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Rational equivariant cohomology theories with toral support

J P C GREENLEES

For an arbitrary compact Lie group G , we describe a model for rational G–spectra
with toral geometric isotropy and show that there is a convergent Adams spectral
sequence based on it. The contribution from geometric isotropy at a subgroup K of
the maximal torus of G is captured by a module over H�.BW e

G.K// with an action
of �0.WG.K// , where W e

G.K/ is the identity component of WG.K/DNG.K/=K .

55N91, 55P42, 55P91; 55P92, 55T15

1 Introduction

1A Main result

For any compact Lie group G , rational G–equivariant cohomology theories are repre-
sented by rational G–spectra. Furthermore, the category of G–equivariant cohomology
theories is the homotopy category of the category of rational G–spectra. This category
breaks up into mutually orthogonal parts, the most important of which is the toral part:
the cohomology theories are those with toral support, and the G–spectra are those
whose geometric isotropy is a set of subgroups of the maximal torus T .

In this paper we provide an effective method for calculating with toral G–spectra.
More precisely, we construct an abelian category A.G; toral/ of injective dimension
equal to the rank of G and a homology functor

�A.G/
� W G–spectra �!A.G; toral/;

so that (Theorem 12.1) there is an Adams spectral sequence

Ext�;�A.G;toral/.�
A.G/
� .X/; �A.G/

� .Y //) ŒX; Y �G�

convergent for arbitrary rational toral G–spectra X and Y . The special cases when G
is a torus, O.2/ and SO.3/ follow from earlier work (see Greenlees [8; 7; 9]).

In all cases, the model is assembled from data at individual subgroups K . The contribu-
tion from K comes from the geometric K–fixed point spectrum; this spectrum has an
action of the Weyl group WG.K/DNG.K/=K , with identity component W e

G.K/ and
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1954 J P C Greenlees

discrete quotient W d
G .K/D�0.WG.K//. When the spectrum is finite the piece of data

amounts to taking the W e
G.K/–equivariant Borel cohomology of its dual and viewing

it as a module over H�.BW e
G.K// with an action of W d

G .K/ (see Proposition 11.5
for a complete statement).

1B Background

If G is a compact Lie group, the author has conjectured (see Greenlees [10]) that one
may describe the homotopy theory of rational G–spectra in algebraic terms. There are
now a good number of examples where this has been proved, including finite groups,
tori (see Greenlees and Shipley [15]), O.2/ (see Barnes [2; 1; 3]) and SO.3/ (see
Kedziorek [17]). The results show that there is a Quillen equivalence between the
category of rational G–spectra and differential graded objects in a certain abelian
category A.G/.
The category A.G/ takes the form of a category of sheaves of modules over a sheaf of
rings on the space of closed subgroups of G : the stalk over a subgroup H captures
the geometric isotropy information at H . Many of the most interesting cohomology
theories (including K–theory and elliptic cohomology) have the property that the
geometric isotropy comes entirely from subgroups of the maximal torus. For example,
it is apparent from the groups O.2/ and SO.3/ that the part of the model corresponding
to isotropy in the maximal torus T is the most significant and interesting part. The
present paper is about this toral part for an arbitrary compact Lie group G .

To be more precise, the endomorphism ring of the rational sphere spectrum (the rational
Burnside ring A.G/) acts on the category of G–spectra, and in fact it consists of
the equivariant sections of the constant sheaf Q over the space FG of subgroups of
finite index in their normalizer. This means that A.G/D CG.FG;Q/ is the ring of
equivariant continuous functions, where FG has the Hausdorff metric topology. Any
open, closed, G–invariant subset S of FG specifies an idempotent eS 2 A.G/, and
the category of rational G–spectra and A.G/ both split into two pieces corresponding
to the decomposition 1D eS C eSc . The part corresponding to eS consists of spectra
whose geometric isotropy consists of subgroups L cotoral in elements of S (ie L is
normal in a subgroup K in S with K=L a torus). In particular, we may take S to
consist of the single conjugacy class .T / of maximal tori, and consider the category

toral-G–spectra WD e.T/ŒG–spectra=Q�

consisting of G–spectra whose geometric isotropy lies inside a maximal torus.

In general we may break up the category of rational G–spectra by choosing a finite
orthogonal decomposition of the unit of A.G/. When G is a torus, A.G/ is inde-
composable and A.G/DA.G; toral/. For G DO.2/ the category breaks up into the
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toral (or cyclic) part A.O.2/; toral/ D A.SO.2//ŒW � as described here, and a piece
corresponding to dihedral groups which is simply a graded equivariant sheaf over a
compact totally disconnected space with O.2/ as an accumulation point (see Greenlees
[7] and Barnes [2; 1; 3]). For GD SO.3/ the category again breaks up into the toral (or
cyclic) part A.SO.3/; toral/ as described here, and a piece which is simply a graded
equivariant sheaf (see Greenlees [9] and Kedziorek [17]); the graded sheaf piece also
breaks up into a piece corresponding to dihedral groups (of order 4 or more) which
have O.2/ as an accumulation point, and a piece for a number of isolated exceptional
subgroups (tetrahedral, octahedral and icosahedral). One should not expect that the
nontoral part is always a plain graded sheaf; for example, if G is the product of a
circle T and a group of order 2, A.G/ splits into the toral part A.G; toral/ (as here)
and a second part (corresponding to subgroups not inside the maximal torus) which is
similar in character to A.T /. The category of toral chains described in Greenlees [6]
gives an indication of the expected pattern in general.

1C Restriction to the maximal torus

In a pattern familiar from elsewhere in the theory of transformation groups, we will
prove that restricting from G–spectra to T –spectra is faithful on the homotopy category
of toral G–spectra provided we remember the action of the Weyl group WG . This
suggests that the putative algebraic model A.G; toral/D e.T/A.G/ for toral G–spectra
could be described in terms of the category A.T / defined in Greenlees [11]. This
idea will lead us to the construction of a category A.G; toral/ and a homology theory
on G–spectra with values in A.G; toral/. We will show that this is a good invariant
in the sense that it is calculable and gives a convergent Adams spectral sequence for
maps between toral spectra.

Consideration of the torus-normalizer N D NG.T / is central to the analysis. The
general theory simplifies for N , since the identity component is itself the maximal
torus, and we find A.N; toral/DA.T /ŒWG� (the category of WG–equivariant objects
of A.T / in a sense made precise below). We show that restriction from G–spectra
to N –spectra is full and faithful on homotopy categories. In summary, we construct a
diagram

toral-G–spectra
resG

N
//

�A.G/
�

��

toral-N–spectra
resN

T
//

�A.N/
�

��

T–spectra

�A.T/
�

��

A.G; toral/ // A.N; toral/ // A.T /

A.T /ŒWG�
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with convergent Adams spectral sequences based on each of the vertical homology
functors. Taken together with the examples mentioned above, this is strong evidence
for the conjecture that the category of toral G–spectra is Quillen equivalent to the
category of differential graded objects in A.G; toral/.

1D The form of the model of toral G –spectra

As suggested by known examples, we expect the stalk of A.G; toral/ over a subgroup K
to be a module over H�.BW e

GK/, where W e
G.K/ is the identity component of the

Weyl group WGK D NGK=K , and we expect an action of the discrete quotient
W d
GK D �0.WGK/. More precisely, we expect a module over the twisted group ring

RGtw.K/DH
�.BW e

GK/ŒW
d
GK�:

Understanding the restriction from G–spectra to N –spectra involves some rather
interesting pieces of invariant theory.

The relationship between the stalks is given by the localization theorem for cotoral
inclusions. If G D T is a torus and L is cotoral in K then we have a group homomor-
phism WGLD T=L! T=K DWGK which forms the basis of this. For a general
group G we cannot expect a map NGL!NGK (consider LD 1), so we think of rings
and modules associated to cotoral flags of subgroups, and this restores functoriality.
We recall how this works for tori in the next subsection.

1E The model for T –spectra

We sketch the construction of the model A.T / for rational T –spectra, referring to
Greenlees [14] for fuller details (the model described here is the .a; f /–model, based
on flags involving all closed subgroups). The starting point of the discussion is the
poset †a consisting of all closed subgroups. The partial order is given by cotoral
inclusion, so that K � L if L is a subgroup of K and K=L is a torus. We then
consider the poset flag.†a/ consisting of flags .K0 �K1 � � � � �Ks/ in †a . We may
define a †a–diagram Ra of rings by

Ra.K/ WDH
�.BT=K/:

If K�L then the projection T=K T=L induces the inflation map Ra.K/!Ra.L/,
making Ra into a contravariant functor on †a .

Using Euler classes, we may form a flag.†a/–diagram of rings. Since the values on
flags of length 0 agree with those of Ra , we continue to use Ra for the functor on
flags. First, if K � L we may consider the set

EK=L WD fe.W / jW 2 Rep.T=L/; W K
D 0g
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of Euler classes of K–essential representations of T=L. Here e.W / 2H jW j.BT=L/
is the Euler class of W . Now we may define the flag diagram Ra by

Ra.K0 �K1 � � � � �Ks/ WD E�1K0=Ks
H�.BT=Ks/:

We note that this only depends on the first and last term in the flag and it is a covariant
functor on flag.†a/. It is also important to note that if K�L the values at K and L are
not linked directly in flag.†a/, but rather through the zigzag induced by the inclusions
.K/! .K � L/ .L/.

The category A.T / is a category of modules M over the flag.†a/–diagram Ra : thus
M is a diagram of abelian groups so that if E � F , the map M.E/!M.F / is a
map of modules over Ra.E/! Ra.F /. The modules in A.T / are required to be
quasicoherent (qc), extended (e) and F –continuous. A module is quasicoherent if
the value is determined by the last term in the flag by extensions of scalars, that is,
if F D .K0 �K1 � � � � �Ks/ then the inclusion .Ks/! F induces an isomorphism

M.F /DRa.F /˝Ra.Ks/M.Ks/:

A module is extended if the value is determined by the first term in the flag by extensions
of scalars, that is, if F D .K0 �K1 � � � � �Ks/ then the inclusion .K0/!F induces
an isomorphism

M.F /DRa.F /˝Ra.K0/M.K0/:

The F –continuity condition is a finiteness condition described in Section 6E below.

Since the values of both Ra and M are determined by the first and last term in any
flag we will sometimes simplify the notation by giving the value only on cotoral
pairs .K � L/. The point of defining Ra on flags is to give functoriality and control
automorphisms.

Our approach to constructing A.G; toral/ is to take into account the action of the Weyl
group WG DNG.T /=T on the poset †a.T / of all subgroups of the maximal torus.
Indeed, WG acts on the diagram Ra of polynomial rings, and it turns out that by
descent this gives us the model A.G; toral/. We develop the appropriate machinery,
and finally give the definition in Section 6F.

1F Layout of the paper

The paper is divided into two parts. Part I (“Algebra”) develops the algebraic framework
and Part II (“Topology”) applies it to calculations with G–spectra.

In Section 2 we introduce notation from the theory of compact Lie groups and make
some elementary observations, and in Section 3 we recall facts about the cohomology
of classifying spaces of compact Lie groups.
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We then spend several sections developing machinery to discuss categories of modules
over a diagram of rings on which a finite group acts. In Section 4 the categorical
setup is described and in Section 5 this is specialized to categories of modules over an
equivariant diagram of rings and the fundamental descent adjunction is proved. Finally,
Section 6 specializes to the example arising from compact Lie groups, and gives the
definition of A.G; toral/. The fact that the descent adjunction respects quasicoherent
extended modules contains information on which N –equivariant objects are restrictions
of G–equivariant objects; this is surprisingly subtle and treated in Section 7. As a first
step towards homotopy theory, we then consider the homological algebra of A.G; toral/,
identifying enough injectives and showing its injective dimension is equal to the rank
of G .

We then turn to topology. The fundamental result proved in Section 9 is that toral
phenomena are detected on restriction to the maximal torus. In preparation for work
on the Adams spectral sequence we then reformulate some well-known properties of
Borel cohomology in Section 10; this is the route by which the classical theory of
characteristic classes of principal bundles enters the model.

Section 11 explains the relationship between A.T / and A.G; toral/ and thereby allows
us to construct the functor �A.G/

� from G–spectra to A.G; toral/. This is then used
in Section 12 to construct the Adams spectral sequence, with the hard work deferred
to Section 13 where enough injectives are realized, and Section 14 where it is shown
that maps into the resulting spectra are detected in A.G; toral/. The Adams spec-
tral sequence lets one calculate maps, and this is complemented in Section 15 by a
proof that the functor �A

� is essentially surjective: all objects of A.G; toral/ do occur
as �A.G/

� .X/ for a toral G–spectrum X . Finally, Section 16 explains how restriction,
induction and coinduction are reflected at the level of algebraic models.

1G Conventions

All groups will be compact Lie groups, and if connectedness is required this will be
stated explicitly. All subgroups will be required to be closed. Generally, containment
of subgroups follows the alphabet, as in G �H .

Cohomology is unreduced unless indicated, and always has rational coefficients.

Acknowledgement I am grateful to MSRI for support and providing an excellent en-
vironment for organizing these ideas during the algebraic topology programme in 2014.
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Part I Algebra

2 Weyl groups

The algebraic input to our results is the classical structure and representation theory of
compact Lie groups. Although this is well known, the recollection of standard facts gives
an opportunity to introduce notation. Readers have found the list of standard notation
in Section 2C valuable. We recommend consideration of the rotation group GD SO.3/
as an example to illustrate results.

2A Two types of Weyl groups

For a compact Lie group G we write Ge for its identity component and we write
Gd D G=Ge D �0.G/ for the discrete quotient. A closed subgroup K of G has
normalizer NK DNGK , and Weyl group WK DWGK DNGK=K . More generally
given a flag F D .K0 �K1 � � � � �Ks/ of subgroups of G we write

NG.F /DNG.K0/\ � � � \NG.Ks/

for the subgroup normalizing all terms in the flag and

WG.F /DNG.F /=Ks

for its Weyl group.

Moving on to the theory of compact Lie groups, we write TDTG for the maximal torus
of G and NDNGDNG.T / for its normalizer. The Weyl group WG.T /DNG.T /=T
of the maximal torus is a finite group that plays a central role in the theory, so we use
the notation

WG DWGT :

Since WG.G/ D 1, there is little danger of confusion as long as the reader bears in
mind there are two meanings of the phrase “Weyl group”.

For most of this paper we will suppose K is a subgroup of T , so that T �NGK .

2B Weyl groups of Weyl groups

We will need to consider WK as a Lie group in its own right, with maximal torus TWK
and Weyl group WWK DWWK.TWK/DNWK.TWK/=TWK . We may simplify
this notation slightly.

