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On the algebraic K-theory of the Hilbert modular group

MAURICIO BUSTAMANTE

LUIS JORGE SÁNCHEZ SALDAÑA

We give formulas for the Whitehead groups and the rational K-theory groups of the
(integral group ring of the) Hilbert modular group in terms of their maximal finite
subgroups.

19B28; 19D35

1 Introduction

The algebraic K-theory of the integral group ring of a discrete group G is known to
encode topological invariants of (high dimensional) manifolds X or spaces whose
fundamental group �1X is isomorphic to G . Examples come in many guises: the
obstructions to a finitely dominated space having the homotopy type of a finite CW–
complex, and those to an open smooth manifold being the interior of a compact smooth
manifold with boundary, are elements of zK0.ZŒG�/ (or Wh0.G/ in our notation below).
The obstruction to an h–cobordism admitting a product structure X � I is an element
in a quotient of K1.ZŒG�/ denoted here by Wh1.G/ and called the Whitehead group
of G , and the uniqueness up to isotopy of these product structures on a compact
h–cobordism has to do with a quotient of K2.ZŒG�/ named Wh2.G/. In fact an entire
sequence of groups Whn.G/ arising from the higher algebraic K-theory of a group
ring can be defined to contain the type of invariants needed to deal with parametrized
phenomena in topology, eg pseudoisotopy theory. These groups Whn.G/ associated
to a group G are called Whitehead groups of G and were defined (for larger n) by
Waldhausen [30]. Thus, explicit calculations of algebraic K-theory groups and their
associated Whitehead groups Whn become relevant in geometric topology.

Unfortunately, such calculations are generally a difficult task to complete, for instance
the algebraic K-theory of Z is not yet known in full for higher degrees. However,
sometimes it is possible to approach the lower K-theory and the higher K-theory modulo
torsion via a certain generalized homology theory. One instance where this can be done
is the integral group ring of the Hilbert modular group PSL2.Ok/. In fact, we prove
the following.
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Theorem 1.1 Let k be a totally real number field of finite degree and let Ok be its
ring of algebraic integers. Then for all q ,

Whq.PSL2.Ok//Š
M
.M /

Whq.M /;

where the sum runs over the conjugacy classes of the maximal finite subgroups of
PSL2.Ok/.

As for the nonprojective Hilbert modular group SL2.Ok/, we find that its Whitehead
group is determined by K1.ZŒPSL2.Ok/�/.

Theorem 1.2 Let k be a totally real number field of finite degree and let Ok be its
ring of algebraic integers. Then

Whq.SL2.Ok//ŠKq.ZŒPSL2.Ok/�/

for q � 2.

Although the higher K-theory groups of PSL2.Ok/ seem to be harder to compute, a
lot more can be said about its higher rational K-theory. For a finite group F , let
� r.F / denote the number distinct real irreducible representations of F ,
� c.F / be the number of those real representations that are of complex type,
� q.F / be the number of distinct rational irreducible representations of F ,
� kp.F / be the number of irreducible representations of F over the p–adic

numbers Qp , and
� rp.F / be the number of irreducible representations of F over the field with p

elements Fp .

Denote the rank of an abelian group by rk. Then we have the following.

Theorem 1.3 Let k be a totally real number field of finite degree and let Ok be its
ring of algebraic integers. If G D PSL2.Ok/, then

rk.Kq.ZŒG�//� rk.Hq.BGIK.Z///

D

8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

P
.M / r.M /�m if q > 2 and q � 1 mod 4,P
.M / c.M / if q > 2 and q � 3 mod 4,P
.M /.r.M /� q.M // if q D 1;

m�
P
.M /

�P
pjjM j q.M /

� .kp.M /� rp.M //
�

if q D�1;

0 otherwise,
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where m is the number of conjugacy classes of maximal finite subgroups in G , the
sums range over the conjugacy classes of maximal finite subgroups of G D PSL2.Ok/,
and Hq.BGIK.Z// denotes the qth homology of BG with coefficients in the noncon-
nective K-theory spectrum K.Z/.

The proof of Theorem 1.3, together with Theorem 1.2 lead us to expressions for the
classical Whitehead group of the nonprojective Hilbert modular group and the lower
reduced K-theory of SL2.Ok/.

Corollary 1.4 Let PSL2.Ok/
ab be the abelianization of PSL2.Ok/. Then

Wh1.SL2.Ok//'Wh1.PSL2.Ok//˚PSL2.Ok/
ab
˚Z2:

Also,
Wh0.SL2.Ok//'Wh0.PSL2.Ok//˚Z;

Wh�1.SL2.Ok//'
M
.M /

K�1.ZŒM �/;

where the sum is taken over the conjugacy classes of maximal finite subgroups of
PSL2.Ok/.

