
msp
Algebraic & Geometric Topology 16 (2016) 2067–2105

The fattened Davis complex
and weighted L2–(co)homology of Coxeter groups

WIKTOR J MOGILSKI

This article consists of two parts. First, we propose a program to compute the
weighted L2–(co)homology of the Davis complex by considering a thickened version
of this complex. The program proves especially successful provided that the weighted
L2–(co)homology of certain infinite special subgroups of the corresponding Coxeter
group vanishes in low dimensions. We then use our complex to perform computations
for many examples of Coxeter groups. Second, we prove the weighted Singer
conjecture for Coxeter groups in dimension three under the assumption that the nerve
of the Coxeter group is not dual to a hyperbolic simplex, and in dimension four under
the assumption that the nerve is a flag complex. We then prove a general version of
the conjecture in dimension four where the nerve of the Coxeter group is assumed to
be a flag triangulation of a 3–manifold.

20F55; 20F65, 53C23, 57M07, 58J22, 46L10

1 Introduction

Given a Coxeter system .W; S/ with nerve L, Davis defines a contractible simplicial
complex †L on which W acts properly and cocompactly. We provide the definition
in Section 2, but more details can be found in [6; 5]. Given an S –tuple q D .qs/s2S
of positive real numbers, where qs D qs0 if s and s0 are conjugate in W , one defines
the weighted L2–(co)chain complex L2qC�.†L/ and the weighted L2–(co)homology
spaces L2qHk.†L/; see Davis, Dymara, Januszkiewicz, and Okun [8]. They are special
in the sense that they admit a notion of dimension: one can attach a nonnegative real
number to each of the Hilbert spaces L2qHk.†L/ called the von Neumann dimension.
Hence one defines weighted L2–Betti numbers, denoted by L2qbk.†L ). We present
a brief introduction to this theory, but more details can be found in [6; 8] and in
Dymara [13].

In [8], weighted L2–(co)homology was explicitly computed for CW complexes
on which a Coxeter group acts properly and cocompactly by reflections whenever
q 2 xR[ xR�1 , where R denotes the region of convergence of the growth series of
the Coxeter group. These formulas generalize those of Dymara [13] for †L and
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also compute the ordinary L2–(co)homology of buildings of type .W; S/ with large
integer thickness vectors. Furthermore, the Singer conjecture for Coxeter groups was
formulated for weighted L2–(co)homology:

Conjecture 1.1 (weighted Singer conjecture) Suppose that L is a triangulation
of Sn�1. Then

L2qHk.†L/D 0 for k >
n

2
and q � 1:

By weighted Poincaré duality, this is equivalent to the conjecture that if q � 1 and
k < n=2, then L2qHk.†L/ vanishes. Conjecture 1.1 is true by [12, Theorem 2.1] for
n � 2, and in [8], it was proved for the case where W is right-angled and n � 4.
Furthermore, it was shown that Conjecture 1.1 for n odd implies Conjecture 1.1 for
n even (also under the assumption that W is right-angled). This was done following
the techniques of Davis and Okun [9] in their proof of the right-angled case of the
conjecture when q D 1. The progress for the conjecture when q D 1 is as follows. A
result of Lott and Lück [17], in conjunction with the validity of the geometrization
conjecture for 3–manifolds due to Perelman [20], proves the case when nD 3. It was
later proved for the case where W is an even Coxeter group and nD 4 by Schroeder
[23], under the restriction that L is a flag complex. Recently, Okun and Schreve [19,
Theorem 4.9] gave a proof for the case nD 4, so now Conjecture 1.1 is known to hold
for dimensions n� 4 when q D 1.

As evidenced above, there is little progress on the conjecture whenever q ¤ 1, and
weighted L2–Betti numbers have proven to be difficult to compute in general, with
very little known when q … xR[ xR�1 . The goal of this article is to prove variations
of Conjecture 1.1 in dimensions three and four, and to propose a method to compute
weighted L2–Betti numbers. Of note is that most of our computations are done for q �

1, and hence they compute the ordinary L2 -(co)homology of the buildings associated
to the corresponding Coxeter groups with thickness vector q [8, Theorem 13.8].

The article is structured as follows. We first introduce some basic notions and definitions,
and then we proceed to construct what we call the fattened Davis complex. The idea
is to “fatten” †L to a (homology) manifold with boundary so that we have standard
algebraic topology tools (such as Poincaré duality) at our disposal. We carefully
perform this fattening so that we can understand the weighted L2–(co)homology of
the boundary; in fact, understanding this will simply amount to understanding the
weighted L2–(co)homology of certain infinite special subgroups of W . We then study
the structure and algebraic topology of the fattened Davis complex and proceed to
perform computations for many examples of Coxeter groups.
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For the purpose of stating the theorems, we label the edges of the nerve as follows,
resulting in what we call the labeled nerve. The vertices of the nerve are the generators
for the Coxeter system, so if the vertices of an edge are s and t , then we put the
corresponding Coxeter relation mst on that edge, where .st/mst D 1. With this
terminology we state the first main theorem.

Theorem 4.3 Suppose that the labeled nerve L of a Coxeter group W is the one-
skeleton of a cell complex that is a generalized homology n–sphere, where n � 2.
Furthermore, suppose that the vertex set of every 2–cell generates a Euclidean reflection
subgroup of W . If q � 1 then L2qb�.†L/ is concentrated in degree 2.

Once concentration has been established, L2qb2.†L/ is equal to the weighted Euler
characteristic, so an explicit formula can be obtained using [13, Corollary 3.4] and [6,
Theorem 17.1.9]. Also, if we place some restrictions on either the labels or the cell
complex, then the formula for L2qb2.†L/ becomes relatively simple; see Corollary 4.5.
In Theorem 5.3, we discuss how Theorem 4.3 can be used to produce Coxeter groups
which satisfy the weighted Singer conjecture in dimensions three and four. We then
turn our attention to a class of Coxeter groups which, in the literature, are sometimes
called quasi-Lánner groups.

Theorem 4.10 Suppose that W acts properly but not cocompactly on hyperbolic
space Hn by reflections with fundamental chamber an n–simplex of finite volume.
Then L2qbk.†L/D 0 whenever k � n� 1 and q � 1, or when k � 1 and q � 1.

Recall that a Coxeter system is 2–spherical if the one-skeleton of the corresponding
nerve is a complete graph. In other words, this is equivalent to the condition that, for
any distinct s; t 2 S , we have the Coxeter relation .st/mst D 1, where mst � 2 is a
finite natural number. A Coxeter group is Euclidean if it acts properly and cocompactly
by reflections on a Euclidean space of some dimension.

Theorem 4.12 Suppose that .W; S/ is infinite 2–spherical with jS j � 5. Suppose
furthermore that:

(1) For every T � S with jT j � 5, vcdWT � jT j � 2.

(2) Every infinite subgroup WT , with jT j D 3; 4, is Euclidean or quasi-Lánner.

If q � 1, then L2qbk.†L/D 0 for k < 2.

The above theorem implies a specialized version of the weighted Singer conjecture for
2–spherical Coxeter groups when nD 4; see Corollary 4.13. The computations of the
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above theorems rely not only on the fattened Davis complex, but also on Lemma 2.7.
In many cases, this lemma allows us to “push” the vanishing of high-dimensional
weighted L2–Betti numbers for q D 1 to q � 1. In fact, with the help of the work of
Okun and Schreve [19], we obtain the following theorem.

Theorem 5.2 Suppose that the nerve L is an .n�1/–disk. Then

L2qHk.†L/D 0 for k � n� 1 and q � 1:

Note that, when nD3 or 4, this theorem proves a version of the weighted Singer conjec-
ture for the case where †L is a manifold with boundary. We then prove Conjecture 1.1
for nD 3 or 4, under some additional restrictions on the nerve L. First, recall that
the nerve L of a Coxeter system .W; S/ has a natural piecewise spherical structure,
and under this structure, if s; t 2 S are connected by an edge in L, then the edge has
length � � �=mst , where .st/mst D 1. Hence L inherits the structure of a metric
flag complex [6, Lemma 12.3.1], meaning that any collection of pairwise connected
edges of L spans a simplex if and only if there exists a spherical simplex with the
corresponding edge lengths.

Theorem 1.2 Suppose that the nerve L of a Coxeter group is a triangulation of S2

not dual to a hyperbolic 3–simplex. Then

L2qHk.†L/D 0 for k > 1 and q � 1:

Note that, in conjunction with weighted Poincaré duality and [13, Theorem 7.1],
Theorem 1.2 yields ranges of concentration of the L2q –(co)homology groups as follows.

Corollary 1.3 Suppose that the nerve L of a Coxeter group is a triangulation of S2

not dual to a hyperbolic 3–simplex.

� If q 2 xR, then L2qH�.†L/ is concentrated in dimension 0.

� If q …R and q � 1, then L2qH�.†L/ is concentrated in dimension 1.

� If q …R�1 and q � 1, then L2qH�.†L/ is concentrated in dimension 2.

� If q 2 xR�1 , then L2qH�.†L/ is concentrated in dimension 3.

In either case, one can use [13, Corollary 3.4], along with a standard computation for
growth series [6, Theorem 17.1.9], to explicitly compute each L2q –Betti number. The
Coxeter groups whose nerves are dual to hyperbolic 3–simplices are sometimes called
Lánner groups in the literature, and there are only nine Lánner groups in dimension
three; see Humphreys [16, Table 6.9]. So there are only nine groups standing in the
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way of proving Conjecture 1.1 in full generality for dimension three. In dimension
four, we prove the following theorem. First, recall that a subcomplex A of a simplicial
complex L is full if, whenever the vertices of a simplex of L lie in A, the simplex
must lie in A.

Theorem 1.4 Suppose that the nerve L of a Coxeter group is a triangulation of S3.
Furthermore, suppose that there exists a vertex of L such that its link is a full subcom-
plex of L and not dual to a hyperbolic 3–simplex. Then

L2qHk.†L/D 0 for k > 2 and q � 1:

We obtain the following corollary.

Corollary 1.5 Suppose that the nerve L of a Coxeter group is a flag triangulation
of S3 . Then

L2qHk.†L/D 0 for k > 2 and q � 1:

Proof Since L is flag, it follows that the link of every vertex is a full subcomplex
of L. Furthermore, the link of every vertex is not the boundary of a 3–simplex (and in
particular, not dual to a 3–simplex). Theorem 1.4 now completes the proof.

We conclude the article by proving the following generalization of the above corollary.

