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A self-pairing theorem for tangle Floer homology

INA PETKOVA

VERA VÉRTESI

We show that for a tangle T with �@0T Š @1T the Hochschild homology of the tan-
gle Floer homology fCT.T / is equivalent to the link Floer homology of the closure
T 0 D T=.�@0T � @1T / of the tangle, linked with the tangle axis. In addition, we
show that the action of the braid group on tangle Floer homology is faithful.

57M27, 57R58

1 Introduction

Tangle Floer homology is an invariant of tangles in 3–manifolds with boundary S2

or S2 tS2 , or in closed 3–manifolds, which takes the form of a differential graded
module, bimodule, or a chain complex, respectively; see Petkova and Vértesi [9]. It
behaves well under gluing and recovers knot Floer homology. Before we state the main
results, we recall some definitions from [9] and make some new ones.

Definition 1.1 An n–marked sphere S is a sphere S2 with n oriented points t1; : : : ; tn
on its equator S1 � S2 numbered respecting the orientation of S1 .

Definition 1.2 A marked .m; n/–tangle T in an oriented 3–manifold Y with two
boundary components @0Y ŠS2 and @1Y ŠS2 is a properly embedded 1–manifold T
with .�@0Y;�.@0Y \@T // identified with an m–marked sphere and .@1Y; @1Y \@T /
identified with an n–marked sphere (via orientation-preserving diffeomorphisms). We
denote �.@0Y \ @T / and @1Y \ @T along with the ordering information by �@0T
and @1T .

Definition 1.3 A strongly marked .m; n/–tangle .Y; T ; / is a marked .m; n/–tangle
.Y; T /, along with a framed arc  connecting @0Y to @1Y in the complement of T
such that  and its framing � (viewed as a push-off of  ) have ends on the equators
of the two marked spheres, and we see �@0T ;�@0;�@0� and @1T ; @1; @1� in
this order along each equator. See Figure 1.
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Figure 1: Left: a strongly marked tangle .Y; T ; / . Right: the surgered
closure .Y0; T0/ of the tangle .Y; T ; / .

As a special case, an .m; n/–tangle in R2 � I is a cobordism (contained in Œ1;1/�
R� I ) from f1; : : : ; mg� f0g� f0g to f1; : : : ; ng� f0g� f1g. A tangle in R2� I can
be thought of as a strongly marked tangle, by compactifying R2� I to S2� I , taking
the images of R�f0g�f0g and R�f0g�f1g to be the equators of the marked spheres,
and setting .; � / WD .f.�1; 0/g � I; f.0; 0/g � I /.

We turn our attention to strongly marked tangles .Y; T ; / with �@0T Š @1T .

Definition 1.4 A strongly marked tangle .Y; T ; / is called closable if �@0T Š @1T .
Given a closable tangle .Y; T ; /, we can glue it to itself to form its closure .Y 0; T 0;  0/
by identifying the two boundary components of Y , �@0Y and @1Y , with the same
marked sphere. The surgered closure of .Y; T ; / is the pair .Y0; T0/, where the link T0
is the union of T 0 and the negatively oriented meridian � of  in the 0–surgery
Y0 D Y 00.

0/ of Y 0 along the framed knot  0 . We call � the tangle axis of the
tangle T . See Figure 1.

When Y is S2� I and .; � / is a product as above, then Y0 Š S3 and T0 is the link
formed by the closure of T � R2 � I � S3 and an unknot that is the boundary of a
disk containing �@0T � @1T , see Figure 2. For example, for a braid B 2R2 � I , the
tangle axis is precisely the braid axis.

Main Theorem Let .Y; T ; / be a closable strongly marked tangle. Then there is an
equivalence

HH. eCT.Y; T ; //Š fHFK.Y0; T0/:

Here and throughout the paper, eCT stands for the DA bimodule BCFDTA from [9,
Section 10.3], and fHFK is the multipointed version of knot Floer homology; see for
example [5; 4]. Note that both eCT and fHFK depend on the number of basepoints
in a Heegaard diagram, and the precise formulation of the Main Theorem follows in
Section 3, in the form of Theorems 3.1 and 3.2.
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Figure 2: Left: a tangle T �R2 � I . Right: the corresponding link T0 � S3 .

Combined with a result of Baldwin and Grigsby [1], we get the following corollary.