The main tool we use to prove our main results is the K-theoretic Farrell–Jones
isomorphism conjecture for a group. When this conjecture is verified for a group � ,
then one can potentially compute the algebraic K-theory of the group ring ZŒ�� by first
determining the algebraic K-theory of its virtually cyclic subgroups and the structure
of the restricted orbit category Or.�;VCYC/. This will be explained in more detail
in Section 2. Then a spectral sequence argument can give rise to the calculation of
some of the K-theory groups. This method has proven to be effective in several cases,
for example 2– and 3–dimensional crystallographic groups, see Pearson [27], Alves
and Ontaneda [1] and Farley and Ortiz [12]; cocompact Fuchsian groups, see Berkove,
Juan-Pineda and Pearson [4; 5] and Lück and Stamm [25]; Bianchi groups, see Berkove
et al [3]; braid groups, see Juan-Pineda and Millan-López [20; 21]; hyperbolic reflection
groups, see Lafont and Ortiz [24]; virtually free groups, see Juan-Pineda et al [19] and
Juan-Pineda and Sanchez Saldaña [22]; etc.

The spectral sequence we use in our calculation is the p–chain spectral sequence of
Davis and Lück which we review in Section 3. This spectral sequence turned out to be
convenient due to the structure of the finite subgroups of the Hilbert modular group.
We go over this in Section 4. Section 5 is devoted to the proof of Theorems 1.1–1.3.
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2 Preliminaries

The essential tool in our calculation is the Farrell–Jones isomorphism conjecture. To
state this conjecture in a convenient way, we recall some definitions from [9].

From now on we only consider discrete groups. A family of subgroups F of a group G

is always assumed to be closed under conjugation and under taking subgroups. We are
specially interested in the following families of subgroups:

� ALL of all subgroups of G ;

� VCYC of all virtually cyclic subgroups of G , ie subgroups which have a (possibly
finite) cyclic subgroup of finite index;

� FBC of finite subgroups and all virtually cyclic subgroups of the form F Ì Z
with F finite;

� FIN of all finite subgroups;

� TR consisting of the trivial subgroup.

Note that each family is contained in the previous one.

Definition 2.1 Let G be a group and F be a family of subgroups. The restricted orbit
category Or.G;F/ is the category whose objects are homogenous spaces, also called
orbits, G=H , H 2 F and whose morphisms are G –maps.

Let Or.G/ denote Or.G;ALL/, and the set of G maps between the orbits G=H and
G=K is denoted by morG.G=H;G=K/.

Note that every element in morG.G=H;G=K/ is of the form RaW G=H ! G=K

gH 7! ga�1K , provided aHa�1 �K . And that Ra DRb if and only if ab�1 2K .

Algebraic & Geometric Topology, Volume 16 (2016)
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Definition 2.2 Let G be a group and F a family of subgroups of G .
� An Or.G;F/–space (resp. Or.G;F/–spectrum) is a functor from Or.G;F/ to

the category of compactly generated topological spaces (resp. spectra); see [9,
page 207].

� We denote by �F the Or.G/–space defined as

�F .G=H /D

�
point if H 2 F ;
∅ otherwise.

Given a .G�F /–space Z , ie a G–space Z all of whose isotropy groups belong
to F , we define the fixed point (contravariant) Or.G;F/–space mapG.� ;Z/ by
G=H 7!mapG.G=H;Z/DZH . In particular, if Z is a G�F CW–complex we say
that mapG.� ;Z/ is a free Or.G;F/ CW–complex.

Remark 2.3 An unreduced homology theory for contravariant Or.G;F/–spaces with
coefficients in a covariant Or.G;F/–spectrum can be defined. This homology theory,
denoted by H Or.G;F/

� .X;Y IE/, is constructed in [9] in order to establish the Farrell–
Jones conjecture. It satisfies the weak homotopy equivalence axiom, ie given a weak
homotopy equivalence of pairs of contravariant Or.G;F/–spaces .f;g/W .X;A/!
.Y;B/ then the homology groups H Or.G;F/

p .X;AIE/ and H Or.G;F/
p .Y;BIE/ are

isomorphic for all p 2 Z.

It can be shown that H Or.G/
n .�F IK/Š �n.hocolimOr.G;F/K/, where K denotes the

K-theory spectrum defined in [9, Section 2]. Also

H Or.G/
n .�ALLIK/Š �n.hocolimOr.G/K/ŠKn.ZŒG�/

since Or.G/ has a final object G=G and �n.K.G=G// Š Kn.ZŒG�/. It is worth
mentioning that in [9, Section 2] an Or.G;F/–spectrum K is defined for every group G ,
in such a way that �i.K.G=H //DKn.ZH / for all n 2 Z.

In their seminal paper, Farrell and Jones [13] established their famous isomorphism
conjecture for the K-theory, L-theory and pseudoisotopy functors. Here we consider
the K-theoretic version of the conjecture as stated by Davis and Lück [9].

