
msp
Algebraic & Geometric Topology 16 (2016) 2159–2227

Rigidity in equivariant stable homotopy theory

IRAKLI PATCHKORIA

For any finite group G , we show that the 2–local G –equivariant stable homotopy
category, indexed on a complete G –universe, has a unique equivariant model in
the sense of Quillen model categories. This means that the suspension functor,
homotopy cofiber sequences and the stable Burnside category determine all “higher-
order structure” of the 2–local G –equivariant stable homotopy category, such as
the equivariant homotopy types of function G –spaces. Our result can be seen as an
equivariant version of Schwede’s rigidity theorem at the prime 2 .

55P42, 55P91; 18G55

1 Introduction

One of the most difficult problems of algebraic topology is to calculate the stable
homotopy groups of spheres. There has been extensive research in this direction
establishing some remarkable results. A very important object used to do these kinds
of computations is the classical stable homotopy category SHC. This category was
first defined in [27] by Kan. Boardman, in his thesis [6], constructed the (derived)
smash product on SHC whose monoids represent multiplicative cohomology theories.
In [8], Bousfield and Friedlander introduced a stable model category Sp of spectra
with Ho.Sp/ triangulated equivalent to SHC. The category Sp enjoys several nice
point-set level properties. However, it does not possess a symmetric monoidal product
that descends to Boardman’s smash product on SHC. This initiated the search for new
models for SHC that possess symmetric monoidal products. In the 1990s, several such
models appeared: S –modules of Elmendorf, Kriz, Mandell and May [15], symmetric
spectra from Hovey, Shipley and Smith [24], simplicial (continuous) functors from
Lydakis [31], and orthogonal spectra from Mandell, May, Schwede and Shipley [34].
All these models turned out to be Quillen equivalent to Sp (and hence, to each other)
and this naturally motivated the following:

Question How many models does SHC admit up to Quillen equivalence?
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In [43], Schwede answered this question. He proved that the stable homotopy category
is rigid, ie if C is a stable model category with Ho.C / triangulated equivalent to SHC,
then the model categories C and Sp are Quillen equivalent. In other words, up to
Quillen equivalence, there is a unique stable model category whose homotopy category
is triangulated equivalent to the stable homotopy category. This result implies that
all “higher order structure” of the stable homotopy theory, such as homotopy types of
function spaces, is determined by the suspension functor and the class of homotopy
cofiber sequences.

Generally, when passing from a model category C to its homotopy category Ho.C /, one
loses “higher homotopical information” such as homotopy types of mapping spaces in C

or the algebraic K–theory of C . In particular, the existence of a triangulated equivalence
of homotopy categories does not necessarily imply that two given models are Quillen
equivalent to each other. Here is an easy example of such a loss of information.
Let Mod-K.n/ denote the model category of right modules over the nth Morava
K–theory K.n/, and let dg Mod-��K.n/ denote the model category of differential
graded modules over the graded homotopy ring ��K.n/. Then the homotopy categories
Ho.Mod-K.n// and Ho.dg Mod-��K.n// are triangulated equivalent, whereas the
model categories Mod-K.n/ and dg Mod-��K.n/ are not Quillen equivalent. The
reason is that the homotopy types of function spaces in dg Mod-��K.n/ are products
of Eilenberg–MacLane spaces, which is not the case for Mod-K.n/ (see eg [38,
Proposition A.1.10]).

Another important example which we would like to recall is due to Schlichting. It
is easy to see that, for any prime p , the homotopy categories Ho.Mod-Z=p2/ and
Ho.Mod-Fp Œt �=.t

2// are triangulated equivalent. In [41], Schlichting shows that the
algebraic K–theories of the subcategories of compact objects of Mod-Z=p2 and
Mod-Fp Œt �=.t

2/ are different for p � 5. It then follows from Dugger and Shipley [11,
Corollary 3.10] that the model categories Mod-Z=p2 and Mod-Fp Œt �=.t

2/ are not
Quillen equivalent. Note that there is also a reinterpretation of this example in terms of
differential graded algebras by Dugger and Shipley [12].

Initiated by Schwede’s result, much research has been done in recent years on establish-
ing essential uniqueness of models for certain homotopy categories. In [40], Roitzheim
shows that the K.2/ –local stable homotopy category has a unique model. For other
theorems of this type, see Barnes and Roitzheim [3], and Hutschenreuter [25].

The present work establishes a new uniqueness result. We prove an equivariant version
of Schwede’s rigidity theorem at the prime 2. Before formulating our main result, we
would like to say a few words on equivariant stable homotopy theory.
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The G –equivariant stable homotopy category (indexed on a complete G –universe), for
any compact Lie group G , was introduced in the book [30] by Lewis, May, Steinberger,
and McClure. Roughly speaking, the objects of this category are G –spectra indexed on
finite-dimensional G –representations. In this paper, we will work with the stable model
category SpO

G of G –equivariant orthogonal spectra indexed on a complete G –universe;
see Mandell and May [33]. The homotopy category of SpO

G is the G–equivariant
stable homotopy category. The advantage of this model is that it possesses a symmetric
monoidal product compatible with the model structure. As in the nonequivariant case,
the G –equivariant stable homotopy category has some other monoidal models, such as
the category of orthogonal G –spectra equipped with the S–model structure (flat model
structure) in Stolz’s [48, Theorem 2.3.27], the model category of SG –modules [33,
Section IV.2] and the model category of G –equivariant continuous functors of Blumberg
[5]. For a finite group G , the model categories of G –equivariant topological symmetric
spectra in the sense of Mandell [32] and Hausmann [20] are also monoidal models for
the G –equivariant stable homotopy category. Note that all these model categories are
known to be G–Top�–Quillen equivalent to each other; see [33, Theorem IV.1.1; 5,
Theorem 1.3; 48, Proposition 2.3.31; 32; 20].

Now we return to the actual content of this paper. Suppose G is a finite group and
H a subgroup of G . For any g 2G , let gH denote the conjugate subgroup gHg�1 .
Then the map

gW †1CG=gH �!†1CG=H;

in the homotopy category Ho.SpO
G /, given by Œx� 7! Œxg� on the point-set level, is

called the conjugation map associated to g and H . Further, if K is another subgroup
of G such that K �H , then we have the restriction map

resH
K W †

1
CG=K �!†1CG=H;

which is just the obvious projection on the point-set level. Moreover, there is also a
map backwards, called the transfer map

trH
K W †

1
CG=H �!†1CG=K;

given by the Pontryagin–Thom construction; see eg [30, Section IV.3] or tom Dieck
[10, Section II.8]. These morphisms generate the stable Burnside (orbit) category,
which is the full preadditive subcategory of Ho.SpO

G / with objects the stable orbits
†1CG=H for H �G ; see [30, Section V.9] and also Lewis [29].

Let G be a finite group. We say that a model category C is a G–equivariant stable
model category if it is enriched, tensored and cotensored over the category G–Top� of
pointed G–spaces in a compatible way (ie the pushout-product axiom holds) and if
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the adjunction
SV
^� W C �! � C W�V .�/

is a Quillen equivalence for any finite-dimensional orthogonal G –representation V .

All the models for the G –equivariant stable homotopy category mentioned above are
G –equivariant stable model categories. Different kinds of equivariant spectra indexed
on incomplete universes provide examples of G–Top�–model categories that are not
G –equivariant stable model categories, but are stable as underlying model categories.

Here is the main result of this paper.

Theorem 1.1.1 Let G be a finite group, let C be a cofibrantly generated, proper,
G–equivariant stable model category, and let SpO

G ;.2/ denote the 2–localization of
SpO

G . Suppose that
‰W Ho.SpO

G ;.2/ /
�
��! Ho.C /

is an equivalence of triangulated categories such that

‰.†1CG=H /ŠG=HC ^
L‰.S/

for any H �G . Suppose further that the latter isomorphisms are natural with respect to
the restrictions, conjugations and transfers. Then there is a zigzag of G–Top�–Quillen
equivalences between C and SpO

G ;.2/ .

In fact, we strongly believe that the following integral version of Theorem 1.1.1 should
be true:

Conjecture 1.1.2 Let G be a finite group and let C be a cofibrantly generated, proper,
G –equivariant stable model category. Suppose that

‰W Ho.SpO
G /

�
��! Ho.C /

is an equivalence of triangulated categories such that

‰.†1CG=H /ŠG=HC ^
L‰.S/

for any H �G . Suppose further that the latter isomorphisms are natural with respect to
the restrictions, conjugations and transfers. Then there is a zigzag of G–Top�–Quillen
equivalences between C and SpO

G .

Note that if G is trivial, then the statement of Conjecture 1.1.2 is true. This is Schwede’s
rigidity theorem [43] (or, more precisely, a special case of it, as the model category
in Schwede’s theorem need not be cofibrantly generated, topological or proper). In
particular, the solution of Conjecture 1.1.2 would imply that all “higher-order structure”
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of the G –equivariant stable homotopy theory, such as the equivariant homotopy types
of function G –spaces, is determined by the suspension functor, the class of homotopy
cofiber sequences and the basic �0 –information of Ho.SpO

G /, ie the stable Burnside
(orbit) category.

The proof of Theorem 1.1.1 is divided into two main parts: the first is categorical and
the second is computational. The categorical part of the proof is mainly discussed in
Section 3 and would essentially reduce a proof of Conjecture 1.1.2 to showing that a
certain exact endofunctor

F W Ho.SpO
G / �! Ho.SpO

G /

is an equivalence of categories. The computational part shows that, 2–locally, the
endofunctor is indeed an equivalence of categories. The proof starts by generalizing
Schwede’s arguments from [42] to free (naive) G –spectra. From this point on, classical
techniques of equivariant stable homotopy theory enter the proof. These include the
double coset formula, Wirthmüller isomorphism, geometric fixed points, isotropy
separation and the tom Dieck splitting. The central idea is to do induction on the order
of subgroups and use the case of free G –spectra as the induction basis.

