they are direct consequences of Lemma 7.2. We now study the behavior of �i
with the perverse degrees.

We continue with Steenrod’s convention and begin with the expression of the perverse
degree in this context. Let F D F0˝ � � �˝Fn be a tensor product of nonempty faces
in z�D c�j0 � � � � � c�jn�1 ��jn . In Steenrod’s convention, we do not distinguish
between F and the tensor product of cochains, 1F0

˝ � � �˝ 1Fn
. We observe that, if a
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face Fk of c�jk is not included in �jk , then the cochain 1Fk
restricts to 0 on the

subcomplex �jk � f1g of c�jk . Therefore, by Definition 1.2, the perverse degree
of F is given by

kF0˝ � � �˝Fnk` D

�
�1 if Fn�` 6��

jn�` ;

jFn�`C1jC � � �C jFnj if Fn�` ��
jn�` ;

for any ` 2 f1; : : : ; ng. A similar definition occurs for the blow-up e�.i/ of �.i/.

As �i is compatible with the differentials, it is sufficient to prove that the image of a
xp–admissible cochain is xp–admissible. Let r Dr0˝� � �˝rn be a tensor product of
faces of e�.i/ such that

kr0˝ � � �˝rnk` � xp.`/ for any ` 2 f1; : : : ; ng:

As we are dealing with �.i/ (see (6)), we have ri D c∅ and, with the notations of
(7), ˆij .Œv�/D 1. Thus,

�i.r0˝� � �˝rn/D

�
r0˝ � � �˝ri�1˝˛.riC1/˝riC2˝ � � �˝rn; if i ¤ n� 1;

r0˝ � � �˝rn�2˝ˇ.rn/; if i D n� 1:

The morphisms ˛ and ˇ preserving the dimension of faces, it is sufficient to consider
the following cases:

� Suppose i ¤ n� 1 and n� `D i . Then `¤ 1, and we have

k�i.r0˝ � � �˝rn/k`

D

8<:�1
if riC1 Dra �rb with rb ¤∅;
or if riC1 D c.ra �rb/;

max.jvj; jV j/Cjrn�`C2jC � � �C jrnj if riC1 Dra;

� kr0˝ � � �˝rnk`�1 � xp.`� 1/� xp.`/:

We have used here that the perversity xp is order-preserving and jvj D jV j D 0

in c�jn�`C1 .

� Suppose i ¤ n� 1 and n� `D i C 1. We have

k�i.r0˝ � � �˝rn/k` D

�
�1 if riC1 D c.ra�rb/;

jrn�`C1jC � � �C jrnj if riC1 Dra�rb or riC1 Dra;

� kr0˝ � � �˝rnk` � xp.`/:

� Suppose i D n� 1 and `D 1. We have

k�i.r0˝ � � �˝rn/k1 D

�
�1 if rn Dra �rb with rb ¤∅;
jV j if rn Dra;

� 0D xp.1/:
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Steenrod’s definition of cupi –products

Let L be a finite simplicial complex endowed with a partial order of its vertices
such that the vertices of any simplex are simply ordered. Let F D .a0; : : : ; ak/ and
G D .b0; : : : ; b`/ be two (ordered) simplices of L, and let i � 0 be an integer. The
ordered pair .F;G/ is called i –regular if F and G have exactly .i C 1/ vertices in
common, .c0; : : : ; ci/, such that

� c0 D b0 ,

� cj and cjC1 are adjacent in F if j is even and adjacent in G if j is odd, for
all 0� j < i ,

� ci is the last vertex of F if i is even and the last vertex of G if i is odd.

Denote by F0 the face of F spanned by its vertices lower than or equal to c0 and
by F2j the face of F spanned by its vertices greater than or equal to c2j�1 and lower
than or equal to c2j , (0< 2j � i ). If i is odd, let FiC1 be the face of F spanned by
its vertices greater than or equal to ci . We do a similar decomposition for G , denoting
by G2jC1 (1 � 2j C 1 < i C 1) the face of G spanned by its vertices greater than
or equal to c2j and lower than or equal to c2jC1 . If i is even, let GiC1 be the face
spanned by the vertices greater than or equal to ci . This gives the decompositions

F D F0 �F2 � � � � �F2s and G DG1 �G3 � � � � �G2sC.�1/i ;

with 2s D i if i is even and 2s D i C 1 if i is odd.