Conjecture 2.4 (Farrell–Jones isomorphism conjecture) For any group G , the fol-
lowing assembly map, induced by inclusion of Or.G/–spaces, is an isomorphism

(�) AVCYC;ALLW H
Or.G/
n .�VCYCIK/!H Or.G/

n .�ALLIK/ŠKn.ZŒG�/:

Once the Farrell–Jones conjecture has been verified for a group G , one can hope to
compute Kn.ZŒG�/ using (�). The latter is a generalized homology theory that can
be approached, for example, via Mayer–Vietoris sequences, Atiyah–Hirzebruch-type
spectral sequences or, as in our case, the p–chain spectral sequence.
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The Whitehead groups Whn.G/ of G appear in this context as follows.

Proposition 2.5 [30, Proposition 15.7] Let G be a group. Then

Whn.G/ŠH Or.G/
n .�ALL;�TRIK/

for all n 2 Z. In fact, the Whn.G/ fit in a long exact sequence

� � � !Hn.BGIK.G=1//!Kn.ZŒG�/!Whn.G/!Hn�1.BGIK.G=1//! � � �

where Hn.BGIK.G=1// is the classical generalized homology theory with coefficients
in the spectrum K.G=1/ which has as homotopy groups the algebraic K-theory of the
group ring ZŒG�.

When the Farrell–Jones conjecture holds for a group G we obtain the following.

Corollary 2.6 Let G be a group. Suppose that the Farrell–Jones conjecture holds
for G , then Whn.G/ is isomorphic to H Or.G/

n .�VCYC;�TRIK/ for all n 2 Z.

One usually wonders whether a smaller family of subgroups than VCYC would suffice
to succeed in the calculation of the Whitehead groups of a group or the K-theory of a
group ring. The next two theorems tell us something about this.

Theorem 2.7 [13, Theorem A.10] Let G be a group. Suppose that for any finite by
cyclic subgroup V of G , the assembly map

AFIN;ALLW H
Or.V /
n .�FINIK/!H Or.V /

n .�ALLIK/ŠKn.ZV /

is an isomorphism. Then H Or.G/
n .�FINIK/ŠH Or.G/

n .�FBCIK/.

Remark 2.8 The obstructions to AFIN;ALL being an isomorphism are the so-called
Nil groups. The vanishing of these groups allows one to consider only the family of
finite subgroups. Thus under the hypothesis of Theorem 2.7 and using results of [8;
11], one can actually compute the Whitehead groups of a group G by considering only
its family of finite groups. In other words, if G satisfies the Farrell–Jones conjecture,
then

Whn.G/ŠH Or.G/
n .�ALL;�TRIK/

ŠH Or.G/
n .�VCYC;�TRIK/

ŠH Or.G/
n .�FBC;�TRIK/

ŠH Or.G/
n .�FIN;�TRIK/:
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Here is one more way in which one can replace the family of subgroups of a group by
a smaller family.

Theorem 2.9 [10, Corollary 3.9] Let F be a family of subgroups of G . Denote by
MF � F the subfamily consisting of: all maximal elements in F , the groups in F
which are contained in more than one maximal element, and the groups in F which are
contained in no maximal element of F . Then for all n,

H Or.G/
n .�F IK/ŠH Or.G/

n .�MF IK/:

3 The p–chain spectral sequence

In this section we establish a special case of the p–chain spectral sequence of Davis and
Lück [10]. Besides the Farrell–Jones conjecture, this will be the main ingredient in our
calculation. The p–chain spectral sequence converges to H Or.G;F/.X IE/. By reasons
that will become evident in the next section, it will be enough to restrict ourselves
to the restricted orbit category Or.G; FIN/ and X : the one point Or.G; FIN/–space.
This category has the property that every endomorphism is an isomorphism and for
each object G=K , Aut.G=K/ acts freely on morG.G=H;G=K/. Let G=H denote the
isomorphism class of G=H . Note that there is a partial order on the set of isomorphism
classes defined by G=H � G=K if morG.G=H;G=K/ is nonempty. We also write
G=H <G=K if G=H �G=K and G=K —G=H .

Definition 3.1 Let G be a group and F a family of subgroups. A sequence of
isomorphism classes of objects c WD fG=H 0;G=H 1; : : : ;G=Hpg in Or.G;F/ is called
a p–chain if

G=H 0 <G=H 1 < � � �<G=Hp:

Associated to a p–chain c D fG=H 0;G=H 1; : : : ;G=Hpg there are Aut.G=Hp/–
Aut.G=H0/–spaces S.c/ defined by

S.c/D

8̂̂̂<̂
ˆ̂:

Aut.G=H0/ if p D 0;

morG.G=H0;G=H1/ if p D 1;

morG.G=Hp�1;G=Hp/�Aut.G=Hp�1/ � � � �

�Aut.G=H1/ morG.G=H0;G=H1/ if p � 2:

The next result is proven (in more generality) in [9, Lemma 2.11 and Remark 2.13].
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Theorem 3.2 (p–chain spectral sequence) Let G be a group and let J � FIN be
any subfamily of the family of finite subgroups of G . Then there is a spectral sequence
whose first page is given by

E1
p;q D

M
p–chains c2Or.G;J /

H Aut.G=H0/
q .pt�Aut.G=Hp/ S.c/IK/;

which converges to H Or.G/
pCq .�J IK/.