The only part of the proof of Theorem 1.1.1 which uses that we are working 2–locally
is the part about free G –spectra in Section 4. The essential fact one needs here is that
the self map 2 � idW M.2/!M.2/ of the mod 2 Moore spectrum is not zero in the
stable homotopy category. For p an odd prime, the map p �idW M.p/!M.p/ is equal
to zero, and this makes a big difference between the 2–primary and odd primary cases.
Observe that the nontriviality of 2 � idW M.2/�!M.2/ amounts to the fact that M.2/

does not possess an A2 –structure with respect to the canonical unit map S!M.2/.
In fact, for any prime p , the mod p Moore spectrum M.p/ has an Ap�1 –structure
but does not admit an Ap –structure; see Angeltveit [2]. The obstruction for the latter
is the element ˛1 2 �2p�3S.p/ . This is used by Schwede to obtain the integral rigidity
result for the stable homotopy category in [43]. It seems to be rather nontrivial to
generalize Schwede’s obstruction theory arguments about coherent actions of Moore
spaces [43] to the equivariant case.

This paper is organized as follows. Section 2 contains some basic facts about model
categories, triangulated categories and G–equivariant orthogonal spectra. We also
review the level and stable model structures on the category of orthogonal G –spectra.
In Section 3, we discuss the categorical part of the proof. Here we introduce the
category of orthogonal G –spectra SpO

G .C / internal to an equivariant model category
C , and we show that if C is stable in an equivariant sense and additionally satisfies
certain technical conditions, then C and SpO

G .C / are Quillen equivalent. This allows
us to reduce the proof of Theorem 1.1.1 to showing that a certain exact endofunctor F
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of Ho.SpO
G ;.2/ / is an equivalence of categories. In Section 4, we show that F becomes

an equivalence when restricted to the full subcategory of free G –spectra.

In Section 5, we prove a technical result that reduces the proof of the main theorem to
checking that the map

F W Œ†1CG=H; †1CG=H �G� �! ŒF.†1CG=H /;F.†1CG=H /�G�

is an isomorphism for any subgroup H of G . This is then verified inductively in
Section 7. The results of Section 4 are used for the induction basis. The induction
step uses geometric fixed points and a certain short exact sequence that we discuss in
Section 6.

2 Preliminaries

2.1 Model categories

A model category is defined as a bicomplete category C equipped with three classes of
morphisms, called weak equivalences, fibrations and cofibrations, satisfying certain
axioms. We will not list these axioms here. The point of this structure is that it allows
one to “do homotopy theory” in C . Good references for model categories include [13],
[23] and [39].

The fundamental example of a model category is the category of topological spaces; see
[39; 23, Theorem 2.4.19]. Further important examples are the category of simplicial
sets (see [39; 17, Theorem I.11.3]) and the category of chain complexes of modules
over a ring as in [23, Theorem 2.3.11].

For any model category C , one has the associated homotopy category Ho.C /, which
is defined as the localization of C with respect to the class of weak equivalences;
see eg [23, Section 1.2] or [13]. The model structure guarantees that we do not face
set-theoretic problems when passing to localization, ie Ho.C / has Hom–sets.

A Quillen adjunction between two model categories C and D is defined to be a pair
of adjoint functors

F W C �! � D WE;

where the left adjoint F preserves cofibrations and acyclic cofibrations (or, equivalently,
E preserves fibrations and acyclic fibrations). We refer to F as a left Quillen functor
and to E as a right Quillen functor. Quillen’s total derived functor theorem (see eg
[39] or [17, Theorem II.8.7]) says that any such pair of adjoint functors induces an
adjunction

LF W Ho.C / �! � Ho.D/ WRE:
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The functor LF is called the left derived functor of F and RE the right derived functor
of E . If LF is an equivalence of categories (or, equivalently, RE is an equivalence),
then the Quillen adjunction is called a Quillen equivalence.

Next, let us quickly review cofibrantly generated model categories. Here we mainly
follow [23, Section 2.1]. Let I be a set of morphisms in an arbitrary cocomplete
category. A relative I–cell complex is a morphism that is a (possibly transfinite)
composition of pushouts of coproducts of maps in I. A map is called I–injective if it
has the right lifting property with respect to I . An I–cofibration is map that has the
left lifting property with respect to I–injective maps. The class of I–cell complexes
will be denoted by I–cell. Next, I–inj will stand for the class of I–injective maps and
I–cof for the class of I–cofibrations. It is easy to see that I–cell � I–cof. Finally, let
us recall the notion of smallness. An object K of a cocomplete category is small with
respect to a given class I of morphisms if the representable functor associated to K

commutes with colimits of large enough transfinite sequences of morphisms from I .
See [23, Definition 2.13] for more details.

Definition 2.1.1 [23, Definition 2.1.17] Let C be a model category. We say that C

is cofibrantly generated if there are sets I and J of maps in C such that:

(i) The domains of I and J are small relative to I–cell and J–cell, respectively.

(ii) The class of fibrations is J–inj.

(iii) The class of acyclic fibrations is I–inj.

Here is a general result that will be used in this paper.

Proposition 2.1.2 (See eg [23, Theorem 2.1.19]) Let C be a category with small
limits and colimits. Suppose that W is a subcategory of C and that I and J are sets of
morphisms of C . Assume that the following conditions are satisfied:

(i) The subcategory W satisfies the so-called “two out of three” property and is
closed under retracts.

(ii) The domains of I and J are small relative to I–cell and J–cell, respectively.

(iii) J–cell � W \ I–cof.

(iv) I–inj = W \J–inj.

Then C is a cofibrantly generated model category with W the class of weak equiva-
lences, J–inj the class fibrations and I–cof the class of cofibrations.
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Note that the set I is usually referred to as a set of generating cofibrations and J as a
set of generating acyclic cofibrations.

Furthermore, we recall the definitions of monoidal model categories and enriched
model categories.

Definition 2.1.3 (See eg [23, Definition 4.2.6]) A monoidal model category is a
closed symmetric monoidal category V together with a model structure such that the
following conditions hold:

(i) (The pushout-product axiom) Let i W K!L and j W A! B be cofibrations in
the model category V . Then the induced map

i j W K ^B _K^A L^A �!L^B

is a cofibration in V . Furthermore, if either i or j is an acyclic cofibration, then
so is i j .

(ii) Let qW QI ! I be a cofibrant replacement for the unit I . Then the maps

q ^ 1W QI ^X �! I ^X and 1^ qW X ^QI �!X ^ I

are weak equivalences for any cofibrant X .

Definition 2.1.4 (See eg [23, Definition 4.2.18]) Let V be a monoidal model category.
A V –model category is a model category C with the following data and properties:

(i) The category C is enriched, tensored and cotensored over V ; see [28, Sec-
tions 1.2, 3.7]. This means that we have tensors K ^X , cotensors X K and
mapping objects Hom.X;Y / 2 V for K 2 V and X;Y 2 C , and that all these
functors are related by V –enriched adjunctions

Hom.K ^X;Y /Š Hom.X;Y K /Š Hom.K;Hom.X;Y //:

(ii) (The pushout-product axiom) Let i W K ! L be a cofibration in the model
category V and j W A! B a cofibration in the model category C . Then the
induced map

i j W K ^B _K^A L^A �!L^B

is a cofibration in C . Furthermore, if either i or j is an acyclic cofibration, then
so is i j .

(iii) If qW QI ! I is a cofibrant replacement for the unit I in V , then the induced
map q ^ 1W QI ^X ! I ^X is a weak equivalence in C for any cofibrant X .
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Finally, let us recall the definition of a proper model category.

Definition 2.1.5 A model category is called left proper if weak equivalences are
preserved by pushouts along cofibrations. Dually, a model category is called right
proper if weak equivalences are preserved by pullbacks along fibrations. A model
category which is left proper and right proper is said to be proper.

2.2 Triangulated categories and stable model categories

We start this subsection by recalling some basics about triangulated categories. The
references for triangulated categories include [16, Chapter IV; 37; 50, Section 10.2].

A triangulated category is an additive category T together with a self equivalence
†W T �! T (suspension functor) and a class of triangles in T of type

X
f
��! Y

g
��!Z

h
��!†X;

called distinguished triangles. These are subject to certain conditions which axiomatize
the mapping cone sequences from homological algebra or cofiber sequences from
algebraic topology. We do not recall these conditions here and refer to [16, Chapter IV;
37; 50, Section 10.2] for details.

An exact (or triangulated) functor between triangulated categories T and S is an
additive functor F W T ! S together with a natural isomorphism ˛W F ı†Š † ıF

such that, for any distinguished triangle

X
f
��! Y

g
��!Z

h
��!†X

in T , the triangle

F.X /
F.f /
����! F.Y /

F.g/
����! F.Z/

˛ıF.h/
������!†F.X /

is distinguished in S .

A natural transformation � W F �!G of exact functors is a said to be triangulated if it
commutes with the suspension isomorphisms, ie if the following diagram commutes:

F ı†
�ı†

//

Š

��

G ı†

Š

��

† ıF
†ı�

// † ıG

Let T be a triangulated category with infinite coproducts. A full triangulated subcat-
egory S � T is called localizing if it is closed under infinite coproducts. A set of
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objects P in T is said to generate the triangulated category T if the smallest localizing
subcategory of T containing P coincides with T .

Suppose now that we are given a triangulated category T with infinite coproducts
and a set of objects P in T consisting of compact objects (an object P is called
compact if T .P;�/ commutes with infinite coproducts). Then by [47, Lemma 2.2.1],
the following are equivalent:

(i) The set P generates T .

(ii) An object X of T is trivial if and only if T .†nP;X /D 0 for any P 2 P and
integer n.

The following two lemmas will be very useful.

Lemma 2.2.1 Let T and S be triangulated categories with infinite coproducts and
a set P of generators for T . Further, suppose F;GW T �! S are exact functors
which commute with infinite coproducts, and � W F �! G is a triangulated natural
transformation. If �.P /W F.P /!G.P / is an isomorphism for any P 2 P , then � is a
natural isomorphism of functors.

Proof Consider the full subcategory of T consisting of those objects X for which

�.X /W F.X / �!G.X /

is an isomorphism. This full subcategory is a triangulated subcategory and is closed
under infinite coproducts, ie it is a localizing subcategory. By our assumption, this
localizing subcategory contains the set P . Since P generates T , the minimal localizing
subcategory containing P coincides with T . Hence �.X /W F.X / ! G.X / is an
isomorphism for any X in T .