Theorem 1.6 Suppose that the nerve L of a Coxeter group is a flag triangulation of a
3–manifold. Then

L2qHk.†L/D 0 for k > 2 and q � 1:
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2 Preliminaries

Coxeter systems and Coxeter groups

A Coxeter matrix M D .mst / on a set S is an S �S symmetric matrix with entries in
N [f1g such that

mst D 1 if s D t; and mst � 2 otherwise:
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One can associate to M a presentation for a group W as follows. Let S be the set of
generators and let I D f.s; t/ 2 S �S jmst ¤1g. The set of relations for W is

RD f.st/mst g.s;t/2I :

The group defined by the presentation hS;Ri is a Coxeter group and the pair .W; S/
is a Coxeter system. If all off-diagonal entries of M are either 2 or 1, then W is
right-angled.

Given a subset T � S , WT is the subgroup of W generated by the elements of T .
Then .WT ; T / is a Coxeter system. Subgroups of this form are special subgroups. WT
is a spherical subgroup if WT is finite and, in this case, T is a spherical subset. If WT
is infinite, then T is nonspherical.

Let S be the poset of all spherical subsets of S , partially ordered by inclusion. Then S
is an abstract simplicial complex with vertex set S . Let L be the geometric realization
of the abstract simplicial complex S . L is the nerve of .W; S/.

Let c denote a point and let L be the labeled nerve. Consider the join L0 D c �L,
where all of the new edges are labeled by 2. L0 is called the right-angled cone on L.
Note that the corresponding Coxeter system to L0 is .W �Z2; S [fcg/.

Mirrored spaces and mirrored homology manifolds with corners

A mirror structure over a set S on a space X is a family of subspaces .Xs/s2S indexed
by S . Then X is a mirrored space over S . Put X∅ D X , and for each nonempty
subset T � S , define the following subspaces of X :

XT WD
\
s2T

Xs and XT WD
[
s2T

Xs:

If .W; S/ is a Coxeter system and X is a mirrored space over S , then the mirror
structure .Xs/s2S is W–finite if XT D∅ for all nonspherical T � S .

Suppose that X is a mirrored space over S with W–finite mirror structure. X is an
S –mirrored homology n–manifold with corners if every nonempty XT is a homology
.n�jT j/–manifold with boundary @XT D

S
U©TXU . By taking T D∅, this definition

implies that the pair .X; @X/ is a homology n–manifold with boundary.

Set S 0 D S [feg, where e is the identity element of W . We now say that T � S 0 is
spherical if and only if T �feg is spherical. A mirrored space X over the set S 0 with
W–finite mirror structure .Xs/s2S 0 is a partially S –mirrored homology n–manifold
with corners if every nonempty XT is a homology .n�jT j/–manifold with boundary
@XT D

S
U©T XU . To summarize, we simply have defined the non-S –mirrored part

of X to be an auxiliary mirror corresponding to the identity element of W .
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Basic construction

Suppose that .W; S/ is a Coxeter system and that X is a mirrored space over S .
Put S.x/ WD fs 2 S j x 2 Xsg and define an equivalence relation � on W �X by
.w; x/� .w0; y/ if and only if x D y and w�1w0 2WS.x/ . Give W �X the product
topology and let U.W;X/ denote the quotient space

U.W;X/D .W �X/=� :

U.W;X/ is the basic construction and X is the fundamental chamber. A version of
the following proposition appears in [6, Proposition 10.7.5] without proof.

Proposition 2.1 Suppose that .W; S/ is a Coxeter system and suppose that X is a
partially S –mirrored homology n–manifold with corners. Set Y DXe and give Y the
induced mirror structure .Ys/s2S , where Ys WD Y \Xs . Then U.W;X/ is a homology
n–manifold with boundary @U.W;X/D U.W; Y /.

Proof Before proving the proposition, we first prove the following claim.

Claim If X is an S –mirrored homology n–manifold with corners, then U.W;X/ is
a homology n–manifold.

Proof of claim Without loss of generality suppose that x 2 X . By excision, we
need to show that the local homology groups H�.U; U � x/ are correct for some
neighborhood U of x in U.W;X/. If x 2X �@X , then we are done since X �@X is
a homology n–manifold, and x does not lie in any mirror. So suppose that jS.x/j � 1.

Let V be a neighborhood of x in X . For each s 2 S.x/, set Vs D V \Xs , and give V
the mirror structure fVsgs2S.x/ . Note that VT D V \XT for each T � S.x/. Now
x2XS.x/ , so x2@XT for each T �S.x/ (XT is, by assumption, a homology .n�jT j/–
manifold with boundary, and XS.x/ � @XT ). Furthermore, x does not lie in @XS.x/ .
Therefore, by excision, it follows that for each T � S.x/, the local homology groups
H�.VT ; VT � x/ vanish, and so H�.VS.x/; VS.x/ � x/ is concentrated in dimension
n� jS.x/j, and it equals Z in that dimension.

Now define

Z WD V [Cone.V � x/ and Zs WD Vs [Cone.Vs � x/:

So Z has the mirror structure fZsgs2S.x/ . Since V is a neighborhood of x in X, and
x 2 @X , it follows that the local homology groups H�.V; V � x/ vanish. In particular,
H�.V /ŠH�.V � x/, and the Mayer–Vietoris sequence, along with the five lemma,
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implies that Z is acyclic. Similarly, for each T �S.x/, since the local homology groups
H�.VT ; VT � x/ vanish, it follows that ZT is acyclic. Since H�.VS.x/; VS.x/� x/ is
concentrated in dimension n� jS.x/j and is Z in that dimension, that Mayer–Vietoris
sequence again implies that the same is true for H�.ZS.x//. In particular, ZS.x/ has
the same homology as Sn�jS.x/j . We now finish the proof of the claim by applying
the following lemma:

Lemma 2.2 [6, Corollary 8.2.5] U.WS.x/; Z/ has the same homology as Sn if and
only if there is a unique spherical subset R � S.x/ satisfying these conditions:

(a) WS.x/ decomposes as WS.x/ DWR �WS.x/�R .

(b) For all spherical T 0 � S.x/ with T 0 ¤R , we have that .Z;ZT
0

/ is acyclic.

(c) .Z;ZR/ has the same homology as .Dn; Sn�1/.

We apply the lemma to RDS.x/. Condition (a) is then satisfied vacuously, so we wish
to show (b) and (c). For T � R , consider the cover of ZT by the mirrors fZsgs2T .
Note that, for each U � R , the intersection of mirrors ZU is acyclic. The nerve of
this cover is a simplex on U and, in particular, is contractible. The acyclic covering
lemma [3, Theorem 4.4, Chapter VII] then implies that ZU is acyclic. Note that
ZR has the same homology as Sn�jRj , so a similar spectral sequence argument also
implies that ZR has the same homology as Sn�1 . Now set U D U.WR; V /. Since
U.WR; Z/ D U [ Cone.U � x/ and U.WR; Z/ has the same homology as Sn , it
follows that H�.U; U �x/ is concentrated in dimension n and is Z in that dimension.
Therefore, U is our desired neighborhood. This concludes the proof of the claim.

We now prove the proposition. Set U D U.W;X/ and @U D U.W; Y /. It follows from
the above claim that @U is a homology .n�1/–manifold. This is because Y DXe , and
Xe (with its induced S –mirror structure) is an S –mirrored homology .n�1/–manifold
with corners. Similarly, the claim implies that U �@U is a homology n–manifold since
U � @U D U.W;Z/, where Z D X � Y (with its induced S –mirror structure) is an
S –mirrored homology n–manifold with corners. It remains to show that, for each
x 2 @U , the local homology groups H�.U ;U � x/ vanish.

Without loss of generality, we can assume that x 2 Y � @X . If x does not lie in
any mirror .Xs/s2S , then we are done by excision. So suppose jS.x/j � 1, and let
V be a neighborhood of x in X . We now give V the S –mirror structure as in the
proof of the claim, noting that the only difference between that proof and the current
situation is the fact that the local homology groups H�.VS.x/; VS.x/�x/ vanish. This
is because, since x 2 Y and jS.x/j � 1, it follows that x 2 @XS.x/ . Now, following
the proof of the above claim line by line, the only difference now is that ZS.x/ is
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Figure 1: .ƒ; S/–chamber when ƒ is the boundary complex of an octahedron

acyclic (as opposed to having the homology of Sn�1 as before). This then implies
that U.WS.x/; Z/ is acyclic [6, Corollary 8.2.8], which in turn implies that the local
homology groups H�.U ;U � x/ vanish.

The .ƒ; S/–chamber

Suppose that ƒ is a cell complex with vertex set S and let F.ƒ/ denote the poset of
cells of ƒ, including the empty set (here a cell is the convex hull of finitely many points
in Rn , and we always assume the cell complex to be locally finite). Let P WD jF.ƒ/j
denote the geometric realization of the poset F.ƒ/. For each T 2 F.ƒ/, define
PT WD jF.ƒ/�T j and @PT WD jF.ƒ/>T j, so each PT is the cone on b Lk.T;ƒ/, the
barycentric subdivision of Lk.T;ƒ/. In particular, taking T D∅, we have that P is
the cone on bƒ with cone point corresponding to ∅. For each s 2 S, put Ps WD Pfsg .
This endows P with the mirror structure .Ps/s2S . P is the .ƒ; S/–chamber.

Recall that a space X is a generalized homology n–sphere, abbreviated GHSn, if it is
a homology n–manifold with the same homology as Sn. Similarly, the pair .X; @X/
is a generalized homology n–disk, abbreviated GHDn, if it is a homology n–manifold
with boundary with the same homology as the pair .Dn; Sn�1/. Note that the cone on
a generalized homology sphere is a generalized homology disk.

Now, if ƒ is a GHSn�1 , then the link of every cell � in ƒ is a GHSn�dim��2 . It
follows that P is a GHDn, and that, for each T 2 F.ƒ/, the pair .PT ; @PT / is a
GHDn�dim�T�1 , where �T is the geometric cell in ƒ spanned by T .

Let b�T denote the barycentric subdivision of �T . By definition, b�T is the .@�T ; T /–
chamber, and in particular, �T has a natural mirror structure over T . Now P is
itself a flag simplicial complex, and PT is a subcomplex of P for each T 2 F.ƒ/.
Hence PT �

S
U�T PU has a neighborhood of the form �T � PT , the join of �T

and PT . Following the join lines for a little while, it follows that PT �
S
U�T PU has

neighborhoods of the form Cone.�T /�PT . We record this fact, as we will use it in
an upcoming construction.
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The Davis complex and ruins

If .W; S/ is a Coxeter system, then by definition, the Davis chamber K is the .L; S/–
chamber. The Davis complex †L associated to the nerve L is

†L WD U.W;K/:

Note that †L is naturally a simplicial complex, the simplicial structure induced by
that of K , and moreover, it is proved in [5] that †L is contractible. Furthermore, if L
is a triangulation of an .n�1/–sphere (resp. .n�1/–disk), then †L is an n–manifold
(resp. n–manifold with boundary).