Remark 3.3 This spectral sequence is very manageable when the length of the p–
chains can be controlled. In our case, when G is a Hilbert modular group, we will see
that we can work with a specific family of subgroups, for which the restricted orbit
category has no p–chains for p � 2. This will make the spectral sequence collapse
quickly and explicit calculations can be done.

4 The Hilbert modular group

In this section we review the definition and some basic properties of the Hilbert modular
group. The results we state without proof in this section can be found, for example, in
[14]. For additional information about the Hilbert modular group we refer the reader to
[17; 15].

A totally real number field k is an algebraic extension of Q such that all its embeddings
�i W k ! C have image contained in R. Let k denote a totally real number field of
degree n and Ok its ring of algebraic integers. The Hilbert modular group PSL2.Ok/

is defined to be the quotient of the special linear group of 2� 2 matrices SL2.Ok/

with entries in Ok by the subgroup fI;�Ig, where I denotes the identity matrix; in
other words

PSL2.Ok/D SL2.Ok/=fI;�Ig:

Note that if k DQ, then PSL2.Ok/D PSL2.Z/ is nothing but the classical modular
group. However PSL2.Ok/ is not a discrete subgroup of PSL2.R/ if n � 2. Yet it
does act properly and discontinuously on the n–fold product H�� � ��H of upper half
planes, by fractional linear transformations in each of the n factors, via the n different
embeddings of k into R. Thus the Hilbert modular group is a discrete subgroup of
PSL2.R/

n D PSL2.R/� � � � � PSL2.R/. For example, if we let d be a square-free
positive integer and k DQ.

p
d/, then there are two embeddings of k into R, namely,

for s; t 2Q,

�1W sC t
p

d 7! sC t
p

d and �2W sC t
p

d 7! s� t
p

d ;
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In this case, a matrix
�
˛


ˇ
ı

�
2 PSL2.Ok/ acts on .z1; z2/ 2H�H by�

˛ ˇ


 ı

�
.z1; z2/D

�
�1.˛/z1C �1.ˇ/

�1.
 /z1C �1.ı/
;
�2.˛/z2C �2.ˇ/

�2.
 /z2C �2.ı/

�
:

The action of PSL2.Ok/ on H � � � � �H is not free. One can detect points with
nontrivial isotropy by the following lemma (compare with the analogous situation of
PSL2.Z/ acting on H by Möbius transformations).

Lemma 4.1 Let h 2 PSL2.Ok/, and denote by �i W PSL2.Ok/ ,! PSL2.R/, i D

1; : : : ; n, the canonical embeddings of PSL2.Ok/ into PSL2.R/. Then the following
conditions are equivalent:

(1) �1.h/; : : : ; �n.h/ 2 PSL2.R/ are elliptic matrices, ie their traces satisfy

ŒTr �i.h/�
2
� 4< 0:

(2) h has finite order.

(3) h has a unique fixed point.

Moreover the stabilizer �z of any point z 2H� � � � �H in PSL2.Ok/ is a finite cyclic
group.

For example the matrix
�p

2
1
�1
0

�
is an elliptic element of PSL2

�
OQ.

p
2/

�
of order 4

that fixes the point
p

2
2
..1C i/; .�1C i// 2H�H .

Remark 4.2 H � � � � �H turns out to be a classifying space for proper actions of
the Hilbert modular group PSL2.Ok/, where the fixed point sets of finite subgroups
are not only contractible but consist of a single point. This property will simplify the
calculation of the K-theory groups enormously.

Perhaps more importantly for our purposes, PSL2.Ok/ satisfies the conditions M, NM
and FJ specified in [10, Section 4].

Lemma 4.3 The Hilbert modular group PSL2.Ok/ satisfies the following three prop-
erties:

(M) Every finite subgroup of PSL2.Ok/ is contained in a unique maximal finite
subgroup.

(NM) If M is a maximal finite subgroup of PSL2.Ok/ then N.M /DM , where
N.M / denotes the normalizer of M in PSL2.Ok/.

(FJ) The Farrell–Jones isomorphism conjecture for algebraic K-theory is true for
PSL2.Ok/.
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Proof Note that by Lemma 4.1, if H is a finite subgroup of PSL2.Ok/ then H is
contained in the finite stabilizer �z of a point z 2H� � � � �H . �z is a finite maximal
subgroup of PSL2.Ok/, for if F is a finite subgroup of PSL2.Ok/ containing �z , then
there must exist y 2H�� � ��H such that f �y D y for all f 2F . In particular, every
element of �z would fix y , and by uniqueness of the fixed points y D z , that is to
say f is in �z . This proves that PSL2.Ok/ satisfies property (M).