Before stating the second lemma, we introduce the notation T .X;Y /� for T .†�X;Y /.

Lemma 2.2.2 Let T be a triangulated category with infinite coproducts and with a
set of compact generators P . Further, suppose F W T �! T is an exact functor that
commutes with infinite coproducts and, for any P 2 P , the object F.P / is isomorphic
to P . If the map

F W T .P;P 0/� �! T .F.P /;F.P 0//�

is an isomorphism for any P;P 0 2 P , then F is an equivalence of categories (here we
implicitly identify F.†�P / with †�F.P /).
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Proof For any fixed P 2 P , the full subcategory of those objects Y in T for which

F W T .P;Y /� �! T .F.P /;F.Y //�

is an isomorphism is a localizing subcategory of T . By our assumptions, P is con-
tained in this localizing subcategory, and P generates T . Hence the latter localizing
subcategory coincides with T . Now we want to show that

F W T .X;Y /� �! T .F.X /;F.Y //�

is an isomorphism for any X and Y . For any fixed Y , consider the full subcategory
of those objects X of T for which the latter morphism is an isomorphism. Again we
see that this subcategory is localizing, and by the previous paragraph, it contains P .
Thus it coincides with T , and we conclude that F is fully faithful.

Finally, since F is fully faithful, exact and commutes with infinite coproducts, its
essential image is a localizing subcategory. By assumption, P is contained in the
essential image of F . Hence the essential image of F coincides with T .

The examples of triangulated categories we are interested in come from stable model
categories. Recall [39; 23, Definition 6.1.1] that the homotopy category Ho.C / of a
pointed model category C supports a suspension functor

†W Ho.C / �! Ho.C /

with a right adjoint loop functor

�W Ho.C / �! Ho.C /:

If the functors † and � are inverse equivalences, then the pointed model category C

is called a stable model category. For any stable model category C , the homotopy
category Ho.C / is naturally triangulated; see [23, Section 7.1] and also [39, Section I.4].
The suspension functor is the shift, and the distinguished triangles come from the cofiber
sequences.

Examples of stable model categories are the model category of chain complexes and
also various model categories of spectra (S –modules [15], orthogonal spectra [34],
symmetric spectra [24], sequential spectra [8]).

Next, suppose
F W C �! � D WE

is a Quillen adjunction between stable model categories C and D . Then by [23,
Section 7.1] (see also [39, Section I.4]), the derived functors

LF W Ho.C / �! � Ho.D/ WRE:
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are exact functors of triangulated categories, and the derived unit id! RE ıLF and
counit LF ıRE! id are triangulated natural transformations.

For any stable model category C and objects X;Y 2 C , we will denote the abelian
group of morphisms from X to Y in Ho.C / by ŒX;Y �Ho.C / .

2.3 G –equivariant spaces

Convention 2.3.1 In this paper, G will always denote a finite group.

Convention 2.3.2 By a topological space, we will always mean a compactly generated
weak Hausdorff space.

The category G–Top� of pointed topological G –spaces admits a proper and cofibrantly
generated model structure such that f W X ! Y is a weak equivalence (resp. fibration)
if the induced map on H –fixed points

f H
W X H

�! Y H

is a weak homotopy equivalence (resp. Serre fibration) for any subgroup H �G ; see
eg [33, Section III.1]. The set of G –maps

.G=H �Sn�1/C �! .G=H �Dn/C; n� 0; H �G

generates cofibrations in this model structure. The acyclic cofibrations are generated
by the maps

incl0W .G=H �Dn/C �! .G=H �Dn
� I/C; n� 0; H �G:

The model category G–Top� is a closed symmetric monoidal model category; see [33,
Section III.1]. The monoidal product on G–Top� is given by the smash product X ^Y ,
with the diagonal G–action, for any X;Y 2 G–Top� , and the mapping object is the
nonequivariant pointed mapping space Map.X;Y / with the conjugation G –action.

2.4 G –equivariant orthogonal spectra

We start by reminding the reader about the definition of an orthogonal spectrum [34].

Definition 2.4.1 An orthogonal spectrum X consists of the following data:

� A sequence of pointed spaces Xn , for n� 0.
� A base-point preserving continuous action of the orthogonal group O.n/ on Xn

for each n� 0.
� Continuous based maps �nW Xn ^S1 �!XnC1 .
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This data is subject to the following condition: for all n;m� 0, the iterated structure
map Xn ^Sm!XnCm is O.n/�O.m/–equivariant.

Next, let us recall the definition of G –equivariant orthogonal spectra. Here we mainly
follow [45]; see also [33], which is the original source for G–equivariant orthogo-
nal spectra.

Definition 2.4.2 An orthogonal G–spectrum (G–equivariant orthogonal spectrum)
is an orthogonal spectrum X equipped with a categorical G–action, ie with a group
homomorphism G! Aut.X /.

The category of orthogonal G –spectra is denoted by SpO
G . Any orthogonal G –spectrum

X can be evaluated on an arbitrary finite-dimensional orthogonal G –representation V .
The G –space X.V / is defined by

X.V /D L.Rn;V /C ^O.n/Xn;

where the number n is the dimension of V , the vector space Rn is equipped with
the standard scalar product and L.Rn;V / is the space of (not necessarily equivariant)
linear isometries from Rn to V . The G –action on X.V / is given diagonally:

g � Œ';x�D Œg';gx�; g 2G; ' 2 L.Rn;V /; x 2Xn:

For the trivial G–representation Rn , the pointed G–space X.Rn/ is canonically
isomorphic to the pointed G –space Xn . Next, let SV denote the representation sphere
of V , ie the one-point compactification of V . Using the iterated structure maps of X ,
for any finite-dimensional orthogonal G–representations V and W , one can define
G –equivariant generalized structure maps

�V;W W X.V /^SW
�!X.V ˚W /:

These are then used to define G –equivariant homotopy groups

�G
k X D colimn ŒS

kCn�G ;X.n�G/�
G
; k 2 Z;

where �G denotes the regular representation of G . Furthermore, for any subgroup
H �G and integer k , one defines �H

k
X to be the k th H –equivariant homotopy group

of X considered as an H –spectrum.

Definition 2.4.3 A map f W X ! Y of G –equivariant orthogonal spectra is called a
stable equivalence if the induced map

�H
k .f /W �H

k X �! �H
k Y

is an isomorphism for any integer k and any subgroup H �G .
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2.5 Comparison of different definitions

Before continuing the recollection, let us explain the relation of Definition 2.4.2 with
the original definition of G–equivariant orthogonal spectra due to Mandell and May.
For this, we first recall the category OG . The objects of OG are finite-dimensional
orthogonal G–representations. For any orthogonal G–representations V and W ,
the pointed morphism G–space OG.V;W / is defined to be the Thom space of the
G –equivariant vector bundle

�.V;W / �! L.V;W /;

where L.V;W / is the space of linear isometric embeddings from V to W , and

�.V;W /D f.f;x/ 2 L.V;W /�W j x ? f .V /g:

For more details about this category, see [33, Section II.4]. It follows from [33,
Theorem V.1.5] (see also [21, Proposition A.19]) that the category of OG –spaces (which
is the category of G–Top�–enriched functors from OG to G–Top� ) is equivalent to
the category of G –equivariant orthogonal spectra.

Remark 2.5.1 In [33, Section II.2], Mandell and May define G –equivariant orthogonal
spectra indexed on a G–universe U (which is a countably infinite-dimensional real
inner product space with certain properties; see [33, Definition II.1.1]). Such a G–
spectrum is a collection of G–spaces indexed on those representations that embed
into U together with certain equivariant structure maps. It follows from [33, Theo-
rems II.4.3, V.1.5] that for any G –universe U , the category of orthogonal G –spectra
indexed on U and the category SpO

G are equivalent. This shows that universes are not
relevant for the point-set level definition of an orthogonal G –spectrum. However, they
become important when one considers the homotopy theory of orthogonal G –spectra.
We will use the homotopy theory of orthogonal G –spectra where all finite-dimensional
orthogonal G–representations are built in. This means that we will work with the
genuine G–spectra or, in other words, with the homotopy theory of orthogonal G–
spectra indexed on a complete universe (as a model of such a universe one can take the
sum 1�G of countable copies of the regular representation �G ).

Next, the category SpO
G is a closed symmetric monoidal category. The symmetric

monoidal structure on SpO
G is given by the smash product of underlying orthogonal

spectra (see [34]) with the diagonal G –action. Further, for any universe U , the category
of G–equivariant orthogonal spectra indexed on U , as well as the category of OG –
spaces, are closed symmetric monoidal categories. It follows from [33, Theorems II.4.3,
V.1.5] (see also [21, Proposition A.19]) that all the equivalences discussed above are,
in fact, equivalences of closed symmetric monoidal categories.
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From this point on we will freely use all the results of [33] for the category SpO
G having

the above equivalences in mind.

2.6 The level model structure on SpO
G

In this subsection we closely follow [33, Section III.2].

For any finite group G , the category OG is skeletally small, ie there is a small full
subcategory sk OG of OG such that the embedding sk OG ,!OG is an equivalence
of categories. Such a subcategory is called a small skeleton of OG . We can fix once
and for all a small skeleton sk OG of OG .

Next, for any finite-dimensional orthogonal G –representation V , the evaluation functor

EvV W SpO
G �!G–Top�;

given by X 7!X.V /, has a left adjoint G–Top�–functor

FV W G–Top� �! SpO
G ;

which is defined by (see [33, Section II.4])

FV A.W /DOG.V;W /^A:

Let IG
lv denote the set of morphisms

fFV .G=H �Sn�1/C/ �! FV ..G=H �Dn/C/ j V 2 sk OG ; n� 0; H �Gg

and J G
lv denote the set of morphisms

fFV ..G=H �Dn/C/ �! FV ..G=H �Dn
� I/C/ j V 2 sk OG ; n� 0; H �Gg:

In other words, the sets IG
lv and J G

lv are obtained by applying the functors FV , for V 2

sk OG , to the generating cofibrations and generating acyclic cofibrations of G–Top� ,
respectively. Further, we recall

Definition 2.6.1 Let f W X ! Y be a morphism in SpO
G . The map f is called a

level equivalence if f .V /W X.V /! Y .V / is a weak equivalence in G–Top� for any
V 2 sk OG . It is called a level fibration if f .V /W X.V /! Y .V / is a fibration in
G–Top� for any V 2 sk OG . A map in SpO

G is called a cofibration if it has the left
lifting property with respect to all maps that are level fibrations and level equivalences
(ie level acyclic fibrations).