The Davis complex admits a decomposition into Coxeter cells. For each T 2 S , let
vT denote the corresponding barycenter in K . Let cT denote the union of simplices
c � †L such that c \KT D vT . The boundary of cT is then cellulated by wcU ,
where w 2 WT and U � T . With its simplicial structure, the boundary @cT is the
Coxeter complex corresponding to the Coxeter system .WT ; T /, which is a sphere since
WT is finite. It follows that cT and its translates are disks, which are called Coxeter
cells of type T . We denote †L with this decomposition into Coxeter cells by †cc .
Note that †cc is a regular CW complex with poset of cells that can be identified with
W S WD fwWU j w 2 W; T 2 Sg. The simplicial structure on †L is the geometric
realization of the poset W S ; hence †L is the barycentric subdivision of †cc .

Now, for U � S , set S.U / WD fT 2 S j T � U g. Define †.U / to be the subcomplex
of †cc consisting of all (closed) Coxeter cells of type T with T 2 S.U /. Given
T 2 S.U /, we define the following subcomplexes of †.U /:

�UT W the union of closed cells of type T 0; with T 0 2 S.U /�T ;

@�UT W the cells of �.U; T / of type T 00; with T 00 62 S.U /�T :

The pair .�.U; T /; @�.U; T // is the .U; T /–ruin. For brevity, we sometimes write
.�.U; T /; @/ to denote the .U; T /–ruin. Note that, if T D∅, then �.U; T /D†.U /
and @�.U; T /D∅.

For s 2 T , set U 0 D U � s and T 0 D T � s . As in [8, Proof of Theorem 8.3], we have
the following weak exact sequence:

(1) � � �!L2qH�.�.U
0; T 0/; @/!L2qH�.�.U; T

0/; @/!L2qH�.�.U; T /; @/!� � � :

For the special case when U D S and T D fsg, the above sequence becomes

� � � ! L2qH�.†.S � s//! L2qH�.†.S//! L2qH�.�.S; s/; @/! � � � :
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Hecke–von Neumann algebras

Let .W; S/ be a Coxeter system. For the remainder of this article, let q D .qs/s2S
denote an S –tuple of positive real numbers satisfying qs D qs0 whenever s and s0 are
conjugate in W . Set q�1 D .q�1s /s2S . If w D s1 � � � sn is a reduced expression for
w 2W , we define qw WD qs1 � � � qsn .

Let R.W / denote the group algebra of W and let fewgw2W denote the standard basis
on R.W / (here ew denotes the characteristic function of fwg). We deform the standard
inner product on R.W / to an inner product

hew ; ew 0iq D

�
qw if w D w0;
0 otherwise.

Using the multiparameter q , one can give R.W / the structure of a Hecke algebra. We
will denote R.W / with this inner product and Hecke algebra structure by Rq.W /, and
L2q.W / will denote the Hilbert space completion of Rq.W / with respect to h ; iq .
There is a natural anti-involution on Rq.W /, which implies that there is an associ-
ated Hecke–von Neumann algebra Nq.W / acting on the right on L2q.W /. It is the
algebra of all bounded linear endomorphisms of L2q.W / which commute with the left
Rq.W /–action.

Define the von Neumann trace of � 2Nq.W / by trNq .�/ WD he1�; e1iq and similarly
for an .n�n/–matrix with coefficients in � 2Nq.W / by taking the sum of the von Neu-
mann traces of elements on the diagonal. This allows us to attribute an nonnegative real
number called the von Neumann dimension for any closed subspace of an n–fold direct
sum of copies of L2q.W / which is stable under the Rq.W /–action, called a Hilbert Nq –
module. If V � .L2q.W //n is a Hilbert Nq –module, and pV W .L2q.W //n! .L2q.W //

n

is the orthogonal projection onto V (note that pV 2Nq.W /), then define

dimNq V WD trNq .pV /:

Weighted L2–(co)homology

Suppose .W; S/ is a Coxeter system and that X is a mirrored finite CW complex
over S. Set U D U.W;X/. We first orient the cells of X and extend this orientation
to U in such a way so that if � is a positively oriented cell of X , then w� is positively
oriented for each w 2W . We define a measure on the i –cells � of U by

�q.�/D qu;
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where u is the element of shortest length in W such that � � uX . Define the q–
weighted i –dimensional L2–(co)chains on U to be the Hilbert space

L2qCi .U/D L2qC i .U/D L2.U .i/; �q/:

These are infinite W–equivariant square summable (with respect to �q ) real-valued
i –chains. The inner product is given by

hf; giq D
X
�

f .�/g.�/�q.�/;

and we denote the induced norm by k kq .

The boundary map @i W L2qCi .U/!L2qCi�1.U/ and coboundary map ıi W L2qCi .U/!
L2qCiC1.U/ are defined by the usual formulas, however there is one caveat: they are
not adjoints with respect to this inner product whenever q ¤ 1. Thus one remedies this
issue by perturbing the boundary map @i to @q

i :

@
q
i .f /.�

i�1/D
X

� i�1�˛i

Œ� W ˛��q.˛/�
�1
q .�/f .˛/:

A simple computation shows that @q
i is the adjoint of ıi with respect to the weighted

inner product; thus .L2qC�.U/; @
q
i / is a chain complex. We now define the reduced

q –weighted L2–(co)homology by

L2qHi .U/D Ker @q
i =Im @

q
iC1 and L2qH

i .U/D Ker ıi=Im ıi�1:

The Hodge decomposition implies that L2qH i .U/Š L2qHi .U/Š ker @q
i \ ker ıi , and

versions of Eilenberg–Steenrod axioms hold for this homology theory. There is also a
weighted version of Poincaré duality: if U is a locally compact homology n–manifold
with boundary @U , then

L2qHi .U/Š L2q�1Hn�i .U ; @U/:

One can also assign the von Neumann dimension to each of the Hilbert spaces L2qHi .U/
(as they are Hilbert Nq –modules). We denote this by L2qbi .U/ and call it the i th

L2q –Betti number of U .

Discussed in [10, Section 6], there is an alternate approach to defining L2q –Betti
numbers using the ideas of Lück [18]. The main point is that there is an equivalence
of categories between the category of Hilbert Nq –modules and projective modules of
Nq . Hence one can define dimNq M for a finitely generated projective Nq –module
M which agrees with the dimension of the corresponding Hilbert Nq –module. So,
dimNq M for an arbitrary Nq –module is then defined to be the dimension of its
projective part.
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As in [18], define HW
� .U ;Nq.W // to be the homology of the Nq.W /–chain complex

CW� .U ;Nq.W // WDNq.W /˝Rq.W /C�.U/, where C�.U/ is the cellular chain complex
of U with the induced Rq.W /–structure. We then define

L2qbi .U/ WD dimNq H
W
i .U ;Nq.W //:

This definition does in fact agree with the previous one, and the advantage of this
definition is that we do not need to take closures of images as in the definition of
reduced q –weighted L2–(co)homology (this is particularly useful when dealing with
spectral sequences).

Some new results and observations for L2
q –(co)homology

We begin with the following lemma, which says that we can compute the weighted
L2–Betti numbers of any acyclic complex of the form U.W;X/, with X finite, on
which W acts properly, and get the same answer. Thus we will sometimes write
L2qbk.W / instead of L2qbk.†L/ to denote the kth L2q –Betti number of W .

Lemma 2.3 Let .W; S/ be a Coxeter system and suppose that X and X 0 are finite
mirrored CW complexes with U.W;X/ and U.W;X 0/ both acyclic and both admitting
a proper W–action. Then for every k � 0,

L2qbk.U.W;X//D L
2
qbk.U.W;X 0//:

Proof Set U D U.W;X/ and U 0 D U.W;X 0/. Since U and U 0 are both acyclic,
it follows that the respective cellular chain complexes C�.U/ and C�.U 0/ are chain
homotopic. This chain homotopy induces a chain homotopy of the chain complexes
CW� .U ;Nq.W // and CW� .U 0;Nq.W //.

In fact, Bestvina constructed such a complex for any finitely generated Coxeter group.

Theorem 2.4 [2] Let W be a finitely generated Coxeter group. Then W acts properly
and cocompactly on an acyclic vcdW–dimensional complex of the form U.W;X/.

Corollary 2.5 Let .W; S/ be a Coxeter system. Then

L2qbk.W /D 0 for k > vcdW:

Proof We can use the acyclic vcdW–dimensional complex of Theorem 2.4 to compute
the weighted L2–Betti numbers of W . Lemma 2.3 now completes the proof.
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Figure 2: Schematic for the proof of Lemma 2.7

Remark 2.6 The similar technique of using the Bestvina construction for computations
also appears in [14, Section 9].

We now prove a lemma which is crucial for later computations.

Lemma 2.7 Let nD vcdW and suppose and that L21bn.W /D 0. Then

L2qbk.W /D 0 for k � n and q � 1:

Proof By Corollary 2.5, we obtain vanishing for k > n. Now, suppose for a contra-
diction that L2qbn.W /¤ 0 for q < 1. Let BW denote the complex of Theorem 2.4.
Lemma 2.3 says that we can compute weighted L2–Betti numbers of W using the
complex BW . In particular, L2qbn.W /D L2qbn.BW / and we can choose a nontrivial
element  2 L2qHn.BW /. Thus  is a cycle under the weighted boundary map @q .
Consider the isomorphism of Hilbert spaces

mq W L
2
qCn.BW /! L2q�1Cn.BW /

defined by mq.f .�//D �q.�/f .�/. In particular, mq 2 L
2
q�1Cn.BW /, and since

q�1 > 1,
kmq k1 � kmq kq�1 <1:

Hence mq 2 L
2
1Cn.BW /.

Now, a simple computation shows that @Dmq@
qm�1q and since  is a cycle under

@q , mq is a cycle under @, the standard L2–boundary operator. Moreover, since
BW is n–dimensional, mq is trivially a cocycle. Thus we have produced a nontrivial
element of L21Hn.BW /, a contradiction.

3 The fattened Davis complex

We will now construct a complex which is a “fattened” version of the Davis complex.
This thickened complex will be a homology manifold with boundary possessing the
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Davis complex as a W–equivariant retract. For the remainder of this article we suppose
that W is an infinite Coxeter group.

Construction

Given a Coxeter system .W; S/, we find a compact P with mirror structure .Ps/s2S
as follows. Let P � be a cell complex with vertex set S that is a GHSn�1 , with
n � 1 > dimL, such that the nerve L is a subcomplex of P � . Take P to be the
.P �; S/–chamber.

