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Resolutions of CAT(0) cube complexes
and accessibility properties

BENJAMIN BEEKER

NIR LAZAROVICH

In 1985, Dunwoody defined resolutions for finitely presented group actions on sim-
plicial trees, that is, an action of the group on a tree with smaller edge and vertex
stabilizers. Moreover, he proved that the size of the resolution is bounded by a
constant depending only on the group. Extending Dunwoody’s definition of patterns,
we construct resolutions for group actions on a general finite-dimensional CAT(0)
cube complex. In dimension two, we bound the number of hyperplanes of this
resolution. We apply this result for surfaces and 3–manifolds to bound collections of
codimension-1 submanifolds.

20E08; 20F65

1 Introduction

An important aspect of group actions on trees is Dunwoody’s theory of accessibility
[6], and, in particular, finding bounds for “reasonable” actions on trees. The earliest
result in this direction is Grushko’s decomposition theorem [8], which implies in
particular that there is a bound, depending only on the rank of the group G , on the
number of edge-orbits in a G –tree with trivial edge stabilizers. An analogous result for
3–manifolds, known as the Kneser prime decomposition theorem [11] (see also Milnor
[13]) implies that there is a bound, depending only on the compact 3–manifold M 3 ,
on the number of embedded essential disjoint nonhomotopic spheres in M . In fact,
Haken [9] proved that there is a bound on any collection of such two-sided subsurfaces
(not necessarily spheres), under the assumption that the subsurfaces are incompressible
and that the manifold is irreducible.

Grushko’s result can be seen as a first result towards Dunwoody’s accessibility theorem.
As part of the proof, Dunwoody introduced two key tools: patterns and resolutions.
He observed that any action of an almost finitely presented group G on a tree could
be resolved to a G–tree obtained from a geometric pattern on the universal cover of
the presentation complex of G . This resolution is simpler in certain aspects, eg the
edge stabilizers are finitely generated and one can bound the number of parallelism
classes of edges in the resolution. This result is known as Dunwoody’s lemma [5,
Lemma VI.4.4].
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Sageev’s seminal work on ends of group pairs [18] demonstrates how CAT(0) cube
complexes can be used to generalize known results about group actions on trees. In
this paper we aim to generalize Dunwoody’s ideas to the realm of cube complexes.

In Section 3, we construct resolutions for cube complexes and prove the following.

Theorem 1.1 Let G be a finitely presented group acting on a d –dimensional CAT(0)
cube complex X . There exists a d –dimensional CAT(0) cube complex and a G–
equivariant map F W X 0!X with the following properties:

� The hyperplane stabilizers in X 0 are finitely generated.
� Cube fixators and hyperplane stabilizers in X 0 are contained in those of X . In

particular, if the action G Õ X is free or proper then so is G Õ X 0 .

If, moreover, d is no more than 2, then the action of G on X 0 is cocompact.

In order to construct the resolution we use a d –dimensional analogue of Dunwoody’s
patterns, called d –patterns, which we define in Section 2. In Section 4 we restrict our
attention mainly to square complexes, and obtain the following analogue of Dunwoody’s
lemma.

Theorem A Let K be a 2–dimensional simplicial complex. Then there exists a
constant C , depending only on K , such that any 2–pattern P on K has at most C

parallelism classes of tracks.

From the above, the following theorem is an immediate corollary.

Theorem 1.2 Let G be a finitely presented group. There exists a constant C de-
pending only on G such that for every G–action on a 2–dimensional CAT(0) cube
complex X , there exists a 2–dimensional CAT(0) cube complex X 0 with the properties
of Theorem 1.1, and at most C parallelism classes of hyperplanes.

Remark 1.3 We note that the bound on the resolution was originally used to prove
Dunwoody’s accessibility theorem, but was also used by Bestvina and Feighn [2] to
bound the number of edge-orbits in a reduced graph of group decompositions over
small groups. We hope that our results will lead to analogous results for CAT(0) square
complexes.

In Section 5, we turn to surfaces and 3–manifolds and prove the following 2–dimen-
sional analogue of Haken’s theorem.

Theorem 1.4 Let M n be an n–dimensional (nD2; 3) compact manifold. There exists
a constant C , depending only on M , such that if S is a collection of nonhomotopic
�1 –injective co-dimension-1 two-sided embedded submanifolds such that the size of a
pairwise intersecting collection of lifts to zM is at most 2, then jSj � C .
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Theorem A answers the following general question in the d D 2 case. However, to the
best of our knowledge, it is open.

Question Is there a bound, depending only on the dimension d and the simplicial
complex K , on the number of parallelism classes of tracks in d –patterns?

An affirmative answer would imply analogues of Theorem 1.2 and Theorem 1.4. Thus
we also pose the following more specific question, which might be of interest on its
own.

Question Is there a bound, depending only on d and the surface S , on the number of
parallelism classes of curves in S such that the size of a pairwise intersecting collection
of lifts to zS is at most d ?

A closely related question about collections of curves with bounded intersections on
a surface was studies by Juvan, Malnič and Mohar [10]. They show that given a
surface S of genus g and a number k , there is a bound on the number of curves on S

that pairwise intersect at most k times. Lately this work has been further studied and
some better bounds have been found by Malestein, Rivin and Theran [12], or more
specifically in the case of single intersections, by Rivin [16], Przytycki [15] and Aougab
and Gaster [1].
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2 Preliminaries

2A CAT(0) cube complexes

We begin with a short survey of definitions concerning CAT(0) cube complexes. For
further details see, for example, Sageev [19].