Proposition 2.6.2 [33, Theorem III.2.4] The category SpO
G , together with level

equivalences, level fibrations and cofibrations, forms a cofibrantly generated, proper
model category. The set IG

lv serves as a set of generating cofibrations and the set J G
lv

serves as a set of generating acyclic cofibrations.
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2.7 The stable model structure on SpO
G

The reference for this subsection is [33, Section III.4].

Recall that for any G–equivariant orthogonal spectrum X , we have the generalized
structure maps

�V;W W X.V /^SW
�!X.V ˚W /:

Let z�V;W W X.V /!�W X.V ˚W / denote the adjoint of �V;W .

Definition 2.7.1 An orthogonal G–spectrum X is called a G–�–spectrum if the
maps z�V;W are weak equivalences in G–Top� for any V and W in OG .

Before formulating the theorem about the stable model structure on SpO
G , let us recall

certain morphisms in SpO
G that will form a generating set of acyclic cofibrations for

this model structure. Let V;W 2 sk OG and

�V;W W FV˚W SW
�! FV S0

denote the map of G –equivariant orthogonal spectra that is adjoint to the map

SW
�! EvV˚W .FV S0/DOG.V;V ˚W /

that sends z 2 W to .V
.1;0/
,��! V ˚W; z/; see [33, Definition III.4.3]. Using the

mapping cylinder construction, the map �V;W factors as a composite

FV˚W SW
�V;W

����!M�V˚W

rV˚W

�����! FV S0;

where rV˚W is a G–equivariant homotopy equivalence, and �V;W is a cofibration
and a stable equivalence [33, Lemma III.4.5, Definition III.4.6]. Now consider any
generating cofibration

i W .G=H �Sn�1/C �! .G=H �Dn/C:

Let i �V;W denote the pushout-product induced from this commutative square:

.G=H �Sn�1/C ^FV˚W SW //

��

.G=H �Sn�1/C ^M�V˚W

��

.G=H �Dn/C ^FV˚W SW // .G=H �Dn/C ^M�V˚W

Define
KG
D fi �V;W j V;W 2 sk OG ; H �G; n� 0g:
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Let J G
st stand for the union J G

lv [KG . For convenience, we will also introduce the
notation IG

st D IG
lv .

Before stating the main theorem of this subsection, we need the following definition.

Definition 2.7.2 A map f W X ! Y of orthogonal G –spectra is called a stable fibra-
tion, if it has the right lifting property with respect to the maps that are cofibrations
and stable equivalences.

Theorem 2.7.3 [33, Theorem III.4.2] The category SpO
G , together with cofibrations,

stable equivalences and stable fibrations, forms a proper, cofibrantly generated, stable
model category. The set IG

st generates cofibrations and the set J G
st generates acyclic

cofibrations. Furthermore, the fibrant objects are precisely the G –�–spectra.

The category SpO
G , together with the latter model structure, is referred to as the stable

model category of orthogonal G –spectra (indexed on a complete G –universe). From
now on, the notation SpO

G will always stand for this model category.

Finally, we recall that the stable model category SpO
G , together with the smash product,

forms a closed symmetric monoidal model category [33, Section III.7]. In particular,
the following holds:

Proposition 2.7.4 Suppose that i W K! L and j W A! B are cofibrations in SpO
G .

Then the pushout-product

i j W K ^B _K^A L^A �!L^B

is a cofibration in SpO
G . The map i j is also a stable equivalence if, in addition, i or

j is a stable equivalence.

2.8 The equivariant stable homotopy category

In this subsection, we list some well known properties of the homotopy category
Ho.SpO

G /. Note that the category Ho.SpO
G / is equivalent to the Lewis–May G–

equivariant stable homotopy category of genuine G–spectra (see [33, Section IV.1])
introduced in [30].

As noted in the previous subsection, the model category SpO
G is stable, and hence the

homotopy category Ho.SpO
G / is naturally triangulated. Further, since the maps

�V D �0;V W FV SV
�! F0S0
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are stable equivalences [33, Lemma III.4.5], it follows that the functor

SV
^�W Ho.SpO

G / �! Ho.SpO
G /

is an equivalence of categories for any finite-dimensional orthogonal G–represen-
tation V.

Next, before continuing, let us introduce the following notational convention. For
any G–equivariant orthogonal spectra X and Y , the abelian group ŒX;Y �Ho.SpO

G
/ of

morphisms from X to Y in Ho.SpO
G / will be denoted by ŒX;Y �G .

An adjunction argument implies that, for any subgroup H � G and an orthogonal
G –spectrum X , there is a natural isomorphism

Œ†1CG=H;X �G� Š �
H
� X:

As a consequence, we see that the set

f†1CG=H jH �Gg

is a set of compact generators for the triangulated category Ho.SpO
G /; see Subsection 2.2.

Note that, since G is finite, for �> 0 and any subgroups H;H 0�G , the abelian group

Œ†1CG=H; †1CG=H 0�G�

is finite; see eg [18, Proposition A.3].

Finally, recall from the introduction that the stable Burnside category, which is the
full preadditive subcategory of Ho.SpO

G / with objects the stable orbits †1CG=H for
H �G , is generated by the conjugations, transfers and restrictions. The stable Burnside
category plays an important role in equivariant stable homotopy theory, as well as in
representation theory. The contravariant functors from this category to abelian groups
are exactly Mackey functors. Note that the stable Burnside category shows up in the
formulation and proof of Theorem 1.1.1.

3 Categorical input

3.1 Outline

Recall that G is a finite group. We start with the following:

Definition 3.1.1 Let C be a G–Top�–model category (see Definition 2.1.4 and
Subsection 2.3). Then C is said to be a G–equivariant stable model category if
the adjunction

SV
^�W C �! � C W�V .�/D .�/S

V
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is a Quillen equivalence for any finite-dimensional orthogonal G –representation V .

Examples of G–equivariant stable model categories are the model category SpO
G of

G–equivariant orthogonal spectra [33, Chapters II and III], the model category of
G –equivariant orthogonal spectra equipped with the S–model structure [48], the model
category of SG –modules [33, Section IV.2], the model category of G –equivariant con-
tinuous functors [5] and the model categories of G –equivariant topological symmetric
spectra ([32] and [20]).

The following proposition is an equivariant version of [47, Theorem 3.8.2].

Proposition 3.1.2 Let C be a cofibrantly generated (see Definition 3.3.1), proper, G –
equivariant stable model category. Then the category SpO

G .C / of internal orthogonal
G –spectra in C (see Definition 3.2.1) possesses a G –equivariant stable model structure,
and the G–Top�–adjunction

†1W C �! � SpO
G .C / WEv0

is a Quillen equivalence.

The proof of this proposition is a straightforward equivariant generalization of the
arguments in [47, Section 3.8]. It will occupy a significant part of this section.

The point of Proposition 3.1.2 is that one can replace (under some technical assumptions)
any G –equivariant stable model category by a G –spectral one (see Definition 3.5.1),
ie by an SpO

G –model category. In particular, this implies that Ho.C / is tensored over
the G –equivariant stable homotopy category Ho.SpO

G /.

To stress the importance of Proposition 3.1.2, we will now give a general strategy for
how one should try to prove Conjecture 1.1.2. Recall that we are given a triangulated
equivalence

‰W Ho.SpO
G /

�
��! Ho.C /

with certain properties. By Proposition 3.1.2, there is a G–Top�–Quillen equivalence

†1W C �! � SpO
G .C / WEv0 :

Let X be a cofibrant replacement of .L†1 ı‰/.S/. Since SpO
G .C / is G–spectral

(see Definition 3.5.1), there is a G–Top�–Quillen adjunction

�^X W SpO
G
�!
 �SpO

G .C / WHom.X;�/:
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Hence, in order to prove Conjecture 1.1.2, it suffices to show that the latter Quillen
adjunction is a Quillen equivalence. Next, it follows from the assumptions on ‰ that
we have isomorphisms

‰.†1CG=H /Š R Ev0.†
1
CG=H ^L X /

that are natural with respect to transfers, conjugations, and restrictions. Using these
isomorphisms, we can choose an inverse of ‰ ,

‰�1
W Ho.C / �! Ho.SpO

G /;

such that ‰�1.R Ev0.†
1
CG=H^LX //D†1CG=H . Moreover, since the isomorphisms

above are natural with respect to the maps in the stable Burnside category, we get the
identities

‰�1.R Ev0.g^
L X //D g;

‰�1.R Ev0.resH
K ^

LX //D resH
K ;

‰�1.R Ev0.trH
K ^

LX //D trH
K ;

where g 2G and K �H �G . Now let us consider the composite

F W Ho.SpO
G /
�^LX
����! Ho.SpO

G .C //
R Ev0
���! Ho.C /

‰�1

���! Ho.SpO
G /:

Since the functors R Ev0 and ‰�1 are equivalences, to prove that .�^X;Hom.X;�//
is a Quillen equivalence corresponds to showing that the endofunctor

F W Ho.SpO
G / �! Ho.SpO

G /

is an equivalence of categories. By the assumptions of Conjecture 1.1.2 and the
properties of ‰�1 , we see that F enjoys the following properties:

(i) F.†1CG=H /D†1CG=H for H �G .

(ii) F preserves transfers, conjugations, and restrictions (and hence the stable Burn-
side category).

(iii) F is an exact functor of triangulated categories and preserves infinite coproducts.