Let M be a maximal finite subgroup of PSL2.Ok/. Then by the previous paragraph,
M D �z , where �z is the stabilizer of some point z 2 H� � � � �H . Now let g be
in N.M / so that gfg�1 2M for some f 2M D �z . Hence gfg�1z D z which
implies that fg�1z D g�1z , and by the uniqueness of the fixed points, g�1z D z ,
ie g 2M . This proves that PSL2.Ok/ satisfies the property (NM).

As for property (FJ), note that PSL2.Ok/ is a lattice in the Lie group PSL2.R/
n . The

Farrell–Jones conjecture has been proven for this type of group [23].

Remark 4.4 Conditions (M) and (NM) can be interpreted in a somewhat geometric
way as follows: let J be the family of groups G satisfying (FJ) and for which there is
a model for EG such that every fixed point set by a finite subgroup of G consists of a
single point. Then it is clear that if G 2 J , then G satisfies (M) and (NM) and (FJ). It
is worth noticing that such a family J is closed under free products.

If a group G has properties (M) and (NM), its only possible virtually cyclic subgroups
are very limited.

Lemma 4.5 Let G be a group with properties (M) and (NM), then every infinite
virtually cyclic subgroup of G is isomorphic to either Z or Z2 �Z2 .

Proof Every infinite virtually cyclic subgroup V of G fits into an extension

1! F ! V ! �! 1;

where � is either Z or Z2 �Z2 and F is finite. Since F is normal in V , V �N.F /,
where N.F / is the normalizer of F in G . Suppose that F is nontrivial and let M be
the unique maximal finite subgroup of G containing F . It is clear that F � gMg�1 if
g 2N.F /. Hence, by uniqueness, g 2M . This shows that N.F /�M , which is finite,
contradicting that V �N.F /. Therefore F is trivial and the conclusion follows.

5 Whitehead groups and rational K-theory of the
Hilbert modular group

In this section we prove Theorems 1.1, 1.2 and 1.3.

Algebraic & Geometric Topology, Volume 16 (2016)
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Proof of Theorem 1.1 Let G D PSL2.Ok/. Recall that Whq.G/ is isomorphic to
H Or.G/

q .�ALL;�TRIK/. The first step in our calculation is to verify the Farrell–Jones
conjecture for G . As mentioned in Lemma 4.3, this follows from [23]. The next step
is trying to reduce the family of subgroups as much as possible. In fact, by Lemma 4.5
and the fact that the Nil groups of the integral group rings of Z and Z2 �Z2 vanish
[25, Lemma 2.5], we have that the assembly map

AFIN;ALLW H
Or.V /
q .�FINIK/!H Or.V /

q .�ALLIK/

is an isomorphism. Hence Whq.G/ can be computed using only the family of finite
subgroups of G . That is to say

Whq.G/'H Or.G/
q .�FIN;�TRIK/:

Furthermore, by combining Lemma 4.3(M) and Theorem 2.9, we see that the family of
subgroups considered can be reduced further to the subfamily M FIN , where M FIN

denotes the family of maximal finite subgroups of G union the trivial subgroup, as
defined in Theorem 2.9. Hence

Whq.G/ŠH Or.G/
q .�M FIN;�TRIK/:

Now that we have replaced VCYC by M FIN , we analyze the structure of the p–chains
in Or.G;M FIN/.

0–chains These are chains of the form fG=H g, where H 2M FIN .

1–chains Here we only have chains of the form fG=1;G=H g. Note that there are
no 1–chains of the form fG=H ;G=Kg for H;K 2M FIN , H ¤ 1, because every
morphism G=H !G=K has to be an isomorphism.

p–chains, p � 2 There are none because every morphism G=H !G=K , H ¤ 1, is
an isomorphism.

Also notice that by considering the pair .�M FIN;�TR/ we are neglecting terms coming
from the 0–chain fG=1g in the E1 page of the p–chain spectral sequence for pairs; see
Remark 5.1 below. Particularly, no 1–chains have to be considered in the calculation
of the Whitehead groups. Thus the spectral sequence will only have contributions from
isomorphism classes of orbits of the form G=H with H 2M FIN , H ¤ 1. Now recall
that Aut.G=H /DN.H /=H Dfeg, where N.H / is the normalizer of H in G and the
last equality follows from Lemma 4.3(NM). Also there is a correspondence between
0–chains in Or.G;M FIN/ and conjugacy classes of maximal finite subgroups in G .

Algebraic & Geometric Topology, Volume 16 (2016)
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Thus we end up with the following E1 –term:

2
L
.M / Wh2.M / 0 0

1
L
.M / Wh1.M / 0 0

0
L
.M / Wh0.M / 0 0

�1
L
.M / Wh�1.M / 0 0

0 1 2

Therefore the spectral sequence collapses at E1 and the result follows.