A cube complex is a collection of euclidean cubes of various dimensions in which
subcubes have been identified isometrically.

Algebraic & Geometric Topology, Volume 16 (2016)
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A simplicial complex is flag if every .nC1/–clique in its 1–skeleton spans a n–simplex.
A cube complex is nonpositively curved if the link of every vertex is a flag simplicial
complex. It is a CAT(0) cube complex if, moreover, it is simply connected.

A cube complex X can be equipped with two natural metrics, the euclidean and the
L1 –metric. With respect to the former, X is nonpositively compact if and only if it is
nonpositively compact à la Gromov; see Gromov [7] or Bridson and Haefliger [3]. The
latter, on the other hand, is more natural to the combinatorial structure of CAT(0) cube
complexes described below.

Given a cube C and an edge e of C . The midcube of c associated to e is the convex
hull of the midpoints of e and the edges parallel to e . A hyperplane associated to e is
the smallest subset containing the midpoint of e such that if it contains a midpoint of
an edge it contains all the midcubes containing it. Every hyperplane Oh in a CAT(0)
cube complex X separates X into exactly two components (see, for example, Niblo
and Reeves [14]) called the halfspaces associated to Oh. A hyperplane can thus also be
abstractly viewed as a pair of complementary halfspaces. The carrier N.Oh/ of Oh is
the union of the cubes intersecting Oh. For a CAT(0) cube complex X we denote by
yHD yH.X / the set of all hyperplanes in X , and by HDH.X / the set of all halfspaces.
For each halfspace h 2H we denote by h� 2H its complementary halfspace, and by
Oh 2 yH its bounding hyperplane, which we also identify with the pair fh; h�g.

A hyperplane in a CAT(0) cube complex separates two points if each one belongs to a
different halfspace. Conversely two hyperplanes are separated by a point if there is no
inclusion relation between the two halfspaces containing the point. If two hyperplanes
Oh and Ok intersect, we write Oh t Ok.

The interval between two vertices x and y of a CAT(0) cube complex is the maximal
subcomplex Œx y � contained in every halfspace containing x and y . Equivalently it
can be seen as the union of all L1 –geodesics between x and y .

Every interval of a d –dimensional CAT(0) cube complex admits an L1 –embedding
into Rd ; see Brodzki et al [4]. A hyperplane intersects the interval Œx y � if and only if
it separates x and y , and a cube belongs to the interval if every one of its hyperplanes
separates them.

2B Pocsets to CAT(0) cube complex

We adopt Roller’s viewpoint of Sageev’s construction. Recall from Roller [17] that
a pocset is a triple .P;�; */ of a poset .P;�/ and an order-reversing involution
*W P! P such that h¤ h� and h and h� are incomparable for all h 2 P .
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The set of halfspaces H of a CAT(0) cube complex has a natural pocset structure given
by inclusion relation, and the complement operation *. Roller’s construction starts
with a locally finite pocset .P;�; */ of finite width (see Sageev [19] for definitions)
and constructs a CAT(0) cube complex X.P/ such that .H.X /;�; */D .P;�; */. We
briefly recall the construction; for more details see Roller [17] or Sageev [19].

An ultrafilter U on P is a subset verifying #.U \fk; k�g/D 1 for all k 2 P such that
for all h 2 U , if h � k then k 2 U . If we denote yP D ffh; h�g j h 2 Pg, then U can
be viewed as a choice function U W yP ! P . Throughout the paper we will use both
viewpoints.

An ultrafilter U satisfies the descending chain condition (DCC) if any descending chain
k1 � k2 � � � � � kn � � � � of elements of U has finite length. The vertices of X.P/ are
the DCC ultrafilters of P .

Two halfspaces are compatible if their intersection is not empty in the cube complex.
A subset of H is an ultrafilter if and only if its halfspaces are pairwise compatible and
it is maximal for this property.

2C Patterns

We adopt a somewhat similar definition for tracks as in Dunwoody [6], but we allow
tracks to intersect, under some restrictions, to form d –patterns.

Definition 2.1 A drawing on a 2–dimensional simplicial complex K is a nonempty
union of simple paths in the faces of K such that:

(1) On each face there is a finite number of paths.
(2) The two endpoints of each path are in the interior of distinct edges.
(3) The interior of a path is in the interior of a face.
(4) No two paths in a face have a common endpoint.
(5) If a point x on an edge e is an endpoint then in every face containing e , there

exists a path with x as an endpoint.

A pretrack is a minimal drawing. A pretrack is self-intersecting if it contains two
intersecting paths.

Denote by zK the universal cover.
� A pretrack is a track if none of its pretrack lifts in zK is self-intersecting.
� A pattern is a set of tracks whose union is a drawing.
� A d –pattern is a pattern where the size of any collection of lifts of its tracks

in zK that pairwise intersect is at most d .

We will sometimes view a pattern as the unions of its tracks in K .
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2D The coarse and fine pocset structures associated to a pattern

Let zP be a pattern on a simply connected 2–simplex zK . For each track Qt of zP , the set
zK n Qt has two connected components h

f

Qt
and h

f �

Qt
; see Dunwoody [6]. We call these

components the fine halfspaces defined by Qt , and the collection of all fine halfspaces is
denoted by Hf DHf .P/. This collection forms a locally finite pocset with respect to
inclusion and complement operation *. If, moreover, zP is a d –pattern, then Hf has
finite width. We denote by Xf DX.Hf / the CAT(0) cube complex constructed from
the pocset Hf . Note that the dimension of Xf is at most d . With this definition we
clearly have a bijective map sending Qt 2P to the hyperplane fhf

Qt
; h
f �

Qt
g2 yHf D yH.Xf /.