Denote by P the collection of proper nonempty subsets T of S with PT ¤∅, and by
NP the subcollection of P corresponding to nonspherical subsets. For T 2P , we denote
a neighborhood of the face PT by N.PT / and the corresponding closed neighborhood
by xN.PT /. We begin by building a regular neighborhood of @P in P . Start by
choosing neighborhoods of codimension-n faces so that, for any two codimension-n
faces PU and PV , we have xN.PU /\ xN.PV /D∅. Then we choose neighborhoods of
codimension-.n�1/ faces so that, for any two codimension-.n�1/ faces PU and PV ,
we have

(2) xN.PU /\ xN.PV /�N.PU \PV /:

If U [V … P , then we take N.PU \PV /D∅. We proceed inductively, employing
condition (2) at each step until we obtain the collection fN.PT /gT2P . This collection
gives us a regular neighborhood of @P .

Finally, we realize the neighborhoods fN.PT /gT2P in the above construction as
fNT �PT gT2P , where NT is a neighborhood of the cone point in Cone.�T /, and �T
is the geometric cell in P � spanned by T (note that we can always do this; see the
discussion in the previous section). We now define

Kf WD P �
[
T2NP

N.PT /:

We call Kf the fattened Davis chamber. Note that the mirror structure .Ps/s2S on P
induces a mirror structure .Kfs /s2S on Kf . The fattened Davis complex is now defined
to be

ˆL WD U.W;Kf/:

Given a T 2 NP , we denote by Kf.T / the fattened Davis chamber corresponding
to �T and Coxeter system .WT ; T / (recall that the geometric cell �T has a natural
WT mirror structure).
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Figure 3: K �Kf � P when W DD1 �D1 and P D�3

Remark 3.1 For any Coxeter system .W; S/, one can always find a P � for the above
construction: simply let P � be the boundary of the standard .jS j�1/–dimensional
simplex �jS j�1 . Then P is the barycentric subdivision of �jS j�1 , and the Davis
chamber K can then be viewed as a subcomplex of the barycentric subdivision of P
spanned by the barycenters of spherical faces. One can see this using the language of
posets. Note that K is the geometric realization of the poset S and P is the geometric
realization of the poset of proper subsets of S . The natural inclusion of posets now
induces the desired inclusion of K into P . The mirror structure .Ks/s2S on K is
now induced by the mirror structure .Ps/s2S on P . In this case, U.W;P / is the
traditional Coxeter complex, and we are essentially viewing †L as a subcomplex of
the barycentric subdivision of the Coxeter complex.

Remark 3.2 A variant of the above construction first appeared in [7] and was used
for a different purpose. There, as in Remark 3.1, they only considered the case
where P D �jS j�1 , while our construction allows for different choices of P . The
main difference between their construction and ours is that, instead of removing
neighborhoods of faces with infinite stabilizers in U.W;P /, they simply removed the
faces (so in particular, their chamber was not compact). For reasons that will become
clear in the coming sections, we not only need a compact P , but we must also be
careful with how we chose the neighborhoods of faces.

Properties of ˆL

W is assumed to be infinite, so via the choice of P for construction, the Davis chamber
is the subcomplex of P spanned by vertices of P corresponding to spherical faces.
Hence we have the following inclusions: K �Kf � P (see Figure 3).

Note that there is a face preserving deformation retraction of Kf onto K , thus we
have the following:
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Proposition 3.3 †L is a W–equivariant deformation retract of ˆL .

Proposition 3.4 ˆL is a locally compact contractible homology n–manifold with
boundary @ˆL .

Proof Since †L is contractible, it follows from Proposition 3.3 that ˆL is con-
tractible. Moreover, Kf is compact since it is closed in P (P is compact), so ˆL is
locally compact.

Now declare Kfe D @Kf�
S
T2S>∅

.K
f
T �@K

f
T/, where e is the identity element of W .

According to Proposition 2.1, it remains to show that Kf is a partially S –mirrored
homology manifold with corners. Let S 0 D S [ feg, and note that, by construction,
K
f
T D ∅ if and only if T is nonspherical. So we are done if we show that KfT has

dimension n� jT j for every spherical T � S 0 .

If e … T , then we are done since .PT ; @PT / is a GHDn�jT j . This is because P is, by
definition, the .P �; S/–chamber, and the nerve L was assumed to be a subcomplex
of P �. Hence, since T is spherical, �T , the geometric cell in P � corresponding
to T , is a simplex of dimension jT j � 1. Therefore, the dimension of PT is equal to
n� dim �T � 1D n� jT j.

If e2T , then U DT �feg is spherical, and by the above discussion, KfU has dimension
n� jU j D n� jT jC 1. Then KfT DK

f
U\K

f
e D @K

f
U has dimension n� jT j.

Remark 3.5 If P D�jS j�1 , then the Coxeter complex U.W;P / is a PL–manifold
away from faces with infinite stabilizers. This is because the links of faces corresponding
to spherical subsets T are homeomorphic to the Coxeter complex of the corresponding
group WT . Since WT is finite, this Coxeter complex is homeomorphic to a sphere
of the appropriate dimension. Since we obtain ˆL by removing neighborhoods of
nonspherical faces (faces with infinite stabilizers), it follows that ˆL is a PL–manifold
with boundary.

The structure of @ˆL

The main goal of this section is to understand the structure of @ˆL . The first proposition
will tell us that @Kf can be broken up into pieces, each of which has a nice product
structure. This decomposition of @Kf then leads us to a cover of @ˆL which will be
used to study the algebraic topology of @ˆL .

For T 2NP , define
CT D @N.PT /�

[
U2NP

N.PU /
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and
ƒT D PT �

[
U2NP

T�U

N.PU /:

Proposition 3.6 (i) Suppose that U; V 2NP . Then CU \CV ¤∅ if and only if
U � V or V � U .

(ii) If T 2NP , then
CT �K

f.T /�ƒT :

(iii) Suppose that T1; T2 2NP with T1 � T2 . Then

CT1
\CT2

�Kf.T1/�ƒT2
:

Proof For (i), if U � V , then PV is a face of PU . Thus CU \CV ¤ ∅. For the
reverse implication, suppose that U 6� V and V 6� U . By construction and condition
(2), either xN.PU /\ xN.PV /D∅ or xN.PU /\ xN.PV /�N.PU \PV /. The former
case immediately implies that CU \ CV D ∅, and the latter case implies that the
intersection @N.PU /\ @N.PV / is removed at some point in the construction of the
fattened Davis chamber; hence CU \CV D∅.

For (ii), recall that we have realized the collection fN.PT /gT2NP
as neighborhoods

fNT �PT gT2NP
, where NT is a neighborhood of the cone point in Cone.�T /.

Now for each U � T , let ˛U denote the face in �T corresponding to PU . More
precisely, �T has a WT mirror structure, and ˛U is the intersection of mirrors corre-
sponding to U � T . We can express the neighborhoods in the construction of Kf.T /
as neighborhoods f˛U �N 0U gU2NP ;U�T , where N 0U is a neighborhood of the cone
point in Cone.Lk.˛U ; �T //. Here Lk.˛U ; �T / denotes the link of the face ˛U in �T .
In particular,

Kf.T /D �T �
[
U2NP

U�T

˛U �N
0
U :

Now, we have that Lk.˛U ; �T /� �U , so N 0U �NU . Hence

Kf.T /� �T �
[
U2NP

U�T

PU �NU :

Moreover, we can write ƒT and CT as

ƒT D PT �
[
U2NP

T�U

PU �NU and CT D .�T �PT /�
[
U2NP

U¤T

PU �NU :
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We now show that CT �Kf.T /�ƒT . Note that

Kf.T /�ƒT D .K
f.T /�PT /\ .�T �ƒT /;

so we begin unwinding definitions. We first observe that

Kf.T /�PT �

�
�T �

[
U2NP

U�T

PU �NU

�
�PT � .�T �PT /�

[
U2NP

U�T

PU �NU :

This is because PT is a face of each PU . Similarly, we have

�T �ƒT D �T �

�
PT �

[
U2NP

T�U

PU �NU

�
� .�T �PT /�

[
U2NP

T�U

PU �NU :

This follows from the fact that each PU is a face of PT . Thus we have shown that
Kf.T /�ƒT D .K

f.T /�PT /\ .�T �ƒT /� CT , thereby proving (ii).

We now prove (iii). By (ii),

CT1
\CT2

� .Kf.T1/\K
f.T2//� .ƒT1

\ƒT2
/:

It now simply remains to unwind the definitions. Since T1 � T2 , it follows that PT2
is

a face of PT1
. In particular, �T1

\ �T2
D �T1

, and hence

Kf.T1/\K
f.T2/� �T1

\ �T2
�

[
U;V 2NP

U�T1; V�T2

N.PU /[N.PV /

� �T1
�

[
U2NP

U�T1

N.PU /

�Kf.T1/:

A similar computation shows that ƒT1
\ƒT2

� ƒT2
, thus completing the proof of

the proposition.

Proposition 3.7 Let N .j /
P D fT 2NP j Card.T /D j g. Then

@ˆL D
[
j

G
T2N .j /

P

U.W;CT /:

Proof The fact that one can decompose @ˆL in this way is clear by construction, and
the second union is, in fact, a disjoint union by Proposition 3.6(i).
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Algebraic topology of ˆL and @ˆL

We now turn our attention to studying the algebraic topology of ˆL and @ˆL . We first
begin with a corollary to Proposition 3.3.

Corollary 3.8 L2qH�.ˆL/Š L
2
qH�.†L/:

Not only does ˆL have the same weighted L2–(co)homology as †L , but ˆL is a
locally compact homology manifold with boundary by Proposition 3.4. Thus we have
weighted Poincaré duality for ˆL at our disposal. With this in mind, we prove the
following lemma.

Lemma 3.9 Suppose that .W; S/ is a Coxeter system with vcdW Dm and that ˆL
is a homology n–manifold with boundary with L2qb1.@ˆL/D 0.

(i) If n�mD 1 and L2q�1bm.ˆL/D 0, then L2qb1.†L/D 0.

(ii) If n�m� 2, then L2qb1.†L/D 0.

Proof Consider the long exact sequence for the pair .ˆL; @ˆL/:

� � � ! L2qH1.@ˆL/! L2qH1.ˆL/! L2qH1.ˆL; @ˆL/! � � � :

By weighted Poincaré duality,

L2qH1.ˆL; @ˆL/Š L
2
q�1Hn�1.ˆL/:

Now by assumption, L2qH1.@ˆL/ D 0, so by weak exactness, we must show that
L2q�1Hn�1.ˆL/D 0. Since L2qH1.†L/DL2qH1.ˆL/D 0 by Corollary 3.8, we will
then be done.