Lemma 2.1 The maximal torus of WK is given by TWK D T=K .
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Proof Certainly T=K is a torus in WK . If there were a bigger one it would have the
form T 0=K for some subgroup T 0 of NK containing T . Then we would have a chain
T 0 � T �K . The group T 0=T is a quotient of the torus T 0=K and hence is itself a
torus. Thus T 0 is itself a torus; by maximality of T we have T D T 0 .

Lemma 2.2 The normalizer of the maximal torus of WK is given by

NWK.TWK/DNWK.T=K/DNG.T �K/=K D .NGT \NGK/=K:

It follows that the toral Weyl group of WGK ,

WWGK D .NGT \NGK/=T �NGT=T DWG;

is the subgroup of WG normalizing K . With the usual notation for the isotropy group
of the action of WG on the set of subgroups of T we have

W .WGK/D .WG/K :

Proof The first equality is the previous lemma. Now any element g of G normal-
izing T � K is in NK and hence defines an element gK of WK . We then have
.gK/.tK/.gK/�1 D gtg�1K . This is in T by hypothesis, and hence we have a
homomorphism

NG.T �K/ �!NWK.T=K/:

Evidently K is in the kernel, and since NWK.T=K/�WK we have a monomorphism

NG.T �K/=K �!NWK.T=K/:

Now suppose gK 2WK normalizes T=K , which is to say that for any t 2 T ,

T=K 3 .gK/.tK/.gK/�1 D gtg�1K:

It follows that gtg�1 2 T and g normalizes T .

2C Summary of notation

Associated to a subgroup K of T we have

� G , the ambient compact Lie group,

� Ge , the identity component of G ,

� Gd DG=Ge D �0.G/, the group of components of G ,

� T D TG , the maximal torus of G ,

� N DNG DNG.T /,
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� W DWG DNG=TG , the toral Weyl group of G ,

� K , a closed subgroup of TG ,

� NK DNGK ,

� WK DWGK , with identity component W eK DW e
GK D .WGK/e and com-

ponent group W dK DW d
GK D .WGK/d ,

� TWK D T=K ,

� NWK DNWK.TWK/D .NT \NK/=K ,

� WWK D .NT \NK/=T D .WG/K acting on TWK D T=K .

3 Cohomology of classifying spaces of compact Lie groups

The relationship between the rational cohomology of classifying spaces of G , N and T
proved by Borel is fundamental to our entire analysis.

3A Cohomology of classifying spaces and free spectra

Borel’s calculation of the rational cohomology of classifying spaces is as follows.

Lemma 3.1 (Borel) For a compact Lie group G with maximal torus T , NDNG.T /
and W DNG.T /=T we have

H�.BG/DH�.BN/DH�.BT /W :

We may apply this to Weyl groups to see

H�.BWK/DH�.BNWK/DH�.BTWK/WWK
DH�.BT=K/WWK :

Cohomology of classifying spaces plays a fundamental role in equivariant stable
homotopy theory.

Theorem 3.2 (Greenlees and Shipley [16]) The category of free rational WGK–
spectra is Quillen equivalent to the category of torsion modules over the twisted group
ring

H�.BW e
GK/ŒW

d
GK�DH

�.BT=K/WW e
GK ŒW d

GK�:

This embodies the role of the cohomology of classifying spaces in modelling rational
stable equivariant homotopy theory.
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3B Identity components, 1

The maximal torus only depends on the identity component of a group, so T .Ge/DTG .

Lemma 3.3 There are short exact sequences

1 �!NGe
T �!NGT �!Gd �! 1;

1 �!WGe �!WG �!Gd �! 1:

Proof Ge acts transitively on maximal tori. So for any  2Gd represented by z 2G
there is an x 2Ge with T D .T z /x and zx 2NG.T /. Since NGe

.T /DNG.T /\Ge ,
this gives the exact sequence.

This fits well with the following picture:

G DGe �Gd H�.BG/

Š

��

Š
// H�.BGe/

Gd

Š

��

NGT DNGe
T �Gd H�.BNGT /

Š

��

Š
// H�.BNGe

T /Gd

Š

��

WGT DWGe
T �Gd H�.BT /WG Š

// .H�.BT /WGe /Gd

3C Identity components, 2

We note that N acts on the set of subgroups of T by conjugation, and that this passes
to an action of W . Recall that

WWGK D .NGK \N/=T D .WG/K :

Lemma 3.4 There is a short exact sequence

1 �!W .W e
GK/ �!W .WGK/ �!W d

GK �! 1:

Under the identification W .WGK/D .WG/K , the subgroup W .W e
GK/ corresponds to

the set of elements of the toral Weyl group WG represented by the identity component
of NG.K/:

.K � .NGK/e \N/=T DW .W e
GK/:

Remark 3.5 The Weyl group WW e
GK can be very small or very large. At one

extreme, if K D T it is trivial. At the other, if K D 1 then NG.K/DG and if G is
connected we obtain the entire Weyl group WG .

Proof The short exact sequence is obtained by applying Lemma 3.3 to WK . Now
note W .W e

GK/DNW e
GK
.T=K/=.T=K/ and W e

GK DK � .NGK/e=K .
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4 Equivariant diagrams

We are going to discuss diagrams of rings and modules with group action. The
basic examples arise from the algebraic models of rational T –spectra [14], recalled
briefly in Section 1E. The diagram shapes † come from the set †a.T / of all closed
subgroups of T under cotoral inclusion (in the present context, simply inclusions with
connected quotient). One such poset † is †a itself, but we also need to consider the
poset flag.†a/ of flags in †a . Accordingly, we discuss the relevant structures with
† unspecified, which has the added benefit of clarifying the structure.

4A Diagrams with an action

We need to consider the general setup of a group W acting on the right of a poset †.
We want a notion of equivariant †–diagrams in a category C . We start by considering
the functor category C† . This admits an action of W , where the image of a functor
F W †!C under w 2W is the functor w�F defined by

.w�F /.�/ WD F.�
w/:

One quickly verifies v�w�F D .vw/�F and e�F D F .

An equivariant diagram is then a diagram F with additional structure. We specify an
action by W on F by giving maps

wmW F �! w�F

with em D 1 and vmwm D .vw/m . It is more flexible to give an alternative point of
view in which an equivariant †–diagram is just a diagram of a more complicated shape.

4B Orbifold posets

We want to consider a class of categories A that are based on a poset †, but with
automorphisms added.

Definition 4.1 A †–orbifold is a category A with the same objects as † equipped
with functors †! A!† which are the identity on objects so that

(1) A has finitely many morphisms between any two objects,

(2) the morphisms of A are generated by those of † together with the automor-
phisms, and

(3) every endomorphism in A is an isomorphism.

The trivial †–orbifold associated to the finite group W is AD†�W with structure
maps coming from 1!W ! 1.
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4C The transport category

Starting with a poset † with a right action of a finite group W , we may form the
transport category †ÌW . This is a †–orbifold with morphism set †�W and structure
maps induced by 1!W ! 1. In giving formulae for composition we are following
through the convention that the action of W is on the right, so that functions also
operate on the right.

If i W � ! � and v 2 W the morphism .i; v/ has domain � and codomain �v . The
composite of .i; v/ and .j; w/ where j W �v! �v is given by the formula

.i; v/.j; w/D .ij v
�1

; vw/:

Note that .i; v/ is the composite � i
�! � v

�! �v . Since W acts on † as a poset, we
may find a commutative square

�
v
// �v

�
v
//

i

OO

�v

iv

OO

and
iv D .i; v/D viv:

In particular the group of self-maps of � as an object of †ÌW is the isotropy group W� .

It is clear we can repackage the notion of a W –equivariant diagram in terms of †ÌW .

Lemma 4.2 The category of W –equivariant †–diagrams in C is equivalent to the
category of functors †ÌW !C .

Proof Equivariant diagrams .F; fwmgw2W / are related to functors F 0W †ÌW !C
by taking F 0.�/D F.�/ and F 0.w/D wm .

4D Component structures

The purpose of the formulation in terms of the transport category †ÌW is to let us to
capture the behaviour of the identity components of Weyl groups.

Definition 4.3 A component structure on †ÌW is a sub-†–orbifold W e
�

. Given a
component structure, the endomorphism object of � is written W e

� .

A component structure is normal if W e
� is normal in W� .
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Lemma 4.4 If the component structure is normal, then the discrete residual is the
†–orbifold W d

�
with a sequence of maps

W e
�
�!†ÌW �!W d

�

of †–orbifolds that is exact in the sense that it defines an isomorphism W d
� ŠW�=W

e
� .

Proof The morphisms in W d
�

are pairs .i; Œv�/ where i W � ! � and were Œv� is the
equivalence class of v 2W under precomposition by W e

� and postcomposition by W e
�v .

The composition is induced from the composition of †ÌW . The normality condition
enables one to check that this is well defined.

Example 4.5 (i) For any W we may define the connected component structure
by W e

� DW� giving W d
� D 1.

(ii) For any W we may define the discrete component structure by W e
� D 1 giving

W d
� DW� .

We devote a separate subsection to the motivating example that will concern us for
most of the paper.

4E The compact Lie group component structure

The motivating example comes from a compact Lie group G . We take †D†a.T /
and the Weyl group W DWG acts by conjugation in the usual way.

The component structure corresponds to the identity components of the Weyl groups

W e
K D .WG/eK DWW e

GK:

Accordingly, by Lemma 3.3, the discrete residual is

W d
K D .WG/dK DW

d
GK:

Example 4.6 If the identity component of G is the maximal torus T , so that G DN ,
we have W e

GKDT=K which has trivial toral Weyl group, and the component structure
is the discrete component structure

.W N/eK D 1 and .W N/dK D .W N/K :

Example 4.7 If G D SO.3/ we have T D SO.2/, N D O.2/ and W D C2 . The
subgroups of T are the cyclic subgroups Cn of finite order n, and T itself. All these
subgroups are characteristic and hence

.WG/K DWG for all K � T :
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The trivial subgroup C1 has normalizer G and Weyl group WG.C1/DG . The other
subgroups of T have normalizer N . Thus the finite subgroups have Weyl group
isomorphic to O.2/ and T has Weyl group WG . The associated component structure
thus has

.WG/eK D

�
WG if K D C1;
1 otherwise

and discrete residual

.WG/dK D

�
1 if K D C1;
WG otherwise.

Example 4.8 The group G D SU.3/ has maximal torus T of rank 2 consisting of
diagonal matrices. There are three (conjugate) subgroups isomorphic to SU.2/ which
fix the first, second or third complex coordinate. The Weyl group is the symmetric
group of degree 3 generated by the three corresponding reflections.

We have

1D .WG/eT � .WG/T DWG:

For subgroups K � T of dimension 1, we consider the identity component Ke . If it
is one of the three circles fixed by the three reflections in WG then the normalizer
contains the corresponding SU.2/ and

.WG/eK D .WG/K DW SU.2/:

If Ke is another circle then

.WG/eK D .WG/K D 1:

If K D 1 then WG.K/DG and

.WG/eK D .WG/K DWG:

This is enough to show the richness of the structure; the individual analysis necessary
for the remaining cases can await applications.

5 Equivariant diagrams of rings and modules

We now specialize the discussion of Section 4 to the case when C is the category of
commutative rings with a view to establishing the descent adjunction (Proposition 5.9).
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5A Equivariant diagrams of rings

Our aim is to describe a descent theory, relating modules over an equivariant diagram
of rings and modules over the fixed points under a component structure. We need to
impose a restriction on a component structure for this to make sense.

Definition 5.1 We say that a component structure W e
�

on the W –poset † is decreasing
if E � F implies W e

E �W
e
F .

Example 5.2 (i) If G is a connected compact Lie group but not a torus then †a with
the Lie group component structure of Section 4E is not decreasing: the subgroup KD 1
has WG.1/DG , with nontrivial Weyl group W e

1 DWG , whereas the subgroup KDT
has discrete Weyl group WG.T /, so that W e

T D 1.

(ii) If G is any compact Lie group then flag.†a.T // with the Lie group component
structure of Section 4E is decreasing. This is immediate from the fact that

NG.K0 � � � � �Ks/DNG.K0/\ � � � \NG.Ks/:

The fact that flags give a decreasing structure whereas subgroups do not explains why
we have changed notation for the objects of our poset.

Lemma 5.3 Given a W –equivariant †–diagram of rings with a decreasing component
structure W e

�
, the definition

Rinv.F /DR.F /
W e

F

gives a †–diagram of rings.

If the component structure is normal, Rinv defines a W d
�

–diagram of rings.

Proof A map i W E! F induces a map R.i/W R.E/!R.F / and we need to show
this induces a map for Rinv , namely

Rinv.E/DR.E/
W e

E �!R.F /W
e

F DRinv.F /:

The original map R.i/ is equivariant for the inclusion W e
F . Since the component

structure is decreasing, any W e
E –invariant element of R.E/ is W e

F invariant, and
so maps to a W e

F –invariant element of R.F /, and hence Rinv.i/ is the composite
of R.i/W

e
E and inclusion.

To see this induces a map on the entire diagram W d
�

, we need only observe that the
original structure maps only depend on double coset representatives.
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An alternative language for describing the resulting structure is that of twisted group
rings: if a discrete group � acts on a ring R , the twisted group ring RŒ�� has an
additive R–basis consisting of the group elements  2 � and multiplication is given
by .r�/.s/D .rs�

�1

/.�/.

Lemma 5.4 The W d
�

–diagram Rinv defines the twisted invariant ring

Rtw.K/DR.K/
W e

K ŒW d
K �;

and this defines a †–diagram of noncommutative rings.

Proof Twisted group rings are defined precisely so that the action of the group W d
E of

endomorphisms of the object E are reflected in a ring acting on the value at E . Since
all morphisms are generated by the poset maps and groups of self-isomorphisms, the
twisted group rings give the entire structure.

5B Equivariant diagrams of modules

The two formulations of W –equivariant diagrams of rings have counterparts for mod-
ules.

Definition 5.5 If R is a W –equivariant †–diagram of rings, a W –equivariant module
is an R–module which is W –equivariant in the sense that wm.�x/D wm.�/wm.x/
for � 2R , x 2M and w 2W .

Lemma 5.6 The category of W –equivariant R–modules is equivalent to the category
of modules over the corresponding †ÌW –diagram of rings.

Proof Both † and †ÌW have the same object set. The morphism .i; v/W �! �v is
a composite of .i; e/ and .1; v/. The latter morphism corresponds to the structure map
vmW M ! v�M . The conditions that the actions on rings and modules are compatible
in the two cases correspond to each other.

Passing to coset representatives we obtain the result for Rinv –modules.

Lemma 5.7 The category of W d
�

–diagrams of Rinv –modules is equivalent to the
category of †–diagrams of modules over Rtw .

Proof Since the conditions that the actions on rings and modules are compatible in
the two cases correspond to each other, this follows by applying the comparison from
Lemma 4.2 to modules.
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5C R–modules and Rinv –modules

A basic technique of equivariant topology is to relate modules over tori to modules
over general groups by suitable descent theorems. We are now equipped to formulate
and prove a fundamental adjunction which provides the abstract basis for reducing
from G–equivariant data to T –equivariant data.