Corollary Tangle Floer homology restricts to a faithful linear-categorical action of
the braid group.
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Keating for a useful discussion of A1–categories. Petkova received support from an
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number NK81203 and NSF grant number 1104690.

2 Algebra review

Let A be a unital differential graded algebra over a ground ring k, where k is a direct
sum of copies of F2 D Z=2Z. The unit gives a preferred map �W k! A. We assume
that A is augmented, ie there is a map �W A!k such that �.1/D 1, �.ab/D �.a/�.b/,
and �.@a/D 0. The augmentation ideal ker � is denoted by AC .

A type DA bimodule over .A;A/ is a graded k–bimodule N , together with degree 0
k–linear maps

ı11Cj W N ˝AŒ1�
˝j
! A˝NŒ1�;

satisfying a certain compatibility condition; see [3, Definition 2.2.42].

A DA bimodule is bounded if the structure maps behave in a certain nice way; see [3,
Definition 2.2.45]. We will not recall the complete definition of boundedness here, but
we point out that the structures arising from nice Heegaard diagrams are bounded, and
moreover the only nonzero structure maps in that case are ı11 and ı12 . We will call a
DA bimodule nice if it is bounded and ı1i D 0 for all i > 2.
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Given a bounded type DA bimodule N over .A;A/, one can define a chain complex
.N ı; z@/ whose homology agrees with the Hochschild homology of the A1–bimodule
A�N corresponding to N ; see [3, Section 2.3.5]. The vector space N ı , called the
cyclicization of N , is the quotient N=ŒN;k�, where ŒN;k� is the submodule of N
generated by elements xk � kx , for x 2 N and k 2 k. The differential z@ is easy to
describe when N is nice. We recall the construction in this special case below.

Define a cyclic rotation map RW .A˝N/ı! .N ˝AC/
ı by

R.a˝ x/D x˝ Œ.id�� ı �/.a/�:

The map �˝ idW A˝N ! k˝N DN descends to a map .A˝N/ı!N ı , which
we will also denote � . We denote the cyclicizations of

ı11 W N ! A˝N and ı12 W N ˝AC! A˝N

by ı11 and ı12 as well. Finally, z@ is defined as

z@D � ı ı11 C � ı ı
1
2 ıR ı ı

1
1 :

Given a tangle .Y; T ; /, one can represent it by a multipointed bordered Heegaard
diagram H with two boundary components @0H and @1H; see [9, Section 8.2].
To �@0H and @1H one associates differential algebras A.�@0T / and A.@1T /, and
to H a DA bimodule eCT.H/ over A.�@0T / and A.@1T /. The structure maps on
the bimodule are obtained by counting certain holomorphic curves in H� I �R; see
[9, Sections 7.2 and 10.3]. For a tangle in R2 � I , the bimodule can also be defined
in terms of sequences of strand diagrams corresponding to a decomposition of the
tangle into elementary pieces; see [9, Sections 3 and 5.2]. We do not recall the two
constructions here, but refer the reader to [9].

3 Proofs of the main results

We prove two versions of the Main Theorem, both via nice diagrams: the first,
Theorem 3.1, deals with the general case (ungraded); the second, Theorem 3.2, deals
with the case when the tangle is in R2 � I .

Tangle Floer homology is an invariant of the tangle: if H1 and H2 are Heegaard
diagrams for .Y; T ; / with 2k1 and 2k2 basepoints, respectively, and k1 � k2 , theneCT.H1/' eCT.H2/˝ .F2˚F2/

˝.k1�k2/:

For a closable tangle �@0T is isomorphic to @1T , so the algebras A.�@0T / and
A.@1T / are the same, and one can take the Hochschild homology of the bimodule.
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Figure 3: Left: a Heegaard diagram H for a closable tangle .Y; T ; / . The
left edge is @0H and the right edge is @1H . Middle: the diagram H0 obtained
by self-gluing H . Right: the Heegaard diagram Hı obtained by surgery on
the two green curves z01 and z02 on H0 .

Theorem 3.1 If H is Heegaard diagram with 2k basepoints for a closable strongly
marked tangle .Y; T ; /, and Hı is a diagram with 2kC4 basepoints for .Y0; T0/, for
some k , then

HH. eCT.H//Š fHFK.Hı/:

Note that in [9], gradings for tangle Floer homology are only defined when the underly-
ing manifold is S2 � I or B3 , so Theorem 3.1 only claims an ungraded isomorphism.

