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Links of plane curve singularities are L–space links

EUGENE GORSKY

ANDRÁS NÉMETHI

We prove that a sufficiently large surgery on any algebraic link is an L–space. For
torus links we give a complete classification of integer surgery torus links we give a
complete classification of integer surgery coefficients providing L–spaces.

14H20, 57M27

Definition 1 A 3–manifold Y is called an L–space if it is a rational homology
sphere and its Heegaard–Floer homology has minimal possible rank: rankbHF.Y /D
jH1.Y;Z/j.

We refer the reader to Ozsváth and Szabó [17; 20; 18] for definitions of Heegaard–Floer
homology, and to Hedden [8] and Ozsváth and Szabó [19] for a detailed discussion
of the properties of L–spaces. Let K � S3 be the embedded link of a complex plane
curve singularity with r components K DK1[ � � � [Kr . The following theorem is
the main result of this note. We use it in our work [3] to compute the Heegaard–Floer
homology for algebraic links.

Theorem 2 Every algebraic link K � S3 is an L–space link. This means that an
integral surgery of S3 along the link components Ki with all coefficients sufficiently
large provides an L–space.

For r D 1, the result was proven by Hedden [8, Theorem 1.10]. Our proof is of a
different nature, is extremely short, and provides the argument uniformly for any r . It
is based on some facts from the theory of normal surface singularities and plumbed
3–manifolds. For plumbing calculus, which modifies the possible graph representations
of the same 3–manifold, see Neumann [15]. We will need the following facts:

(a) A connected negative-definite plumbing graph is called a smooth graph if by
consecutively blowing down .�1/–vertices, we can blow down the graph to the empty
graph. Such a graph represents S3 . When we resolve plane curve singularities and
blow up .C2; 0/ in several infinitely near points, we obtain such a graph.

(b) A surface singularity is rational if its geometric genus is 0. This property can be
verified at the level of its negative-definite plumbing graph (such a graph is called a
rational graph); see Artin [1; 2] and Laufer [11].

Published: 12 September 2016 DOI: 10.2140/agt.2016.16.1905

http://msp.org
http://www.ams.org/mathscinet/search/mscdoc.html?code=14H20, 57M27
http://dx.doi.org/10.2140/agt.2016.16.1905


1906 Eugene Gorsky and András Némethi

s
s
bn

b1

HH��

HH�� :::

��1

��1

PPq

PPq

:::

:::

s
s
bn

b1

HH��

HH�� ::: s
s
cn

c1

HH��

HH�� :::

��PP

��PP s
s

s
s

s
s

s
s
s
s

s
s

s
s

s
s

� � �

� � �

� � �

� � �

�1

�1

�1

�1

Figure 1: The graphs �K ; �0 and z�0

If we blow up a rational graph, we in turn obtain a rational graph. Any subgraph of
a rational graph is rational; see eg Laufer’s criterion [11]. Since smooth graphs are
rational, subgraphs of smooth graphs are rational (these are called sandwiched graphs;
see Spivakovsky [21]). The following remark describes two useful consequences of
Laufer’s criterion.

Remark 3 (cf Spivakovsky [21, Remark 2.3, Proposition 2.4]) For each vertex v of
the negative-definite plumbing graph � , define w.v/D�.Ev; Ev/, where Ev is the
corresponding curve. Let 
.v/ denote the valency of v in � .

(a) If � is rational, then w.v/� 
.v/� 1 for all v .

(b) If w.v/ � 
.v/ for all v , then � is rational (and, in fact, sandwiched). Such
graphs are called minimal rational.

A key ingredient in the proof of Theorem 2 is the following result.

Theorem 4 (Némethi [14, Theorems 6.3, 8.3]) A 3–manifold plumbed from a
rational graph is an L–space.

Let C D C1[ � � � [Cr �C2 be the plane curve singularity corresponding to K , such
that the link of the irreducible component Ci is the knot Ki � S

3 . The possible
minimal embedded resolution (plumbing) graphs of complex plane curve singularities
are well known. We will represent such a graph in a schematic way by the graph �K

shown in Figure 1, emphasizing only those exceptional curves, say E1; : : : ; En , which
intersect one or more strict transform components. The strict transform components
are encoded by arrowheads. The number of arrowheads supported by Ei is ai , and
the self-intersection number of Ei is bi (1� i � n). Definitely, some of bi ’s are �1.