Suppose we have a decreasing component structure W e
�

, and let � W Rinv!R be the
map of †–diagrams defined by the inclusions �.E/W Rinv.E/DR.E/

W e
E !R.E/.

We define

‰ D‰W
e
� W RŒW �–modules �! Rinv –modules

by

.‰M/.E/ WDM.E/W
e

E :

We note that M.E/ is an R.E/–module, and that passage to fixed points is lax
symmetric monoidal, so that taking fixed points of the structure maps shows that
M.E/W

e
E is an R.E/W

e
E –module. Furthermore, if E � F then the structure map

M.F /!M.E/ induces

.‰M/.F /DM.F /W
e

F �!M.E/W
e

E D .‰M/.E/

since W e
�

is decreasing.

In the other direction, we may define

��W Rinv –modules �! R–modules

by termwise extension of scalars:

.��N/.E/DR.E/˝Rinv.E/N.E/:

If E � F we may define

.��N/.F /DR.F /˝Rinv.F /N.F / �!R.E/˝Rinv.F /N.E/

�!R.E/˝Rinv.E/N.E/D .��N/.E/:

Remark 5.8 The functor �� is a version of extension of scalars for diagrams. On the
other hand coextension of scalars does not give a functor of diagrams in general.

The key result is as follows:
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Proposition 5.9 If W e
�

is a decreasing normal component structure, and R is a W –
equivariant †–diagram of rings, taking fixed points under a normal component structure
W e
�

gives a functor

‰W
e
� W W –equivariant-R–modules �! Rinv –modules:

This has left adjoint �� given by termwise extension of scalars.

Provided jW j is invertible in R , the unit map

N.E/ Š�! .R.E/˝Rinv.E/N.E//
W e

E D .‰��N/.E/

of the �� `‰ adjunction is an isomorphism.

Proof For the �� `‰ adjunction, note that objectwise we have

Hom
R.E/

W e
E
.N.E/;M.E/W

e
E /D Hom

R.E/
W e

E
.N.E/;M.E//W

e
E

D HomR.E/.R.E/˝R.E/W e
E
N.E/;M.E//W

e
E

so that
HomRinv.N;‰M/D HomR.N;M/W�;e

as required.

The unit is an isomorphism since N.E/ and Rinv.E/ both have trivial W e
E –action:

one may take fixed points of the defining coequalizer, and use the fact that this is exact
since jW j is invertible.

6 The algebraic model of toral G –spectra

We are now ready to specialize the general discussion to the example arising from
compact Lie groups. We will describe A.N; toral/ and A.G; toral/ using enrichments
of A.T /. The starting point is †a.T / together with its action of WG . We will add a
little decoration to indicate which part of the isotropy group of K is internal and which
is external.

6A Decorating the poset

We summarize the information we need about a subgroup K . These were discussed in
detail in Sections 2 and 3:
� H�.BW e

GK/,
� W d

GK ,
� the action of W d

GK on H�.BW e
GK/.
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Equivalently we need:
� .WG/K D .N \NK/=T DWWK ,
� the action of .WG/K on T=K ,
� the subgroup .WG/eK represented by elements of .NG.K//e .

Recall from Lemma 2.2 that .WG/eK D W .W e
GK/, and recall from Lemma 3.3

that .WG/dK DW
d
GK so that the second and third pieces of information give

H�.BW e
GK/DH

�.BT=K/W .W e
GK/:

The quotient group W d
GK D WK=W

e
GK D .WWK/=.W .W e

GK// then acts on the
ring of invariants to give the twisted group ring.

Remark 6.1 We will also need this data with K replaced by a flag ED .K0�� � ��Ks/.
This is closely analogous, once we define

NG.E/DNG.K0/\ � � � \NG.Ks/:

Thus WG.E/DNG.E/=Ks ,

.WG/E D .N \NG.E//=T D .WG/K0
\ � � � \ .WG/Ks

and
.WG/eE DWW e

G.E/:

It is clear that this again gives a normal component structure and

.WG/dE DW
d
G .E/:

6B Structures from Lie groups

The basis of the model is the diagram Ra of commutative rings defined on subgroups
K � T by Ra.K/ D H�.BT=K/. For modules M over Ra there are numerous
structures: WG acts on rings, on Euler classes and on modules. Here we lay out how
the structures interact with the group action with a view to showing it gives examples
of WG–equivariant diagrams in the sense of Section 4 above. At various times we
will consider the poset † to be either the poset †a.T / of closed subgroups of T and
cotoral inclusions or the poset flag.†a.T // of flags in †a.T / under inclusion.

The action gives the following structure:
� Conjugation by an element w 2WG gives a group homomorphism

rw�1 W Kw D w�1Kw �!K

and a map
rw�1 W T=Kw �! T=K:
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� The conjugation in the previous bullet point gives a ring homomorphism

wm D .rw�1/�W Ra.K/DH
�.BT=K/ �!H�.BT=Kw/DRa.K

w/;

with .vw/m D vmwm , em D 1.
If we define w�Ra by .w�Ra/.K/DRa.Kw/, then we have a homomorphism
of rings wmW Ra!w�Ra . This composes by the rule .vw/mDvmwm , emD1,
so that we have an equivariant †a–diagram of rings in the sense of Sections 4
and 5.

� Pullback again gives a map wmW Rep.G=K/!Rep.G=Kw/ on representations.
If UH D 0 then .w�U/H

w

D 0.
� By the previous bullet point, given K � L, pullback along the element w maps

Euler classes EH=K to Euler classes EHw=Kw .
� We may therefore define a new diagram w�Ra of rings on the poset of flags by

.w�Ra/.K0 � � � � �Ks/DRa.K
w
0 � � � � �K

w
s /

and we have ring maps wmW Ra!w�Ra satisfying .vw/m D vmwm , em D 1.
We thus have a flag.†a/–diagram of rings in the sense of Sections 4 and 5.

� Given a module M over Ra , we may define a module w�M over w�Ra by

.w�M/.K0 � � � � �Ks/DM.K
w
0 � � � � �K

w
s /:

An equivariant module is given by module maps wmW M !w�M over the ring
map wmW Ra! w�Ra with .vw/m D vmwm , em D 1.

6C Equivariant diagrams of rings

The previous section shows that Ra is a WG–equivariant flag.†a.T //–diagram of
rings so we may apply the apparatus of Sections 4 and 5. This means that .WG/K
acts on Ra.K/ by ring homomorphisms, and we may form the twisted group ring
Ra.K/Œ.WG/K �, or we may take invariants under .WG/eK D WW e

GK and then
let .WG/K=.WG/eK DW

d
GK act by ring homomorphisms and form

Rtw.K/DRa.K/
WW e

GK ŒW d
GK�DH

�.BW e
GK/ŒW

d
GK�:

We observe that Ra extends to a flag.†a.T //–diagram of rings via

Ra.K0 � � � � �Ks/D E�1K0=Ks
H�.BT=Ks/:

We have commented that the Lie component structure on flag.†a/ is normal. This
allows us to extend Rinv to a flag.†a.T //–diagram with

Rtw.F /DRa.F /
WW e

GF ŒW d
GF �:
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It is worth making the values explicit.

Lemma 6.2 For any flag F D .K0 � � � � �Ks/ we have

Rtw.F /D E�1K0=Ks
H�.BW e

GF /ŒW
d
GF �

where
EK0=Ks

D fe.V / j V 2 Rep.W e
GF /; V

K0 D 0g:

Proof Suppose W is a finite group acting on a ring R and S is a multiplicatively
closed set closed under the action of W . First, we note that inverting S has the same
effect as inverting the elements Ns D

Q
w2W ws , so that S�1M D .NS/�1M . Now

observe
.S�1M/W D ..NS/�1M/W D .NS/�1.MW /;

where the second equality uses the fact we are in characteristic zero so that we may
decompose M into isotypical pieces and these will not interact.

Taking W DWW e
GF , RDH�.BT=Ks/ and S D EK0=Ks ;T this shows

Rinv.F /D .NEK0=Ks
/�1H�.BW e

GF /:

Finally, we consider the effects of inverting Euler classes. The weights of a chosen
representation V of W e

G.F / fall into W –orbits. If the decomposition into weights
is V jT D

L
i ˛i we have

e.V /D e

�M
i

˛i

�
D

Y
i

e.˛i /:

This is the product of orbit-products. Thus inverting NEK0=Ks ;T=Ks
is equivalent to

inverting EK0=Ks ;W
e

GF
.

Warning 6.3 In the case of the torus, the ring Ra.K � L/ is obtained from Ra.L/
by localization (ie by inverting EK=L ). This is not the case for Rinv . This is apparent
even in the simple example of Section 6D.

6D The rotation group

It is instructive to consider the example G D SO.3/, with N D O.2/, T D SO.2/.
We will display various data associated to a length-1 flag in rows. The first row is
a module N over Ra , the next pair of rows gives Ra , followed by the component
structure W e

�
, a pair of rows for Rinv and finally an Rinv –module M .
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We illustrate the structure for the particular flag F D .T � 1/ and its two length-0
subflags in the following diagram:

N N.1/ // N.T � 1/ N.T /oo

QŒc� //

D

��

QŒc; c�1�
D

��

Qoo

D

��

Ra Ra.1/ // Ra.T � 1/ Ra.T /oo

W e
�

W 1 1

Rinv Rinv.1/ // Rinv.T � 1/ Rinv.T /oo

QŒd � //

D

OO

QŒc; c�1�
D

OO

Qoo

D

OO

M M.1/ // M.T � 1/ M.T /oo

Take particular note of the fourth row, where we record the Weyl groups of W e
GK and

W e
G.T �K/, using the abbreviation W DWG (a reflection group of order 2). We will

use this example in describing the functors relating A.G; toral/ and A.N; toral/, so that
N is an equivariant Ra–module, potentially in A.N; toral/ and M is an Rinv –module,
potentially in A.G; toral/. As elsewhere H�.B SO.2//DQŒc� for an element c of
codegree 2 and H�.B SO.3//DQŒd � for an element d D c2 of codegree 4. Note in
particular that

Rinv.T � 1/DQŒc; c�1�¤QŒd; d�1�D E�1T Rinv.1/:

We should also consider the flag T �Cr for r � 2 so as to note the differences entailed
by the fact that W.Cr/DWG is discrete and hence has trivial identity component:

N N.Cr/ // N.T � Cr/ N.T /oo

QŒc� //

D

��

QŒc; c�1�
D

��

Qoo

D

��

Ra Ra.Cr/ // Ra.T � Cr/ Ra.T /oo

W e
�

1 1 1

Rinv Rinv.Cr/ // Rinv.T � Cr/ Rinv.T /oo

QŒc� //

D

OO

QŒc; c�1�
D

OO

Qoo

D

OO

M M.Cr/ // M.T � Cr/ M.T /oo
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6E Subcategory conditions for G

The algebraic model A.T / is the category of modules over the diagram Ra of rings
which are subject to the following three conditions: (i) quasicoherence, (ii) extendedness
and (iii) F –continuity.

In view of Warning 6.3, we must be explicit in formulating the quasicoherence and
extendedness conditions for equivariant Rinv –modules on the poset flag.†a/. We also
observe that the conditions are compatible with the WG–action.

Suppose then that we have flags

E D .K0 �K1 � � � � �Ks/ and F D .L0 � L1 � � � � � Lt /

with E � F . This gives a ring map

Rinv.F / �!Rinv.E/;

and for any Rinv –module M we have a structure map M.F /!M.E/.

In order to discuss quasicoherence and extendedness, we introduce further terminology.
This will be shown to be redundant, and not be used after this subsection.

Definition 6.4 (i) An Rinv –module M follows the coefficients if for any pair of flags
E � F the structure map induces an isomorphism

Rinv.E/˝Rinv.F /M.F /ŠM.E/:

(ii) An Rinv –module M is quasicoherent if it follows the coefficients whenever
F D .Ks/ is the singleton flag of the smallest term in E :

Rinv.E/˝Rinv.Ks/M.Ks/ŠM.E/:

(iii) An Rinv –module M is extended if it follows the coefficients whenever F D .K0/
is the singleton flag of the largest term in E :

Rinv.E/˝Rinv.K0/M.K0/ŠM.E/:

Remark 6.5 (i) If M is qce then it follows the coefficients for any inclusion E �F
of flags.

(ii) If M follows the coefficients for the addition of any single term to a flag then it is
qce and follows the coefficients in general.

(iii) However if M is qce for pairs this is not sufficient on its own. For example we may
consider the inclusion of a length-1 flag in a length-2 flag: .H �L/! .H �K �L/.
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In this case, W.H�K�L/ is typically a proper subgroup of W.H�L/ and so in general
we have a proper containment

Ra.H �K � L/
W.H�L/ D E�1H=LRa.L/

W.H�L/

� E�1H=LRa.L/
W.H�K�L/ DRa.H �K � L/

W.H�K�L/ :

The condition

M.H �K � L/DRa.H �K � L/
W.H�K�L/ ˝Ra.H�K�L/

W.H�L/ M.H � L/

is a new condition, one not seen in the inclusion of a length-0 flag in a length-1 flag.

The idea of F –continuity is that it provides a uniform bound on denominators. In the
original setting, the definition is that F –continuity requires a specified factorization
for each subgroup K

E�1K
Q
L�KM.L/

��

M.K/

77

//
Q
L�K E�1

K=L
M.L/

and these should be compatible with composition. We note that the collection of
subgroups involved in this condition depends WG–equivariantly on K , and if the
condition holds for K it holds for any subgroup in the WG–orbit of K .

We may now formulate the condition for Rinv –modules. The equivariance will ensure
that maps have images in modules of invariants, so we avoid the use of invariants in
the statement.

Definition 6.6 An Rinv –module M is F –continuous if there is a specified factoriza-
tion for each subgroup K

E�1K
Q
L�K Ra.L/˝Rinv.L/M.L/

��

M.K/

55

//
Q
L�K E�1

K=L
Ra.L/˝Rinv.L/M.L/

and these should be compatible with composition.

6F The model

We are now ready to define the algebraic model A.G; toral/. Throughout this subsection
we use the diagram †D flag.†a.T // and Ra is viewed as a †–diagram of rings.
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Definition 6.7 (i) The category of RaŒWG�–modules is the category of WG–
equivariant Ra–modules. In view of Lemma 5.6 we will not distinguish between the
model in which these are †–diagrams with the additional structure of a WG–action
and the model in which they are †Ì WG–diagrams.

(ii) The category A.T /ŒWG� is the category of qce, F –continuous WG–equivariant
Ra–modules.