We can also define the two coarse halfspaces defined by Qt as the intersection hc
Qt
D

zK0\h
f

Qt
and hc�

Qt
D zK0\h

f �

Qt
which are complementary in zK0 . The collection of all

coarse halfspaces is denoted by Hc DX.Hc/. As above this set carries a locally finite
pocset structure given by inclusion and complement. As before, if, moreover, zP is a
d –pattern, then Hc has finite width, and we denote by X c DX.Hc/ the CAT(0) cube
complex constructed from the pocset Hc . Note that the dimension of X c is also at
most d .

We call a connected component A of K nP a region of the pattern. We define the
principal ultrafilter corresponding to the region A to be the set UADfk

f 2Hf jA�kf g.
Note that every principal ultrafilter verifies the DCC. Thus there is a map from the
set of regions to Xf 0 , and in particular a map from K0 to Xf 0 . The same way we
define a map from K0 to X c0 .

Let ��W Hf !Hc be the natural map h
f

Qt
7! hc

Qt
D zK0\h

f

Qt
. The map �� respects the

pocset structure and so defines y�W yHf ! yHc D yH.X c/.

Definition 2.2 (parallelism) Two tracks of a pattern are parallel if they define the
same coarse halfspaces, ie if they have the same image under the map y� .

We have a natural map from the vertices (seen as ultrafilters) of X c to those of Xf .
Indeed, the pullback of an ultrafilter by the map �� is also an ultrafilter. Thus, we can
define the map ˆ.0/W X .0/.Hc/!X .0/.Hf / by ˆ.0/.x/D ��1

� .x/.

Proposition 2.3 The map ˆ.0/ can be extended to a canonical map ˆW X c !Xf .
Moreover, if a group G acts on K leaving the pattern P invariant, then G acts naturally
on X c and Xf and the map ˆ is G –equivariant.

Proof By construction, if two vertices x and x0of X c are separated by the set of
hyperplanes S then the set of hyperplane separating ˆ.0/.x/ and ˆ.0/.x0/ is y��1.S/.
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If two hyperplanes Ohc
t and Ohc

s cross, then Ohft and Ohfs cross. Thus, given two oppo-
site vertices in a cube xc and x0

c separated by n pairwise intersecting hyperplanes
fOhc

1
; : : : ; Ohc

ng in X c , the interval Œˆ.0/.xc/ˆ.0/.x0
c
/� is isometric to the product cube

complex

X.y��1.fOhc
1; : : : ;

Ohc
ng//DX.y��1.Ohc

1//� � � � �X.y��1.Ohc
n//:

Given a hyperplane Ohc we define the map

 Ohc W X.fOh
c
g/!X.��1

� .fOhc
g//

sending the vertices (seen as ultrafilters) fhcg and fhc�g to ��1
� .hc/ and ��1

� .hc�/

and the edge X.fOhcg/ to the CAT(0) geodesic in between the endpoints of its image.

Given n intersecting hyperplanes yKD fOhc
1
; : : : ; Ohc

ng, we define the map  yK D  Ohc
1
�

� � � � Ohc
n

from the cube X.yK/ to the product

X
�
��1
� .yK/

�
DX

�
y��1.fOhc

1g/
�
� � � � �X

�
y��1.fOhc

ng/
�
:

We now define ˆ from the cube Œxc x0
c
� to Œˆ.0/.xc/ˆ.0/.x0

c
/� as the following

composition:

Œxc x0
c
� ���!X

�
yH.Œxc x0

c
�/
�  yK
�!X

�
��1
� .yH.Œxc x0

c
�//
�
�
��! Œˆ.0/.xc/ˆ.0/.x0

c
/�:

It is straightforward to verify that this extends the map ˆ.0/ . The G–equivariance
follows from the canonicity of the map.

3 Resolutions

Let G be a finitely presented group. Let K be a fixed finite triangle complex such that
G ' �1.K; v0/ for some v0 2K . Let fzv0; : : : ; zvlg, fze0; : : : ; zemg and f zf1; : : : ; zfng be
sets of representatives for the G –orbits of 0–, 1– and 2–cells in zK .

Now, let G act on a d –dimensional CAT(0) cube complex Xo . For each zvi choose a
vertex xo

i in Xo . Since G acts freely on zK , one can extend the map zvi 7! xo
i to a

G–equivariant map f W zK.0/!Xo.0/ by sending gzvi to gxo
i . We extend this map

to a map on the 1–skeleton of zK by sending each edge representative zei linearly to
a combinatorial geodesic connecting the images of its endpoints f .i.zei// and f .t.zei//

in Xo , and extend G–equivariantly to zK.1/ . Similarly, extend the map to a G–
equivariant map f W K!Xo by sending the 2–cells zfi to disks whose boundary is
f .@ zfi/, which exist because Xo is simply connected. We may further assume that the
image of f is in Xo.2/ , the 2–skeleton of Xo , is transverse to the hyperplanes and
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has minimal number of squares of Xo . Such a map is called a minimal disk. For more
details see Sageev [18].