Proof The proof is very similar to that of [3, Theorem 14]. By invariance under
Heegaard moves, it suffices to prove the theorem for one choice of H , and one choice
of Hı with 4 more basepoints than H .

Let .Y; T ; / be a closable strongly marked .n; n/–tangle, and HD .†;˛;ˇ;X;O; z/
be a nice bordered Heegaard diagram for .Y; T ; /, as in [9, Proposition 12.1]. Glue H
to itself by identifying �@0H and @1H , and call the result H0 (note that this is not a
valid Heegaard diagram). Recall that zD fz1; z2g is a set of two arcs in † n .˛[ˇ/
with boundary on @† n ˛, oriented from the left to the right boundary, and let z01
and z02 be the resulting closed curves in H0 . Surger H0 along z01 and z02 , and place
4 basepoints in the 4 resulting regions: X1 , O1 , X2 , and O2 in the region whose
boundary contains a0nC1 ,a01 , a02nC2 , and a0nC2 , respectively. The result is a diagram
Hı D .†ı;˛ı;ˇı;Xı;Oı/; see Figure 3.

Recall that originally .Y; T / was obtained by attaching a two handle to the pair .Ydr; Tdr/

that we got from a drilled diagram on †�N.z2/ by the usual handle attachments.
Thus, the Heegaard diagram H00 that we get by only doing surgery on H0 along z02
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describes .Y 0�N. 0/; T 0/, with z01 lying on the boundary of N. 0/. Now the surgery
along z01 on H00 simply results in the Dehn filling of .Y 0�N. 0/; T 0/ with framing z01 .
The knot described by X1 , O1 , X2 , and O2 goes through the former z2 and z1 on
the Heegaard diagram, thus indeed describes a meridian for T 0 . This means that Hı is
a Heegaard diagram for .Y0; T0/.

Observe that the generators of H0 , or equivalently the generators of Hı , correspond to
generators x of H with No0.x/D o1.x/, whereas in [9] o1.x/ (respectively No0.x/)
denotes the set of ˛ arcs that are occupied (not occupied) by x on ˛1 (and ˛0 ).

Denote the algebra A.@1T / Š A.�@0T / by A, and its ring of idempotents by k.
Recall that A has a basis over F2 consisting of strand diagrams [9, Section 7]. We
define the augmentation map �W A! k on this basis explicitly: it is the identity on
generators in k�A and zero on generators a … k�A. The structure maps on the DA
bimodule eCT.H/ count the following types of domains; see [9, Sections 10 and 12]:

(1) Empty provincial rectangles and bigons. These contribute to ı11 , with image in
k˝ eCT.H/�A˝ eCT.H/.

(2) Empty rectangles that intersect @0H (the left boundary of H). These contribute
to ı11 , with image in AC˝ eCT.H/�A˝ eCT.H/.

(3) Sets of empty rectangles, each of which intersects @1H (the right boundary
of H). These comprise ı12 , whose image is entirely contained in k˝ eCT.H/.

The differential on the Hochschild complex . eCT.H/ı; z@/ then counts the following
domains on H . The map � ı ı11 counts provincial rectangles and bigons, and then
forgets the idempotent component of the output. These are exactly the empty rectangles
and bigons in Hı that do not cross �@0H D @1H . The map � ı ı12 ıR ı ı

1
1 counts

rectangles as follows. Since the rotation map R is zero on elements e˝ x with e 2 k,
only the part of ı11 that counts domains of Type .2/ contributes. Thus, the image of
R ı ı11 is generated by elements of form y ˝ a , where a 2 AC is a generator with
only one moving strand. Thus, the part of ı12 that contributes to � ı ı12 ıR ı ı

1
1 counts

individual empty rectangles that intersect @1H . To sum up, � ı ı12 ıR ı ı
1
1 counts pairs

of empty rectangles, one with an edge on @0H and one with an edge on @1H , which
glue up to a rectangle after the identification �@0H � @1H . These are exactly the
empty rectangles in Hı that cross �@0H� @1H .

Thus, . eCT.H/ı; z@/Š fCFK.Hı/.