Now consider the Lie group component structure .WG/e
�

on WGÌ† and the quotient
.WG/d

�
(see Section 4E). This gives two diagrams of rings. Firstly, we have the

.WG/d
�

–diagram of invariants, Rinv WDR.WG/e�
a , so that

Rinv.K/DH
�.BW e

GK/:

Secondly, we have the †–diagram Rtw of twisted group rings, whose value at a
subgroup K is

Rtw.K/DH
�.BW e

GK/ŒW
d
GK�:

Definition 6.8 (i) The category Ainv.G; toral/ is the category of qce, F –continuous
Rinv –modules.

(ii) The category Atw.G; toral/ is the category of qce, F –continuous modules over
the diagram Rtw of rings.

Remark 6.9 By Lemma 5.7, Ainv.G; toral/'Atw.G; toral/, and as a matter of style
we view Ainv.G; toral/ as the primary one, abbreviating it to A.G; toral/.

There is one special case where it is easy to describe the model of toral spectra.

Lemma 6.10 The model for toral spectra simplifies when the identity component is a
torus to give

A.N; toral/DA.T /ŒWG�:

Proof We need only observe that if K � T then the identity component of WNK

is a torus, and so it has trivial Weyl group. The component structure is therefore the
trivial one, and Rinv DRa .

7 Toral G –spectra and toral N–spectra

We consider the algebraic counterpart of restriction from G–spectra to N –spectra,
and its right adjoint. We know from [15] that the category of T –spectra is modelled
by A.T /. It is rather clear (and made explicit in Lemma 11.1) that the module
M D �A

� .X/ in A.T / arising from a G–spectrum X is a WG–equivariant module.
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Our model A.G; toral/ has the property that restriction from G–spectra to N –spectra
is modelled by the functor �� defined in Section 5C. The purpose of this section is
to establish that the descent adjunction (Proposition 5.9) relating Rinv –modules and
equivariant Ra–modules continues to hold for the subcategories of qce, F –continuous
modules.

7A From A.G; toral/ to A.T /ŒW G�

First we consider the algebraic counterpart of restriction.

Proposition 7.1 The functor

��W Rinv –modules �! WG–equivariant-Ra–modules

preserves quasicoherence, extendedness and F –continuity and hence induces a functor

��W A.G; toral/ �!A.T /ŒWG�:

Proof Suppose M is an Rinv –module with image ��M defined on a flag F by

.��M/.F /DRa.F /˝Rinv.F /M.F /:

We note that Rinv.F / D Ra.F /.WG/eF , and Ra.F / is free over Rinv.F /. As in
Lemma 6.2, we note that a multiplicatively closed set S preserved by the action of
a finite group has a cofinal multiplicatively closed subset NS whose elements are
the products Ns over orbits. Thus we will assume that the multiplicatively closed
subsets are invariant. Since ��M lies over N the component structure is trivial so the
WG–action is entirely through equivariance (no invariants are involved). Accordingly,
it suffices to verify quasicoherence and extendedness for pairs rather than more general
flags. We will write the proof in those terms since the subgroups concerned appear
more directly.

If M is quasicoherent then the condition on cotoral pairs is that the natural map induces
an isomorphism Rinv.K � L/˝Rinv.L/M.L/DM.K � L/. It follows that

.��M/.K � L/DRa.K � L/˝Rinv.K�L/M.K � L/

DRa.K � L/˝Rinv.K�L/Rinv.K � L/˝Rinv.L/M.L/

DRa.K � L/˝Rinv.L/M.L/

DRa.K � L/˝Ra.L/Ra.L/˝Rinv.L/M.L/

DRa.K � L/˝Ra.L/ .��M/.L/

and ��M is also quasicoherent.

Algebraic & Geometric Topology, Volume 16 (2016)



Rational equivariant cohomology theories with toral support 1979

If M is extended then

Rinv.K � L/˝Rinv.K/M.K/DM.K � L/:

For ��M we may then calculate

Ra.K � L/˝Ra.K/ .��M/.K/

DRa.K � L/˝Ra.K/Ra.K/˝Rinv.K/M.K/

DRa.K � L/˝Rinv.K/M.K/

DRa.K � L/˝Rinv.K�L/ .Rinv.K � L/˝Rinv.K/M.K//

DRa.K � L/˝Rinv.K�L/M.K � L/

D .��M/.K � L/:

Thus ��M is also extended.

Suppose that M is F –continuous. Since Ra.F / is free of finite rank over Rinv.F /,
we may form the diagram:

Ra.K/˝Rinv.K/M.K/

�� ++

Ra.K/˝Rinv.K/ E
�1
K

Q
L�KM.L/

��

// Ra.K/˝Rinv.K/

Q
L�K E�1

K=L
M.L/

��

E�1K
Q
L�K Ra.L/˝Rinv.L/M.L/

//
Q
L�K E�1

K=L
Ra.L/˝Rinv.L/M.L/

The two bottom verticals are induced by the Rinv.L/–maps

M.L/ �!Ra.L/˝Rinv.L/M.L/

using the universal property of products. The diagram shows that ��M is also
F –continuous.

We will show in Proposition 11.8 that �� fits into a diagram:

toral-G–spectra
resG

N
//

�A.G/
�

��

N–spectra

�A.N/
�

��

A.G; toral/
��

// A.T /ŒWG�

F–cts-qce-Rinv–modules // WG–equivariant-F–cts-qce-Ra–modules:
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We conjecture that these maps to abelian categories can be upgraded to Quillen equiva-
lences with the associated differential graded objects.

7B Normal modules

By contrast with �� , the fact that the functor ‰ takes qce modules to qce modules
is rather subtle. Consider for instance the quasicoherence associated to a cotoral
inclusion K � L. If the WG–equivariant Ra–module N is quasicoherent, then
N.K � L/ D E�1

K=L
N.L/. We may take .WG/K�L–invariants of both sides, but

since .WG/K�L may be a proper subgroup of .WG/L this is not the quasicoherence
condition for ‰N , which states instead that

N.K � L/.WG/K�L D E�1K=LRa.L/
.WG/K�L ˝Ra.L/

.W G/L N.L/
.WG/L :

In effect we need to be able to reconstruct modules from their invariants using the
ring Ra . This is a special property not enjoyed by all modules.

We suppose then that W is a finite group acting on a Q–algebra R .

Definition 7.2 We say that a W –equivariant R–module M is normal if the natural
map

�W R˝RWMW
�!M

is an isomorphism.

It is worth noting that normality is a strong condition.

Example 7.3 (i) Clearly if RDQG and M is a nontrivial simple module then M
is not normal.

(ii) This also happens for modules that arise in our setting. For instance we may
take R D H�.B SO.2// D QŒc� with W of order 2 acting to negate c , so that
RW DH�.B SO.3//DQŒd � with d D c2 . However it is easy to see the ideal M D .c/
is not normal (for example because the inclusion .c2/ � .c/ is an isomorphism
on W –fixed points and the free module .c2/ is normal). The fact that will give the
conclusion we need is that if d is inverted everywhere (so RDQŒc; c�1�DM ) then
we do obtain a normal module.

There is an easy positive result.

Lemma 7.4 If R is free over RW then the class of normal R–modules is closed under
the following operations:
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� arbitrary sums,

� passage to kernels,

� passage to cokernels,

� passage to extensions.

Any extended module of the form M DR˝SM
0 with W acting trivially on S and M 0

is normal.

Proof For example if F0 , F1 are normal and M is the cokernel of a map F1! F0
we may form the diagram:

F1 // F0 // M // 0

R˝RG FW1

Š

OO

// R˝RG FW0

Š

OO

// R˝RW MW

OO

// 0

Because we are in characteristic 0, passage to W –fixed points is exact, and by hypoth-
esis R is flat over RW , so the isomorphism follows from the short 5-lemma.

The other cases are similar. For an extended module of the given form, we have
MW D .R˝S M

0/W DRW ˝S M
0 and normality is clear.

We will show that the modules that occur in an object N of A.N; toral/ are close
enough to being normal to ensure that ‰N is qce. The following examples show that
this is somewhat less restrictive than might be expected.

Example 7.5 (i) We have seen that H�.B SO.2// D QŒc� is a free module over
H�.B SO.3//DQŒd �. More precisely

QŒc�DQŒd �˝ .�˚†2�/

where � is the trivial module and � is the sign module. If we ignore grading then
QŒc�DQŒd �ŒW �.

In any case it will follow by decomposing V into W –isotypical pieces that any
QŒc�–module of the form QŒc; c�1�˝V is normal.

The relevance of this is that it shows the model of f1;Tg-SO.3/–spectra (ie of spectra
with geometric isotropy in f1;Tg) behaves well. Indeed, we may consider an object

X D .N
ˇ
�!QŒc; c�1�˝V /
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of the model of f1;Tg-N –spectra; this means N is a QŒc�ŒW �–module and V is
a QŒW �–module with the map ˇ being inversion of c . By the above argument, N is
normal, and it follows that

‰X D .NW
�!QŒc; c�1�˝V /

is qce.

(ii) Similarly for the rank-2 group SU.3/ with maximal torus ST.3/ and Weyl group
WG D†3 , where

H�.B ST.3//DH�.B SU.3//˝ .�˚†2�˚†4�˚†6�/;

where � is the nontrivial simple representation of degree 1 and � that of degree 2. If
we ignore the grading then

H�.B ST.3//DH�.B SU.3//ŒWG�:

One may check that if we invert linear forms any module of the form H�.B ST.3//˝V
is normal (the case V D � is most interesting).

It seems natural to expect that with linear forms inverted, the module H�.BT /˝V is
normal for any compact Lie group G , and it may be that more general statements could
be formulated giving the result that ‰N is qce directly as was done for G D SO.3/
in the above example. However, we will instead use injective resolutions to reduce the
verification to special cases.

7C From A.T /ŒW G� to A.G; toral/

After our discussion of normal modules we are equipped to turn to the right adjoint ‰ .

Proposition 7.6 The functor

‰W WG–equivariant-Ra–modules �! Rinv –modules

takes quasicoherent extended modules to quasicoherent extended modules and preserves
F –continuous modules and hence induces a functor

‰W A.T /ŒWG� �!A.G; toral/:

Remark 7.7 The functor ‰ does not preserve quasicoherence or extendedness sepa-
rately.
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Proof First, F –continuity is straightforward, since M.K/.WG/K maps into the
.WG/K –invariants inside the .WG/K�L–invariants, and we have already observed
that the passage to invariants commutes with products and localizations. The main
issue is the qce property, which is rather delicate.

Suppose N is an Ra–module with image ‰N defined by

.‰N/.F /DN.F /.WG/eF :

As in Lemma 6.2, we note that a multiplicatively closed set S preserved by the action
of a finite group has a cofinal multiplicatively closed subset NS whose elements are
the products Ns over orbits. Thus we will assume that the multiplicatively closed
subsets are invariant.

Now suppose E � F . Since N is qce we have

N.E/DRa.E/˝Ra.F /N.F /:

Taking fixed points under .WG/eE we have

.‰N/.E/DN.E/.WG/eE D ŒRa.E/˝Ra.F /N.F /�
.WG/eE :

Since the connected structure is decreasing, .WG/eE � .WG/eF and we need to show
the natural map

�E�F W Rinv.E/˝Rinv.F / .‰N/.F /DRa.E/
.WG/eE ˝Ra.F /

.W G/F N.F /
.WG/eF

�! ŒRa.E/˝Ra.F /N.F /�
.WG/eE D .‰N/.E/

is an isomorphism.

The character of the problem is like that of normality, and we adopt a similar strategy.
We first note that the question of whether �E�F is an isomorphism only depends on N
only through N.F /, which is a .WG/F –equivariant Ra.F /–module.

Lemma 7.8 The class of modules N.F / for which � is an isomorphism is closed
under the following operations:

� arbitrary sums,

� passage to kernels,

� passage to cokernels,

� passage to extensions.

It is an isomorphism for N.F /DRa.F /.
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Proof This is clear for sums, and it is clear for N.F / D Ra.F /. We illustrate
the other cases by the passage to kernels. Suppose then that � is an isomorphism
for N.F /D B; C and that we have an exact sequence

0 �! A �! B �! C:

Taking WF D .WG/F –invariants, and tensoring with Ra.E/WE over Ra.F /WF we
obtain the first row in the following diagram, and similarly the second row is obtained
by tensoring with Ra.E/ and taking WE –invariants:

0 // Ra.E/WE˝Ra.F /
WF A

WF //

��

Ra.E/WE˝Ra.F /
WF B

WF //

��

Ra.E/WE˝Ra.F /
WF C

WF

��

0 // ŒRa.E/˝Ra.F /A�
WE // ŒRa.E/˝Ra.F /B�

WE // ŒRa.E/˝Ra.F /C �
WE

The result follows from the short 5-lemma.

In effect the lemma says the result is only obvious when N.F / is a free Ra.F /–module.
The strategy of proof is to reduce to the case of certain standard injectives that we
identify precisely. We note that these standard injectives come from the polynomial
rings H�.BT=K/. Because the polynomial ring H�.BT=K/ is Gorenstein, the
injective is also the local cohomology and we can deduce this case from that of the
free module.

In more detail, we show in Section 8 that any module N admits an injective presentation
0! N ! I0 ! I1 where I0 and I1 are sums of WG–equivariant injectives of a
particular form. It therefore suffices to prove the result for the special case of these
basic injectives. These are discussed in detail in Section 8, but we will summarize the
properties we need here to avoid interrupting the thread of the argument.

Suppose then that K � T and consider a basic injective arising from K . This is
obtained from an injective module I over H�.BT=K/, namely

I DH�.BT=KLT=K/:

Indeed, the right adjoint f T
K to evaluation at K gives an injective f T

K .I / in A.T /
and then we may coinduce the module to N , where it takes the form

f N
.K/.QŒW �˝ I /D f

N
.K/.I /˝QŒW �

in A.N; toral/DA.T /ŒWG�. Notice that the value of this injective at any flag is free
over QŒW �.

Of course N.H/ D 0 unless H is subconjugate to K . From the qce condition it
follows that the value N.F / is zero unless K � L0 . We note that if K 6� K0 then
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I is EK0=L0
torsion; as observed elsewhere, we can always localize with respect to

products over W –orbits. Thus the qce condition for ‰N holds for such flags. We may
therefore suppose that K �K0 .

We may be explicit about the value of N.F /. Indeed, K � L0 � � � � � Lt and
T=Lt D T=K �K=Lt . Thus

N.F /D E�1L0=Ls
H�.BT=Ls/˝H�.BT=A/H�.B.T=K/

L.T=K//ŒWG�

D E�1L0=Ls
H�.BK=Ls/˝QH�.B.T=K/

L.T=K//ŒWG�:

It remains to observe that �E�F is an isomorphism for this N.F /. We will first verify
the statement without WG . For this we apply the following lemma to T D T=K .

Lemma 7.9 Suppose W is any finite subgroup of Aut.T /, and consider the category
of W–equivariant H�.BT /–modules.