Lemma 3.1 Let zP D
S
Oho2 OHo f

�1.Oho/ be the pullback of the hyperplanes of Xo

to zK . The set zP induces a d –pattern P on K .

Proof Note that the pullback of each Oho 2 OHo defines a 1–pattern on zK ; see [5].

We are left to show that the size of a collection of pairwise crossing tracks is at most d .
Let Qt1; : : : ; Qtk be distinct pairwise intersecting tracks in zP . Each Qti maps into the
corresponding hyperplane Oho

i . By the transversality to the hyperplanes, the hyperplanes
Oho

1
; : : : ; Oho

k
are distinct intersecting hyperplanes. Thus k � d .

The d –pattern defines the fine cube complex Xf (see Section 2) on which G acts.
Note that the map f induces a map, which we denote by f� , from Hf , the set of
halfspaces of Xf , to Ho . This map respects the complement operation, thus defines a
map Of�W yHf ! OHo on hyperplanes. Note also that the image of Of� consists of all the
hyperplanes that divide nontrivially the image of f .K/.

Proposition 3.2 There exists a G–equivariant combinatorial map F W Xf ! Xo ,
which induces the map f� on halfspaces.

Proof Let us first define the map F on the vertices of Xf . Let xf be a vertex of Xf ,
ie a DCC ultrafilter on the halfspaces, which we regard as the map xf W yHf !Hf and
which assigns to each hyperplane its halfspace that contains xf . We define F.xf / as
follows: for each Oho 2 OHo either Oho belongs to the image of Of� or not. In the former
case, let Ohf 2 yHf be a minimal hyperplane with respect to xf among . Of�/�1.Oho/,
and define F.xf /.Oho/D f�.x

f .Ohf //. In the latter case we choose xo.Oho/ to be the
halfspace ho which contains f .K/.

The map F does not depend on the choice of Ohf : for every Oho 2 OHo and every
Oh
f
1
; Oh
f
2
2 Of �1
� .Oho/ minimal with respect to xf among Of �1

� .Oho/, f�.Oh
f
1
/D f�.Oh

f
2
/.

Otherwise a geodesic path that connects them in zK is mapped by f to a path that
passes from ho to ho� in Xo without crossing Oho .

The map F.xf /W OHo! Ho is an ultrafilter: let Oho; Oko 2 OHo which do not cross, let
Ohf ; Okf be the hyperplanes in the definition of F.xf /, and let hf ; kf be their orientation
in xf . Clearly the orientation of the halfspaces hf ; kf � zK is such that they have
a nontrivial intersection (otherwise, xf is not an ultrafilter). If p is a point in this
intersection then both F.xf /.Oho/;F.xf /.Oko/ contain f .p/, showing that they form a
compatible pair.
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The map F W Xf .0/!Xo.0/ extends to F W Xf !Xo : if x
f
1
; : : : ;x

f
2k are the vertices

of a k –dimensional cube in Xf , ie their ultrafilters differ on exactly k hyperplanes
Oh
f
1
; : : : ; Oh

f

k
, then their images will differ exactly on the collection of distinct pairwise

transverse hyperplanes Of�.Oh
f
1
/; : : : ; Of�.Oh

f

k
/.

The pair .Xf ;F / is called a fine resolution of Xo . In Section 2, we also constructed
the coarse CAT(0) cube complex X c and a G –equivariant map ˆW X c!Xf between
the two complexes. The pair .X c ;F ıˆ/ is called a coarse resolution of Xo . Note that
both resolution depend on the choice of K and on the equivariant map f W K!Xo .

Proposition 3.3 The fine resolution .Xf ;F / has the following properties:

� The hyperplane stabilizers in Xf are finitely generated.

� Cube and hyperplane stabilizers in Xf are contained in those of Xo . In particu-
lar, if the action G Õ Xo is proper or free then so is G Õ Xf .

Proof The stabilizer of a track Qt 2 zP is the image of �1.t/ in �1.K/'G under the
inclusion map. The track t is a finite graph in K , and thus finitely generated.

The map F W Xf !Xo is G –equivariant and combinatorial, thus for all cube C f 2Xf

we have StabG.C
f / < StabG.F.C

f //, and similarly for hyperplanes.

Since the map ˆW X c!Xf is not combinatorial, the properties of the coarse resolution
are slightly weaker.

Proposition 3.4 The coarse resolution .X c ;F ıˆ/ has the following properties:

(1) The hyperplane stabilizers in X c are finitely generated.

(2) If the hyperplanes in Xo=G are embedded, ie for all g 2G and Oho 2 OHo either
g Oho D Oho or g Oho\ Oho D∅, then the oriented hyperplane stabilizers in X c , ie
stabilizers of the hyperplane that do not exchange the halfspace are contained in
those of Xo .

(3) Cube fixators in X c are contained in fixators of cubes of the same dimension
in Xo .

(4) Cube stabilizers in X c act elliptically on Xo .

(5) If the action G Õ Xo is proper or free then so is G Õ X c .
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Proof Note that the implications .3/D) .4/D) .5/ are trivial.

Recall from Section 2 that the preimage y��1.Ohc
t / is finite, and thus the stabilizer of Ohc

t

is generated by those of the tracks y��1.Ohc
t / and finitely many elements permuting this

collection. This completes the proof of (1).