Similarly, if we start with the 2–localized genuine G–equivariant stable homotopy
category Ho.SpO

G ;.2/ / and an equivalence Ho.SpO
G ;.2/ /�Ho.C / as in the formulation

of Theorem 1.1.1, we obtain an endofunctor Ho.SpO
G ;.2/ /! Ho.SpO

G ;.2/ / that also
satisfies the properties (i), (ii) and (iii) above. The following theorem, which is one of
the central results of this paper, immediately implies Theorem 1.1.1.
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Theorem 3.1.3 Let G be a finite group and F W Ho.SpO
G ;.2/ /!Ho.SpO

G ;.2/ / an exact
functor of triangulated categories that preserves arbitrary coproducts such that

F.†1CG=H /D†1CG=H

for H �G , and also

F.g/D g; F.resH
K /D resH

K and F.trH
K /D trH

K

for g 2G and K �H �G . Then F is an equivalence of categories.

The proof of this theorem will be completed at the very end of this paper. In this section,
we will concentrate on the proof of Proposition 3.1.2 and on the p–localization of the
stable model category SpO

G .

Let us outline the plan that will lead to the proof of Proposition 3.1.2. We first define
the category SpO

G .C / of orthogonal G –spectra internal to a G–Top�–model category
C and discuss its categorical properties. Next, for any cofibrantly generated G–Top�–
model category C , we construct the level model structure on SpO

G .C /. Finally, using
the same strategy as in [47], we establish the G–equivariant stable model structure
on SpO

G .C / for any proper, cofibrantly generated, G–Top�–model category C that is
stable as an ordinary model category.

3.2 Orthogonal G –spectra in equivariant model categories

Recall the G–Top�–category OG from Subsection 2.5. The objects of OG are finite-
dimensional orthogonal G–representations. For any finite-dimensional orthogonal
G–representations V and W , the pointed morphism G–space from V to W is the
Thom space OG.V;W /. Recall also that the category SpO

G is equivalent to the category
of OG –spaces (which is the category of G–Top�–enriched functors from OG to
G–Top� ).

Now suppose that C is a G–Top�–model category (in particular, C is pointed). We
remind the reader that this means that we have tensors K ^X , cotensors X K and
pointed mapping G–spaces Map.X;Y / for K 2 G–Top� and X;Y 2 C , that are
related by adjunctions and satisfy certain properties; see Definition 2.1.4. In particular,
the pushout-product axiom holds. Specifically, let i W K! L be a cofibration in the
model category G–Top� and j W A! B a cofibration in the model category C . Then
the induced map

i j W K ^B _K^A L^A �!L^B

is a cofibration in C . Further, if either i or j is an acyclic cofibration, then so is i j .
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Definition 3.2.1 Let C be a G–Top�–model category. An orthogonal G –spectrum in
C is a G–Top�–enriched functor (see [28, Section 1.2]) from the category OG to C .

The category of orthogonal G –spectra in C will be denoted by SpO
G .C /. Note that by

[33, Theorem II.4.3] (see also Subsection 2.5), the category SpO
G .G–Top�/ is equivalent

to SpO
G . Next, since C is complete and cocomplete, so is the category SpO

G .C / (see
[28, Section 3.3]) and limits and colimits are constructed levelwise.

Remark 3.2.2 When talking about limits and colimits over OG or using the notationsR
V 2OG

and
R V 2OG , we will always implicitly mean that the indexing category over

which these (co)limits are taken is the chosen small skeleton sk OG .

Proposition 3.2.3 Let C be a G–Top�–model category. The category SpO
G .C / is

enriched, tensored and cotensored over the symmetric monoidal category SpO
G of

equivariant orthogonal G –spectra.

Proof Let K 2 SpO
G and X 2 SpO

G .C /. We define K^X 2 SpO
G .C / by the following

G–Top�–enriched coend:

K ^X D

Z V;W 2OG

OG.V ˚W;�/^K.V /^X.W /:

This product is unital and coherently associative. The proof uses the enriched Yoneda
lemma [28, Section 3.10, (3.71)] and the Fubini theorem [28, Section 3.10, (3.63)]. We
do not provide the details here as they are standard and well-known. Next, one defines
cotensors by a G–Top�–enriched end

X K .V /D

Z
W 2OG

X.W ˚V /K.W /:

Finally, for any X;Y 2 SpO
G .C /, one can define Hom-G–spectra by a G–Top�–

enriched end

Hom.X;Y /.V /D
Z

W 2OG

Map.X.W /;Y .W ˚V //:

It is a consequence of [28, Section 3.10, (3.71)] that these functors satisfy all the
necessary adjointness properties:

Hom.K ^X;Y /Š Hom.X;Y K /Š Hom.K;Hom.X;Y //:
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3.3 The level model structure on SpO
G

.C /

In order to establish the stable model structure on SpO
G .C /, one needs the additional

assumption that C is a cofibrantly generated G–Top�–model category.

Definition 3.3.1 Let C be a G–Top�–model category. We say that C is a cofibrantly
generated G–Top�–model category if there are sets I and J of maps in C such that
the following hold:

(i) Let A be the domain or codomain of a morphism from I . Then for any subgroup
H �G and any n� 0, the object

.G=H �Dn/C ^A

is small relative to I–cell (and hence relative to I–cof by [23, Proposition 2.1.16]).

(ii) Domains of morphisms in J are small relative to J–cell and I–cell.

(iii) The class of fibrations is J–inj.

(iv) The class of acyclic fibrations is I–inj.

The model category G–Top� is a cofibrantly generated G–Top�–model category; see
[33, Theorem III.1.8]. Other important examples of cofibrantly generated G–Top�–
model categories are the model category SpO

G of G–equivariant orthogonal spec-
tra [33, Theorem III.4.2], the model category of G–equivariant orthogonal spectra
equipped with the S–model structure [48, Theorem 2.3.27], the model category of
SG –modules [33, Theorem IV.2.8], the model category of G –equivariant continuous
functors [5, Theorem 1.3] and the model categories of G–equivariant topological
symmetric spectra ([32] and [20]).

Remark 3.3.2 If a G–Top�–model category C is cofibrantly generated as an ordinary
model category (see Definition 2.1.1), then it does not necessarily follow that C is a
cofibrantly generated G–Top�–model category in the sense of Definition 3.3.1.

The conditions in Definition 3.3.1 are necessary for the proof of Proposition 3.4.7. In
fact, all the claims in this section that come before Proposition 3.4.7 do not use the fact
that C satisfies all the conditions of Definition 3.3.1. They still hold if we only assume
that C is a G–Top�–model category and cofibrantly generated as an underlying model
category. However, for the rest of the paper, we will concentrate only on cofibrantly
generated G–Top�–model categories in the sense of Definition 3.3.1 since more general
model categories are irrelevant here.
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Now suppose that C is a cofibrantly generated G–Top�–model category with I and
J generating cofibrations and acyclic cofibrations.

Definition 3.3.3 Let f W X ! Y be a morphism in SpO
G .C /. The map f is called a

level equivalence if f .V /W X.V /!Y .V / is a weak equivalence in C for any V 2OG .
It is called a level fibration if f .V /W X.V /!Y .V / is a fibration in C for any V 2OG .
A map in SpO

G .C / is called a cofibration if it has the left lifting property with respect
to all maps that are level fibrations and level equivalences (ie level acyclic fibrations).

The level model structure on SpO
G .C / that we will construct now is a cofibrantly

generated model structure. Before stating the main proposition of this subsection, we
would like to introduce the set of morphisms that will serve as generators of (acyclic)
cofibrations in the level model structure on SpO

G .C /.

The evaluation functor EvV W SpO
G .C /! C , given by X 7! X.V /, has a left adjoint

G–Top�–functor
FV W C �! SpO

G .C /

defined by
FV ADOG.V;�/^A:

For any finite-dimensional orthogonal G –representation V , consider the following sets
of morphisms:

FV I D fFV i j i 2 Ig and FV J D fFV j j j 2 J g:

We define
FI D

[
V 2sk OG

FV I and FJ D
[

V 2sk OG

FV J;

where sk OG denotes the chosen small skeleton of the category OG .

The following proposition is an equivariant analog of [47, Proposition 3.7.2] (compare
[19, Theorem 4.31]).

Proposition 3.3.4 Suppose C is a cofibrantly generated G–Top�–model category.
Then the category SpO

G .C / of orthogonal G–spectra in C , together with the level
equivalences, cofibrations and level fibrations described in Definition 3.3.3, forms a
cofibrantly generated model category. The set FI generates cofibrations and the set
FJ generates acyclic cofibrations.

Proof Illman’s results [26, Theorem 7.1, Corollary 7.2] imply that, for any finite-
dimensional orthogonal G –representations V and W , the space OG.V;W / is a G –CW
complex. Since, for any object A in C ,

FV A.W /DOG.V;W /^A;
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and the evaluation functors preserve colimits, it follows that any morphism in FI–cell is
a levelwise cofibration and any morphism in FJ–cell is a levelwise acyclic cofibration.
The rest of the proof is a verbatim translation of the proof of [47, Proposition 3.7.2] to
our case, and we do not provide the details.

3.4 The stable model structure on SpO
G

.C /

This subsection establishes the stable model structure on SpO
G .C /. For this one needs

more assumptions than in Proposition 3.3.4. More precisely, we have to assume that the
cofibrantly generated G–Top�–model category C is proper and stable as an ordinary
model category. The strategy is to follow the arguments given in [47, Section 3.8].

Let W be a finite-dimensional orthogonal G –representation and

�W D �0;W W FW SW
�! F0S0

D S

denote the stable equivalence of G –equivariant orthogonal spectra that is adjoint to the
identity map

idW SW
�! EvW .S/D SW

I

see [33, Definition III.4.3, Lemma III.4.5] or Subsection 2.7.

Definition 3.4.1 Let C be a G–Top�–model category. An object Z of SpO
G .C / is

called an �–spectrum if it is level fibrant and for any finite-dimensional orthogonal
G –representation W , the induced map

��W W Z ŠZF0S0

�!ZFW SW

is a level equivalence.

Since ZFW SW

Š Z.W ˚ �/S
W

, this definition recovers the definition of a G–
�–spectrum in the sense of [33, Definition III.3.1] when C D G–Top� ; see also
Definition 2.7.1.