Remark 5.1 We have used here a relative version of the p–chain spectral sequence of
a pair of contravariant Or.G;F/–spaces .X;A/. In this situation the spectral sequence
converges to H Or.G;F/

� .X;AIE/, where E is an Or.G;F/–spectrum. The absolute
version of the p–chain spectral sequence is obtained from a filtration X0 � � � � �Xn

of certain Or.G;F/–space which is weakly homotopy equivalent to X ; see [10]. To
obtain the generalization to the relative case, we modify the absolute filtration by one
that is relative to a certain Or.G;F/–subspace yA weakly homotopy equivalent to A.
It is essentially yA � yA [ X0 � � � � �

yA [ Xi � � � � � Xn . In the case of the pair
.�M FIN;�TR/, we observe that �M FIN.G=1/��TR.G=1/D∅. This is why the terms
coming from fG=1g do not contribute in the calculation whereas the other terms remain
the same.

Proof of Theorem 1.2 We follow the same strategy as in the proof of Theorem 1.1.
Let G D SL2.Ok/. It satisfies the Farrell–Jones conjecture for the same reasons that
PSL2.Ok/ does. Thus we can guarantee that

H Or.G/
q .�VCYCIK/ŠKq.ZŒG�/

for all q 2 Z. The idea now is to try to reduce the family of subgroups in order to
compute the left side of this equation. Recall that by [8; 11] it is always possible to
reduce the family from VCYC to FBC; see also Section 2. Hence if we want to replace
the family VCYC with FIN it is enough to prove that for any subgroup of G of the form
F ÌZ with F finite, the assembly map f W H Or.FÌZ/

q .�FINIK/!Kq.ZŒF ÌZ�/ is an
isomorphism. To see this, note that F �Z< F Ì Z and the only nontrivial finite-order
element that commutes with an element of infinite order is �I D

�
�1
0

0
�1

�
, so every

group in the family FBC is isomorphic to either Z or Z2�Z. By [25, Lemma 2.5] f is
an isomorphism for q � 2 when F is the trivial group or F Š Z2 . Therefore

H Or.G/
q .�VCYCIK/ŠH Or.G/

q .�FBCIK/ŠH Or.G/
q .�FINIK/;

whenever q � 2.
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We can actually work with a smaller family of subgroups. First note that by the same
reasoning as in the proof of Lemma 4.3, every finite maximal subgroup of G is of the
form Gz , z 2EGDH�� � ��H , the n–fold product of upper half-spaces. Hence every
finite subgroup different from f˙Ig is contained in a unique finite maximal subgroup.
Let M FIN be as defined in Theorem 2.9, and note that every element in M FIN is a
maximal finite subgroup, or the trivial subgroup or the group fI;�Ig. By Theorem 2.9
we have

H Or.G/
q .�FINIK/ŠH Or.G/

q .�M FINIK/:

Now, using the five lemma and the previous reductions of the family of subgroups, it is
straightforward to show that, for q � 2

Whq.G/ŠH Or.G/
q .�ALL;�TRIK/ŠH Or.G/

q .�M FIN;�TRIK/:

We now analyze the p–chains that appear in Or.G;M FIN/. In the following, H is a
finite maximal subgroup.

0–chains These are chains of the form fG=1g, fG=f˙Igg and fG=H g.

1–chains Chains of the form fG=1;G=f˙Igg, fG=1;G=H g and fG=f˙Ig;G=H g.

2–chains The only 2–chains we can form are of the type fG=1;G=f˙Ig;G=H g.

p–chains, p�3 There are none because for H;K maximal every morphism G=H!

G=K has to be an isomorphism.

Also notice that by considering the pair .�M FIN;�TR/ we are neglecting terms coming
from p–chains whose least element is the 0–chain fG=1g. Particularly, no 2–chains
have to be considered. Thus the E1 term of p–chain spectral sequence for pairs will
only have contributions from orbits in Or.G;M FIN0/, where M FIN0

WDM FIN�TR .

It is clear that Or.G;M FIN0/ is equivalent to Or.PSL2.Ok/;M FIN/. Thus the E1 –
term of the p–chain spectral sequence (for pairs) in Or.G;M FIN/ is isomorphic to
the E1 –term of the p–chain spectral sequence in Or.PSL2.Ok/;M FIN/. Since the
former converges to Wh�.G/ and the latter converges to K�.ZŒPSL2.Ok/�/, the result
follows.