If the hyperplanes in Xo=G are embedded then so are the hyperplanes in X c=G and
in Xf =G , otherwise there is an element g 2G and a track Qt 2 zP such that Qt and g Qt

cross, which by the definition of f would imply that Of�.Oh
f

Qt
/ and g Of�.Oh

f

Qt
/ cross.

Also note that the collection of ��1
� .hc/ is a poset on which the stabilizer of hc acts.

Moreover, two hyperplanes in ��1
� .hc/ cross if and only if they are incomparable.

Since no hyperplane can be sent to a crossing hyperplane, the stabilizer of hc fixes this
poset. Thus the stabilizer of hc is included in the stabilizer of each of hf 2 ��1

� .hc/.
This completes the proof of (2).

By the construction of the map ˆW X c ! Xf we see that each cube C c of X c is
affinely embedded into a product region of higher dimension than that of C c , thus
a generic point in C c is sent to a generic point of a cube of higher dimension. This
completes the proof of (3).

Though one might expect that the resolution of a cocompact G–action would be
cocompact, this is not always the case as the following example shows. Let G DZ2 D

he1 D .1; 0/; e2 D .0; 1/i, with the presentation complex K obtained by gluing two
triangles along an edge to form a square and then identifying opposite edges to form a
torus. The group G acts on Xo D R2 � Œ0; 1� (with the standard cubulation by unit
cubes) by ei.x; t/D .ei Cx; 1� t/ for i D 1; 2, ie it acts by translations on the first
factor and by inversions on the second.

The pattern obtained on zK D R2 consists of 3 infinite sets of tracks of different
parallelism classes of lines (see Figure 1). Therefore, the associated CAT(0) cube
complexes X c (in this case Xf DX c ) is the standard cubulation of R3 , on which
G D Z2 does not act cocompactly.

However, such an example cannot occur in dimension 2 (or smaller). In fact an even
stronger statement holds in this case.

Proposition 3.5 Let K be a compact triangle complex, and let G D �1.K/. If
G Õ Xo , a 2–dimensional CAT(0) cube complex, then G Õ Xf cocompactly.

Proof By assumption G acts cocompactly on zK , and the pattern on each triangle
of K is finite. Thus, G acts cocompactly on the set of regions, ie the set of connected
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Qv0 e2 Qv0

e1 Qv0 e1e2 Qv0

x0

e1e2x0

e2x0

e1x0

Figure 1: An example for a noncocompact resolution of a cocompact action

components of K nP . Hence, it is enough to show that every vertex xf 2Xf is a
principal ultrafilter, ie corresponds to a region in zK .

Let Hf
xf be the collection of minimal halfspaces in xf . It is enough to show that the

intersection
Axf D

\
hf 2Hf

xf

hf � zK

is nonempty since the intersection is a region in zK corresponding to xf . Fix h
f

Qt
2Hf

xf .
There are two cases to consider:

(1) The track Qt does not intersect any other track. In this case, every other hf
Qv
2Hf

xf

contains Qt , for otherwise h
f

Qt
is not minimal. Thus, any point in h

f

Qt
� zK close

enough to Qt will be in the intersection above.

(2) There exists hf
Qu
2Hf

xf such that Qt and Qu intersect. In this case, for all hf
Qv
2Hf

xf

the track Qv cannot intersect both Qt and Qu. Hence, the corresponding fine halfspace
h
f

Qv
contains either Qt or Qu. Thus, any point in h

f

Qt
\ h

f

Qu
� zK close enough to

Qt \ Qu will be in the intersection above.

Recall from Dicks and Dunwoody [5] that a group is almost finitely presented if it acts
freely cocompactly on a simplicial complex K with H 1.K;Z=2Z/D 0. All of the
above works when replacing zK with K . Hence, by Proposition 3.3 and Proposition 3.5
we get the following corollary.

Corollary 3.6 Any almost finitely presented group that acts properly (resp. freely) on a
2–dimensional CAT(0) cube complex acts properly (resp. freely) and cocompactly on a
2–dimensional CAT(0) cube complex, and in particular it is finitely presented.
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Figure 2: Parallelism obstructing pair (POP)

4 Bounding the number of tracks in a pattern

This section focuses on proving Theorem A which can be formulated as follows.

Theorem A0 Let K be a 2–dimensional simplicial complex and P be a 2–pattern
on K with no parallel tracks. Then there exists an integer D , depending only on K ,
such that the number of tracks in P is bounded by D .

We begin by defining a weak notion of parallelism for adjacent hyperplanes in an
interval. First, recall that a pair of noncrossing hyperplanes are adjacent if their carrier
contains a common vertex.

Definition 4.1 Given a pair of noncrossing hyperplanes .Oh; Ok/, a parallelism obstruct-
ing pair (POP) is a pair of crossing hyperplanes .Oh0; Ok0/ such that Oh0 t Ok but Oh0 6t Oh,
and Ok0 t Oh but Ok0 6t Ok; see Figure 2. It is a POP in an interval I if the four hyperplanes
intersect I .

Two noncrossing hyperplanes .Oh; Ok/ in an interval I are adj-P in I , if they are adjacent
and do not have a POP in I .