Now suppose again that C is a cofibrantly generated G–Top�–model category. By
Proposition 3.3.4, the level model structure on SpO

G .C / is cofibrantly generated. Hence
we can choose (and fix once and for all) a cofibrant replacement functor

.�/c W SpO
G .C / �! SpO

G .C /:

Definition 3.4.2 A morphism f W A! B in SpO
G .C / is a stable equivalence if, for

any �–spectrum Z , the map

Hom.f c ;Z/W Hom.Bc ;Z/ �! Hom.Ac ;Z/

is a level equivalence of G –equivariant orthogonal spectra.

Algebraic & Geometric Topology, Volume 16 (2016)



2184 Irakli Patchkoria

The following proposition is an equivariant analog of [47, Proposition 3.8.5]. Again we
do not provide details here as the proof is completely analogous to the nonequivariant
counterpart from [47].

Proposition 3.4.3 Let C be a left proper and cofibrantly generated G–Top�–model
category. Suppose that i W K!L is a cofibration in SpO

G and j W A! B a cofibration
in SpO

G .C /. Then the pushout-product

i j W K ^B _K^A L^A �!L^B

is a cofibration in SpO
G .C /. The map i j is also a stable equivalence if, in addition, i

or j is a stable equivalence.

Next, we introduce the set Jst which will serve as a set of generating acyclic cofibrations
for the stable model structure on SpO

G .C / that we are going to establish. Let W be
a finite-dimensional orthogonal G–representation. Consider the levelwise mapping
cylinder M�W of the map �W W FW SW !F0S0 . The map �W factors as a composite

FW SW �W
���!M�W

rW
���! F0S0;

where rW is a G –equivariant homotopy equivalence and �W a cofibration and a stable
equivalence [33, Lemma III.4.5, Definition III.4.6]; see also Subsection 2.7. Define

K D f�W FV i j V;W 2 sk OG ; i 2 Ig;

where is the pushout-product, I is the fixed set of generating cofibrations in C

(see Definition 3.3.1) and sk OG the fixed small skeleton of OG . Next, recall from
Proposition 3.3.4 that we have sets FI and FJ , generating cofibrations and acyclic
cofibrations, respectively, in the level model structure. Define

Jst D FJ [K:

For convenience we will denote the set FI by Ist . The cofibrations in the stable model
structure on SpO

G .C / will be the same as in the level model structure, and thus IstDFI

will serve as a set of generating cofibrations for the stable model structure.

The following three propositions are again equivariant analogs of [47, Proposition 3.8.6,
Lemma 3.8.7, Proposition 3.8.8]. For convenience we once again omit the proofs as
they are very similar to those in [47].

Proposition 3.4.4 Let C be a left proper and cofibrantly generated G–Top�–model
category. Then any morphism in Jst –cell is an Ist –cofibration (ie a cofibration) and a
stable equivalence.
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Proposition 3.4.5 Let C be a cofibrantly generated G–Top�–model category and X

an object of SpO
G .C /. Then the map X ! � is Jst –injective if and only if X is an

�–spectrum.

Proposition 3.4.6 Let C be a right proper and cofibrantly generated G–Top�–model
category that is stable as an ordinary model category. Then a map in SpO

G .C / is
Jst –injective and a stable equivalence if and only if it is a level acyclic fibration.

Finally, we are ready to establish the stable model structure. The following proposition
constructs the desired model structure. The proof that this model structure is stable is
postponed to the next subsection.

Proposition 3.4.7 Let C be a proper and cofibrantly generated G–Top�–model cate-
gory that is stable as an ordinary model category. Then the category SpO

G .C / admits a
cofibrantly generated model structure with stable equivalences as weak equivalences.
The sets Ist and Jst generate cofibrations and acyclic cofibrations, respectively. Fur-
thermore, the fibrant objects are precisely the �–spectra.

Proof The strategy of the proof is to verify the conditions of Proposition 2.1.2. The
only things that still have to be checked are the smallness conditions. The rest follows
from the previous three propositions.

That the domains of morphisms from Ist are small relative to Ist –cell follows from
the equality Ist D FI and Proposition 3.3.4. Next, recall that Jst D FJ [K . We will
now verify that the domains of morphisms from Jst are small relative to levelwise
cofibrations. This will imply that the domains of morphisms in Jst are small relative to
Jst –cell since

Jst–cell� Ist–cof

by Proposition 3.4.4, and any morphism in Ist –cof is a levelwise cofibration as we saw in
the proof of Proposition 3.3.4. That the domains of morphisms in FJ are small relative
to levelwise cofibrations follows from an adjunction argument, Definition 3.3.1(ii) and
[23, Proposition 2.1.16]. It remains to show that the domains of morphisms from K

are small relative to levelwise cofibrations. Any morphism in K is a pushout-product
of the form

�W FV i W .M�W ^FV A/_FW SW^FVA .FW SW
^FV B/ �!M�W ^FV B;

where the morphism i W A!B is from the set I , and V and W are finite-dimensional
orthogonal G–representations. For any finite G–CW complex L and any object D
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that is the domain or codomain of a map from I , the spectrum FW L^FV D is small
relative to levelwise cofibrations. Indeed, we have an isomorphism

Hom.FW L^FV D;X /ŠMap.L^D;X.V ˚W //:

Since a pushout of small objects is small, Definition 3.3.1(i) implies that L^D is
small with respect to I–cof, and hence FW L^FV D is small relative to levelwise
cofibrations. Now we twice use that pushouts of small objects are small. First we
conclude that M�W ^FV A is small relative to levelwise cofibrations and then we
also see that

.M�W ^FV A/_FW SW^FVA .FW SW
^FV B/

is small relative to levelwise cofibrations.

3.5 G –equivariant stable model categories and completing the proof of
Proposition 3.1.2

We start with the following:

Definition 3.5.1 An SpO
G –model category is called G–spectral. In other words, a

model C category is G –spectral if it is enriched, tensored and cotensored over the model
category SpO

G , and the pushout-product axiom for tensors holds; see Definition 2.1.4.

By Proposition 2.7.4 the model category SpO
G is G –spectral. Next, Proposition 3.4.3

shows that the model structure of Proposition 3.4.7 on SpO
G .C / is G –spectral.

Recall from Definition 3.1.1 that a G –equivariant stable model category is a G–Top�–
model category such that the Quillen adjunction

SV
^�W C �! � C W�V .�/

is a Quillen equivalence for any finite-dimensional orthogonal G–representation V .
Before stating the next proposition, note that every G–spectral model category is
obviously a G–Top�–model category.

Proposition 3.5.2 Let C be a G –spectral model category. Then C is a G –equivariant
stable model category.

Proof Consider the left Quillen functors

SV
^�W C �! C and FV S0

^�W C �! C

and their derived functors

SV
^

L
�W Ho.C / �! Ho.C / and FV S0

^
L
�W Ho.C / �! Ho.C /:
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Since the map �V W FV SV ! S is a stable equivalence [33, Lemma III.4.5], for every
cofibrant X in C , one has the weak equivalences

SV
^FV S0

^X Š FV SV
^X

�V ^1
����!
'

X

and

FV S0
^SV

^X Š FV SV
^X

�V ^1
����!
'

X:

This implies that the functors SV ^L� and FV S0 ^L� are mutually inverse equiva-
lences of categories.

Corollary 3.5.3 Let C be a proper and cofibrantly generated G–Top�–model category
that is stable as an ordinary model category. Then the category SpO

G .C / together with
the model structure of Proposition 3.4.7 is a G –equivariant stable model category.

From this point on, the model structure of Proposition 3.4.7 will be referred to as the
stable model structure on SpO

G .C / and the symbol SpO
G .C / will always denote this

model category.

Finally, we observe that the G–Top�–adjunction

F0 D†
1
W C �! � SpO

G .C / WEv0

is a Quillen equivalence for every cofibrantly generated (in the sense of Definition 3.3.1)
and proper G –equivariant stable model category C . The proof of this fact is a verbatim
translation of the last part of the proof of [47, Theorem 3.8.2] to our case. This finishes
the proof of Proposition 3.1.2.

Remark 3.5.4 The Quillen equivalence

†1W C �! � SpO
G .C / WEv0

is, in fact, a G–Top�–Quillen equivalence. Indeed, .†1;Ev0/ is a G–Top�–enriched
adjunction, and an enriched adjunction that is an underlying Quillen equivalence is an
enriched Quillen equivalence by definition. Next, since enriched left adjoints preserve
tensors [28, Sections 3.2, 3.7], the functor †1 preserves tensors. Similarly, the right
adjoint Ev0 preserves cotensors. Further, the equivalence

L†1W Ho.C / �! � Ho.SpO
G .C // WR Ev0

is a Ho.G–Top�/–enriched equivalence. Finally, we note that the functor L†1 pre-
serves derived tensors, and since R Ev0 is an inverse of L†1 , it is also compatible
with derived tensors.
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3.6 The p–local model structure on G –equivariant orthogonal spectra

This subsection reviews the p–localization of the stable model structure on SpO
G for any

prime p . Note that one can construct the p–local model structure on SpO
G by using

general localization techniques of [22] or [7]. Another possibility is to translate the
arguments of [46, Section 4] to the equivariant context.

Definition 3.6.1 (i) A map f W X!Y of orthogonal G –spectra is called a p–local
equivalence if the induced map

�H
� .f /˝Z.p/ W �

H
� X ˝Z.p/ �! �H

� Y ˝Z.p/

is an isomorphism for any subgroup H of G .

(ii) A map f W X ! Y of orthogonal G–spectra is called a p–local fibration if it
has the right lifting property with respect to all maps that are cofibrations and
p–local equivalences.