Now, we denote by G02jC1 the face of G2jC1 obtained by deleting the vertices c2j

and c2jC1 . Moreover, if i is even, let G0
iC1

be the face of GiC1 obtained by deleting ci .

Definition 7.4 We define F [i G D 0 in the group of .kC`�i/–cochains, if the
couple .F;G/ is not i –regular, and otherwise, by

F [i G D F0 �G01 �F2 �G03 � � � � �

�
G0

iC1
if i is even;

FiC1 if i is odd:

Example 7.5 We give an illustration of the cases i even and i odd in low dimensions.

(1) The pair .F D .a0; : : : ; ak/;G D .b0; : : : ; b`// is 0–regular if ak D b0 . We write
their vertices as follows:

F W a0 ak

GW b0 b`
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By definition, F [0 G D .a0; : : : ; ak ; b1; : : : ; b`/ is the (classical) cup-product.

(2) The pair .F;G/ is 1–regular if they have two common vertices .c0; c1/ such that
the vertices of F and G can be put in two lines, as follows:

F W a0 ak0
D c0 ak0C1 D c1 ak

GW b0 D c0 b` D c1

By definition, F [1 G D .a0; : : : ; ak0
; b1; : : : ; b`�1; ak0C1; : : : ; ak/.

(3) The pair .F;G/ is 2–regular if they have three common vertices .c0; c1; c2/ such
that the vertices of F and G can be put in two lines as:

F W a0 ak0
D c0 ak0C1 D c1 ak D c2

GW b0 D c0 b`1
D c1 b`1C1 D c2 b`

By definition, F [2 G D .a0; : : : ; ak0
; b1; : : : ; b`1�1; ak0C1; : : : ; ak ; b`1C2; : : : ; b`/.

For the convenience of the reader, we recall the next statement of Steenrod, written
with the notation of this paper.

Proposition 7.6 [22, Theorem, page 295] The Steenrod squares satisfy:

(1) F [i .cG/D

�
c.F [i G/ if i is even,
0 if i is odd,

(2) .cF /[i G D

�
0 if i is even,
c.F [i G/ if i is odd,

(3) .cF /[i .cG/D c.F [i�1 G/.

The domains of the functions ˛ and ˇ are the euclidean simplices �aCbC1D�a��b

and c.�a ��b/. Therefore, we need to study the cupi –products in these complexes.
The case of the cone c.�a ��b/ can be deduced from the first one, �aCbC1 , with
Proposition 7.6. We order the vertices of �aCbC1 such that any vertex of �a is lower
than any vertex of �b . Also, the cone point v is the greatest element of the set of
vertices. Recall from (3) the notation

F [
j
i G D

�
F [i G if j is even,
G [i F if j is odd.
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Lemma 7.7 Let Fa and Ga be (nonempty) faces of �a , and let Fb and Gb be
(nonempty) faces of �b. For any i > 0, we have, in �a ��b ,

(11) .Fa �Fb/[i .Ga �Gb/D
X

i1Ci2Di�1

.Fa[i1
Ga/� .Fb [

i1C1
i2

Gb/:

Note that the right-hand side of the equality (11) has at most one nonzero term.

If we set �[�1�D 0, the right hand side of (11) is equal to zero in the case i D 0.
Note also that Fa and Gb cannot have a common vertex, and neither can Fb and Ga .
Therefore, with the hypotheses of Lemma 7.7, the simplices Fa �Fb and Ga �Gb

cannot have exactly one vertex in common and respect the convention on the order of
the vertices. As a consequence, the equality (11) is also true for i D 0, with the two
sides equal to zero.

Proof The cupi –product of F D Fa �Fb and G D Ga �Gb is not zero only if F

and G have .i C 1/ vertices in common. Denote by .x C 1/, with 0 � x � i , the
number of vertices in common for Fa and Ga . Thus Fb and Gb have .i �x/ vertices
in common. We also observe that the only nonzero term of the right-hand side of (11)
corresponds to i1 D x .