If BT LT is the Thom space of the tangent space LT of T at e , the module H�.BT LT /
is the cohomology of a finite complex of H�.BT /ŒW�–modules each term of which is
generated by H�.BT / using direct sums, cokernels and direct limits.

Remark 7.10 Note that the insertion of the adjoint representation LT is necessary.
For example if T D SO.2/ is the circle and W DW SO.3/ is of order 2, H�.BT LT /
is a suspension of the dual of .c/, and we have the exact sequence

0 �!QŒc� �!QŒc; c�1� �! .c/_ �! 0

proving the lemma in this case. On the other hand the module kŒc�_ is not in this
category since ��‰.kŒc�_/ 6Š kŒc�_ .

Proof To start with, ignore the action of W. If we choose a finite set G of generators
of the ideal m of elements of RDH�.BT / of positive codegree, we may form the
stable Koszul complex K�1.G/, with

Kn1.G/D
M

��G;j� jDn

R

�
1Q
g2� g

�
:

The point of the stable Koszul complex is that it calculates local cohomology, so that if
T is of rank s , we have

H�.K�1.G//DH
�
m.R/DH

s
m.R/DH�.BT

LT /:

Now choose G so that the construction is W–equivariant. Indeed, adding translates as
necessary, we choose G to be a union of W–orbits, and group the terms in Kn1.G/
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into W–orbits of n–tuples � . Thus if the orbit O of � has isotropy V we find

KO
1 D

M
�2O

R

�
1Q
i2� gi

�
DW˝VR

�
1Q
g2� g

�
:

Finally, we argue that we can insert the group ring QŒW �. Indeed, we are considering
the map

�E�F W Ra.E/
.WG/eE˝

Ra.F /
.W G/e

F
N.F /.WG/eF �! ŒRa.E/˝Ra.F /N.F /�

.WG/eE :

We have observed that if �E�F is an isomorphism for N.F / D Ra.F / then it is
also an isomorphism when N.F / comes from f N

.K/
.I / with I DH�.BT=KLT=K/.

We now show that, similarly, if �E�F is an isomorphism for N.F / D Ra.F /ŒW �
then it is also an isomorphism when N.F / comes from f N

.K/
.I ŒW �/. For the case

when N.F /DRa.F /ŒW � let us note that NG.E/�NG.F /; this gives a map of Weyl
groups WG.E/!WG.F /, and passing to quotients under their respective maximal
tori, we have an inclusion WG.E/=.T=Ks/�WG.F /=.T=Lt / of coset spaces.

Now for any connected Lie group � with maximal torus T , the rational Serre spectral
sequence of �=T ! BT ! B� collapses to give an isomorphism

H�.BT /ŠH�.B�/˝H�.�=T /

of H�.B�/ŒW �–modules. Furthermore the Weyl group acts trivially on the first factor.
For example

H�.BT=Ks/DH
�.BW e

GE/˝H
�.N e

G.E/=T /;

so that when we invert EK0=Ks
we find

Ra.E/D .‰Ra/.E/˝H
�.N e

G.E/=T /:

Using this we may identify �E�F as

‰Ra.E/˝‰Ra.F / Œ‰Ra.F /˝H
�.N e

G.F /=T /ŒW ��
.WG/eF

�E�F
���!ŒRa.E/˝Ra.F /Ra.F /ŒW ��

.WG/eE

D ŒRa.E/ŒW ��
.WG/eE

D .‰Ra/.E/˝ ŒH
�.N e

G.E/=T /ŒW ��
.WG/eE :

This compares two free ‰Ra.E/–modules obtained by tensoring with the vector spaces

ŒH�.N e
G.F /=T /ŒW ��

.WG/eF and ŒH�.N e
G.E/=T /ŒW ��

.WG/eE :
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We note that they are both vector spaces of dimension jW j (they are not isomorphic
as graded vector spaces, but E ¤ F so Ra.E/ is 2–periodic and tensoring gives
abstractly isomorphic ‰Ra.E/–modules).

Finally, we observe that � is obtained from a WGE –equivariant Ra.E/–module map

�E�F W Ra.E/˝Ra.F /
.W G/e

F
ŒRa.F /ŒW ��

.WG/eF �!Ra.E/˝Ra.F /Ra.F /ŒW �

by passage to WGeE –fixed points. This map is surjective since Ra.E/ŒW � is generated
as an Ra.E/ŒWGE �–module by .Ra.F /ŒW �/WGe

F . Hence � is an isomorphism as
required.

7D Toral descent from G to N

The descent property now follows from the result for arbitrary modules.

Corollary 7.11 We have an adjunction

��W A.G; toral/ // A.T /ŒWG� W‰oo ;

for which the unit is an isomorphism.

Proof In the light of Lemmas 7.1 and 7.6, this is immediate from Proposition 5.9.

8 Homological algebra of A.G; toral/

In this section we deduce from known properties of A.T / the facts we need about the
homological algebra from A.G; toral/. In particular, we show it has finite injective
dimension equal to the rank.

8A Right adjoints to evaluation

The study of A.T / in [11] shows that A.T / has sufficiently many injectives. Indeed,
it is shown that enough injectives can be imported from module categories using right
adjoints f T

K to evaluation at subgroups K . We will not repeat the argument here in
detail, but the idea is to argue by induction on the supporting codimension

scd.M/ WDminfdim.T=K/ jM.K/¤ 0g

of a nonzero module M . One may find a map from any module M ¤ 0 to a sum of
injectives f T

K .I / which is a monomorphism at subgroups of codimension scd.M/.
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The general case can be built up from this. Accordingly, it suffices here to discuss the
right adjoints to evaluation.

The starting point from [11] is that for any closed subgroup K � T of codimension c ,
there is a right adjoint f T

K to evaluation at K :

evalK W A.T /scd�c
// torsion-H�.BT=K/–modules Wf T

Koo :

We may combine these phenomena over a WG–orbit .K/. The point is that the distinct
subgroups Ki in the orbit are of the same codimension in T and hence only cotorally
related if they are equal:

eval.K/W A.T /scd�c
// Q

K02.K/torsion-H�.BT=K 0/–modules Wf T
.K/

oo :

This is compatible with the WG–action. To describe the structure, note that we have
an inclusion .K/! †a.T / of posets with WG–action. Because .K/ is a discrete
poset it is reasonable to write H�.BT=.K// for the restriction of Ra to .K/. Since
.K/ is a transitive WG–set, there is an equivalence

H�.BT=.K//ŒWG�–modules'H�.BT=K/Œ.WG/K �–modules:

Thus we have an adjunction

eval.K/W A.T /ŒWG�scd�c
// torsion-H�.BT=.K//ŒWG�–modules Wf N

.K/
oo :

We will generally specify the particular subgroup K and take the argument of f N
.K/

to
be an H�.BT=K/Œ.WG/K �–module. The right adjoint to evaluation on A.G; toral/
can now be defined in terms of the functor for N .

Lemma 8.1 The right adjoint to evaluation at K is given by the formula

f G.K/.M/D‰f N
.K/.��M/;

where M is an H�.BW e
GK/ŒW

d
GK�–module. We have the commutative diagram:

A.T /ŒWG�scd�c

‰

��

torsion-H�.BT=K/Œ.WG/K �–modules

‰
W W e

G
K

��

f N
.K/
oo

A.G; toral/scd�c torsion-H�.BW e
GK/ŒW

d
G .K/�–modules

f G
.K/

oo
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Proof We make the calculation

HomA.G;toral/.X; f
G
.K/.M//

D HomA.G;toral/.X;‰f
N
.K/.��M//

D HomA.T/ŒWG�.��X; f
N
.K/.��M//

D HomH�.BT=K/ŒWGK �..��X/.K/; ��M/

D HomH�.BT=K/.H
�.BT=K/˝H�.BW e

GK/
X.K/; ��M/WGK

D HomH�.BW e
GK/

.X.K/;H�.BT=K/˝H�.BW e
GK/

M/WGK

D HomH�.BWK
G K/.X.K/;M/W

d
GK :

8B The category A.N; toral/

The evaluation functors immediately bring A.N; toral/ under control.

Lemma 8.2 The abelian category A.N; toral/DA.T /ŒW � has enough injectives and
is of injective dimension equal to the rank.

Proof In the category of H�.BT=K/Œ.WG/K �–modules, any torsion injective em-
beds in

HomQ.QŒ.WG/K �;H�.BT=K//D .H�.BT=K/Œ.WG/K �/
_:

Applying f N
.K/

we obtain enough injectives in A.T /ŒWG�.

Since
HomA.T/ŒWG�.M;N /D HomA.T/.M;N /

WG

and passage to fixed points is exact, it follows that the injective dimension of A.T /ŒWG�

is no more than that of A.T /. The case of coinduced modules shows they are equal.

8C The category A.G; toral/

The properties we want for A.G; toral/ itself can now be deduced formally from what
we have proved for A.N; toral/.

Proposition 8.3 The abelian category A.G; toral/ has enough injectives and is of
injective dimension equal to the rank of G .
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Proof Since we are working over the rationals, H�.BT=K/ is free over H�.BW e
GK/

and �� is exact. The right adjoint ‰ therefore preserves injectives, and ‰I is injective
in A.G; toral/ for every injective I in A.T /ŒWG�. Consequently, if we apply ‰ to
an injective resolution of M we obtain an injective resolution of ‰M . Since the unit
of the adjunction is an isomorphism (Proposition 5.9 and Corollary 7.11), all objects
of A.G; toral/ are in the image of ‰ and there are enough injectives in A.G; toral/.

Since A.T / is of injective dimension r [12], it follows that A.G; toral/ is of injective
dimension � r . To see that this bound is achieved, we may consider free spectra (which
is to say torsion modules over the polynomial ring H�.BGe/ on r generators), or
more specifically GC (which is to say the torsion module QŒGd �).

Part II Topology

9 Toral detection

We show that the toral part of G–spectra is detected in T –equivariant homotopy. This
is the key result that makes this entire approach viable.

9A Idempotents

Underlying the structure of any monoidal category is the endomorphism ring of the unit
object, which in our case is the ring of stable homotopy groups of S0 . Accordingly,
we recall how the Burnside ring A.G/D ŒS0; S0�G is related to spaces of subgroups.
Given a stable map f W S0!S0 , the degree of geometric fixed points defines a function
deg.f /W F.G/! Z from the set F.G/ of subgroups of G with finite index in their
normalizers. It is clearly constant on conjugacy classes, and one may show that deg.f /
is continuous in the Hausdorff metric topology. It was shown by tom Dieck [5] that the
map

A.G/ �! CG.F.G/;Z/

is injective and that it is a rational isomorphism. Furthermore CG.F.G/;Z/˝Q is
isomorphic to CG.F.G/;Q/. Finally, it is easy to deduce the degree of the geometric
fixed points under any subgroup: if K is not of finite index in its normalizer then
deg.f K/D deg.f H / whenever K is cotoral in H .

Next we note that the conjugacy class of maximal tori is open and closed in F.G/, so
there is an idempotent eT 2 A.G/ with support on .T / and the degree of its K–fixed
points is 1 for subgroups of a maximal torus and 0 otherwise.
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We may then localize with respect to eTS
0 , and obtain

toral-G–spectraD eT ŒG–spectra�:

Lemma 9.1 Writing ƒ.T / for the family of subgroups of some maximal torus, the
natural map Eƒ.T /C! S0 induces an equivalence Eƒ.T /C ' eTS

0 .

Proof By definition the K–fixed point space of Eƒ.T /C is equivalent to S0 if K
lies in a maximal torus and is a point otherwise. The map is therefore an equivalence
in geometric K–fixed points for all K and hence a weak equivalence.

Corollary 9.2 We have

ŒEƒ.T /C; Eƒ.T /C�
G
D ŒS0; S0�T DQ;

which is detected by the degree in homotopy of geometric T –fixed points.

Proof After Lemma 9.1, we see

ŒEƒ.T /C; Eƒ.T /C�
G
D ŒEƒ.T /C; S

0�G D ŒeTS
0; S0�G D eTA.G/DQ:

9B Toral restriction is faithful

The key to our strategy is that the restriction from G to a maximal torus T is faithful
on toral spectra.

Proposition 9.3 The forgetful map

ŒX; Y �G �! ŒX; Y �T

is rationally split injective if X is a ƒ.T /–spectrum.

Proof Under the natural equivalence ŒG=TC ^X; Y �G D ŒX; Y �T the forgetful map
corresponds to the projection � W G=T !�.

Since X is a ƒ.T /–spectrum, it is equivalent to X ^Eƒ.T /C , so that a splitting can
be obtained from a factorization:

Eƒ.T /C G=TC ^Eƒ.T /C
�

oo

Eƒ.T /C

s

OO

1

hh

It remains to choose a suitable s , and we note that Corollary 9.2 shows we need only
show s is nontrivial in T –geometric fixed points. In fact we will show that maps in
this pattern are determined by �0 of T –geometric fixed points.
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Lemma 9.4 For each of the three pairs of spaces X; Y in the above diagram we have
an isomorphism

ŒX; Y �G Š
�!HomQW .�0.ˆ

TX/; �0.ˆ
T Y //:

Proof This is already done for the edges labelled 1 or � , so we only need to deal
with the edge labelled s where X DEƒ.T /C and Y DG=TC ^Eƒ.T /C .

Write L for the representation of T given by the tangent space to G=T at eT , and
note the fact that T is a maximal abelian connected subgroup shows that LT D 0. The
Wirthmüller adjunction gives isomorphisms

ŒEƒ.T /C; G=TC ^Eƒ.T /C�
G
D ŒEƒ.T /C; FT .GC; S

L
^Eƒ.T /C/�

G

D ŒEƒ.T /C; S
L
^Eƒ.T /C�

T
D ŒS0; SL�T DQ:

The last isomorphism follows from the Segal–tom Dieck splitting, since the only
subgroup K of T with finite index in its normalizer is T itself. Following through
the adjunctions, the composite isomorphism is given by forgetting from G to T and
composing with the T –map

G=TC ^Eƒ.T /C �! SL ^Eƒ.T /C

induced by the Pontrjagin–Thom map G=T ! SL . It follows that maps are detected
by degree in T –geometric fixed points.

According to Lemma 9.4, we need only consider

Q QWG
��

oo

Q
1

bb

s�

OO

and select s so that jWGjs� is the norm map.

Remark 9.5 To be more specific, we can take jWGjs to be the composite

Eƒ.T /C!FT .GC; Eƒ.T /C/
FT.GC;iL/
������!FT .GC; S

L
^Eƒ.T /C/'G=TC^Eƒ.T /C

where the first map is the adjunct of the identity and the last is the standard Wirthmüller
equivalence.
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10 Borel cohomology and the associated homology theory

10A Classical isomorphisms

The essential ingredients in the proof that A.G; toral/ provides an effective invariant
are classical facts about the cohomology of the Borel construction. We will need to
apply the results to W e

GK for various subgroups K of G , so in this section we take �
to be a compact Lie group with maximal torus T , torus-normalizer N D N�T and
Weyl group W� DN�T=T .