Recall from Section 2 that the stable model structure on SpO
G is cofibrantly generated

where IG
st D IG

lv and J G
st DKG [J G

lv are generating cofibrations and acyclic cofibra-
tions, respectively. Further, we also recall that the mod l Moore space M.l/ is defined
by the following pushout:

S1 �l
//

��

S1

��

CS1 // M.l/

(C.�/ D .I; 0/ ^ � is the pointed cone functor.) Let �W M.l/ ! CM.l/ denote
the inclusion of M.l/ into the cone CM.l/. Define J G

.p/ to be the set of maps of
orthogonal G –spectra

Fn.G=HC ^†
m�/W Fn.G=HC ^†

mM.l// �! Fn.G=HC ^†
mCM.l//;

where n;m� 0, H �G and l is prime to p , ie invertible in Z.p/ . We let J G
loc denote

the union J G
st [J G

.p/ .

Proposition 3.6.2 Let G be a finite group and p a prime. Then the category SpO
G of

G –equivariant orthogonal spectra, together with p–local equivalences, cofibrations and
p–local fibrations, forms a cofibrantly generated stable model category. The set IG

st
generates cofibrations and the set J G

loc generates acyclic cofibrations. Furthermore, the
fibrant objects are precisely the G –�–spectra whose H –equivariant homotopy groups
are p–local for any H �G .
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Proof We do not give the details here and only observe that it is completely analogous
to the proof in [46, Section 4].

Proposition 3.6.3 Suppose that i W K!L and j W A!B are cofibrations in SpO
G ;.p/ .

Then the pushout-product

i j W K ^B _K^A L^A �!L^B

is a cofibration in SpO
G ;.p/ . If, in addition, i or j is a p–local equivalence (ie a weak

equivalence in SpO
G ;.p/ ), then so is i j .

Proof By [23, Corollary 4.2.5], it suffices to check the claim for generating cofibrations
and acyclic cofibrations. We do not give details because they are straightforward.

Since every stable equivalence of G–equivariant orthogonal spectra is a p–local
equivalence, one obtains the following corollary:

Corollary 3.6.4 The model category SpO
G ;.p/ is G–spectral, ie an SpO

G –model cate-
gory (see Definition 3.5.1).

In view of Proposition 3.5.2, we also obtain the following:

Corollary 3.6.5 The model category SpO
G ;.p/ is a G–equivariant stable model cate-

gory (see Definition 3.1.1).

We end this subsection with some useful comments and remarks about the homo-
topy category Ho.SpO

G ;.p/ /. Since the model category SpO
G ;.p/ is stable, the homotopy

category Ho.SpO
G ;.p/ / is naturally triangulated. Further, the following is a set of

compact generators for Ho.SpO
G ;.p/ /:

f†1CG=H jH �Gg:

This follows from the natural isomorphism

Œ†1CG=H;X �
Ho.SpO

G
;.p//

� Š �H
� X ˝Z.p/ :

Finally, we note that for any G –equivariant orthogonal spectra X and Y , the abelian
group of morphisms ŒX;Y �Ho.SpO

G
;.p// in Ho.SpO

G ;.p/ / (which will be also denoted by
ŒX;Y �G abusing notation) is p–local. This follows from the fact that, for any integer l

that is prime to p , the map l � idW X !X is an isomorphism in Ho.SpO
G ;.p/ /.
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3.7 Reduction to Theorem 3.1.3

Now we are finally ready to explain why the arguments of Subsection 3.1 carry over to
the p–local case.

Let C be a cofibrantly generated (in the sense of Definition 3.3.1), proper, G –equivariant
stable model category. Suppose that

‰W Ho.SpO
G ;.p/ /

�
��! Ho.C /

is an equivalence of triangulated categories such that

‰.†1CG=H /ŠG=HC ^
L‰.S/

for any H �G . Suppose further that the latter isomorphisms are natural with respect
to the restrictions, conjugations and transfers. By Proposition 3.1.2, there is a G–Top�–
Quillen equivalence

†1W C �! � SpO
G .C / WEv0 :

Next, as in Subsection 3.1, let X be a cofibrant replacement of .L†1 ı‰/.S/. Since
SpO

G .C / is G –spectral (see Proposition 3.4.3), there is a G–Top�–Quillen adjunction

�^X W SpO
G
�!
 � SpO

G .C / WHom.X;�/:

Since the Hom groups of Ho.C / are p–local, the latter Quillen adjunction yields a
G–Top�–Quillen adjunction

�^X W SpO
G ;.p/

�!
 � SpO

G .C / WHom.X;�/:

Next, choose ‰�1 as in Subsection 3.1 and consider the composite

F W Ho.SpO
G ;.p/ /

�^LX
����! Ho.SpO

G .C //
R Ev0
����! Ho.C /

‰�1

���! Ho.SpO
G ;.p/ /:

Since the functors R Ev0 and ‰�1 are equivalences, proving that .�^X;Hom.X;�//
is a Quillen equivalence corresponds to showing that the endofunctor

F W Ho.SpO
G ;.p/ / �! Ho.SpO

G ;.p/ /

is an equivalence of categories. By the assumptions and the properties of ‰�1 , we see
that F enjoys the following properties:
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(i) F.†1CG=H /D†1CG=H , for H �G .

(ii) F.g/D g , F.resH
K
/D resH

K
, and F.trH

K
/D trH

K
, for g 2G and K �H �G .

(iii) F is an exact functor of triangulated categories and preserves infinite coproducts.

So finally, we see that in order to prove Theorem 1.1.1, it suffices to prove Theorem 3.1.3.
Note that we do not expect that an odd primary version of Theorem 3.1.3 is true.
However, we still think that Conjecture 1.1.2 holds. Schwede’s paper [43] suggests that
the proof in the odd primary case should use the explicit construction of the endofunctor
F , whereas in the 2–local case, certain axiomatic properties of F are enough to get
the desired result, as Theorem 3.1.3 shows. This is a generic difference between the
2–local case and the p–local case for p an odd prime.

4 Free G –spectra

The set f†1CG=H jH �Gg is a set of compact generators for the triangulated category
Ho.SpO

G ;.2//. Hence, by Lemma 2.2.2, in order to prove Theorem 3.1.3 it suffices to
show that, for any subgroups H and K of G , the map

F W Œ†1CG=H; †1CG=K�G��! ŒF.†1CG=H /;F.†1CG=K/�G�D Œ†
1
CG=H; †1CG=K�G�

induced by F is an isomorphism.

In this section we show that, under the assumptions of 3.1.3, the map

F W Œ†1CG; †1CG�G� �! ŒF.†1CG/;F.†1CG/�G� D Œ†
1
CG; †1CG�G�

is an isomorphism. In fact, we will not need all the assumptions of 3.1.3 to prove this.
Since the functor F sends †1CG to itself, it restricts to an exact endofunctor of the
localizing subcategory of Ho.SpO

G ;.2// generated by †1CG . We will prove that any
exact endofunctor of the latter localizing subcategory that preserves infinite coproducts,
the suspension spectrum †1CG , and the morphisms gW †1CG�!†1CG for any g2G ,
is an equivalence of categories.

Note that the graded endomorphism ring Œ†1CG; †1CG�G� is isomorphic to the graded
group algebra ��SŒG�, and the localizing subcategory generated by †1CG in Ho.SpO

G /

is equivalent to Ho.Mod-†1CG/, where †1CG is considered as the group ring spectrum
of G .

We say that an object X 2 Ho.SpO
G / is a free G–spectrum if it is contained in the

localizing subcategory generated by †1CG .

In the rest of the paper everything will be 2–localized and hence we will mostly omit
the subscript 2.
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4.1 Cellular structures

We start with the following

Definition 4.1.1 Let R be an orthogonal ring spectrum, X an R–module and n and
m integers such that n � m. We say that X admits a finite .n;m/–cell structure if
there are sequences of distinguished triangles_

Ik

†k�1R �! skk�1 X �! skk X �!
_
Ik

†kR

in Ho.Mod-R/, for k D n; nC1; : : : ;m, such that the sets Ik are finite, skn�1 X D�

and skm X DX .

In other words, an R–module X admits a finite .n;m/–cell structure if and only if
it admits a structure of a finite R–cell complex with all possible cells in dimensions
between n and m.

Recall that there is a Quillen adjunction

GC ^�W Mod-S �! �Mod-†1CG WU

and that Œ†1CG; †1CG�G� Š ��SŒG�. The following proposition can be considered as a
2–local naive equivariant version of [42, Lemma 4.1] (compare [9, Theorem 4.2]).

Proposition 4.1.2 Any ˛ 2 Œ†1CG; †1CG�
Ho.SpO

G
;.2//

n , for n � 8, factors over an
†1CG –module that admits a finite .1; n� 1/–cell structure.

Proof We will omit the subscript 2. Under the derived adjunction

GC ^
L
�W Ho.Mod-S/ �! � Ho.Mod-†1CG/ WRU;

the element ˛ corresponds to some map z̨W Sn! RU.†1CG/Š
W

G S . By the proof
of [42, Lemma 4.1], for any g 2G , we have a factorization

Sn z̨
//

''

RU.†1CG/Š
W

G S
projg

// S

Zg

77

in the stable homotopy category, where Zg has S–cells in dimensions between 1 and
n � 1. Here we use the fact that n � 8. Indeed, since n � 8, for any g 2 G , the
morphism projg ı z̨ has an F2 –Adams filtration of at least 2 by the Hopf invariant one
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theorem [1], and hence one of the implications of [42, Lemma 4.1] applies to projg ı z̨ .
Assembling these factorizations together, we get the following commutative diagram:

Sn z̨
//

##

RU.†1CG/

W
g2G Zg

88

Finally, by adjunction, one obtains the following desired factorization:

†n†1CG
˛

//

((

†1CG

GC ^
L .
W

g2G Zg/

77

Next, we use Proposition 4.1.2 to prove the following important lemma.

Lemma 4.1.3 Let G be a finite group and

F W Ho..Mod-†1CG/.2// �! Ho..Mod-†1CG/.2//

an exact endofunctor such that

F.†1CG/D†1CG

and F.g/D g in Œ†1CG; †1CG�G for any g 2G . Suppose that the map of graded rings

F W Œ†1CG; †1CG�G� �! ŒF.†1CG/;F.†1CG/�G� D Œ†
1
CG; †1CG�G�

is an isomorphism for � below and including dimension n for some n� 0. Then the
following hold:

(i) Let K and L be †1CG –modules that admit finite .ˇK ; �K /– and .ˇL; �L/–cell
structures, respectively, and assume that �K �ˇL � n. Then the map

F W ŒK;L�G �! ŒF.K/;F.L/�G

is an isomorphism.