Suppose i is even and x is odd. With the previous notation, we decompose

Fa D Fa;0 � � � � �Fa;xC1 and Ga DGa;1 � � � � �Ga;x;

Fb D Fb;0 � � � � �Fb;i�x�1 and Gb DGb;1 � � � � �Gb;i�x :

Thus we have

.Fa�Fb/[i .Ga�Gb/D Fa;0�G0a;1�� � ��G0a;x �Fa;xC1�Fb;0�G0b;1�� � ��G0b;i�x

D .Fa[x Ga/�.Fb[i�x�1 Gb/

D .Fa[x Ga/�.Fb[
xC1
i�x�1

Gb/:

Now suppose i is even and x is even. We decompose

Fa D Fa;0 � � � � �Fa;x and Ga DGa;1 � � � � �Ga;xC1:

Thus we have
Fa[x Ga D Fa;0 �G0a;1 � � � � �Fa;x �G0a;xC1:

Note that Fa[x Ga contains all the vertices of F[i G belonging to �a . The first vertex
in common between Fa and Ga is the first vertex of Ga . The number of common
points in �a being the odd number xC 1, the last vertex of �a in common must be
the last vertex of Fa . Therefore, the first vertex of �b in common is the first vertex
of Fb . (See Example 7.8 for an illustration of this argument.) Thus, for writing this
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final part of vertices in F [i G as a cupi�x�1 –product, we have to decompose Fb

and Gb as

Gb DGb;0 � � � � �Gb;i�x and Fb D Fb;1 � � � � �Fb;i�x�1:

We deduce

.Fa�Fb/[i .Ga�Gb/D Fa;0�G0a;1�� � ��G0a;xC1�Gb;0�F 0b;1�� � ��F 0b;i�x�1�Gb;i�x

D .Fa[x Ga/�.Gb[i�x�1Fb/

D .Fa[x Ga/�.Fb[
xC1
i�x�1

Gb/:

In the case where i is odd, the conclusion is obtained with totally similar arguments.

Example 7.8 We specialize, with x D 2, the argument from the previous proof. Let

Fa �Fb D .f
a

0 ; : : : ; f
a
` /� .f

b
0 ; : : : ; f

b
k /

and
Ga �Gb D .g

a
0 ; : : : ;g

a
u/� .g

b
0 ; : : : ;g

b
v /:

The following diagram represents

.Fa �Fb/[i .Ga �Gb/D .Fa[2 Ga/� .Fb [
3
i�3 Gb/D .Fa[2 Ga/� .Gb [i�3 Fb/ W

Fa �FbW f a
0

f a
`

f b
0

Ga �GbW ga
ugb

0

Proposition 7.9 Let X be an n–dimensional PL-pseudomanifold, and let xp and xq
be GM-perversities. Then the quasi-isomorphism �W zN �

�
.X �/! zN �

�
.X / induced by

�W X !X � is compatible with the cupi –products, ie

�.ˆ[i ‰/D �.ˆ/[i �.‰/;

for any i � 0, ˆ 2 zN r
xp .X

�/, ‰ 2 zN s
xq .X

�/ and ˆ[i ‰ 2 zN
rCs�i
xp˚xq .X �/.

As cupi –products on zN �.�/ are defined locally, it is sufficient to do the proof for an
elementary amalgamation. Thus Proposition 7.9 is a direct consequence of the next
lemma.

Lemma 7.10 The two morphisms ˛W N �.c�aCbC1/!N �.c�a/˝N �.c�b/ and
ˇW N �.�aCbC1/!N �.c�a/˝N �.�b/ are compatible with the cupi –products.
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Proof Consider the faces F D Fa �Fb and G DGa �Gb of �aCbC1 .

� First suppose that Fa ¤ ∅, Fb ¤ ∅, Ga ¤ ∅ and Gb ¤ ∅, and begin with the
map ˇ . We have to prove

(12) ˇ..Fa �Fb/[i .Ga �Gb//D ˇ.Fa �Fb/[i ˇ.Ga �Gb/:

From Lemma 7.7 and the definition of ˇ , we get

ˇ..Fa �Fb/[i .Ga �Gb//D
X

i1Ci2Di�1

.c.Fa[i1
Ga/˝ .Fb [

i1C1
i2

Gb/:

On the other side, we have

ˇ.Fa �Fb/[i ˇ.Ga �Gb/D.1/ .cFa˝Fb/[i .cGa˝Gb/

D.2/

iX
kD0

.cFa[k cGa/˝ .Fb [
k
i�k Gb/

D.3/

iX
kD1

c.Fa[k�1 Ga/˝ .Fb [
k
i�k Gb/

D

X
i1Ci2Di�1

.c.Fa[i1
Ga//˝ .Fb [

i1C1
i2

Gb/;

where D.1/ is the definition of ˇ , D.2/ comes from the structure of an E.2/–algebra on
a tensor product of E.2/–algebras, recalled in Section 2, and D.3/ is [22, Formula (4.3)],
recalled in Proposition 7.6.