Lemma 10.1 If Z is a free � –space then we have natural isomorphisms

(i) H�.Z=N/ŠH�.Z=T /W�,

(ii) H�.Z=�/ŠH�.Z=N/,

(iii) H�.Z=�/ŠH�.Z=T /W�; and

(iv) if � is connected, there is a natural isomorphism

H�.BT /˝H�.B�/H
�.Z=�/ Š�!H�.Z=T /:

Proof It suffices to treat the unbased case.

Part (i) follows since the Serre spectral sequence Z=T !Z=N! BW� collapses
when the group order is invertible.

Part (ii) follows from the Serre spectral sequence of �=N ! X=N ! X=� , since
�=N is rationally contractible.

Part (iii) follows by combining parts (i) and (ii).

Part (iv) follows from the Eilenberg–Moore spectral sequence of the pullback square:

Z=T //

��

BT

��

Z=� // B�

We note that connectedness of � ensures B� is 1–connected, and working over Q
ensures that H�.BT / is free over H�.B�/.

Corollary 10.2 For any N –spectrum B , the map i W B ! �C ^N B induces an
isomorphism in H�N .
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Proof It suffices to prove the case when B is the suspension spectrum of ZC for an
unbased space Z . It is convenient to view this as the � Borel cohomology of

� �N Z �! � �N � �N Z Š �=N �� �N Z:

Since the composite with projection is the identity, it therefore suffices to observe that
by the lemma, �=N!� induces an isomorphism.

10B Fixed points and induced spaces

The purpose of this subsection is to show that the L–fixed point spaces of induced
spaces are made up of copies of induced spaces of Weyl groups.

More precisely, we suppose L � T and consider its conjugates inside T , which
consists of the WG–orbit of L, and we suppose the groups are LD L1; L2; : : : ; Lc
with Li D Li . In the usual way if A is a T –space then ALi D �1i .AL/.

Lemma 10.3 For a T –space A we have

.G �T A/
L
D

a
i

WG.L/i �T=Li
ALi :

Proof We note that the condition for Œg; a� to be L–fixed is that for each l 2 L there
is a t 2 T so that lg D gt and t�1aD a . The first condition determines t , so Œg; a�
is only fixed if Lg � T and then a is fixed by Lg . Thus we obtaina

i

NG.L/i �T A
Li �!

a
i

NG.L/=Li �T=Li
ALi

as claimed.

Corollary 10.4 For any T –space A, the map N �T A!G �T A induces an isomor-
phism of WGL–equivariant Borel cohomology of L–fixed points.

Proof From Lemma 10.3, we see that the map is a disjoint union of instances of

WN.L/�T=LA
L
�!WG.L/�T=LA

L:

This in turn is an instance of Corollary 10.2 with � DWGL.
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10C Adjoint representations

It is extremely interesting to see how the adjoint representation behaves in moving
between G and N . Alternatively stated, this amounts to understanding the adjoint
representation in the Adams isomorphism. We write LG for the adjoint representation,
which is to say the tangent space at the identity of G with G acting by conjugation.
For the torus T there is also a rational version LQT DH1.T IQ/, so that there is a
natural isomorphism LQT ˝RŠ LT .

Lemma 10.5 We have a natural isomorphism HG
� .X ^S

LG/DHN
� .X ^S

LT /.

Proof by stable equivariant formalism If X is a finite free G–space then we have
natural isomorphisms

HG
� .†

LGX/Š ŒS0; X ^H�G�

Š ŒDX;H�G�

ŠH�G.DX/

ŠH�N .DX/

Š ŒDX;H�N�

Š ŒS0; X ^H�N�

ŠHN
� .†

LTX/:

The two equivalences changing X to DX come from the formal properties of du-
ality. Since X is finite and free, DX is free, giving the isomorphisms with Borel
cohomology. The one relating G–equivariant and N –equivariant Borel cohomology is
Lemma 10.1(ii). The first and last isomorphisms are instances of the Adams isomor-
phism.

Proof by Lie group theory We observe directly that SLT ! SLG induces an iso-
morphism in H�N , which is to say that multiplication by the Euler class of LG=LT
is an isomorphism. More precisely, if g D dimG and t D dim T , we show that the
horizontals in the following diagram are isomorphisms of the WG–invariants

ŒH�.BT /˝SLT �WG //

D

��

ŒH�.BT /˝SLG �WG

D

��

†t ŒH�.BT /˝H t .SLT /�WG // †g ŒH�.BT /˝Hg.SLG/�WG

given by the multiplication by the product of the Euler classes of the positive roots.
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We adjoin exterior variables to give a context, writing A.V /DE.†V /˝P.†2V / for
a vector space V . For an element v 2 V we write �.v/ for the corresponding element
of †V and c.v/ for the element of †2V . We consider the special case V D LQT ,
so that H�.BT /D P.†2V /. Thus

H�T .S
LT /� A.V /

consists of the H�.BT /–submodule generated by det.†V /. Choosing an ordered
basis e1; : : : ; er of V we may let ı D �.e1/^ � � � ^�.er/ be a generator of det.†V /.
Now consider the adjoint representation of G and choose a set RC of positive roots.
If we take � D

Q
˛2RC

c.˛/ then ı� is the Euler class of LG .

The result is now Solomon’s lemma [18], but perhaps it is illuminating to sketch the
proof in this case. We observe that ı� is WG invariant. Indeed, associated to RC
there is the Weyl chamber on which the roots are positive and WG is generated by
reflections s˛ in the walls of the Weyl chamber. Since s˛ is a reflection s˛ıD�ı . On
the other hand s˛ negates ˛ and permutes the other positive roots [4, 4.10]. Hence s˛
fixes ı� .

Since H�.BG/DH�.BT /WG it follows that

H�G.S
LG/DH�.BG/ � ı� �H�T .S

LT /WG :

Now we argue that any element ıf of the invariants is divisible by each c.˛/. Since
det.s˛/D�1, we find f .s˛c.v//D�f .c.v// for each v . Accordingly, for each v in
the reflecting hyperplane f .c.v//D 0. If we choose a basis consisting of ˛ together
with elements of the reflecting hyperplane we see c.˛/ divides f . Since any pair of
positive roots are linearly independent, it follows that f is divisible by � as required.

10D The dual of Borel cohomology

We let b denote the representing G–spectrum for Borel cohomology, so that, by
definition,

b�G.X/DH
�.EGC ^G X/D ŒEGC ^X;H�

�
G D ŒX; F.EGC;H/�

�
G :

This shows the representing spectrum is given by

b D F.EGC;H/:

The associated homology theory is defined by

bG� .X/D ŒS
0; X ^ b�G� :
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The canonical warning is that this is not homology of the Borel construction. Instead,
we have

bG� .X/D lim
! ˛

bG� .X˛/

where X is the directed colimit of finite subspectra X˛ . For finite spectra Y we have

bG� .Y /D ŒS
0; Y ^ b�G� D ŒDY; b�

�
G D b

�
G.DY /DH

�.EGC ^G DY /:

Remark 10.6 This calculation can be viewed as one of the motivations for Borel–
Moore homology, according to which bG� .X/ would be the Borel–Moore homology
associated to Borel cohomology. However, since the essence of Borel–Moore homology
is really the use of locally finite chains it would be misleading to call this Borel Borel–
Moore homology.

We will need a standard observation.

Lemma 10.7 For finite G–spectra Y we have b ^Y ' � if and only if b ^DY ' �.

Proof Since b is a ring G–spectrum it follows that if b^Y '� then F.Y; b/'�.

Our main use of this homology theory is to formulate appropriate analogues of
Lemma 10.1.

Lemma 10.8 Suppose � is a compact Lie group with maximal torus T and Weyl
group W� and that the order of W� is invertible in the coefficients. For � –spectra A,
there is a natural isomorphism

b�� .A/D Œb
T
� .A/�

W� :

Proof The forgetful map

ŒS0; b ^A�� �! ŒS0; b ^A�T

supplies a natural transformation

b�� .A/ �! ŒbT� .A/�
W� :

Since the order of W� is invertible, both terms are homology theories, and both
preserve filtered colimits. The transformation is an isomorphism for finite complexes
by Lemma 10.1(iii).
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11 The functor from G –spectra to A.G; toral/

We have built a model of toral G–spectra by comparison with the model for T –spectra.
In this section, we elucidate the relationship between these two models and thereby
construct the functor �A.G/

� from G–spectra to A.G; toral/.

11A Equivariance

We have seen that rational T –spectra are modelled by A.T / and that there is a functor

�A
� W T–spectra �!A.T /

defined by
�A
� .X/.L/D �

T=L
� .DET=LC ^ˆ

LX/

and for finite X this is H�T=L.Dˆ
LX/. The image of restriction from G–spectra

to T –spectra has additional structure. To start with, we know that A.T / admits an
action of WG .

Lemma 11.1 The image of the composite

G–spectra �! T–spectra �!A.T /

consists of WG–equivariant modules and WG–equivariant maps. Accordingly, we
have a functor

�A
� W G–spectra �!A.T /ŒWG�DA.N; toral/:

Proof By definition

�A
� .X/.K � L/D �

T=L
� .S1V.K=L/ ^DEF=LC ^ˆLX/:

The action of WG is through conjugation by group elements. This gives group
homomorphisms L! Lw , and homeomorphisms between the spaces corresponding
to the groups. The homeomorphisms are equivariant for the group homomorphism.

The identification A.N; toral/DA.T /ŒWG� is given in Lemma 6.10.

11B Restriction for free spectra

In preparation for explaining how restriction from G–spectra to N –spectra is modelled,
we consider the inclusion i W H !G of a subgroup. We have left and right adjoints to
restriction:

G–spectra i� // H–spectra
iŠ

oo

i�
oo

:

Algebraic & Geometric Topology, Volume 16 (2016)



Rational equivariant cohomology theories with toral support 1999

It is helpful to think first about what happens for free spectra. We summarize the
discussion from [13]. Starting in the case when G and H are connected, we have a
map

� D i�W H�.BG/ �!H�.BH/:

This induces restriction of scalars �� which itself has left and right adjoints:

H�.BH/–mod �� // H�.BG/–mod
�Š

oo

��
oo

:

It is apparent that the two triples of adjoint functors cannot match up. It turns out that
(when we use the Eilenberg–Moore equivalence) it is iŠ that is modelled by �� , so that
i� is modelled by �� .

The relevant analogy for us does not involve connected groups, so we recall the general
case from [13]. We write ieW He ! Ge for the inclusion of the identity component,
and id W Hd !Gd for the induced map on discrete quotients (not usually injective).
In algebra, we again let �e D i�e W H

�.BGe/! H�.BHe/ for the induced map in
cohomology. The main piece of data is � D .�e; id /. It turns out that iŠ is modelled by
a functor we call �� , which is defined on H�.BHe/ŒHd �–modules N by

��.N /D HomQŒHd �.QŒGd �; N /

(we note this is consistent with the previous notation when Hd DGd D 1). Restriction
of groups i� is then modelled by the functor �� left adjoint to �� , which is defined
on H�.BGe/ŒGd �–modules M by

��.M/DH�.BHe/˝H�.BGe/M:

Induction of spectra i� is then modelled by the functor �� left adjoint to �� defined
on H�.BHe/ŒHd �–modules N by

��.N /DQŒGd �˝QŒHd �D.GejHe/˝H�.BHe/N;

where the relative dualizing module is defined by

D.GejHe/D HomH�.BGe/.H
�.BHe/;H

�.BGe//:

In our case the relative dualizing module satisfies

D.GejHe/D HomH�.BGe/.H
�.BHe/;H

�.BGe//'†
LG=HH�.BHe/

and we may therefore simplify the expression for �� to find

��.N /DQŒGd �˝QŒHd �†
LG=HN:
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In the special case H DN we note that He D T and Hd DWG . In view of the fact
that WG=W .Ge/ŠGd we see that

iŠ is modelled by ��N DNWGe ;

i� is modelled by ��M DH�.BT /˝H�.BGe/M;

i� is modelled by ��N D .†LG=TN/W .Ge/:

11C The image of a spectrum in the model

We now make explicit the functor we use to relate G–spectra to A.G; toral/. The
motivation is that restriction to the maximal torus is homotopically faithful, but the
special form of the objects in the image mean that we can pass to invariants without
losing information.

We will need to consider the functor

A.N; toral/DA.T /ŒWG� ‰
�!A.G; toral/

from Proposition 5.9, where we use the Lie group component structure of Section 4E.
We recall that it was shown to have left adjoint �� defined by

��.Y /DRa˝Rinv Y;

which on subgroups K � T is

.��Y /.K/DH
�.BT=K/˝H�.BW e

GK/
Y.K/:

Remark 11.2 In view of the isomorphism QŒWG�WW e
GK DQŒW d

GK�, the relation-
ship between the two notations is

.‰X/.K/DX.K/WW e
GK D Hom.WG/K .QW

d
GK;X.K//D .�

�X/.K/:

Definition 11.3 The functor �A.G/
� W G–spectra!A.G; toral/ is defined as the illus-

trated composite of three functors:

G–spectra
resG

N
//

�A.G/
�

��

N–spectra

�A
�

��

A.G; toral/ A.T /ŒWG�
‰
oo

Remark 11.4 We note that specializing the definition to the case G D N gives
�A.N/
� D �A.T/

� D �A
� , which is consistent according to Lemma 11.1.
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We immediately express �A.G/
� more directly in terms of G–equivariant data.

Proposition 11.5 For any G–spectrum X , and any subgroup K � T , we have

�A.G/
� .X/.K/D b

W e
GK
� .ˆKX/:

If X is a finite G–spectrum, we can express this directly in terms of Borel cohomology
of fixed points of the dual

�A.G/
� .X/.K/DH�W e

GK
.ˆK.DX//:

Remark 11.6 It would be possible to give the statement of the proposition as the
definition of �A.G/

� .X/. We used Definition 11.3 instead because the deduction of the
proposition from the definition is a little more elementary than the reverse deduction.
Indeed, if � is a connected group (such as W e

GK ) with maximal torus T and A is
a � –space (which might have arisen as ˆKDX in some cases), Lemma 10.1 gives the
two formulae

H�� .A/DH
�
T .A/

W�

and
H�T .A/DH

�.BT /˝H�.B�/H
�
� .A/:

We view the first as more elementary than the second.

Proof By definition

�A.G/
� .X/.K/D �

T=K
� .DET=KC ^ˆ

KX/D b
T=K
� .ˆKX/:

The result now follows by applying Lemma 10.8 with � DW e
GK and ADˆKX .

11D Restriction

As in the case of free spectra, it will emerge that �� D‰ corresponds to coinduction,
and its left adjoint �� corresponds to restriction.