For (i), we have that L2q�1bm.ˆL/D 0. Since n�mD 1, we have that mD n�1, so
it follows that L2q�1Hn�1.ˆL/D 0. For (ii), we have that n�m� 2, so n�1�mC1.
Since vcdW Dm, Corollary 2.5 implies that

L2q�1Hn�1.†L/D L
2
q�1Hn�1.ˆL/D 0:

We devote the remainder of the section to studying the algebraic topology of @ˆL . The
following is a corollary of Proposition 3.6.

Corollary 3.10 (i) If T 2NP , then for every k � 0,

L2qbk.U.W;CT //D L
2
qbk.ˆLT

/D L2qbk.†LT
/;

where LT is the subcomplex of L corresponding to the subgroup WT .

Algebraic & Geometric Topology, Volume 16 (2016)



The fattened Davis complex and weighted L2–(co)homology of Coxeter groups 2087

(ii) Suppose that T1; T2 2NP with T1 � T2 . Then for every k � 0,

L2qbk.U.W;CT1
/\ U.W;CT2

//D L2qbk.ˆLT1
/D L2qbk.†LT1

/;

where LT1
is the subcomplex of L corresponding to the subgroup WT1

.

Remark 3.11 The L2q –Betti numbers in the center and on the right of the equations in
(i) and (ii) are computed with respect to the special subgroups WT (respectively WT1

)
of W , while the ones on the far left side of the equations are computed with respect
to W .

Proof We prove only (i) as the proof of (ii) is similar. Proposition 3.6 implies
that CT � Kf.T / �ƒT as mirrored spaces, where ƒT is contractible and has no
mirror structure. Therefore, U.W;CT / is W–equivariantly homotopy equivalent to
U.W;Kf.T //. Now L2qH�.U.W;Kf.T /// is just the completion of

L2q.W /˝Rq.WT /L
2
qH�.U.WT ; Kf.T ///;

so for every k � 0,

L2qbk.U.W;Kf.T ///D L
2
qbk.U.WT ; Kf.T ///D L

2
qbk.ˆLT

/:

Consider the cover V D fU.W;CT /gT2NP
of @ˆL in Proposition 3.7. The cover V

will have intersections of variable depth, so we obtain a spectral sequence following [3,
Chapter VII, Sections 3,4]:

Proposition 3.12 There is a Mayer–Vietoris type spectral sequence converging to
HW
� .@ˆL;Nq.W // with E1–term:

E
i;j
1 D

M
�2Flag.NP /

dim�Di

HW
j .U.W;Cmin� /; Nq.W //:

Proof Let N.V/ denote the nerve of the cover V . It is the abstract simplicial complex
whose vertex set is NP and whose simplices are the nonempty subsets � � NP
such that the intersection V� D

T
T2� U.W;CT / is nonempty. Following [3, Chap-

ter VII, Sections 3,4], there is a Mayer–Vietoris type spectral sequence converging to
HW
� .@ˆL;Nq.W // with E1–term:

E
i;j
1 D

M
�2N.V/
dim�Di

HW
j .V� ;Nq.W //:

We have that V� ¤∅ if and only if
T
T2� CT ¤∅, and applying Proposition 3.6 induc-

tively, this happens if and only if the vertices of � form a chain Ti1 � Ti2 � � � � � Tik .
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This observation shows that N.V/D Flag.NP /. Now applying Proposition 3.6 induc-
tively, it follows that V� � U.W;CTi1

/. Hence

HW
� .V� ;Nq.W //ŠH

W
� .U.W;CTi1

/; Nq.W //;

so the terms in the spectral sequence are the ones claimed.

4 Computations

In this section we will use the fattened Davis complex to make concrete computations.
We begin by considering the case where the nerve L of the Coxeter system .W; S/

is a graph. Note that, for this special case, †L is two-dimensional. We then direct
our attention to quasi-Lánner groups, and finish with computations for 2–spherical
Coxeter groups whose corresponding nerves are no longer restricted to be graphs. For
the purpose of figures and examples, we will distinguish the special case where the
labeled nerve L D Kn.3/, where Kn.3/ denotes the complete graph on n vertices
with every edge labeled by 3.

Unless stated otherwise, the standing assumption in this section is that q � 1.

The case where L is a graph

Before proving the main theorem of this section, we begin with a lemma. The spe-
cial case of the lemma when q D 1 is closely related to a result of Schroeder [23,
Theorem 4.6]. We provide an argument which is analogous to that of Schroeder in
his proof.

Lemma 4.1 Suppose that the labeled nerve L is the one-skeleton of a cellulation
of S2. Then

L2qb2.†L/D 0 for q � 1:

Proof In light of Lemma 2.7, we must show that L21b2.†L/ D 0. We begin by
building L to a triangulation of S2 by coning on empty 2–cells and labeling each new
edge by 2, at each step keeping track of the L21 –(co)homology with a Mayer–Vietoris
sequence. More precisely, start with T1 � S corresponding to an empty 2–cell LT1

in L, and denote by CLT1
the right-angled cone on LT1

. The corresponding special
subgroup WT1

is infinite, and it acts properly and cocompactly by reflections on
either R2 or H2 . In both cases, L21H2.†LT1

/D 0, and hence the Künneth formula
implies that L21H2.†CLT1

/D 0. We have the following Mayer–Vietoris sequence:

� � ��!L21H2.†LT1
/�!L21H2.†CLT1

/˚L21H2.†L/
f1
�!L21H2.†L[CLT1

/�!� � � :
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In particular, the map f1 is injective. We then choose another T2 � S corresponding
to an empty 2–cell LT2

in L and denote by CLT2
the right-angled cone on LT2

. By
a similar argument, the map f2 in the following Mayer–Vietoris sequence is injective:

� � � �! L21H2.†CLT2
/˚L21H2.†L[CLT2

/
f2
�! L21H2.†L[CLT1

[CLT2
/ �! � � � :

Proceed inductively until all empty 2–cells have been coned off and denote the newly
promoted nerve by L0 . The fi yield a sequence of injective maps:

L21H2.†L/ ,! L21H2.†L[CLT1
/ ,! � � � ,! L21H2.†L0/:

Since L0 is a triangulation of S2, it follows that †L0 is a 3–manifold. Now a result of
Lott and Lück [17], in conjunction with the validity of the geometrization conjecture for
3–manifolds [20], implies that L21H�.†L0/ vanishes in all dimensions. In particular,
L21b2.†L/D 0.

Remark 4.2 Schroeder proves a more general theorem for q D 1 [23, Theorem 4.6].
A metric flag complex L is planar if it can be embedded as a proper subcomplex of a
triangulation of the 2–sphere. Schroeder proves that if the nerve L of a Coxeter system
is planar, then L21bk.†L/D 0 for k � 2. If L is planar and W is the corresponding
Coxeter group, then [6, Corollary 8.5.5] implies that vcdW � 2. Therefore, we can
use Lemma 2.7 to deduce that L2qbk.†L/D 0 for k � 2 and q � 1.

Theorem 4.3 Suppose that the labeled nerve L of a Coxeter system .W; S/ is the
one-skeleton of a cell complex that is a generalized homology n–sphere, where n� 2.
Furthermore, suppose that the vertex set of every 2–cell generates a Euclidean reflection
subgroup of W . Then L2qb�.†L/ is concentrated in degree 2.

Note that a labeled nerve L satisfying the hypothesis of Theorem 4.3 can only have
labels mst 2 f2; 3; 4; 6g.

Proof It follows from [13, Theorem 10.3] that L2qb0.†L/ D 0. We now turn our
attention to showing that L2qb1.†L/D 0. For the construction of the fattened Davis
complex, we will use the given cell complex as P �.

We prove the theorem by induction on n. For the base case n D 2, note that �T is
Euclidean for every T 2NP . Hence Proposition 3.6 implies that each CT appearing in
@Kf corresponds to a set T 2NP such that WT is a Euclidean reflection group. Thus
Corollary 3.10 and [8, Corollary 14.5] imply that L2qb1.U.W;CT //D 0. This and [13,
Theorem 10.3] imply that the E0;11 and E1;01 terms in the E1 sheet of the spectral
sequence in Proposition 3.12 are zero, which in turn implies that L2qb1.@ˆL/ D 0.
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Now note that ˆL is three-dimensional, and vcdW D 2. Moreover, by Lemma 4.1,
L2q�1H2.†L/ D 0. Therefore, via Lemma 3.9(i), we reach the conclusion that
L2qb1.†L/D 0.

Now suppose the theorem is true for m<n. Since †L is 2–dimensional, Lemma 3.9(ii)
tells us that we are done if we show that L2qb1.@ˆL/ D 0. Let T 2 NP . Then �T
is the .@�T ; T /–chamber, where �T is the geometric cell in P � spanned by T . In
particular, @�T is a cell complex that is GHSm for some m< n, and since all 2–cells
of P � are Euclidean, it follows that all 2–cells of @�T are Euclidean. Hence, by
induction and Corollary 3.10, it follows that L2qb1.U.W;CT //DL2qb1.†LT

/D 0 for
every T 2NP . This and [13, Theorem 10.3] imply that the E0;11 and E1;01 terms in the
E1 sheet of the spectral sequence in Proposition 3.12 are zero, which in turn implies
that L2qb1.@ˆL/D 0.

Consider the special case of Theorem 4.3 when nD 2. In this case, Theorem 4.3, along
with Lemma 4.1, yields the following ranges of concentration for L2q –Betti numbers.

Corollary 4.4 Suppose that the labeled nerve L of a Coxeter system .W; S/ is the
one-skeleton of a cell complex that is a GHS2 such that the vertex set of every 2–cell
generates a Euclidean reflection subgroup of W .

� If q 2 xR, then L2qH�.†L/ is concentrated in dimension 0.
� If q …R and q � 1, then L2qH�.†L/ is concentrated in dimension 1.
� If q � 1, then L2qH�.†L/ is concentrated in dimension 2.

Once concentration has been established, an explicit formula for L2qb�.†L/ can be
obtained using [13, Corollary 3.4] and [6, Theorem 17.1.9]. Also, if we place some
restrictions on either our labels or the cell complex, then the formula for L2qb�.†L/ in
Theorem 4.3 becomes relatively simple, as illustrated by the following corollary.

Corollary 4.5 Let L D Kn.3/ with n � 3. Then L2qb�.†L/ is concentrated in
degree 2. Furthermore,

L2qb2.†L/D 1�
nq

1C q
C

n.n� 1/q3

2.1C 2qC 2q2C q3/
:

Remark 4.6 Note that, under the hypothesis of the above corollary, all generators
in S are conjugate, so in this case, q D q , where q � 1 is a positive real number.

We can also allow ourselves to remove some edges from LDKn.3/. We denote by
Kln.3/ the complete graph on n vertices with each edge labeled by 3 and with l edges
removed. We have the following consequence of Corollary 4.5.
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Corollary 4.7 Suppose that LDKln.3/, where n� 5 and l � n�4. Then L2qb�.†L/
is concentrated in degree 2.