� With the same restriction, Fa ¤ ∅, Fb ¤ ∅, Ga ¤ ∅ and Gb ¤ ∅, we now
study the map ˛ . The arguments are coming from Lemma 7.7, from the structure of
E.2/–algebra on a tensor product and from Proposition 7.6, as before. In the sequel,
we use them without an explicit recall. We have only to study the cases where one
of the faces contains the cone point, the other cases being already verified when we
considered the map ˇ .

(i) Let c.Fa �Fb/ and c.Ga �Gb/ be faces of c�aCbC1 . Then we have

˛.c.Fa �Fb/[i c.Ga �Gb//D ˛.c..Fa �Fb/[i�1 .Ga �Gb///

D ˛

�
c

� X
i1Ci2Di�2

.Fa[i1
Ga/� .Fb [

i1C1
i2

Gb/

��
D

X
i1Ci2Di�2

c.Fa[i1
Ga/˝ c.Fb [

i1C1
i2

Gb/;
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and

˛.c.Fa �Fb//[i ˛.c.Ga �Gb//D .cFa˝ cFb/[i .cGa˝ cGb/

D

iX
kD0

.cFa[k cGa/˝ .cFb [
k
i�k cGb/

D

i�1X
kD1

c.Fa[k�1 Ga/˝ c.Fb [
k
i�k�1 Gb/

D

X
i1Ci2Di�2

c.Fa[i1
Ga/˝ c.Fb [

i1C1
i2

Gb/:

The compatibility with cupi –products is proved for these faces.

(ii) Let c.Fa �Fb/ and .Ga �Gb/ be faces of c�aCbC1 . We have to prove that

(13) ˛.c.Fa �Fb/[i .Ga �Gb//D ˛.c.Fa �Fb//[i ˛.Ga �Gb/:

First observe that ˛.c.Fa�Fb/[i .Ga�Gb//D0 if i is even; see Proposition 7.6.
We now study the cupi –product of the images under ˛ :

˛.c.Fa �Fb//[i ˛.Ga �Gb/D .cFa˝ cFb/[i .cGa˝Gb/

D

iX
kD0

.cFa[k cGa/˝ .cFb [
k
i�k Gb/:

We study the last right-hand side term in the case where i is even.
– If k is even, then .cFb [

k
i�k

Gb/D cFb [i�k Gb D 0 since i � k is even.
– If k is odd, then .cFb [

k
i�k

Gb/DGb [i�k cFb D 0 since i � k is odd.

Thus (13) is satisfied for i even.
Suppose now that i is odd. The left-hand side of (13) can be expanded as

˛.c.Fa �Fb/[i .Ga �Gb//D ˛.c..Fa �Fb/[i .Ga �Gb///

D ˛

�
c

� X
i1Ci2Di�1

.Fa[i1
Ga/� .Fb [

i1C1
i2

Gb/

��
D

X
i1Ci2Di�1

c.Fa[i1
Ga/˝ c.Fb [

i1C1
i2

Gb/:

We now consider the expression of the right-hand side of (13) already obtained:

iX
kD0

.cFa[k cGa/˝ .cFb [
k
i�k Gb/:

Algebraic & Geometric Topology, Volume 16 (2016)



Intersection cohomology and Steenrod squares 1901

– For k even, i�k is odd, so .cFb[
k
i�k

Gb/D cFb[i�k GbD c.Fb[i�k Gb/.
– For k odd, i�k is even, so .cFb[

k
i�k

Gb/DGb[i�k cFbD c.Gb[i�k Fb/.

In conclusion, we have proved that cFb [
k
i�k

Gb D c.Fb [
k
i�k

Gb/ and

˛.c.Fa �Fb//[i ˛.Ga �Gb/D

iX
kD1

c.Fa[k�1 Ga/˝ c.Fb [
k
i�k Gb/

D

X
i1Ci2Di�1

c.Fa[i1
Ga/˝ c.Fb [

i1C1
i2

Gb/:

We have established the compatibility with cupi –products in this case.

(iii) Let .Fa �Fb/ and c.Ga �Gb/ be faces of c�aCbC1 . This situation is similar
to the previous one.