For the special case of a tangle T in R2 � I , we state a graded version. In this case,
HH. eCT.H// inherits the Maslov and Alexander gradings M and A from eCT.H/,
and also carries a strands grading S (counting the number of occupied ˛–arcs that
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touch @1H). If H1 and H2 are Heegaard diagrams for T with 2k1 and 2k2 basepoints,
respectively, and k1 � k2 , then eCT.H1/' eCT.H2/˝ .F2˚F2/˝.k1�k2/ , where each
tensor factor F2˚F2 has one summand in .M;A; S/ trigrading .0; 0; 0/ and one in
trigrading .�1;�1; 0/.

Let l be the number of components of T0 , and label the them L0D� ; L1; : : : ; Ll�1 .
The link Floer homology of the Heegaard diagram Hı for T0 described earlier,fHFL.Hı/, is multigraded, with Maslov grading M in ZC 1

2
.l � 1/ and Alexander

multigrading .A0; : : : ; Al�1/ in .1
2
Z/l , with each 1

2
Z factor corresponding to a com-

ponent of the link [8]. Let fHFL.Hı; 0/ be fHFL.Hı/ with multigrading collapsed to a
trigrading by M , A0 , and A0 WDA1C� � �CAl�1DA�A0 (here ADA0C� � �CAl�1
is the Alexander grading on fHFK.Hı/).

Theorem 3.2 Let H be a Heegaard diagram with 2k basepoints for a tangle T in
R2 � I with �@0T Š @1T , and let Hı be a diagram with 2kC 4 basepoints for the
surgered closure T0 , with 4 of the basepoints corresponding to the component � .
Then there is an isomorphism

HH. eCT.H//Š fHFL.Hı; 0/

which respects the trigrading in the following sense. If the isomorphism maps a
homogeneous element x 2 HH. eCT.H// to an element y 2 fHFL.Hı; 0/, then y is
homogeneous and

M.y/DM.x/CS.x/� a� 1;

A0.y/D A.x/�S.x/C 1
2
l Cn� a� 1;

A0.y/D S.x/�
1
2
.nC 1/;

where nD j@1T j, a is the number of positively oriented points in @1T , and l is the
number of components of T0 .

Proof Again, by invariance under Heegaard moves, it suffices to prove the theorem for
any one specific choice of H and Hı with the prescribed relative number of basepoints.
We already discussed the isomorphism in the proof of Theorem 3.1. It remains to
identify the gradings.

Let H be a Heegaard diagram for T obtained by plumbing annular bordered grid
diagrams, as in [9, Section 4]. By gluing on a diagram for the straight strands @1T � I
if necessary, we may assume that H has even genus, which we denote by 2g (this
makes for an easier gradings argument). See the top diagram in Figure 4. We modify H
to a diagram Hı for T0 , as in the proof of Theorem 3.1. See the bottom diagram in
Figure 4.
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Figure 4: Top: a diagram for T in S2�I . There are two grids on each vertical
annulus, X s and O s omitted for simplicity. Bottom: the corresponding
diagram for T0 in S3 , along with T0 in bold black.

Call the part of Hı away from the four regions resulting from the surgery on z0i the
nice part of Hı (this is the part that is the plumbing of grid diagrams). As in Figure 3,
we can draw Hı on the plane, as the union of two 2g–punctured disks with certain
identifications of the boundary, see Figure 7. As seen on Figure 7, we refer to the
top/bottom disk as the top/bottom half of Hı , respectively.

Denote the set of generators of H by S.H/, and the subset of generators with i

occupied ˛–arcs on the right by Si .H/. Denote the subsets of S.H/ and Si .H/ that
correspond to generators of Hı by S.H/ı and Si .H/ı , and the corresponding sets
of generators of Hı by S.Hı/ and Si .Hı/, respectively. For a generator x 2S.H/,
denote the corresponding generator in S.Hı/ by xı . Define a strands grading on
generators by S.xıi /D i for xıi 2Si .H

ı/.
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Figure 5: The top half of Hı , along with the arcs ci in thick red (cnC1 is
just a point).

Since Hı is a diagram for S3 , any two generators are connected by a domain. Let
xı;yı be elements of S.Hı/, and B an element of �2.xı;yı/. By adding regions
of †ı n˛ı , we can assume that the domain of B is contained entirely in the top half
of Hı and has zero multiplicity in the lowest region (the one containing O1 ) of the
top half of Hı . The oriented boundary of B splits into two pieces: @˛B � ˛ı and
@ˇB � ˇı . The piece @˛B is the union of arcs in ˛ı such that @.@˛B/D yı�xı .