Proof We first note that removing an edge from Kn.3/ splits the graph into two copies
of Kn�1.3/ intersecting at Kn�2.3/. Thus we have a Mayer–Vietoris sequence:

(?) � � � !L2qH1.†Kn�2
/!L2qH1.†Kn�1

/˚L2qH1.†Kn�1
/!L2qH1.†K1

n
/! 0:

We first handle the case where L D K15 .3/. Removing an edge from K5.3/ splits
the graph into two copies of K4.3/ intersecting at K3.3/. Corollary 4.5 computes
the L2q –(co)homology of each of the pieces in this decomposition, and applying the
sequence (?) proves the assertion for the case LDK15 .3/.

The proof for LDKln.3/ is now by induction, the above computation serving as the
base case. Suppose that the theorem is true for m < n. Begin by removing an edge
from Kn.3/, splitting it as two copies of Kn�1.3/ intersecting at Kn�2.3/. We now
remove the remaining l � 1 � n� 5 edges from each of the graphs in the splitting,
the worst case scenario being that we remove l � 1 edges from Kn�2.3/ (which in
turn removes l � 1 edges from each copy of Kn�1.3/). Nevertheless, the inductive
hypothesis is satisfied for each Kn�1 in the splitting no matter how the remaining
edges are removed. Applying a Mayer–Vietoris sequence analogous to (?) now shows
that the theorem holds for LDKln.3/.

With the help of ruins (defined in Section 2), we are also able to make computations
when we change some labels on L D Kn.3/. For the proof that follows, note that
L2qb�.†.U //DL

2
qb�.WU / for every U �S ; see the discussion before [8, Lemma 8.1].

Theorem 4.8 Let L D Kn , the complete graph on n vertices, with n � 5. Let
k � n� 4, and suppose that we label k edges of L with mst 2N � f1; 3g, and label
the remaining edges by 3. Then L2qb�.†L/ is concentrated in degree 2.

Proof The proof is by induction on n. First consider the case where LDK5 with one
label mst 2N�f1; 3g. Then by Corollary 4.5, L2qb1.†.S�s//DL2qb1.†K4.3//D 0.
According to sequence (1), it remains to show that L2qH1.�.S; s/; @/D 0. We turn
our attention to sequence (1) with U D S , T D fs; tg, U 0 D S � t , and T 0 D fsg. By
[8, Lemma 8.1], L2qH1.�.S; T /; @/D 0, so by weak exactness it remains to show that
L2qH1.�.U

0; T 0/; @/D 0. We consider the following version of sequence (1):

� � � ! L2qH1.†.S �fs; tg//! L2qH1.†.S � t //! L2qH1.�.U
0; T 0/; @/! � � � :

Note that
L2qb0.†.S �fs; tg//D L

2
qb0.†K3.3//D 0
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and
L2qb1.†.S � t //D L

2
qb1.†K4.3//D 0;

by [8, Corollary 14.5] and Corollary 4.5, respectively. By weak exactness, we obtain
that L2qH1.�.U 0; T 0/; @/ D 0, and hence that L2qH1.�.S; s/; @/ D 0, thus proving
the assertion for LDK5 .

Now suppose that the theorem is true for LDKm for all m< n. We wish to show the
theorem is true for LDKn . Begin by choosing an edge e with vertices s and t and
label different from 3. We now observe that L2qb1.†.S � s//D L2qb1.†Kn�1

/D 0

by the inductive hypothesis, since Kn�1 now has at most n� 5 edges with a label
different from 3. Similarly, the inductive hypothesis implies L2qb1.†.S � t //D 0 and
L2qb0.†.S �fs; tg//D 0. Hence the weak exact sequences used in the proof for the
case LDK5 allow us to conclude that L2qb1.†L/D L2qb1.†.S//D 0.

Remark 4.9 Note that, in conjunction with [8, Corollary 14.5] and Corollary 4.4, the
above argument gives an alternate proof of Corollary 4.5.

Quasi-Lánner groups

A 2–spherical Coxeter group W is quasi-Lánner if it acts properly (but not cocompactly)
on hyperbolic space Hn by reflections with fundamental chamber an n–simplex of
finite volume. For brevity, we say that W is of type QLn . Quasi-Lánner groups have
been classified and only exist in dimensions 3 through 10. For a complete list, see [16,
Section 6.9]. We note that the Coxeter group with corresponding nerve LDK4.3/ is
on the list.

All nonspherical proper special subgroups of a quasi-Lánner group are Euclidean and
on the list appearing in [16, page 34]. Moreover, if W is of type QLn , then the
only proper infinite special subgroups are those WT with jT j D n� 1. Hence, by [6,
Corollary 8.5.5], if W is of type QLn , then vcdW D n�1. With this observation, we
prove the following theorem.

Theorem 4.10 Suppose that W is of type QLn . Then L2qbk.†L/ D 0 whenever
k � n� 1 and q � 1, or k � 1 and q � 1.

Proof We first suppose that q D 1. Since W is of type QLn , we can realize a
finite volume n–simplex in hyperbolic space Hn , with W acting by reflections along
codimension-one faces (note that this simplex has some ideal vertices). By a theorem
of Cheeger–Gromov [4], L21Hk.†L/ Š L

2
1H

k.Hn/, where L21H
k denotes the L2

de Rham cohomology. By a theorem of Dodziuk [11], L21H
k.Hn/D 0 for all k � 0 if
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Figure 4: Kf when LDK4.3/

n is odd, and is concentrated in dimension n=2 if n is even. Thus L21bn�1.†L/D 0.
The result for q � 1 now follows by Lemma 2.7 and the fact that vcdW D n� 1.

Now suppose that q � 1. Consider the fattened Davis complex ˆL with respect to
P D�n , the standard n–simplex; see Remark 3.1 and Figure 4.

Weighted Poincaré duality implies that

L2qH1.ˆL; @ˆL/Š L
2
q�1Hn�1.ˆL/Š L

2
q�1Hn�1.†L/D 0;

so by the long exact sequence for the pair .ˆL; @ˆL/, it remains to be shown that
L2qH1.@ˆL/D 0. Proposition 3.7 implies that each CT appearing in @Kf corresponds
to a set T 2NP with WT a Euclidean reflection group. In particular, Corollary 3.10
and [8, Corollary 14.5] imply that L2qb1.U.W;CT //D 0. Hence the E0;11 term in the
E1 sheet of the spectral sequence of Proposition 3.12 is zero. By [13, Theorem 10.3],
the first row of the E1 sheet is also zero, and in particular, E1;01 is zero. Therefore,
L2qb1.@ˆL/D 0.

Other 2–spherical groups

We now perform computations for other 2–spherical groups, removing the restriction
that the nerve L is a graph. Given a Coxeter system .W; S/, we make a particular choice
of P for the construction of ˆL , namely P D�jS j�1 , the standard .jS j�1/–simplex;
see Remark 3.1.

Lemma 4.11 Suppose that .W; S/ is infinite 2–spherical with jS jD5 and vcdW �3.
Furthermore, suppose that every infinite special subgroup WT , with jT j D 3 or 4, is
Euclidean or QL3 , and that L21b3.†L/D 0. Then L2qbk.†L/D 0 for k < 2.
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Figure 5: Fundamental chamber for @ˆL when LDK5.3/

Proof We wish to reduce the proof to showing that L2qb1.@ˆL/ D 0. If we have
vcdW D 2, then this is accomplished by Lemma 3.9(ii). If vcdW D 3, then according
to Lemma 3.9(i), we accomplish this if we show that L2q�1b3.†L/ D 0. Since, by
assumption, L21b3.†L/D 0, we reach this conclusion by Lemma 2.7. So, to complete
the proof, we must show that L2qb1.@ˆL/D 0.

We have that every CT appearing in Proposition 3.6 corresponds to a set T 2 NP
where WT is Euclidean or QL3 . Thus [8, Corollary 14.5] and Theorem 4.10 imply
that L2qb1.U.W;CT // D 0. This, [13, Theorem 10.3], and the spectral sequence in
Proposition 3.12 imply that L2qb1.@ˆL/D 0.

Theorem 4.12 Suppose that .W; S/ is infinite 2–spherical with jS j � 5. Suppose
furthermore that the following conditions hold.

(1) For every T � S with jT j � 5, we have vcdWT � jT j � 2.

(2) Every infinite subgroup WT , with jT j D 3 or 4, is Euclidean or QL3 .

Then L2qbk.†L/D 0 for k < 2.

Proof First we prove the theorem under the assumption that L21bjS j�2.†L/ D 0

(we will justify this at the end of the proof). By [13, Theorem 10.3], the statement
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for L2qb0.†L/ follows. So, we turn our attention to showing L2qb1.†L/ D 0. The
proof of the theorem is now by induction on jS j, Lemma 4.11 serving as the base
case. By Lemma 2.7, since vcdW � jS j � 2, it follows that L2q�1bjS j�2.†L/ D 0.
Furthermore, ˆL has dimension jS j � 1, so by Lemma 3.9, it now suffices to show
that L2qb1.@ˆL/D 0. By assumption, every nonspherical special subgroup WU with
jU j D 3 or 4 is Euclidean or QL3 . Thus every nonspherical special subgroup WU ,
with 4 < jU j < jS j, satisfies the inductive hypothesis. Therefore, by induction, [8,
Corollary 14.5], and Theorem 4.10, for any T 2 NP we have that L2qb1.†LT

/D 0

(here LT is the subcomplex of L corresponding to the special subgroup WT ). Hence,
by Corollary 3.10(i), for every T 2NP ,

L2qb1.U.W;CT //D L2qb1.†LT
/D 0:

It follows that the E0;11 term in the E1 sheet of the spectral sequence of Proposition 3.12
is zero. By [13, Theorem 10.3], the first row of the E1 sheet is also zero, and in
particular, E1;01 is zero. Therefore, L2qb1.@ˆL/D 0.

We now turn our attention to showing that L21bjS j�2.†L/D 0. We will use an argument
analogous to the one in Lemma 4.1, invoking the help of Theorem 5.1. We first begin
by coning empty 2–simplices of L, and then empty 3–simplices, and so on, until
all empty simplices have been coned off. We then label all new edges by 2. In this
way we obtain a newly promoted nerve L0 which is a triangulation of S jS j�2 , and
in particular, †L0 is an .jS j�1/–manifold. By Theorem 5.1 (appearing in the next
section), L21bjS j�2.†L0/D 0, and using the arguments of Lemma 4.1, we can conclude
that L21bjS j�2.†L/D 0.

As a corollary to Theorem 4.12, we also obtain a specialized version of Conjecture 1.1
where nD 4 and W is 2–spherical.