Proof of Theorem 1.3 Let G D PSL2.Ok/. Recall that M FIN from Theorem 2.9
is the family of subgroups of G consisting of all maximal finite subgroups together
with the trivial subgroup. In [16, Theorem 5.6], it is proven that for any group � that
satisfies the Farrell–Jones conjecture,

H
Or.�/
� .�FINIK/˝QŠH

Or.�/
� .�VCYCIK/˝QŠK�.ZŒ��/˝Q:

Now we use Theorem 2.9 to reduce the family from FIN to M FIN . We start analyzing
the p–chains that appear in Or.G;M FIN/. This has been done already in the proof of
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Theorem 1.1. Note, though, that this time we are not computing the homology of a
pair, so we do need to consider 0–chains and 1–chains (there are no p–chains in this
category for p � 2). The first page of the p–chain spectral sequence is given (after
some simplifications, see [4, Proposition 12]) by

E1
0q DHq.BGIK.Z//˚

M
.M /

Kq.ZŒM �//;

E1
1q D

M
.M /

Hq.BM IK.Z//;

E1
pq D 0 for p ¤ 0; 1;

where Hq.� IK.Z// refers to the generalized homology theory with coefficients in
the Pedersen–Weibel K-theory [28] spectrum and the sum runs over conjugacy classes
of maximal finite subgroups. Thus the p–chain spectral sequence in this case looks
like this, with the following E1 –term:

2 E1
02
 E1

12
0

1 E1
01
 E1

11
0

0 E1
00
 E1

10
0

�1 E1
0 -1 E1

1 -1 0

0 1 2

The differentials d
1
W E

1
1q ! E

1
0q are all induced by two types of maps between

p–chains: those arising from fG=1;G=M g 7! fG=1g and those from fG=1;G=M g 7!
fG=M g. It is shown in [27, Lemma 3.10] that in the first case the induced map in
homology is inclusion whereas the second map induces the classical assembly map
Hq.BM IK.Z//!Kq.ZŒM �/ which in our notation is

ATR;ALLW H
Or.M /
q .�TRIK/!H Or.M /

q .�ALLIK/:

In our case this assembly map is known to be rationally injective for all q ; see [6].
Hence, at least rationally the differentials d1 are injective and the spectral sequence
(rationally) collapses at E2 . Then

rk.Kq.ZŒG�//D rk.E10q/D rk.E2
0q/:

Note that E2
0q

fits in an exact sequence:

0!E1
1q˝Q

d1˝idQ
�����!E1

0q˝Q!E2
0q˝Q! 0:

Algebraic & Geometric Topology, Volume 16 (2016)



On the algebraic K-theory of the Hilbert modular group 2121

Hence,

rk.Kq.ZŒG�//D rk.E2
0q /

D rk.E1
0q/� rk.E1

1q/

D

X
.M /

rk.Kq.ZŒM �//C rk.Hq.BGIK.Z///�
X
.M /

rk.Hq.BM IK.Z///:

Finally, by taking into account that every finite subgroup of the Hilbert modular group G

is cyclic, an Atiyah–Hirzebruch spectral sequence calculation shows that

rk.Hq.BM IK.Z///D
�

1 if q D 0 or q � 1 mod 4; q > 2;

0 otherwise.
Thus we have

(��) rk
�
Kq.ZŒG�/

�
� rk

�
Hq.BGIK.Z//

�
D

(P
.M / rk.Kq.ZŒM �//�m if q D 0 or q � 1 mod 4; q > 2;P
.M / rk.Kq.ZŒM �// otherwise;

where m denotes the number of conjugacy classes of maximal finite subgroups of G .
By results of Bass [2], Carter [7] and Jahren [18] on the K-theory of finite groups, we
have the following equalities:

rk.Kq.ZŒM �//D

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

r.M/ if q > 2 and q � 1 mod 4;

c.M/ if q > 2 and q � 3 mod 4;

r.M/�q.M/ if q D 1;

1 if q D 0;

1�q.M/C
P

pjjM j.kp.M/�rp.M// if q D�1;

0 otherwise:

The result then follows by substituting in the equation (��).

Proof of Corollary 1.4 Recall that by Theorem 1.2 Wh1.SL2.Ok//'K1.PSL2.Ok//.
Now notice that the differential of the spectral sequence that appears in the proof of
Theorem 1.3 is injective for q D 1 because the assembly map is injective for q � 1.
This implies that K1.PSL2.Ok//DE1

01
DE2

01
and then we obtain an exact sequence

0!E1
11

d1

�!E1
01!K1.PSL2.Ok//! 0:

It is straightforward (see [4]), with m the number of conjugacy classes of maximal
finite subgroups of PSL2.Ok/, to see that

E1
01 D PSL2.Ok/

ab
˚Z2˚

M
.M /

K1.ZŒM �/ and E1
11 D

M
.M /

M ˚ .Z2/
m:
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Since M is abelian, K1.ZŒM �/'M ˚Z2˚Wh1.M / and the image of the assembly
map H1.BM IK.Z//'M ˚Z2!K1.ZŒM �/ splits for each M . This gives us the
desired formula for the classical Whitehead group:

Wh1.SL2.Ok//'Wh1.PSL2.Ok//˚PSL2.Ok/
ab
˚Z2:

Similarly we obtain an exact sequence

0!E1
10

d1

��!E1
00!K0.PSL2.Ok//! 0;

where

E1
10 D

M
.M /

H0.BM IK.Z//'
M
.M /

Z and E1
00 ' Z˚

M
.M /

K0.ZŒM �/:

Note that K0.ZŒM �/ ' Z˚Wh0.M / and Wh0.M / is finite because M is finite.
The result then follows by noticing that the assembly map H0.BM IK.Z// ' Z!
K0.ZŒM �/' Z˚Wh0.M / is split injective for each M .