Let ˛1; : : : ; ˛nC1 be the ˛–circles in Hı resulting from the gluing of the ˛–arcs in H ,
labeled so that a0i 2 ˛i , and let xi D xı \ ˛i , yi D yı \ ˛i . Below, we turn our
attention to the oriented arcs ci WD @˛B \˛i , and to each ci we associate a number
ti 2 f�1; 0; 1g. Since B is contained in the top half of Hı , there are three possibilities
for each ci :

� ci is contained in the rightmost/leftmost grid if and only if xi and yi are; in
this case, define ti D 0.

� ci covers both the rightmost and the leftmost grid, and is oriented to the right,
as seen on Figure 5, if and only if xi is in the rightmost grid and yi is in the
leftmost grid; in this case, define ti D 1.

� ci covers both the rightmost and the leftmost grid, and is oriented to the left,
as seen on Figure 5, if and only if xi is in the leftmost grid and yi is in the
rightmost grid; in this case, define ti D�1.

For 1 � i � n, let Ri be the region of †ı n .˛ı [ ˇı/ containing the image of the
interval .a0i ; a

0
iC1/ in †ı , and let RnC1 be the topmost region of the top half of Hı .

See Figure 5.
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It is not hard to see that the multiplicity of B at each Ri is t1 C � � � C ti , and that
the multiplicity of B at RnC1 is zero if and only if the generators x and y of H
corresponding to xı and yı occupy the same number of arcs on the right.

Suppose xı;yı 2Si .Hı/. By the above, xı and yı are connected by a domain B
contained entirely in the nice part of Hı , ie nX1

.B/DnX2
.B/DnO1

.B/DnO2
.B/D0,

so A0.x/D A0.y/. Then B is the result of self-gluing a domain B 0 in H . Note that
the left and right multiplicities of B 0 match up, ie if p0 2 @0H and p1 2 @1H are points
that are identified in Hı , then m.@0B 0; p0/D �m.@1B 0; p1/. Recall the definitions
of the sets S iO; S

i
X; S

i
x; S

i
y , S iO; S

i
X; S

i
x; S

i
y , and of the gradings of domains from [9,

Section 11.2]. For each subscript � 2 fO;X;x;yg, p0 2 S0� if and only if p1 2 S1� .
Further, e.B/D e.B 0/, and np.B/D np.B 0/ for any point p . Then

M.B 0/D�e.B 0/�nx.B
0/�ny.B

0/C 1
2
m.Œ@@B 0�; S0xCS

0
yCS

1
xCS

1
y/

�m.Œ@@B 0�; S0OCS
1
O/C2nO.B

0/

D�e.B/�nx.B/�ny.B/C2nO.B/

DM.B/;

A.B 0/D 1
2
m.Œ@@B 0�; S0X�S

0
OCS

1
X�S

1
O/CnO.B

0/�nX.B
0/

D nO.B/�nX.B/

D A.B/:

Thus, the relative .M;A/ gradings are the same in eCT.H/ as in cCFK.Hı/, and the
relative A0 grading is zero, ie

M.xı/�M.yı/DM.x/�M.y/;

A.xı/�A.yı/D A.x/�A.y/;

A0.x
ı/�A0.y

ı/D 0:

Next, we compare the gradings of generators with distinct numbers of occupied arcs on
the right. The plumbing of 4g grid diagrams for H corresponds to a sequence of 4g
shadows P1; : : : ;P4g ; see [9, Sections 3 and 4] and Figure 6. Suppose Si .Hı/¤∅
and SiCj .Hı/ ¤ ∅ for some i; j , and let xi 2 Si .H/ı;xiCj 2 SiCj .H/ı . The
generator xiCj has j more strands than xi in each even-indexed shadow P2t . Choose
one strand of xiCj in each P2t , and let p2t�1 and p2t be the endpoints of this
strand in @0P2t and @1P2t , respectively. Replacing these 2g strands with the strands
from p2t to p2tC1 produces a generator xiCj�1 2 SiCj�1.H/ı . Repeating this
procedure shows that Sk.H/ı ¤∅ for every i C 1� k � i C j � 1 as well.
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Then it suffices to choose two generators xi 2Si .H/ı and xiC12SiC1.H/ı for each i
such that Si .H/ı ¤∅ and SiC1.H/ı ¤∅, and understand the relative .M;A;A0/
grading for the corresponding generators xıi ;x