� We now consider the case where at least one of the subsets, Fa , Fb , Ga and Gb , is
the empty set, and we begin with the map ˇ . The verification follows the same routine
as above, but we cannot apply Lemma 7.7 in this situation. Therefore, we prove the
compatibility with a direct computation of the two sides of the equality (12). We list the
different possibilities with the values of the left-hand side (LHS) and of the right-hand
side (RHS). If Fa D Fb D∅ or Ga DGb D∅, the expressions become trivial and we
may focus on the cases below.

Before doing these verifications, we note that Va is a chain of vertices and, if Fa ��
a

is given, one (and only one) of theses vertices, say at , is the first vertex of Fa . This
implies Va[0 FaD .at /[0 FaDFa . Similarly, we have Fa[0 VaDFa , and Va acts
as a neutral element for �[0�. Also, as va =2Fa , we have va[0 FaDFa[0 vaD 0.

(1) Fa D∅, Fb ¤∅, Ga D∅, Gb ¤∅.

LHSD ˇ.Fb [i Gb/D va˝ .Fb [i Gb/:

RHSD .va˝Fb/[i .va˝Gb/D .va[0 va/˝ .Fb [
0
i Gb/D va˝ .Fb [i Gb/:

(2) Fa ¤∅, Fb D∅, Ga ¤∅, Gb D∅.

LHSD ˇ.Fa[i Ga/D .Fa[i Ga/˝Vb:

RHSD .Fa˝Vb/[i .Ga˝Vb/D .Fa[i Ga/˝ .Vb [
i
0 Vb/D .Fa[i Ga/˝Vb:

(3) Fa ¤∅, Fb D∅, Ga D∅, Gb ¤∅.

LHSD ˇ.Fa[i Gb/D 0:

RHSD .Fa˝Vb/[i .va˝Gb/D 0;

because Fa[k va D 0 for any k .
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(4) Fa D∅, Fb ¤∅, Ga ¤∅, Gb D∅.

LHSD ˇ.Fb [i Ga/D 0:

RHSD ˇ.Fb/[i ˇ.Ga/D .va˝Fb/[i .Ga˝Vb/D 0;

because va[k Ga D 0 for any k .

(5) Fa D∅, Fb ¤∅, Ga ¤∅, Gb ¤∅.

LHSD ˇ.Fb [i .Ga �Gb//D 0;

because Fb \Ga D∅ and Ga ¤∅.

RHSD ˇ.Fb/[i ˇ.Ga �Gb/D .va˝Fb/[i .cGa˝Gb/

D .va[0 cGa/˝ .Fb [i Gb/D 0;

because the cone point va is the greatest vertex.

(6) Fa ¤∅, Fb D∅, Ga ¤∅, Gb ¤∅.

LHSD ˇ.Fa[i .Ga �Gb//

D

�
ˇ..Fa[i Ga/�Gb/D c.Fa[i Ga/˝Gb for i even;
0 for i odd:

RHSD ˇ.Fa/[i ˇ.Ga �Gb/D .Fa˝Vb/[i .cGa˝Gb/

D .Fa[i cGa/˝ .Vb [
i
0 Gb/D

�
c.Fa[i Ga/˝Gb for i even;
0 for i odd:

The nullity when i is odd comes from Proposition 7.6.

(7) Fa ¤∅, Fb ¤∅, Ga D∅, Gb ¤∅.

LHSD ˇ..Fa �Fb/[i Gb/D ˇ.Fa � .Fb [i Gb//D cFa˝ .Fb [i Gb/:

RHSD ˇ.Fa �Fb/[i ˇ.Gb/D .cFa˝Fb/[i .va˝Gb/

D .cFa[0 va/˝ .Fb [i Gb/D cFa˝ .Fb [i Gb/:

(8) Fa ¤∅, Fb ¤∅, Ga ¤∅, Gb D∅.

LHSD ˇ..Fa �Fb/[i Ga/

D

�
0 for i even;
ˇ..Fa[i Ga/�Fb/D c.Fa[i Ga/˝Fb for i odd:

RHSD ˇ.Fa �Fb/[i ˇ.Ga/D .cFa˝Fb/[i .Ga˝Vb/

D .cFa[i Ga/˝ .Fb [
i
0 Vb/D

�
0 for i even;
c.Fa[i Ga/˝Fb for i odd;

with the argument already used in the case (6).
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� The end of the proof is concerned with the map ˛ when at least one of the subsets,
Fa , Fb , Ga and Gb , is the empty set. Computations are similar to the previous ones.
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