Corollary 4.13 Suppose that .W; S/ is 2–spherical with jS j � 6 and that the nerve L
is a triangulation of S3 . Furthermore, suppose that every infinite special subgroup WT ,
with jT j D 3 or 4, is Euclidean or QL3 . Then

L2qbk.†L/D 0 for k < 2:

Proof Since L is a triangulation of S3 , it follows that vcdW D 4. In particular, W
satisfies the hypothesis of Theorem 4.12.

Remark 4.14 Figure 6 gives examples of Coxeter diagrams whose corresponding
Coxeter system .W; S/ has jS j D 6 and satisfies the hypothesis of Corollary 4.13 (if
two vertices are not connected, then the implied label between them is 2). The author
does not know whether there exist examples whenever jS j � 7.

Algebraic & Geometric Topology, Volume 16 (2016)



2096 Wiktor J Mogilski

q

r

s
m

t

u

v

Figure 6: This is a 2–spherical Coxeter diagram satisfying the hypothesis
of Corollary 4.13 provided that: (i) 1

q
C

1
r
C

1
s
D 1 , 1

t
C

1
u
C

1
v
D 1 , and

mD 2; 3; 4; (ii) if mD 3 , then s; r; u; t ¤ 6 and either s; r ¤ 4 or u; t ¤ 4;
(iii) if mD 4 , then s; r; u; t ¤ 4; 6 .

5 The weighted Singer conjecture

For the rest of this article, we use the notation †L D X whenever †L admits a
W–invariant metric making it isometric to X .

The case where L is a disk

As discussed before, Conjecture 1.1 is now known to be true whenever qD 1 and n� 4
due to recent work of Okun–Schreve [19, Theorem 4.9]. In fact, induction and [19,
Theorem 4.5, Lemma 4.6, Corollary 4.7] can be used to prove the following theorem.

Theorem 5.1 Suppose that the nerve L is an .n�1/–sphere or an .n�1/–disk. Then

L21Hk.†L/D 0 for k � n� 1:

Note that if L is a triangulation of the .n�1/–disk, then †L is an n–manifold with
boundary. We now obtain the following theorem, which, whenever nD 3 or 4, can
be thought of as a version of Conjecture 1.1 for the case where †L is an n–manifold
with boundary.

Theorem 5.2 Suppose that the nerve L is an .n�1/–disk. Then

L2qHk.†L/D 0 for k � n� 1 and q � 1:

Proof By Theorem 5.1, we have that L21Hk.†L/D 0 for k � n�1. Furthermore, [6,
Corollary 8.5.5] implies that vcdW � n�1, and hence we are done by Lemma 2.7.

We note that Theorem 4.3 provides convincing evidence for the validity of a weighted
version of Theorem 5.1 when L is a triangulation of the .n�1/–sphere. Suppose that
the labeled nerve L0 is the one-skeleton of a cell complex that is a GHSn�1 for n� 3,
where all 2–cells are Euclidean. Build L0 to a triangulation L that is a GHSn�1 by
coning on each empty cell and labeling new edges by 2. In other words, perform the
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following sequence of right-angled cones: begin by coning on each empty 2–cell, then
on each empty 3–cell, and so on, until each empty cell has been coned off (if nD 3,
this process stops when each empty 2–cell has been coned off).

Theorem 5.3 Suppose that the nerve L, a GHSn�1 for n � 3, is obtained via the
above construction, and suppose that q � 1. Then

L2qbk.†L/D 0 for k � 1:

Proof The proof of the theorem follows the strategy of Lemma 4.1: one performs
careful bookkeeping using Mayer–Vietoris sequences when constructing L from L0 .
The proof is by induction on n. To get started, let � denote an empty 2–cell and C�
denote the right-angled cone on � . Then we have a Mayer–Vietoris sequence:

� � � �! L2qH1.†� / �! L2qH1.†L0/˚L
2
qH1.†C� / �! L2qH1.†L0[C� / �! 0:

As q � 1 and � is Euclidean, it follows that L2qH1.†� / D 0, and hence, by the
weighted Künneth formula, that L2qH1.†C� /D 0. By Theorem 4.3, L2qH1.†L0/D 0,
and hence, by weak exactness, L2qH1.†L0[C� /D 0. We then proceed to cone off the
remaining empty 2–cells, at each step employing a similar Mayer–Vietoris sequence
to obtain the theorem for the base case nD 3.

Now, suppose that the theorem is true for k < n. Let � denote an empty m–cell
with m < n, and suppose that all lower dimensional cells of � have been coned
off. Then � satisfies the inductive hypothesis; hence L2qH1.†� /D 0, and therefore,
L2qH1.†C� /D 0. Now suppose we are at the stage of the coning process where all
cells of dimension less than m have been coned off, and let Lm denote the nerve at
this stage. Then L2qH1.†Lm

/D 0, as we have been keeping track of the homology
with Mayer–Vietoris sequences. As in the base case, start with an empty m–cell � ,
apply the same Mayer–Vietoris sequence, and conclude that L2qH1.†Lm[C� / D 0.
Proceed inductively, coning off each empty cell and applying a similar Mayer–Vietoris
sequence to prove the theorem.

A special case of Andreev’s theorem

Suppose now that L is a triangulation of S2 . Let C be an empty circuit in L and
suppose that C is not the boundary of two adjacent triangles. We say that C is a
Euclidean circuit if the corresponding Coxeter group WC is a Euclidean reflection
group. It follows from L being a metric flag complex that a Euclidean circuit is
always a full subcomplex of L, and in particular, WC is a special subgroup of W . The
following theorem is now a special case of Andreev’s theorem [1, Theorem 2].
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Theorem 5.4 (compare [22, Section 3]) Suppose that the nerve L is a triangulation
of S2 , but not the boundary of a 3–simplex, and let .W; S/ be the corresponding
Coxeter system. Furthermore, suppose these conditions are met:

� For every T � S , WT is not a Euclidean reflection group.

� W ¤WT �D1 , where T � S spans an empty triangle in L, and D1 is the
infinite dihedral group.

Then †L DH3 .

Remark 5.5 Schroeder derived the above conditions from Andreev’s theorem in [22,
Section 3], where he used them as part of his proof of the Singer conjecture for Coxeter
groups in dimension three whenever q D 1. Right-angled versions of Schroeder’s
argument and Theorem 5.4 also appeared earlier in [9].

Equidistant hypersurfaces

Suppose that the Coxeter group W has nerve L that is a triangulation of S2 and
that †L DH3 . Let D denote the Davis chamber (in H3 ) and let WM be a special
subgroup of W . We now consider the (possibly infinite) polytope WMD in H3 . Note
that WMD is convex: D is convex and has all dihedral angles � �=2, so the angles at
each of the gluing edges of WMD are � � .

For t >0, let St denote the t –distant surface from a component S of @WMD . Then St
is a piecewise smooth C 1 surface; see [15, Proposition II.2.2.1]. In fact, St is a union
of pieces of which there are three types: hyperbolic, Euclidean, and spherical, each of
which are the equidistant pieces from faces, edges, and vertices of S , respectively. The
Euclidean pieces look like rectangles that are each adjacent to two hyperbolic pieces
and two spherical pieces, and the spherical pieces are adjacent to Euclidean pieces.

As WMD is convex, the nearest point projection pW H3[ @H3!WMD is defined.
If we fix t > r > 0, then p induces a map pt;r W St ! Sr .

Lemma 5.6 The map pt;r W St ! Sr that is induced by nearest point projection is
tanh.t/=tanh.r/–quasiconformal.

Proof It suffices to check what pt;r does on each of the three types of pieces. First
note that a face of S is simply the intersection of @WMD with a hyperbolic plane
in H3. Thus pt;r simply scales the corresponding hyperbolic pieces on St and Sr by
a constant factor. Hence pt;r is conformal there. Similarly, the map pt;r is conformal
on the spherical pieces. Second, we consider the Euclidean piece in St equidistant
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from an edge of S. A Euclidean piece looks like a rectangle adjacent to two hyperbolic
pieces at two parallel edges (parallel in the intrinsic Euclidean geometry), and the map
induced by nearest point projection St ! S scales by a factor of 1= cosh.t/ in the
direction of those edges. The other two edges of the Euclidean piece are each adjacent
to a spherical piece. An edge like this is the arc of a circle with radius t centered at a
vertex in S . Thus the edge has length � sinh.t/, where � is the dihedral angle at the
corresponding edge of S . Hence the map pt;r scales by a factor of cosh.r/= cosh.t/
in the direction of the edges adjacent to the hyperbolic pieces, and it scales the edges
adjacent to the spherical pieces by a factor of sinh.r/= sinh.t/. Therefore, pt;r is
tanh.t/=tanh.r/–quasiconformal on the Euclidean pieces.

Proof of Theorem 1.2

Suppose that M is a complete smooth Riemannian manifold. Given a nonnegative
measurable function f W M ! Œ0;1/, we define a new norm on the C1 k–forms,
called the L2f norm, by

k!k2f D

Z
M

k!k2pf .p/ dV;

where k!k2p is the pointwise norm and dV is the volume form of M . Let L2f C�.M/

denote the weighted L2 de Rham complex defined using the L2f norm.

Lemma 5.7 Let M and N be smooth surfaces and suppose that �W M ! N is a
K–quasiconformal diffeomorphism. Let gW N ! Œ0;1/ be the function defined by
g.p/D f .��1.p//. Then, for every ! 2 L2gC1.N /, we have that

1

K
k!k2g � k�

�.!/k2f �Kk!k
2
g :

Proof The pointwise norm of a 1–form is k!kp D supf!.x/ j x 2 TpM; kxk D 1g,
where TpM is the tangent space of M at p . Since � is K–quasiconformal, its
differential d� maps the circle fx 2 TpM j kxk D 1g to an ellipse in T�.p/N with
semiaxis b.p/ � a.p/ satisfying a.p/=b.p/ � K . Now, if ! 2 L2qC1.N /, then
k��.!/kp D supf!.d�.x// j x 2 TpM; kxk D 1g; in particular, we are taking the
supremum of ! over the ellipse in T�.p/N . Thus, for any ! 2 L2qC1.N /,

b.p/k!k�.p/ � k�
�.!/kp � a.p/k!k�.p/:

Now, let dVM and dVN be the respective volume forms of M and N . We have that

.fdVM /p D
.g.�/��.dVN //p

a.p/b.p/
;
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so for L2f norms, we have

k��.!/k2f D

Z
M

k��.!/k2pf .p/ dVM

�

Z
M

a.p/

b.p/
k!k2�.p/g.�.p//�

�.dVN /

�K

Z
M

k!k2�.p/g.�.p//�
�.dVN /

DK

Z
N

k!k2xg.x/ dVN DKk!k
2
g :

The remaining inequality follows similarly.