ı
iC1 . Let xiC1 2 SiC1.H/ı and let

p0; : : : ; p4g ' p0 be as above. Modify xiC1 as follows. Let qt be the topmost point
in @1Pt . The strand at qt may be contained in Pt or in PtC1 . Starting at t D 1,
and moving up to t D 4g (identify @1P4g with @0P1 ), do the following exchanges
of strands. If qt ¤ pt , take the two distinct strands with ends at qt and at pt , and
exchange their endpoints on @0Pt . In other words, if one strand connects pt to another
point p0t , and the other strand connected qt to another point q0t , then replace the two
strands with a strand connecting pt to q0t and a strand connecting qt to p0t . In this
modified xiC1 , there is a strand connecting q2t�1 to q2t , for 1 � t � 2g . Let xi
be the generator obtained from xiC1 by replacing these strands with strands from
q2t to q2tC1 , as above. Now xi 2 Si .H/ı and xiC1 2 SiC1.H/ı agree almost
everywhere, except that xiC1 contains the strand at the very top of each even-indexed
shadow, and xi contains the strand at the very top of each odd-indexed shadow. The
Maslov and Alexander gradings on strand generators are defined by counting various
intersections of strands, see [9, Section 3.4], and one sees that M.xiC1/DM.xi / and
A.xiC1/D A.xi /.

Switching back to Heegaard diagrams, xi and xiC1 differing in the above way is
equivalent to saying that the 4g–gon RnC1 connects xıiC1 to xıi . Since e.RnC1/D
1� g , nxı

iC1
.RnC1/ D g=2 D nxı

i
.RnC1/, nX1

.RnC1/ D 1 and np.RnC1/ D 0 for
any other p 2X[O , we see that

M.xıiC1/�M.x
ı
i /D 1;

A.xıiC1/�A.x
ı
i /D 0;

A0.x
ı
iC1/�A0.x

ı
i /D 1:

So for i < j and arbitrary xıi 2Si .H
ı/, xıj 2Sj .H

ı/, we have

M.xıj /�M.x
ı
i /DM.xj /�M.xi /C j � i;(1)

A.xıj /�A.x
ı
i /D A.xj /�A.xi /;(2)

A0.x
ı
j /�A0.x

ı
i /D j � i:(3)

The argument that the isomorphism respects the absolute gradings is analogous to
the one from [9, Section 6]. With the 4g grids arranged as in Figure 6, indexed
G1; : : : ; G4g from left to right, let xıO be the generator formed by the bottom left
corner xj of each Oj in G4i and G4iC1 , the top right corner xj of each Oj in G4iC2
and G4iC3 , the very top right corner x04iC1 of each grid G4iC1 , and the bottom left
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...

...

Figure 6: Top: a Heegaard diagram for T coming from a plumbing of grids
and the “bottommost” generator xO . Bottom: the corresponding sequence of
shadows for T , and the strands diagram for xO .

corner x04iC3 of each grid G4iC3 . Define xıX analogously, by replacing Oj with Xj
in the above definition.

Denote the ˇ circle containing each xi or x0i by ˇi or ˇ0i , respectively. Form a set
of circles  by performing handleslides (which are allowed to cross X but not O ) of
all ˇi and perturbations of all ˇ0i , as in Figure 7. We look at the holomorphic triangle
map associated to .†;˛;ˇ;;O/; see [2; 6; 7]. Let k be the number of O s in H
(so the number of O s in Hı is kC 2). Observe that .†;ˇ;;O/ is a diagram for
.#kC2S1 �S2/, and let ‚ be the top-dimensional generator. Let y be the generator
of .†;˛;;O/ nearest to xıO . There is a holomorphic triangle that maps xıO˝‚ to
y , so M.xıO/DM.y/.