The same analysis at the �1st level yields Wh�1.SL2.Ok//'
L

K�1.ZŒM �/. This
completes the proof of the corollary.

We conclude this section by working out a concrete example. Let k D Q.
p

5/ the
quadratic extension of the rational numbers obtained by adjoining

p
5 to Q. In this

case, PSL2.Ok/ acts on H�H via the embeddings induced by �1W
p

5 7!
p

5 and
�2W
p

5 7!�
p

5. By Theorem 1.1, the Whitehead groups of PSL2.Ok/ are determined
by its maximal finite subgroups. Hence our problem reduces to finding all conjugacy
classes of maximal finite subgroups. By Lemma 4.3, every maximal finite subgroup of
PSL2.Ok/ appears as a stabilizer of some point in H�H . We will say that two fixed
points in H�H are inequivalent if their isotropy groups are not conjugate. Thus we
have a bijection between conjugacy classes of maximal finite subgroups of PSL2.Ok/

and the number of inequivalent fixed points in H�H . The problem of finding the
number of fixed points of the action of the Hilbert modular group of a quadratic number
field has been addressed [29]. We sketch here the way to proceed: since only elliptic
elements of PSL2.Ok/ can have fix points, then the trace of such an element must
satisfy

ŒTr �i.h/�
2
� 4< 0; i D 1; 2:

Also, every elliptic matrix is conjugate (in PSL2.C/) to one of the form
�
!
0

0
!

�
, where !

is a primitive root of unity. Thus, in our case, each of these traces should be an algebraic
integer of Q.

p
5/, ie an element of ZŒ.1C

p
5/=2�. The only possibilities are 0, ˙1

and ˙.1˙
p

5/=2, corresponding to a 4th , 6th and 10th root of unity, respectively. Thus
in PSL2.Ok/ we will only have elliptic elements of order 2; 3 and 5; consequently
the only finite subgroups that can appear will be isomorphic to Z2 , Z3 and Z5 . The
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number of conjugacy classes of these maximal finite subgroups is calculated in [29]:
each of these groups has exactly two conjugacy classes in PSL2.Ok/. Therefore, by
Theorem 1.1 we have

Whq

�
PSL2

�
OQ.

p
5/

��
DWhq.Z2/

2
˚Whq.Z3/

2
˚Whq.Z5/

2:

In the special case of the classical Whithead group, ie q D 1, it is known [26] that
Wh.Z2/'Wh.Z3/' 0 and Wh.Z5/' Z. Therefore

Wh
�
PSL2

�
OQ.

p
5/

��
' Z˚Z:

Also, by Corollary 1.4 we have

Wh
�
SL2

�
OQ.

p
5/

��
' Z˚Z˚Z2;

since PSL2

�
OQ.

p
5/

�
is a perfect group. Finally for the higher K-theory we obtain

(here G D PSL2

�
OQ.

p
5/

�
):

rk Kq.ZŒG�/� rk Hq.BGIK.Z//

D

8̂̂<̂
:̂

2r.Z2/C 2r.Z3/C 2r.Z5/ if q > 2 and q � 1 mod 4;

2c.Z2/C 2c.Z3/C 2c.Z5/ if q > 2 and q � 3 mod 4;

2.r.Z2/� q.Z2//C 2.r.Z3/� q.Z3//

C 2.r.Z5/� q.Z5// if q D 1I

D

8<:
4C 4C 6 if q > 2 and q � 1 mod 4;

0C 2C 4 if q > 2 and q � 3 mod 4;

0C 0C 2 if q D 1I

D

8<:
14 if q > 2 and q � 1 mod 4;

6 if q > 2 and q � 3 mod 4;

2 if q D 1:

Remark 5.2 It is worth noticing that the formula of Corollary 1.4 also provides a
calculation for the Whitehead group of SL2.Z/:

Wh1.SL2.Z//'Wh1.PSL2.Z//˚PSL2.Z/
ab
˚Z2

'Wh1.Z2 �Z3/˚Z6˚Z2

' Z6˚Z2;

where we have used the fact that Wh1.Z2 �Z3/'Wh1.Z2/˚Wh1.Z3/' 0.

The algebraic K-theory of the modular group PSL2.Z/ has also been studied in [19,
Section 3.2] and [8, Section 3.4].
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