Suppose that the nerve L of W is a triangulation of S2 and that †L DH3 . Define
f to be the function f .p/ D qw , where w 2 WL is a word of shortest length such
that p 2wD (here D is the Davis chamber). Let L2qH�.H3/ denote the weighted L2

de Rham cohomology defined using this f .

Let WM be an infinite special subgroup of W and let S be one of the components
of @WMD . Put coordinates .x; t/ on H3 so that t 2R is the oriented distance from
p 2 H3 to the closest point x 2 S . Fix r > 0, and for t � r , let St denote the
hypersurface consisting of points of (oriented) distance t from S . Let pt;r W St ! Sr
be the map induced by nearest point projection, and let �t;r denote the inverse of pt;r .
By Lemma 5.6, pt;r is K.t/–quasiconformal, with K.t/D tanh.t/=tanh.r/, and hence
so is its inverse �t;r W Sr ! St . Let ir W Sr !H3 and it W St !H3 be the inclusions.
Then ir and it ı�t;r are properly homotopic.

We now adapt the argument after [8, Theorem 16.10] to prove the following lemma.

Lemma 5.8 If q � 1, then the map i�r W L
2
qH1.H3/! L2qH1.Sr/ induced by the

inclusion ir is the zero map.

Proof Set g.x; y/Df .x; 0/, so f .x; y/�g.x; y/, and let ! be a closed L2f 1–form
on H3 . We now show that the restriction i�r .!/ to Sr represents the zero class in
reduced L2f –cohomology. For the remainder of the proof, we will use the notation
kŒ˛�kg and kŒ˛�kx to denote the respective L2g norm and pointwise norm of the
harmonic representative of the cohomology class Œ˛�.

Suppose for a contradiction that Œi�r .!/�¤ 0. Then ki�r .!/kg � kŒi
�
r .!/�kg > 0. By

Lemma 5.7, it follows that k��t;r.i
�
t .!//k

2
g �K.t/ki

�
t .!/k

2
g , and since ir and it ı�t;r

are properly homotopic, Œi�r .!/�D Œ�
�
t;r.i
�
t .!//�. Therefore,

K.t/ki�t .!/k
2
g � kŒi

�
r .!/�k

2
g > 0:
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Now we have the pointwise inequality k!kx � ki�t .!/kx , as i�t .!/ is just a restriction
of ! . Using Fubini’s theorem, we compute

k!k2g D

Z
H3

k!k2xg.x; y/ dV

�

Z 1
r

Z
St

k!k2xg.x; y/ dAdt �

Z 1
r

Z
St

ki�t .!/k
2
xg.x; y/ dAdt

D

Z 1
r

ki�t .!/k
2
g dt �

Z 1
r

tanh.r/
tanh.t/

kŒi�r .!/�k
2
g dt D1:

Since k!kf �k!kg , this contradicts the assumption that the L2f norm of ! is finite.

Suppose that L is the nerve of a Coxeter group WL and that A is a full subcomplex
of L. For the proofs that follow, note that dimq L

2
qHk.WL†A/D L

2
qbk.†A/; see [6,

page 352, property (vi)].

Lemma 5.9 Suppose that the nerve L is a triangulation of S2 and there exists a full
subcomplex 1–sphere M of L that separates L into two full 2–disks L1 and L2 with
boundary M. Furthermore, suppose that either (i) †M DR2 or (ii) †L DH3. Then

L2qHk.†L/D 0 for k � 2 and q � 1:

Proof Since †L is a 3–manifold, it follows that L2qb3.†L/D0 [6, Proposition 20.4.1].
Hence we must show that L2qb2.†L/ D 0. Consider the following Mayer–Vietoris
sequence applied to LD L1[M L2 :

� � � ! L2qH2.WL†L1
/˚L2qH2.WL†L2

/! L2qH2.†L/! L2qH1.WL†M /! � � �

By Theorem 5.2, we have that L2qH2.WL†L1
/D L2qH2.WL†L2

/D 0. If (i) holds,
then [8, Corollary 14.5] implies that L2qH1.†M /D 0, and we are done. If (ii) holds,
we argue that the connecting homomorphism @�W L

2
qH2.†L/!L2qH1.WL†M / is the

zero map. By [8, Lemma 16.2], we reduce the proof to showing that the map induced by
inclusion i�W L2q�1H1.WL†M /! L2q�1H1.†L/ is the zero map, and since WL†M
is a disjoint union of copies of †M , it is enough to show that the restriction of i� to
one summand L2q�1H1.†M / is zero.

Consider the infinite convex polytope WMD , where D is the Davis chamber for W .
We have that WM acts properly and cocompactly on WMD by isometries. In particular,
if S is one of the components of @WMD , then WM acts properly and cocompactly
on S , and therefore L2q�1H�.†M /Š L

2
q�1H�.S/. Hence we are done if we show

that map i�W L2q�1H1.H3/!L2q�1H1.S/ induced by the inclusion i W S!H3 is the
zero map.
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Fix r > 0, and let Sr be the r –distant surface from S . Sr and S are properly
homotopy equivalent, and this equivalence induces a weak isomorphism between
L2q�1H�.S/ and L2q�1H�.Sr/. Thus we have reduced the proof to showing that the
map i�r W L

2
q�1H1.H3/! L2q�1H1.Sr/ induced by the inclusion ir W Sr !H3 is the

zero map, and therefore we are done by Lemma 5.8.

Remark 5.10 In [8, Section 16], W is strictly assumed to be right-angled, but the
proof of [8, Lemma 16.2] does not use this, as it only uses properties of weighted
L2–(co)homology.

Proof of Theorem 1.2 We first suppose that †L D H3 . We need to find a full
subcomplex M of L satisfying the hypothesis of Lemma 5.9. First we suppose that L
is a flag complex. Let v be a vertex of L and set M D Lk.v/. Since L is flag, M is a
full subcomplex of L, and since L is a triangulation of the 2–sphere, it follows that
M is a 1–sphere, and we are done. Now suppose that L is not flag. Since L is not the
boundary of a 3–simplex, there exists an empty 2–simplex in L. Let M denote this
empty 2–simplex. Then M separates L into two full 2–disks, both with boundary M ,
and we are done. We now suppose that †L ¤H3 and use Theorem 5.4 to perform a
case-by-case analysis.

Case I First suppose that W contains a Euclidean special subgroup WT . Let M
be the full subcomplex of L corresponding to WT . Then M separates L into two
2–disks both with boundary M , and hence Lemma 5.9(i) implies the assertion.

Case II Now suppose that W D WT �D1 , where T � S spans empty triangle
in L. Either †L DR3 or †L DH2 �R. In both cases we are done by the weighted
Künneth formula.

Case III Lastly, suppose that L is the boundary of a 3–simplex. By assumption,
L is not dual to a hyperbolic simplex, so †L D R3 . Therefore, we are done by [8,
Corollary 14.5].

Proof of Theorem 1.4

In this case, †L is a 4–manifold, and hence L2qb4.†L/D 0 [6, Proposition 20.4.1].
It remains to show that L2qb3.†L/D 0. Suppose that the nerve L is a triangulation
of S3 , and let s 2 L be a vertex. We make the following observations:

� The nerve LS�s of the Coxeter system .WS�s; S � s/ is a 3–disk.

� The nerve St.s/ of the Coxeter group WSt.s/ is a 3–disk.

� The nerve Lk.s/ of the Coxeter group WLk.s/ is a 2–sphere.
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This is because the subcomplexes St.s/, Lk.s/, and LS�s of L correspond to the
closed star of the vertex s , the link of the vertex s , and the complement of the open
star of s , respectively, which are all full subcomplexes of L by assumption. Consider
the following Mayer–Vietoris sequence:

� � �!L2qH3.WL†LS�s
/˚L2qH3.WL†St.s//!L

2
qH3.†L/!L

2
qH2.WL†Lk.s//!� � � :

By Theorem 5.2, L2qb3.†St.s// D 0 and L2qb3.†LS�s
/ D 0, and by Theorem 1.2,

L2qb2.†Lk.s//D 0. Therefore, by the above sequence, L2qb3.†L/D 0.

Proof of Theorem 1.6

Lemma 5.11 Suppose that L is a flag triangulation of a 3–manifold. Then for every
t 2 L, we have L2qH�.�.S; t/; @�.S; t//D 0 for �> 2 and q � 1.

Proof First, for t 2 L, note that the .S; t/–ruin has the property that �.S; t/ D
�.St.t/; t/, where St.t/D fs 2 S jmst <1g. Set Lk.t/D St.t/� t , and so we have
the following weak exact sequence:

� � � ! L2qH�.†.Lk.t///! L2qH�.†.St.t///! L2qH�.�.S; t/; @�.S; t//! � � � :

Note that

L2qb�.†.St.t///D L2qb�.†St.t// and L2qb�.†.Lk.t///D L2qb�.†Lk.t//;

where †St.t/ and †Lk.t/ are the Davis complexes corresponding to the subgroups
WSt.t/ and WLk.t/ , respectively; see the discussion before [8, Lemma 8.1]. Since
L is flag, the respective nerves of the groups WSt.t/ and WLk.t/ are a 3–disk and
a 2–sphere. Furthermore, the nerve of WLk.t/ is not the boundary of a 3–simplex
(again, L is flag). By Theorem 5.2, L2qbk.†St.t//D 0 for k > 2, and by Theorem 1.2,
L2qbk.†Lk.t//D 0 for k > 1. Therefore, weak exactness of the sequence implies that,
for �> 2, L2qH�.�.S; t/; @/D 0.

Lemma 5.12 (compare [23, Lemma 4.1]) For every T 2 S .2/ and U � S with
T � U , we have L2qH4.�.U; T /; @�.U; T //D 0 for q � 1.

Proof The proof of [21, Lemma 4.1] shows that L21H4.�.U; T /; @/D 0, the main
point being that L is a flag triangulation of a 3–manifold, and so it follows that †cc
is a 4–pseudomanifold; ie every 3–cell of †L is contained in precisely two 4–cells.
The argument of Lemma 2.7 now completes the proof.
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Proof of Theorem 1.6 With the above lemmas, we now follow [23, Proof of the main
theorem] line by line. For every U � S and t 2 U , we have this weak exact sequence:

� � � ! L2qH�.†.U � t //! L2qH�.†.U //! L2qH�.�.U; t/; @/! � � � :

By Lemma 5.12 and [23, Proposition 4.2], L2qH�.�.U; t/; @/D 0 for �>2, and hence
by exactness,

L2qH�.†.U � t //Š L
2
qH�.†.U // for �> 2:

It follows that L2qH�.†.S//Š L2qH�.†.∅// for �> 2, and hence the theorem.
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