Observe that .†;˛;;O/ is a diagram for S3 with kC 2 basepoints, so, as a group
graded by the Maslov grading, we have bHF.†;˛;;O/ Š H�CkC1.T

kC1/. The
diagram has 2kC1 generators, so they are a basis for the homology. Let y 0 be the
generator obtained from y by replacing the intersection of  04iC1 and the topmost ˛
of G4iC1 with the intersection of  04iC1 and the bottommost ˛ of G4iC2 , and the
intersection of  04iC3 and the bottommost ˛ of G4iC3 with the intersection of  04iC3
and the topmost ˛ of G4iC4 . There are k disjoint bigons going into y 0 , so M.y 0/��k .
The shaded 4g–gon on Figure 7 from y 0 to y shows that M.y 0/�M.y/ D 1, so
M.y/ � �k � 1. But the 2kC1 generators are a basis for the homology, so M.y/ 2
Œ�k � 1; 0�. Thus, M.y/ D �k � 1, so M.xıO/ D �k � 1. We can also compute
M.xO/ using the definition from [9, Section 3.4]. The computation is analogous to
the one from [9, Section 6], and we see that M.xO/D�k . Note that S.xıO/D a , so
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X1

O1

X2

O2

Figure 7: The Heegaard triple .†;˛;ˇ;;O/ , with the original X markings
left in. The black dots form the generator xO , the purple squares form y , the
white squares from y 0 , and the cyan triangles form ‚ .

by Equation (1), for an arbitrary generator xıi 2Si .H
ı/ we have

M.xıi /�M.x
ı
O/DM.xi /�M.xO/C i � a;

so
M.xıi /DM.xi /C i � a� 1:

Similarly, for the z–normalized (or X–normalized, to match the notation in this paper)
grading N , we have N.xıX/D�k� 1. Since N DM � 2A� .kC 2� l/, we get

A.xıX/D
1
2
.M.xıX/�N.x

ı
X/� .kC 2� l//D

1
2
.M.xıX/C l � 1/:

Again using the definition from [9, Section 3.4] as we do in [9, Section 6], we see that
M.xO/ D �k , N.xX/ D �k , A.xX/ D

1
2
M.xX/. Since S.xX/ D n� a , we have

M.xıX/DM.xX/Cn� 2a� 1, so we get

A.xıX/D A.xX/C
1
2
.n� 2aC l � 2/:

The Alexander multigrading on a generator xı can be described by the relative Spinc

structure s.xı/ 2 Spinc.S3; L/; see [8]. In the case when the link is in S3 , one
can think of Ai by looking at the projection of a Seifert surface for Li onto Hı .
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Specifically, for a generator xıi 2 Si .Hı/, we can compute its A0 grading in the
following way. Connect X1 to O1 and X2 to O2 away from ˇı , and O1 to X2
and O2 to X1 away from ˛ı to obtain a curve C on Hı representing L0 , so that C
is negative the boundary of a disk D that is a neighborhood of the rightmost grid (in
general C may be immersed but not necessarily embedded). Then

A0.x
ı
i /D

1
2
.e.D/C 2nxı

i
.D/�nX.D/�nO.D//D i �

1
2
.nC 1/:

It follows that
A0.xıi /D A.xi /�S.xi /C

1
2
l Cn� a� 1:

This completes the identification of gradings.

Remark The authors are in the process of upgrading the invariants in [9] to have
Alexander multigradings, corresponding to different components of the tangle. The
arguments in this paper automatically imply that the isomorphism from Theorem 3.2
respects the multigrading, with appropriate additive constants.

Last, we prove the Corollary to Main Theorem.

Proof of Corollary Fix n, and let 1n denote the trivial braid on n strands (oriented
from top to bottom). Let B be an n–braid. Let A D A.@11n/ D A.@1B/, and
let H.ModA/ be the homotopy category of right type A modules over A. Suppose
that �� eCT.B/ acts as the identity on H.ModA/. Recall that one can recover the
homotopy type of any AA bimodule, ie A1 bimodule, ANA from the functor � z̋N
on H.ModA/, for example as Q

� z̋N .AA;AA/ in [10, (7.23) and (7.24)]. Thus, as
�� eCT.B/D� z̋ .A� eCT.B// is the identity, A'A� eCT.B/, so eCT.1n/' eCT.B/.
We show that the latter implies B D 1n .

Let k � 1 be an integer such that Bk is pure. Then

eCT.Bk/' eCT.B/� � � �� eCT.B/

' eCT.1n/� � � �� eCT.1n/

' eCT.1kn/' eCT.1n/:

Taking Hochschild homology, it follows that cHFL..Bk/0; 0/Š cHFL..1n/0; 0/. Recall
that, in our notation, [1, Theorem 1(b)] says that if there is a triply graded isomorphismcHFL.T0; 0/Š cHFL..1n/0; 0/ and T is a pure braid, then T D 1n . Thus, Bk D 1n .
Since the braid group is torsion-free, it follows that B D 1n .
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