Proposition 11.7 The following diagram commutes:

toral-G–spectra
resG

N
//

�A.G/
�

��

toral-N–spectra
resN

T
//

�A.N/
�

��

T–spectra

�A.T/
�

��

A.G; toral/
��

// A.N; toral/ //

D

��

A.T /

D

��

A.T /ŒWG�
resW G

1
// A.T /
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Proof The right-hand two squares commute by the definition of �A
� together with

Lemmas 11.1 and 6.10.

By definition �A.G/
� XD‰�A.N/

� .resGN X/, so the commutation of the left-hand square
is given by the Proposition 11.8 below.

Proposition 11.8 If X is a G–spectrum then the counit

���
A.G/
� .X/D ��‰�

A.N/
� .resGN X/

Š
�!�A.N/

� .resGN X/

is an isomorphism.

Remark 11.9 In essence this amounts to two classical statements about Borel coho-
mology (Lemma 10.1(iii) and (iv)).

Proof We consider the situation at K � T , for a G–spectrum X , where we have the
map

H�.BT=K/˝H�.BW e
GK/

�
T=K
� .DET=KC ^ˆ

KX/WW e
GK

�! �
T=K
� .DET=KC ^ˆ

KX/:

Since H�.BT=K/ is free over H�.BW e
GK/, both sides commute with direct limits

in X , so it suffices to prove this is an equivalence for finite X , and these may be taken
to be of the form DY for a finite spectrum Y . Since ˆKDY 'DˆKY for finite Y ,
and since

DET=KC ^Dˆ
KY 'D.ET=KC ^ˆ

KY /

we may translate this into the following statement about Borel cohomology of the
WK–spectrum ˆKY :

H�.BT=K/˝H�.BW e
GK/

H�T=K.Z/
WW e

GK Š
�!H�T=K.Z/:

We note further that this only depends on the identity component W e
GK of WK , and

it is sufficient to consider the special case when Z is free and the suspension spectrum
of a space.

The required isomorphism is then the special case � DW e
GK of the Eilenberg–Moore

theorem as in Lemma 10.1(iv). This completes the proof of the proposition.

We note that Proposition 11.8 has significant consequences: only modules of the
form ��N can be �A.N/

� X for a G–spectrum X .
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Example 11.10 If G D SO.3/ we have N D O.2/ and T D SO.2/. Therefore
H�.BT /DQŒc� for c of degree �2 with W DO.2/=SO.2/ acting as �1 on c , and
H�.BG/DH�.BT /W DQŒd � where d D c2 is of degree �4.

We thus find that the only QŒc�ŒW �–modules occurring as the T –equivariant homotopy
of a free G–spectrum are those of the form M D QŒc�˝QŒd� N . In particular the
eigenspaces of C1 and �1 are related by

M� D c �N D†�2N D†�2MC:

For example QŒc�=.c2/DQ˚†�2 zQ occurs, but the dual module Q˚†2 zQ does
not.

Proposition 11.8 gives the beginning of our main change of groups theorem.

Corollary 11.11 If X and Y are G–spectra then

HomA.G;toral/.�
A.G/
� X;�A.G/

� Y /D HomA.T/.�
A.T/
� X;�A.T/

� Y /WG :

11E Coinduction

We have just shown that �� models restriction. If the algebraic and topological cate-
gories were equivalent, it would follow that the right adjoint of �� (viz ‰ ) modelled the
right adjoint of restriction (viz coinduction). We show that this expected relationship
does indeed hold.

Proposition 11.12 For any N –spectrum Y ,

�A.G/
� .FN.GC; Y //D‰�

A.N/
� .Y /;

so that the following diagram commutes:

toral-G–spectra

�A.G/
�

��

toral-N–spectra
FN.GC;�/
oo

�A.N/
�

��

A.G; toral/ A.N; toral/
‰

oo

A.T /ŒWG�

Remark 11.13 In essence this amounts to a classical statement about Borel cohomol-
ogy (Corollary 10.2).
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Proof First we note there is a natural transformation. Indeed, we may apply ‰�A.N/
�

to the counit
resGN FN.GC; Y // �! Y

to obtain a natural map

�A.G/
� .FN.GC; Y //D‰.�

A.N/
� .resGN FN.GC; Y /// �!‰.�A.N/

� .Y //:

Both of these are cohomology theories in the toral N –spectrum Y , so it suffices to
show that the map is an equivalence when Y DDN=KC for K � T . Thus we need
only check that ‰�A.N/

� vanishes on the cofibre of N=KC ! G=KC , which was
Corollary 10.4.

12 An Adams spectral sequence

We need to set up a means of calculation, so we will construct an Adams spectral
sequence based on A.G; toral/. We summarize the method here, referring to the
appropriate sections for proofs.

12A Overview

The main theorem of the paper is as follows.

Theorem 12.1 There is an Adams spectral sequence for calculating maps between
toral G–spectra. For arbitrary rational toral G–spectra X and Y there is a strongly
convergent spectral sequence

E
s;t
2 D Exts;tA.G;toral/.�

A.G/
� .X/; �A.G/

� .Y //) ŒX; Y �Gt�s:

The E2–page lies between the s D 0 line and the s D r line, where r is the rank of G ,
so the spectral sequence collapses at the ErC1–page.

Proof We outline the standard strategy and deal with the main points in succession.

First, Proposition 8.3 shows that the abelian category A.G; toral/ has enough injectives.

Accordingly, we may form an injective resolution

0 �! �A.G/
� .Y / �! I0 �! I1 �! � � �

of �A.G/
� .Y / in A.G; toral/.

We then show that this can be realized by toral spectra. First the objects.
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Lemma 12.2 Enough injectives are realizable, that is, there are enough injectives I
in A.G; toral/ for which there exist toral G–spectra I with �A.G/

� .I/D I .

This is proved in Section 13.

Next we show that maps between the injectives are realizable.

Proposition 12.3 If I is one of the injectives constructed in the proof of Lemma 12.2,
then we have an isomorphism

�A.G/
� W ŒX; I�G �!HomA.G;toral/.�

A.G/
� .X/; �A.G/

� .I//

D HomA.G;toral/.�
A.G/
� .X/; I /:

This is proved in Section 14.

This enables us to construct an Adams tower:

Y Y0

��

Y1

��

oo Y2

��

oo Y3

��

oo � � �oo

I0 †�1I1 †�2I2 †�3I3

The construction starts by using Lemma 12.2 to realize I0 by a G–spectrum I0 and
then Proposition 12.3 to realize �A

� .Y /! I0 by a map Y ! I0 . We now take Y1 to
be its fibre so that �A.G/

� .†Y1/D cok.�A.G/
� .Y /! I0/. We may now repeat, using

Lemma 12.2 to realize I1 and Proposition 12.3 to give a map Y1!†�1I1 realizing
the map in the algebraic resolution. Higher Adams covers are constructed by continuing
this process.

This process terminates by Proposition 8.3, which shows the category A.G; toral/ has
finite injective dimension.

We deduce that the Adams tower stops at YrC1 with �A.G/
� .YrC1/D0. Applying ŒX; ��G

to the tower we obtain a spectral sequence. By Proposition 12.3 it has the stated E2 term.

The convergence statement is as follows.

Lemma 12.4 If X is a toral G–spectrum with �A.G/
� .X/D 0 then X ' �.

Proof Suppose then that �A.G/
� .X/D 0, and we want to prove that X is contractible.

By Proposition 9.3 it suffices to show that �A.T/
� .X/ D 0. By definition, we have

�A.G/
� .X/D‰�A.T/

� .X/, so the result follows, since by Proposition 11.8

�A.N/
� .X/D ��‰�

A.N/
� X D ���

A.G/
� X:

Modulo the deferred proofs of the lemmas, this completes the proof of Theorem 12.1.
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13 Realizing enough injectives

In this subsection we prove Lemma 12.2 by realizing enough of the injectives described
in Section 8.

13A Supports

For a commutative Noetherian ring, the indecomposable injectives correspond to the
prime ideals, and the injective corresponding to a prime } is the injective hull of the
residue field of } . The support of a sum of these is the collection of primes involved.
The same principle applies in our context. We have notions of algebraic and geometric
injectives and in both cases the support is a set of closed subgroups.

In A.T / the support is given by the maximal subgroup on which a module is nonzero.
This means that the primes correspond to closed subgroups K , and the ring corre-
sponding to K is H�.BT=K/ with residue field Q and injective hull H�.BT=K/.
To obtain the corresponding object of A.T /, we apply the functor f T

K right adjoint to
evaluation at K .

Moving from T to N , the same idea works for A.N; toral/DA.T /ŒWG�, as we saw
in Section 8, provided we use the complete WG–orbit .K/ rather than the singleton K .
For G , the support is detected through restriction to N .

13B Some idempotent spaces

The support in the topological setting corresponds to geometric isotropy. Indecom-
posable injectives are realized by the simplest possible space with geometric isotropy
equal to the support. We pause to catalogue some of these spaces.

The geometric isotropy
GI.X/D fK jˆKX 6'1 �g

consists of subgroups where the geometric fixed points are nonequivariantly essential.
We further restrict to spectra where the geometric fixed points are nonequivariantly
either S0 or contractible, which we might call “locally idempotent”.

We recall that a collection H of subgroups closed under conjugacy is called a family
if it is closed under passage to subgroups, it is called a cofamily if it is closed under
passage to supergroups, and it is called an interval if it contains any subgroup K which
lies between two elements of H . Intervals of subgroups are precisely those collections
which are the intersection of a family and a cofamily.
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Definition 13.1 If H is an interval of subgroups we write ƒ.H/ for the set of sub-
groups of elements of H (which is the smallest family containing H) and V.H/ for
the set of supergroups of elements of H (which is the smallest cofamily containing H)
and we define

EhHi WDEƒ.H/C ^ zE.All nV.H//:

The proof of the following lemma is immediate from the geometric fixed point White-
head theorem.

Lemma 13.2 If H is an interval, and we choose a family F of subgroups and a
cofamily C of subgroups so that HD F \ C then

EhHi 'EFC ^ zE.All nC/:

The space EhHi is an idempotent spectrum with geometric isotropy H , and any other
locally idempotent spectrum with geometric isotropy H is equivalent to it.

Remark 13.3 It is worth recording the following easy observations:

(1) GI.EhHi/DH .

(2) If F is a family then
EhFi DEFC:

(3) If C is a cofamily then

EhCi D zE.All nC/:

(4) Given two intervals H1 and H2 we have an equivalence

EhH1i ^EhH2i 'EhH1\H2i:

(5) If K is a subgroup of G and H is an interval of subgroups of G , we may
consider the interval HjK of subgroups of K from H and then

resGK EGhHi DEKhHjKi:

13C Idempotent spaces from conjugacy classes

We apply the generalities in our standard context with G a compact Lie group with
maximal torus T and N DNG.T /.

The spectra we are concerned with are idempotent spectra with all the geometric
isotropy groups coming from a single conjugacy class in a larger group. The point
of the previous subsection was to point out that in this case the geometric isotropy
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determines the object. This subsection records some immediate consequences for single
conjugacy classes.

For the interval .K/G we consider the space

EGhKi DEƒG.K/C ^ zE.All nVG.K//

where ƒG.K/ is the family of subgroups G–subconjugate to K and VG.K/ is the
cofamily of subgroups containing a G–conjugate of K . In the following, it is helpful
to introduce some temporary notation. We write P D NNK for the subgroup of N
fixing K , and we suppose the N –conjugacy class of K is fK1; : : : ; Ksg, so that
s D jN W P j.

Lemma 13.4 There is an equivalence of T –spectra

resPT EP hKi 'ET hKi:

There is an equivalence of N –spectra

e.T/ resGN EGhKi 'ENhKi 'NC ^P ET hKi;

and hence an equivalence of T –spectra

resGT EGhKi '
s_
iD1

ET hKi i:

Remark 13.5 The idempotent in the second statement is necessary. Consider the
special case of G D SO.3/, where N DO.2/ and T D SO.2/. The dihedral group of
order 2 in O.2/ is not conjugate in O.2/ to a subgroup of T , but in SO.3/ it is.

Proof The first equivalence is clear.

Two subgroups of T which are conjugate in G are conjugate in N (the proof for
elements in [4, IV.2.5] applies to cover noncyclic subgroups of T ). The geometric
isotropy of EGhKi is the single conjugacy class .K/G . The part lying in T is the
N –conjugacy class.

There is a natural map of N\NG.K/–spaces ET hKi!EGhKi which is fKg! .K/N
on supports. Since T centralizes K this extends to N �N\NG.K/ fKg Š .K/N .

The interaction with coinduction is important. Note that in coinducing from ET hKi

there are three significant stopping points: P DNNK (since fKgD.K/TD.K/P ), N
and G .
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Lemma 13.6 If K is a subgroup of T and P D NNK then we have the following
two equivalences of P –spectra:

FT .PC; ET hKi/' P=TC ^EP hKi

and
FT .NC; ET hKi/' P=TC ^ENhKi:

Proof The first statement is a standard untwisting result.

For the second, we calculate

FT .NC; ET hKi/' FP .NC; FT .PC; ET hKi/

' FP .NC; P=TC ^EP hKi/

'NC ^P P=TC ^EP hKi

' P=TC ^NC ^P EP hKi

' P=TC ^ENhKi;

where the final equivalence comes from Lemma 13.4.

Coinducing up to G has little effect.

Lemma 13.7 There is an equivalence

EGhKi ' FN.GC; e.T/EGhKi/' FN.GC; ENhKi/:

13D Realizing injectives

Again we rely on [11], which shows that in A.T / the basic injective with support K�T
corresponds to the space EhKi. More precisely,

�A.T/
� .ET hKi/D f

T
K .H�..BT=K/LT=K//

where f T
K is right adjoint to evaluation at K as before. Since we have now catalogued

behaviour under change of groups in algebra and topology, we can now read off the
values we require.

Corollary 13.8 The images of EGhKi in A.N; toral/ and A.G; toral/ are given by
the formulae

�A.N/
� EGhKi D f

N
.K/.H�..BT=K/L.T=K///

and
�A.G/
� EGhKi D f

G
.K/.H�..BW

e
GK/

LW e
GK//;

where f N
.K/

and f G
.K/

are right adjoint to evaluation at K .
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Proof We have constructed EGhKi so that its geometric isotropy is concentrated
on .K/N , so the module is concentrated on conjugates of K in T . In view of
equivariance, we need only identify the value at a single point in the orbit, and we find

�A.N/
� .EGhKi/.K/D �

T=K
� .DET=KC ^ET=KC/

D �
T=K
� .ET=KC/

DH�.BT=KL.T=K//:

The second statement follows from the first using Lemma 13.7, since by Lemma 10.5

H�..BT=K/L.T=K//W
e

GK ŠH�..BT=K/L.T=K//W e
GK

ŠH�.BW
e
GK/

L.W e
GK/:

We actually need slightly more general injectives, so that we can embed all repre-
sentations of W d

G .K/. Of course there are many possible choices. We could start
from ENhKi and coinduce, but it turns out that the proof is slightly streamlined by
starting from ET hKi. We give the calculations for both by way of comparison.