In a CAT(0) cube complex we write Oh<x
Ok when Oh separates x from Ok. Here, x can

be a vertex or a hyperplane. If x is a vertex it is equivalent to say that the ultrafilter
corresponding to x satisfies x.Oh/ < x.Ok/

Lemma 4.2 For every d , there exists C.d/ such that for any interval I of a CAT(0)
cube complex of dimension d and for every vertex m of I , the set of (nonordered)
pairs of adj-P hyperplanes separated by m has cardinality at most C.d/.
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Proof We start by proving that if a pair of adj-P hyperplanes .Oh; Ok/ in I is separated
by m, then at least one of the two hyperplanes is adjacent to m. Assume not, then there
exists Oh0 <m

Oh and Ok0 <m
Ok. Since the four hyperplanes belong to the interval I and

there are no facing triples in an interval, we get Okt Oh0 , Oh0t Ok0 , and Ok0t Oh. Contradicting
that Oh and Ok are adj-P.

Without loss of generality let Oh be the hyperplane adjacent to m. Since I is an interval
of dimension d , thus can be embedded in Rd , there are at most 2d hyperplanes
adjacent to m in I .

Now assume .Oh; Ok/ and .Oh; Ok0/ are adj-P and separated by m. The hyperplanes Ok and Ok0

cannot be facing since otherwise Oh, Ok and Ok0 would be a facing triple of I . The
hyperplanes Ok for which .Oh; Ok/ is an adj-P pair separated by m, pairwise cross. Hence,
there are at most d of them. Thus we can set C.d/D 2d2 .

Lemma 4.3 For any pair of intervals I1 D Œx y1� and I2 D Œx y2� in a CAT(0) cube
complex X of dimension 2, there are at most four pairs of hyperplanes intersecting I1

and I2 , adj-P in I1 but not in I2 .

Proof Denote by m the median point of x , y1 and y2 . Note that every hyperplane
intersecting I1 and I2 separates m from x and that no hyperplane separates m

from x and y2 . Without loss of generality we assume throughout that a pair of adj-P
hyperplanes .Oh; Ok/ is such that Oh<m

Ok (or equivalently Ok<x
Oh).

Note that two crossing hyperplanes that intersect a common interval, cross inside the
interval. Thus if a pair of hyperplanes .Oh; Ok/ is adj-P in I1 but not in I2 , then at least
one of the hyperplanes of the POP .Oh0; Ok0/ in I2 does not intersect I1 . Since Oh0 <x

Oh,
the hyperplane Oh0 has to intersect I1 . Therefore the hyperplane Ok0 does not intersect I1

and hence separates y2 from x and m (see Figure 3).

We claim that for a pair of hyperplanes .Oh; Ok/ which are adj-P in I1 but not in I2 ,

(1) there are at most two possibilities for the hyperplane Oh, and

(2) for each Oh there are at most two possibilities for the hyperplane Ok.

This will prove that there are at most four pairs of hyperplanes which are adj-P in I1

but not in I2 .

We begin by proving the second claim. We observe that if .Oh; Ok1/ and .Oh; Ok2/ are pairs
of adjacent hyperplanes with Ok1 ¤

Ok2 , then Ok1 t Ok2 since they are both adjacent to Oh.
The second claim follows since the CAT(0) cube complex is 2–dimensional.
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Oh

Ok

Ok0

Oh0

y1 m

x

y2

I1 I2

Figure 3: The hyperplane Ok0 has to separate m and y2

To prove the first claim, let Oh1 ¤
Oh2 , and let .Oh1; Ok1/ and .Oh2; Ok2/ be two pairs of

hyperplanes which are adj-P in I1 but not in I2 . As before, the claim would follow from
the dimension of the complex once we prove that Oh1 t Oh2 . We do so by contradiction.

Without loss of generality we may assume Oh1 <m
Oh2 .

The pairs .Oh1; Ok1/ and .Oh2; Ok2/ are adjacent and noncrossing in I1 and thus also in I2 .
Therefore, there exist POPs .Oh0

1
; Ok0

1
/ and .Oh0

2
; Ok0

2
/ for .Oh1; Ok1/ and .Oh2; Ok2/, respectively.

Moreover they can be chosen such that Ok0
1

and Ok02 are minimal with respect to x among
all other POPs.

From Oh1 <m
Oh2 it follows that the interval Œm y2� and the hyperplane Oh2 are separated

by Oh1 . The hyperplane Ok0
2

intersects both Œm y2� and Oh2 hence it crosses Oh1 . Thus,
since X is 2–dimensional, Ok0

1
and Ok0

2
cannot cross. We have two cases:

(1) If Ok0
2
<x
Ok0
1

, then the interval Œm x� and the hyperplane Ok0
1

are separated by Ok0
2

.
Thus Oh0

1
and Ok0

2
cross. Again, because the CAT(0) cube complex is 2–dimensional,

the hyperplanes Ok0
2

and Ok1 cannot cross. Thus the pair .Oh0
1
; Ok0

2
/ is a POP for .Oh1; Ok1/,

contradicting the minimality of Ok0
1

.

(2) If Ok0
1
�x
Ok0
2

, first notice that Oh2 �x
Ok1 since otherwise Oh2 would separate the

adjacent hyperplanes Ok1 and Oh1 . Therefore, either Oh2 �x
Ok1 or Oh2 t Ok1 . We proceed

by showing that neither of these is possible.

If Oh2 �x
Ok1 , then we have Oh2 �x

Ok1 <x
Ok0
1
�x
Ok0
2

, which contradicts Oh2 t Ok0
2

.