If we delete the arrowheads, we get a smooth graph �0 (the second graph in Figure 1).
If we blow up �0 a few times (starting with Ei ’s and continuing with the newly created
.�1/–vertices), we obtain another graph z�0 , which is again smooth. This is the third
graph in Figure 1. The unmarked vertices are .�2)–vertices, and ci D bi � ai . The
length of the newly created legs can be different: the number of .�2/–vertices in the
.i; j /th leg is .kij � 1/, where kij � 1 for all 1� i � n, 1� j � ai .
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Figure 2: The graph � , where kij � 1 for all 1� i � n; 1� j � ai

Lemma 5 For kij � 1, the 3–manifold represented by the graph � shown in Figure 2
is an L–space.

Proof By plumbing calculus (blowing up several times the right-most edges), � is
equivalent to the graph � 0 obtained from the smooth graph z�0 by deleting the .�1/–
vertices from the end of the new legs. Hence � 0 is a subgraph of a smooth graph, thus
it is rational. In particular, it represents an L–space.

Proof of Theorem 2 Suppose that the plane curve singularity corresponding to K is
given by the equation

˚Q
i;j fij .x; y/D 0

	
. Consider a positive surgery on S3 along

the link K , where the surgery coefficient for the component Kij equals dij . It is
known that S3

fdij gij
.K/ is a plumbed 3–manifold with the plumbing graph � , such

that the parameters kij are defined by the equation kij D dij �mi , where mi are the
multiplicities of the pullback of fij on the divisor Ei . For dij >mi the surgery space
is an L–space by Lemma 5.

Remark 6 (a) The above bound kij � 1 is not optimal, usually one can find a
collection of numbers Bij less than 1, such that all the surgeries with coefficients
kij � Bij provide L–spaces. But for the coefficients Bij D 1 the proof is extremely
transparent (and, for smaller coefficients, singularity theory is harder to apply).

(b) If ai D 1 for all i , then one can take ki1 � 0, and the surgery manifold is still an
L–space. For example, if we take all of them equal to zero, then � is equivalent to
a graph obtained from � by deleting the 0–vertices and the supporting Ei –vertices.
This graph is not connected, but each component is a subgraph of a smooth graph.
Hence the corresponding 3–manifold is a connected sum of L–spaces, which is again
an L–space. The proof of the general case ki1 � 0 (with ai D 1) is a combination of
this argument and the proof of Theorem 2.

(c) It is known that all algebraic knots (with one component) can be presented as
iterated cables of the trivial knot. Hedden [8] proved that the pq surgery of S3 along
an algebraic knot is an L–space, where p and q are the parameters of the last cabling.
One can check that pq Dm1 in this case. See also Hom [9] for a complete description
of L–space surgeries of cable knots.

Algebraic & Geometric Topology, Volume 16 (2016)



1908 Eugene Gorsky and András Némethi

s
s s�
��

HH
H

�
��
-

@
@R�2

�3 �1

Figure 3: Plumbing graph for the singularity x6Cy9 D 0

It turns out that the set of all surgeries on a link providing an L–space has an interesting
structure. This is a new phenomenon compared with the irreducible case, where (eg
by Hom [9]) a d –surgery on a nontrivial L–space knot K provides an L–space if
and only if d � 2g.K/� 1, and hence d runs in a half line. The following theorem
provides a description of L–space surgery coefficients for torus links.

Theorem 7 Let p; q > 1 be two coprime integers, r � 1 and .d1; : : : ; dr/ 2 Zr .
Assume that di ¤ pq˙ 1 for all i . Then .d1; : : : ; dr/–surgery on .pr; qr/–torus link
is an L–space if and only if the surgery space is a rational homology sphere and one of
the following conditions hold:

(a) di D pq for some i,

(b) di > pqC 1 for all i,

(c) di < pq� 1 for all i and max.di /� pq�p� q .

Remark 8 It is easy to see that di D dj D pq for i ¤ j yields infinite H1 for the
surgery space, so Theorem 7(a) can only be true for exactly one i .

Remark 9 The surgeries with di D pq˙1 can also be studied by a (rather long) case
by case analysis. In particular, consider the following cases (not an exhaustive list):

(a) The .pq˙ 1; d/–surgery on .2p; 2q/–torus link is an L–space for all d .

(b) The .pq C 1; pq � 1; d3; : : : ; dr/–surgery on .pr; qr/–torus link coincides
with .d3; : : : ; dr/ surgery on .p.r � 2/; q.r � 2//–torus link. In particular,
.pqC1; pq�1; d/–surgery on a .3p; 3q/–torus link is an L–space if and only
if d � pq�p� q .