Corollary 13.9 The images of N=TC ^ENhKi in A.N; toral/ and its coinduced
spectrum FT .GC; ENhKi/ in A.G; toral/ are given by the formulae

�A.N/
� .N=TC ^ENhKi/D f

N
.K/.QŒWG�˝H�..BT=K/L.T=K///

and

�A.G/
� .FT .GC; ENhKi//D‰f

N
.K/.QŒWG�˝H�..BT=K/L.T=K///

D f G.K/.QŒWG=WGeK �˝H�..BT=K/LT=K//;

where f N
.K/

and f G
.K/

are right adjoints to evaluation at K .

Proof The statement for N follows easily from the previous corollary, recalling
from Section 8A that modules over .K/N are determined from their value over K by
conjugation.

The statement for G follows since ‰ models coinduction as in Proposition 11.12.

We note that if N is an H�.BT=K/ŒWGK �–module, there is a natural transformation

f G.K/.‰N/D‰f
N
.K/.��‰N/ �!‰f N

.K/.N /;
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and when evaluated at K the comparison is the identity

‰��‰N �!‰N:

The values that we will actually use in the proofs are as follows.

Corollary 13.10 The images of the coinduction of ET hKi to N –spectra and to
G–spectra in the algebraic categories are given by the formulae

�A.N/
� .FT .NC; ET hKi//D f

N
.K/.QŒ.WG/K �˝H�..BT=K/L.T=K///

and

�A.G/
� .FT .GC; ET hKi//D‰f

N
.K/.QŒ.WG/K �˝H�..BT=K/L.T=K///

D f G.K/.QŒW
d
GK�˝H�..BT=K/LT=K//;

where f N
.K/

and f G
.K/

are right adjoints to evaluation at K .

Proof If we note that .WG/K DNNK=T D P=T , then the first statement follows
from Lemma 13.6.

The second statement follows as in the proof of Corollary 13.9.

14 Maps into injectives

In this section we give control over maps to realizable injectives through proving
Proposition 12.3. Since this is where we get control over the maps in our category, it is
perhaps not surprising that it is the most delicate part of the argument.

Proposition 14.1 If I is a G–spectrum realizing one of the injectives I constructed
in the proof of Lemma 12.2, then we have an isomorphism

�A.G/
� W ŒX; I�G �!HomA.G;toral/.�

A.G/
� .X/; �A.G/

� .I//

D HomA.G;toral/.�
A.G/
� .X/; I /:

Proof Since I is injective, both sides are cohomology theories of X , and it suffices
to prove the result for X DG=KC where K is a subgroup of T . In fact we will prove
it more generally for X DGC ^T A for some finite T –spectrum A. We consider the
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diagram:

ŒGC ^T A; I�
G

Š

��

�A.G/
�

// HomA.G;toral/.�
A.G/
� .GC ^T A/; �

A.G/
� .I//

D

��

HomA.G;toral/.‰�
A.N/
� .GC ^T A/;‰�

A.N/
� .I//

a

��

ŒNC ^T A; I�
N

Š

��

�A.N/
�

// HomA.N/.�
A.N/
� .NC ^T A/; �

A.N/
� .I//

D

��

HomA.T/.�
A.N/
� .NC ^T A/; �

A.N/
� .I//WG

b

��

ŒA; I�T
�A.T/
�

Š
// HomA.T/.�

A.T/
� A;�A.T/

� .I//

The bottom horizontal is an isomorphism from the T –equivariant Adams spectral
sequence of [11], since �A.T/

� .I/ is injective. The two left-hand vertical isomor-
phisms come from the induction-restriction adjunction. The two right-hand vertical
isomorphisms are definitions.

It therefore remains to describe the maps a and b so that the diagram commutes and
to show that a and b are isomorphisms.

We will deal with b first, because it is straightforward. Since �A.N/
� D �A.T/

� if we
ignore the WG–action, we may take b to be induced by the T –map ˇW A!N^T A.
The diagram commutes, since by definition the left-hand vertical factors through the
forgetful map

ŒNC ^T A; I�
N
�! ŒNC ^T A; I�

T :

The fact that b is an isomorphism follows from a lemma.

Lemma 14.2 The map ˇ induces an isomorphism

�A.N/
� .NC ^T A/DWG˝�A.T/

� .A/;

where the functor on the right is the induction functor left adjoint to restriction.
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For the map a we use the diagram:

ŒGC ^T A; I�
G

��

�A.G/
�
// HomA.G;toral/.‰�

A.N/
� .GC ^T A/;‰�

A.N/
� .I//

��Š

��

ŒGC ^T A; I�
N

˛�

��

�A.N/
�

// HomA.T/.�
A.N/
� .GC ^T A/; �

A.N/
� .I//WG

.˛�/
�

��

ŒNC ^T A; I�
N

�A.N/
�

// HomA.T/.�
A.N/
� NC ^T A;�

A.N/
� .I//WG

We have used the fact that the counit is an isomorphism on restrictions from G

(Proposition 11.8) to identify the codomain of �� and to see it is an isomorphism. In
short, a comes from the map

˛�W �
A.N/
� .NC ^T A/ �! �A.N/

� .GC ^T A/

induced by the N –map ˛W NC ^T A!GC ^T A:

We will show that .˛�/� is an isomorphism, but we pause to observe that this is fairly
subtle, since the map ˛� itself is usually not an isomorphism.

Example 14.3 Consider the special case I DEGC . We have:

ŒGC ^T A;EGC�
G Š

//

D

��

HomH�.BGe/.H
�
Ge
.D.GC ^T A//;H�.BG

LG
e //Gd

D

��

ŒNC ^T A;EGC�
N Š

//

D

��

HomH�.BT/.H
�
T .D.NC ^T A//;H�.BTLT //WG

D

��

ŒA;EGC�
T Š

// HomH�.BT/.H
�
T .D.A//;H�.BTLT //

The reader may find it instructive to think how the suspensions match up.

More specifically still, we may take G D SO.3/, N D O.2/ and T D SO.2/, with
AD S0 . Of course H�T .DA/DH

�BT so that we see from the bottom right that the
value is Q in each positive degree and 0 elsewhere. At the top left, we use the fact that
H�T .DG=TC/ is a copy of Q in codegree �2 and a copy of QWG in even codegrees
greater than or equal to 0, and its ring of WG–invariants H�Ge

.DG=TC/ is a free
H�.BGe/–module on generators of cohomological degrees 0 and �2.

To make further progress, it is convenient to make a specific choice for I . Indeed,
since �A.N/

� .GC ^T A/ and �A.N/
� .NC ^T A/ are small, it suffices to deal with
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the case I D FT .GC; ET hKi/ for some K . For any finite N –spectrum B we have
ˆKDB D DˆKB and Corollary 13.10 gives the value �A.N/

� .I/. Abbreviating
A.N; toral/ to A.N/, we may calculate

HomA.N/.�
A.N/
� .B/; �A.N/

� .FT .GC; ET hKi///

Š HomA.N/.�
A.N/
� .B/; ��‰�

A.N/
� .FT .NC; ET hKi///

Š HomA.N/.�
A.N/
� .B/; f N

K .��‰H�.BT=KLT=K/Œ.WG/K �//

Š HomH�.BT=K/.H
�
T=K.Dˆ

KB/; ��‰H�.BT=KLT=K/Œ.WG/K �//
.WG/K

Š HomH�.BT=K/.H
�
T=K.Dˆ

KB/; ��H�.BT=KLT=K/ŒW d
GK�//

.WG/K

Š HomH�.BT=K/.H
�
T=K.Dˆ

KB/; ��H�.BT=KLT=K///.WG/eK

Š HomH�.BT=K/.H
�
T=K.Dˆ

KBLT=K/; ��H�.BT=K///WW e
GK :

As an H�.BW e
GK/–module H�.BT=K/ is a sum of copies of H�.BW e

GK/, and
hence as an H�.BT=K/–module ��H�.BT=K/ is a sum of copies of H�.BT=K/.
The above functor is thus a sum of copies of

HomH�.BT=K/.H
�
T=K.Dˆ

KBLT=K/;H�.BT=K///WW e
GK

Š ŒH
T=K
� .DˆKBLT=K//�WW e

GK ŠH
W e

GK
� .DˆKBLW

e
GK//

where the final isomorphism is from Lemma 10.5.

It suffices to show that ˛ induces an isomorphism of this functor of B , or equivalently
that the functor vanishes on

Q.A/D cofibre.NC ^T A
˛
�!GC ^T A/:

Now the following groups vanish together:

H
W e

GK
� .DˆKQ.A/LW

e
GK/; H�W e

GK
.DˆKQ.A/LW

e
GK//; H�W e

GK
.ˆKQ.A//:

The first two are vector space duals, and the last two vanish together by the stan-
dard observation about ring spectra recalled in Section 10D. The result follows from
Corollary 10.4.

15 Essential surjectivity

We want to show that the functors �A
� are essentially surjective, so that our modelling

categories are no bigger than necessary.

Lemma 15.1 Every object of A.G; toral/ is realizable by a toral G–spectrum.
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Proof We may use the ingredients of the proof of the Adams spectral sequence.
Suppose then that M is a module in A.G; toral/. By Proposition 8.3, this has an
injective resolution

0 �!M �! I0 �! � � � �! Ir �! 0:

We now set about constructing a toral G–spectrum Y with �A.G/
� Y DM . When Y is

constructed, we will in retrospect see that we have found the dual Adams tower fY sg
where this is related to the Adams tower by cofibre sequences Ys! Y ! Y s .

In any case, we construct a tower:

� Y 0

��

Y 1

��

oo Y 2

��

oo � � �oo Y r

��

oo Y rC1 D Yoo

†1I0 I1 †�1I2 †1�rIr

For each s , the G–spectrum Is is a realization of Is , which exists by Lemma 12.2.
We build the tower recursively, starting with Y 0 D � and Y 1 D I0 . Supposing we
have constructed the tower up to Y s , we find an exact sequence

0 �!†1�sCsC1 �! �A.G/
� Ys �!M �! 0

in A.G; toral/, where CsC1D im.Is! IsC1/. Since IsC1 is injective, we may extend
the map CsC1! IsC1 over �A.G/

� .Ys/ and then by Proposition 12.3 we may realize
this by a map Ys!†1�sIs . We then take Y sC1 to be the fibre, completing the step.
Since CrC1D0, the process finishes in r steps with Y DY rC1 having �A.G/

� .Y /DM

as required.

Remark 15.2 For the special case GDN , one may work more directly from the case
of a torus.

16 Change of groups

We now suppose given a group G and a subgroup H , and we choose maximal tori S
of G and T of H with S � T . We note that it does not follow that there is a
containment of normalizers of maximal tori.

Writing i W H ! G for the inclusion map, the restriction map i� from G–spectra
to H –spectra has left adjoint the induced spectrum i�Y DGC^H Y and right adjoint
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iŠY D FH .GC; Y / from G–spectra to H –spectra. Applying idempotents these give
functors on toral spectra:

G–spectra i� // H–spectra
iŠ

oo

i�
oo

:

It is the purpose of this section to describe the algebraic counterparts. If the ranks of
the groups differ then there is only a good story at the level of derived functors. The
exposition will deal with the general case, and simply note that if the ranks are equal
then the effect of using derived functors is nugatory.

The case of a torus is considerably simpler, and since we will also reduce the general
case to that of the torus, we will deal with tori first in the next subsection. For the
equal rank case the content is vacuous, so readers interested only in equal rank can
skip Section 16A

16A Tori

In this section we consider the case when G D S and H D T are tori. We let
j W T ! S denote the inclusion and � D j �W H�.BS/! H�.BT /. To prove the
assertion requires working with the specific Quillen equivalences used in [15], so we
will not prove it here. On the other hand, special cases can be seen: free spectra, and
homologically simple objects.

Conjecture 16.1 Given an inclusion j W T ! S of tori, the change of groups functors

S–spectra j� // T –spectra
jŠ

oo

j�
oo

are modelled at the derived level by the functors

A.S/ �� // A.T /
��

oo

�Š
oo

:

For an object M of A.S/, the object ��M is defined on subgroups L� T by

.��M/.L/DH�.BT=L/˝H�.BS=L/M.L/;

where the tensor product is derived. For an object N of A.T /, the objects ��M
and �ŠM are defined on subgroups K � S by

.��N/.K/D

�
N.K/ if K � T;
0 otherwise
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and

.�ŠN/.K/D

(
†LS=LTN.K/ if K � T;

0 otherwise.

16B General case

We now return to the general case when S is the maximal torus of G and T is the
maximal torus of H . We write i W H ! G and j W T ! S for the inclusions with
induced maps

� D i�W H�.BG/ �!H�.BH/

and
�D j �W H�.BS/ �!H�.BT /:

We will state the proposition in the equal rank case (ie when S D T ), but we have
stated it so that it will hold at the derived level in general provided Conjecture 16.1
holds.

Proposition 16.2 If G and H have the same rank, then the change of groups functors

G–spectra i� // H–spectra
iŠ

oo

i�
oo

are modelled by the functors

A.G; toral/ �� // A.H; toral/
��

oo

� Š
oo

:

For an object M of A.G; toral/, ��M is defined on subgroups L� T by

.��M/.L/D ŒH�.BT=L/˝H�.BW e
G.L//

M.L/�WW e
H .L/:

For an object N of A.H; toral/, ��M and � ŠM are defined on subgroups K � S by

.��N/.K/D

(
ŒH�.BT=K/˝H�.BW e

H .K//
N.K/�WW e

G.K/ if K � T;

0 otherwise

and

.�ŠN/.K/D

(
Œ†LS=LTH�.BT=K/˝H�.BW e

H .K//
N.K/�WW e

G.K/ if K � T;

0 otherwise.

Algebraic & Geometric Topology, Volume 16 (2016)



2018 J P C Greenlees

Remark 16.3 It is worth making explicit a couple of special cases. First note that
if H DNG we recover part of Proposition 11.7, and similarly, if H D TG .

The statement should hold at the derived level even when G and H are of different
rank. If so, when G and H are both tori we recover Conjecture 16.1.

Proof In view of toral detection and the fact that ‰�� D 1 by Proposition 5.9, we
can deduce the general case from the torus case. In other words, writing V DWG

and W DWH , and with notation given in the diagram

A.G; toral/ �� //

�G
�

��

A.H; toral/

�H
�

��

� Š

oo

��
oo

A.S/ŒV � �� //

‰G

OO

A.T /ŒW �

‰H

OO

�Š

oo

��
oo

we have ��D‰G���H� , ��D‰H���G� and � ŠD‰G�Š�H� . The formulae are now
easily verified.
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