Suppose Oh2 t Ok1 . From Oh0
2
<x
Oh2 t Ok1 we have Ok1—x

Oh0
2

, and from Ok1<x
Ok0
1
� Ok0

2
t Oh0

2

we have Oh0
2
—x
Ok1 . Thus Oh0

2
t Ok1 . Hence, the pair .Ok1; Oh

0
2
/ forms a POP for .Oh2; Ok2/

in I1 (see Figure 4), contradicting our assumptions.
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y1 m y2

x
I1 I2

Oh1
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Oh2
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1

Oh0
2

Ok0
2

Ok0
1

Figure 4: Configuration in the case Ok01 �m
Ok0
2

Proof of Theorem A0 Let zK be the universal cover of K and zP the pattern on zK
associated to P . Let X c be the coarse CAT(0) cube complex associated to the pattern zP .
Since P is a 2–pattern, the CAT(0) cube complex X c is a square complex.

For a vertex Qx in zK call Nxc the corresponding vertex in X c . Similarly the hyperplane
corresponding to a track Qt in zP is called Ohc

Qt
. A triangle in X c is a triplets of vertices

. Nxc ; Nyc ; Nzc/ coming from a triangle . Qx; Qy; Qz/ of zK .

Two tracks Qt and Qt 0 of zP are adj-P if they cross an edge Œ Qx; Qy� such that Ohc
Qt

and Ohc
Qt 0

are adj-P in the interval defined by Nxc and Nyc .

Note that if a pair of hyperplanes .Ohc ; Okc/ in X c intersect an interval Œ Nvc ; Nwc � in which
they are adj-P but not parallel, then:

(1) either there exists some triangle . Nxc ; Nyc ; Nzc/ such that .Ohc ; Okc/ is adj-P in
Œ Nxc ; Nyc � but is separated by the midpoint of . Nxc ; Nyc ; Nzc/, or

(2) there exists some triangle . Nxc ; Nyc ; Nzc/ such that .Ohc ; Okc/ is adj-P in Œ Nxc ; Nyc �,
intersects Œ Nxc ; Nzc � but is not adj-P in it.

Indeed, if they are not parallel, there exists a triangle in which they are separated. Take
a sequence of triangles T1; : : : ;Tn such that the vertices Nvc and Nwc are vertices of T1 ,
two consecutive triangles Ti and TiC1 share an edge . Nvc

i ; Nw
c
i / crossed by .Ohc ; Okc/,

and .Ohc ; Okc/ are separated by a vertex of Tn . If it exists take the smallest i such that
.Ohc ; Okc/ is not adj-P in the interval defined by Nvc

i and Nwc
i . Then the triangle Ti fits the

second criterion. If such an i does not exist, then the pair .Ohc ; Okc/ is adj-P in . Nwc
n; Nv

c
n/,

but is separated by some vertex of Tn thus by the midpoint of Tn .

We show that for every interval Œ Nvc Nwc � and every hyperplane Ohc of Œ Nvc Nwc �, either Ohc

is adjacent to Nvc or there exists another hyperplane Okc adj-P to Ohc in Œ Nvc Nwc �.
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If Ohc is not adjacent to Nvc then there exists an adjacent hyperplane Okc
1
<v Oh

c . If Okc

is not adj-P to Ohc then there exists a POP .Ok0; Oh0/. We can assume that Oh0 is minimal
with respect to Ohc . If Oh0 is not adj-P to Ohc , there exists another POP .Ohc

1
; Oh0

1
/. But

as Okc is minimal with respect to Ohc , we have Oh0
1

t Okc . Hence, we obtain five distinct
hyperplanes Ohc ; Ok0; Oh0; Okc ; Oh0

1
, which cyclically cross, which is forbidden in a interval of

a 2–dimensional CAT(0) cube complex.

Notice that in a 2–dimensional interval Œ Nvc Nwc �, there are at most two hyperplanes
adjacent to Nvc .

Since there are no parallel tracks in P , the above discussion shows that a hyperplane Ohc

in X c belongs to one of the following categories:

(1) The hyperplane Ohc is adjacent to a (fixed) extremity of an edge.

(2) There exist some hyperplane Okc and some triangle . Nxc ; Nyc ; Nzc/ such that .Ohc ; Okc/

is adj-P in Œ Nxc ; Nyc � but is separated by the midpoint of . Nxc ; Nyc ; Nzc/.

(3) There exist some hyperplane Okc and some triangle . Nxc ; Nyc ; Nzc/ such that .Ohc ; Okc/

is adj-P in Œ Nxc ; Nyc �, intersects Œ Nxc ; Nzc � but is not adj-P in it.

By Lemma 4.2 each midpoint of triangle separates at most 3� 8 pairs of adj-P hyper-
planes. By Lemma 4.3, each triangle contains at most 24 pairs of hyperplanes adj-P
with respect to one edge but not with respect with another. For each edge there are at
most two hyperplanes adjacent to a (fixed) extremity.

Denote by E and T be the numbers of edges and triangles, respectively, of K . There
are at most 2�.8�3C24/�T C2�ED 96T C2E orbits of hyperplanes in X c under
the action of �1.K/. Therefore, the pattern P contains at most 96T C 2E tracks.

5 Bounding submanifolds in surfaces and 3–manifolds

5A Patterns on surfaces

Let S be a compact surface, with a triangulation K Š S . Let P be a collection of
nonhomotopic essential, two-sided, properly immersed curves and arcs such that the
size of a pairwise intersecting collection of their lifts to zS is at most d . We would like
to homotope the pattern P such that P will be a d –pattern in K .