Proof The plumbing graph of the surgery space can be described as above, with
ki D di �pq ; see Figure 3 for the case of the .6; 9/–torus link with three components,
and also Kadokami and Shimozawa [10] for more details. It is star-shaped, so the
surgery space Y WD S3

d
.L/ is Seifert fibered. By Neumann [16], the intersection

matrix for the Neumann normal form is negative-definite either for Y or for �Y . Any
negative-definite Seifert graph is almost rational in the sense of Némethi [14], so it
represents an L–space if and only if it is rational.

If di D pq then ki D 0 and the surgery space is a connected sum of lens spaces. From
now on we will assume that ki … f�1; 0; 1g for all i .
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If ki > 1 for all i , then we get an L–space by Lemma 5. Suppose that the ki have
different signs, for example k1 > 0 and k2 < 0. To obtain the normal form of Y , one
must blow up the vertices with positive ki , of which there are at most r � 1, so the
self-intersection of the central vertex in the normal form is greater than or equal to
�1� .r � 1/D�r , while its valency is r C 2. To obtain the normal form of �Y , one
reverses all signs and blows up all positive vertices (at most r C 1 of them), so the
self-intersection of the central vertex is greater than or equal to 1� .rC1/D�r . If Y
is an L–space, either Y or �Y should be a negative-definite rational graph, which
contradicts Remark 3(a).

Finally, suppose that ki < 0 for all i . In this case we can use a theorem of Lisca and
Stipsicz [12] describing Seifert fibered L–spaces. Suppose that

1� ˛1 � ˛2 � � � � � ˛rC2 � 0

are the Seifert invariants of singular fibers, and the central vertex has self-intersection
.�1/. Then the corresponding 3–manifold is an L–space if and only if there are no
coprime integers .l; m/ such that

(1) m˛1 < l < m.1�˛2/ and m˛i < 1 for i � 3:

One can check that in our situation ˛1 and 1� ˛2 are two neighboring fractions in
the sense of Farey series (ie ˛1 D a=p and 1�˛2 D b=q with aq� bp D˙1), and
˛i D 1=jki�2j for i � 3.

It is well known (see eg Graham, Knuth and Patashnik [5, Section 4.5]) that the
fraction .aC b/=.pC q/ has the least possible denominator among rational numbers
between a=p and b=q . Therefore if ki � �p � q for some i , then (1) cannot be
satisfied and Y is an L–space; if ki < �p� q for all i , then .l; m/D .aC b; pC q/
satisfies (1) and Y is not an L–space.

Example 10 For r D 1 the conditions of Theorem 7 are equivalent to the inequality
d1 � pq�p� q D 2g.T .p; q//� 1, which also follows from Hom [9].

Example 11 Consider the case r D 2. The set of all pairs .d1; d2/ providing an
L–space is shown in grey in Figure 4. The point .pq; pq/ (marked by a star) provides
a surgery with infinite first homology and should be excluded. See also Liu [13,
Proposition 6.3 and Figure 6.1] for the set of L–space surgeries on .2; 2n/ torus links
and our previous work [4] for a discussion of this set for more general L–space links.

Theorem 2 can be reinterpreted as follows: start with a negative definite nonminimal
plumbing graph �0 of S3 , put some arrows on the vertices, and regard them as link
components of K in S3 . Then the surgery manifold with all sufficiently large surgery
coefficients is an L–space.
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Figure 4: Possible L–space surgery coefficients for .2p; 2q/ torus link,
where � marks .pq; pq/

The proof works entirely unmodified if we start with any nonminimal rational graph
of a 3–manifold M instead of S3 . If we wish to have natural well-defined surgery
properties, it is convenient to consider only the case where M is an integral homology
sphere. On the other hand, this is rather restrictive for negative-definite rational graphs,
as there are only two possibilities: M D S3 , treated above, and M D†.2; 3; 5/, the
Poincaré 3–sphere oriented as the link of the surface singularity fx2Cy3C z5 D 0g.
In particular, by identical proof we obtain the analogous theorem in this case.

Theorem 12 Consider any negative-definite nonminimal plumbing graph of † D
†.2; 3; 5/, put some arrows on the vertices, and regard them as link components of K
in †. Then the surgery manifold †.K/ for all sufficiently large surgery coefficients is
an L–space.

Characterization of surgeries on rational homology spheres involves more technical data
and identification (besides the surgery coefficients). Without doing these identifications
we mention the following. If we drop above the integral homology restriction, we
can start with any (not necessarily minimal) rational graph (this family is very large),
and the algorithm still runs; nevertheless, in this way we have to consider only those
surgeries that can be realized by the above construction (steps �0 7! z�0 7! � 0 ). For
these surgeries, the statement and the proof still holds.
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