By homotoping each curve to the corresponding geodesic curve in S , one assures that
the lift to the universal cover of each curve is an embedded line, while still having that
the size of a pairwise intersecting collection of their lifts to zS is at most d .
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Assume P is not a d –pattern; this can only occur if some arc or curve t 2P has a self-
returning segment, ie a segment 
 � t properly embedded in some 2–simplex f �K

such that @
 D 
 \e for some edge e � f . Note that in this case e ª @M otherwise t

is nonessential. Let 
 � t \f be a self-returning segment with innermost endpoints
amongst all curves and arcs in P , ie a self-returning segment whose endpoints do not
bound two endpoints of another self-returning segment. Homotope t by pushing 

to the 2–simplex on the other side of e . Note that since we chose an innermost 
 ,
this homotopy does not create any new intersections in zS . Hence, the collection still
satisfies all the assumptions, and the total number of intersections of the curves in S ,
and arcs of P with the one-skeleton of K decreased. Thus, after finitely many such
moves the resulting collection is a d –pattern.

Now, by the main theorem we have the following.

Theorem 5.1 Let M be a compact surface, with a triangulation KŠM . There exists
a constant C such that if S is a collection of nonhomotopic essential two-sided properly
immersed curves and arcs such that the size of a pairwise intersecting collection of lifts
to zM is at most 2, then jSj � C .

Proof By the above, one can replace the original collection of surfaces with homotopic
curves that form a pattern on K . By the main theorem, there exists C such that the
number of parallelism classes of tracks in P is bounded by C . Now it remains to note
that if two curves (or arcs) are parallel then they are homotopic. And indeed, if they are
parallel then (up to homotopy) we may assume that they bound an I –bundle region.
But since they are two-sided, it must imply that there exists a homotopy between
them.

We note that this theorem could also be proven by a simpler argument using the Euler
characteristic.

5B Patterns on 3–manifolds

Recall the following definition from Dicks and Dunwoody [5].

Definition 5.2 Let M be a 3–manifold, and let K be a triangulation of M . An
embedded surface S �M is patterned if S \K.2/ is a 1–pattern in K.2/ (the two
skeleton of K ), and if for every 3–simplex � �K , � \S is a collection of disjoint
embedded disks.

Such a patterned surface S is determined by S \K.2/ [5].
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For our discussion let M be a compact irreducible boundary irreducible 3–manifold.
Let S be a collection of nonhomotopic incompressible @–incompressible two-sided
properly embedded surfaces (in general position) in M such that the size of a pairwise
intersecting collection of their lifts to zM is at most d .

We would like, as in the previous section, to homotope the surfaces such that each
surface is patterned and S \K.2/ is a d –pattern. Since the surfaces are embedded
and satisfy that the size of a pairwise intersecting collection of their lifts to zM is at
most d , it is enough to prove that we can homotope them (while preserving the above
properties) to surfaces such that the intersection of each one with K.2/ is a pattern.

In the procedure defined in [5], the authors describe three types of moves, A, B and C,
transforming the embedding f W S ! M to an embedding f 0W S 0 ! M , possibly
changing the surface.

Under our assumptions, we note that if D is an embedded disk such that D\S D @D ,
then by incompressibility there exists a disk D0 � S such that D0\D D @D0 D @D ,
thus, by irreducibility D[D0 bounds a 3–ball and one can homotope S to S 0 where
S 0 D .S nD/[D0 .

Similarly, if D is an embedded disk whose boundary consists of two arcs ˛; ˇ such
that ˛DD\S , ˇDD\@M , then by @–incompressibility there exists a disk D0�S

such that D0 \D D ˛ and @.D [D0/ � @M . Call QD the disk D [D0 . Now by
boundary irreducibility there exists a disk D00 � @M such that D00\ QD D @D00 D @ QD

and D00[ QD00 bounds a 3–ball and one can homotope S to S 0 where S 0D .S nD/[D0 .

Thus it follows that some of the moves defined in [5] are not relevant in our case, and
the every other can be made by a homotopy. In Figures 5–10, we give a schematic
description of some of the moves, adjusted to our case. For further details, refer to [5].

By choosing innermost curves or arcs in the procedure, we guarantee that the surfaces
obtained will remain embedded and will not have more intersections. This procedure
terminates [5]. Thus we obtain the following.

Lemma 5.3 Let M and S be as above. Then one can choose representatives of S
such each S 2 S is patterned and S \K.2/ is a d –pattern.

Now, by a similar proof to that of Theorem 5.1 using the main theorem and the previous
lemma we get the following.

Theorem 5.4 Let M be a compact irreducible boundary-irreducible 3–manifold.
There exists a number C , depending only on M such that if S is a collection of non-
homotopic, �1 –injective, two-sided, properly embedded surfaces (in general position)
in M , such that the size of a pairwise intersecting collection of lifts to zM is at most 2,
then jSj � C .
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homotopy
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t

e

Figure 5: Fixing a self-returning curve in a surface

homotopy

D3

Figure 6: Fixing a closed simple curve in a face

homotopy




Figure 7: Fixing a self-returning curve 
 , which returns to a nonboundary edge

homotopy

e � @M




D3

Figure 8: Fixing a self-returning curve 
 , which is not in the boundary but
returns to a boundary edge e � @M
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homotopy

@M @M




Figure 9: Fixing a self-returning curve 
 , which is contained in the boundary
of M

homotopy

D3

Figure 10: Fixing a non-disc component of S nM .2/
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