(ii) Let K be an †1CG–module admitting a finite .ˇK ; �K /–cell structure with
�K �ˇK � nC 1. Then there is an †1CG –module K0 with a finite .ˇK 0 ; �K 0/–
cell structure such that ˇK � ˇK 0 , �K 0 � �K and F.K0/ŠK .
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(iii) If nC 1� 8, then the map

F W Œ†1CG; †1CG�GnC1 �! Œ†1CG; †1CG�GnC1

is an isomorphism.

Proof Part (i) When K and L are both finite wedges of type
W
†l0†1CG (l0 is

fixed), then the claim holds by assumption.

We start with the case when L is a finite wedge of copies of †l0†1CG for some
integer l0 , and we proceed by induction on �K � ˇK . As already noted, the claim
holds when �K � ˇK D 0. Now suppose we are given K with �K � ˇK D r for
r � 1, and assume that the claim holds for all †1CG–modules M that have a finite
.ˇM ; �M /–cell structure with �M �ˇM < r . Consider the distinguished triangle_

I�K

†�K�1†1CG �! sk�K�1 K �!K �!
_
I�K

†�K†1CG:

The †1CG –module sk�K�1 K has a finite .ˇK ; �K�1/–cell structure. For convenience,
let P denote the wedge

W
I�K

†�K�1†1CG . The latter distinguished triangle induces
a commutative diagram

Œ† sk�K�1 K;L�G

��

F
// ŒF.† sk�K�1 K/;F.L/�G

��

Œ†P;L�G

��

F
// ŒF.†P /;F.L/�G

��

ŒK;L�G

��

F
// ŒF.K/;F.L/�G

��

Œsk�K�1 K;L�G

��

F
// ŒF.sk�K�1 K/;F.L/�G

��

ŒP;L�G
F

// ŒF.P /;F.L/�G

with exact columns (The functor F is exact.). By the induction basis, the second and
the last horizontal morphisms in this diagram are isomorphisms. The fourth morphism
is an isomorphism by the induction assumption. Finally, since † sk�K�1 K has a finite
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.ˇK C 1; �K /–cell structure, the first horizontal map is also an isomorphism by the
induction assumption. Hence, the claim follows by the five lemma.

Next, we do a similar induction with respect to �L � ˇL . The case �L�ˇL D 0 is
taken care of by the previous paragraph. For the inductive step we choose a distin-
guished triangle

skˇL
L �!L �!L0 �!† skˇL

L:

The octahedral axiom implies that the †1CG –module L0 admits a finite .ˇLC1; �L/–
cell structure. Now, as in the previous case, a five lemma argument finishes the proof.

Part (ii) We do induction on �K�ˇK . If �K�ˇK D0, then K is stably equivalent to a
finite wedge

W
†l0†1CG , for a fixed integer l0 , and the claim holds since F.†1CG/D

†1CG . For the induction step, choose a distinguished triangle_
I�K

†�K�1†1CG
˛
��! sk�K�1 K �!K �!

_
I�K

†�K†1CG

as above. By the induction assumption, there is an †1CG–module M with a finite
.ˇM ; �M /–cell structure such that ˇK � ˇM , �M � �K � 1 and F.M /Š sk�K�1 K .
Consider the composite

F

�_
I�K

†�K�1†1CG

�
Š
��!

_
I�K

†�K�1†1CG
˛
��! sk�K�1 K

Š
��! F.M /:

Since �K � 1�ˇM � �K � 1�ˇK � n, part (i) yields that there exists

˛0 2

�_
I�K

†�K�1†1CG;M

�G

such that F.˛0/ equals the latter composition. Next, choose a distinguished triangle_
I�K

†�K�1†1CG
˛0

��!M �!K0 �!
_
I�K

†�K†1CG:

The †1CG –module K0 has a finite .ˇM ; �K /–cell structure. On the other hand, since
F is exact, one of the axioms for triangulated categories implies that there is a morphism
K! F.K0/ that makes the diagramW

I�K
†�K�1†1CG

˛
//

Š

��

sk�K�1 K //

Š

��

K //

��

W
I�K

†�K†1CG

Š

��

F.
W

I�K
†�K�1†1CG/

F.˛0/
// F.M / // F.K0/ // F.

W
I�K

†�K†1CG/
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commute. Now another five lemma argument shows that, in fact, the map K! F.K0/

is an isomorphism in Ho.Mod-†1CG/, and thus the proof of part (ii) is completed.

Part (iii) By Proposition 4.1.2, any morphism ˛ 2 Œ†nC1†1CG; †1CG�G factors over
some †1CG –module K that has a finite .1; n/–cell structure. By part (ii), there exists
an †1CG–module K0 admitting a finite .ˇK 0 ; �K 0/–cell structure such that 1� ˇK 0 ,
�K 0 � n and F.K0/ŠK . Hence we get the following commutative diagram:

F.†nC1†1CG/Š†nC1†1CG

))

˛
// †1CG D F.†1CG/

F.K0/

77

Since nC 1�ˇK 0 � nC 1� 1D n and �K 0 � 0D �K 0 � n, part (i) implies that both
maps in the latter factorization are in the image of F . Hence, the map ˛ is also in the
image of the functor F , yielding that

F W Œ†1CG; †1CG�GnC1 �! Œ†1CG; †1CG�GnC1

is surjective. As the source and target of this morphism are finite of the same cardinality,
we conclude that it is an isomorphism.

From Lemma 4.1.3, together with Lemma 2.2.2, we have the following:

Corollary 4.1.4 Let F be as in 4.1.3 and assume that it commutes with infinite
coproducts. If the morphism

F W Œ†1CG; †1CG�G� �! Œ†1CG; †1CG�G�

is an isomorphism for � � 7, then the functor F is an equivalence of categories.

4.2 Taking care of the dimensions � 7

For this subsection,

F W Ho..Mod-†1CG/.2// �! Ho..Mod-†1CG/.2//

again denotes an exact endofunctor that commutes with infinite coproducts such that

F.†1CG/D†1CG

and F.g/D g in Œ†1CG; †1CG�G for any g 2G . We will now show that the map

F W Œ†1CG; †1CG�G� �! ŒF.†1CG/;F.†1CG/�G� D Œ†
1
CG; †1CG�G�
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is an isomorphism for � � 7. By Corollary 4.1.4 this will imply that the functor F is a
self equivalence of the category of free G –spectra.

Recall that we have a preferred isomorphism Œ†1CG; †1CG�G� Š ��SŒG�. Since
F.g/D g for any g 2G , and since the map F W ��SŒG� �! ��SŒG� is a ring homo-
morphism, we conclude that it is an isomorphism for �D 0. Note that ��SŒG� is finite
for �> 0 and the Hopf maps �, � and � multiplicatively generate ���7S . Hence, it
suffices to show that the Hopf maps (considered as elements of ��SŒG� via the unit
map S!†1CG ) are in the image of F .

We start by showing that F.�/D �. Recall that the mod 2 Moore spectrum M.2/ in
the 2–localized (nonequivariant) stable homotopy category is defined by the distin-
guished triangle

S
2
��! S

�
�!M.2/

@
��! S1;

and that the map 2W M.2/ �!M.2/ factors as a composite

M.2/
@
��! S1 �

��! S
�
�!M.2/:

Applying the functor GC^
L�W Ho.Mod-S/�!Ho.Mod-†1CG/ to the distinguished

triangle above gives us this distinguished triangle

†1CG
2
��!†1CG

1^�
��!GC ^M.2/

1^@
��!††1CG

in Ho.Mod-†1CG/. Further, the map 2W GC ^M.2/ �!GC ^M.2/ factors as

GC ^M.2/
1^@
��!††1CG

�
��!†1CG

1^�
��!GC ^M.2/:

One of the axioms for triangulated categories implies that we can choose an isomorphism

F.GC ^M.2//ŠGC ^M.2/

so that the diagram

†1CG
2

// †1CG
1^�

// GC ^M.2/
1^@

//

Š

��

††1CG

Š

��

F.†1CG/
2
// F.†1CG/

F.1^�/
// F.GC ^M.2//

F.1^@/
// F.††1CG/

commutes. We fix the latter isomorphism once and for all and identify F.GC^M.2//

with GC ^M.2/. Note that, under this identification, the morphisms F.1^ �/ and
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F.1 ^ @/ correspond to 1 ^ � and 1 ^ @, respectively. Next, since F.2/ D 2 and
2D .1^ �/�.1^ @/, one gets the identity

.1^ �/F.�/.1^ @/D 2:

It is well known that the map 2W M.2/ �!M.2/ is nonzero; see [44, Proposition 4]
(in fact, ŒM.2/;M.2/�ŠZ=4). Hence, 2W GC^M.2/ �!GC^M.2/ is nonzero as
there is a preferred ring isomorphism

ŒGC ^M.2/;GC ^M.2/�G� Š ŒM.2/;M.2/��˝ZŒG�:

It now follows that F.�/¤ 0. Suppose F.�/D
P

g2A �g , where A is a nonempty
subset of G . We want to show that ADf1g. The identity .1^ �/F.�/.1^@/D 2 yields

2D .1^ �/

�X
g2A

�g

�
.1^ @/D

X
g2A

.1^ �/�.1^ @/g D
X
g2A

2g:

Once again using the isomorphism ŒGC^M.2/;GC^M.2/�G� Š ŒM.2/;M.2/��˝ZŒG�
and the fact that 2¤ 0, we conclude that AD f1g, and hence F.�/D �.

Next, we show that � is in the image of F . Let

F.�/Dm�C
X

g2Gnf1g

ngg�:

Recall that, 2–locally, we have the identity (see eg [49, Theorem 14.1(i)])

�3
D 4�:

Since F.�/D �, after applying F to this identity, one obtains

4� D �3
D F.�3/D F.4�/D 4m�C

X
g2Gnf1g

4ngg�:

As the element � is a generator of the group �3S.2/ŠZ=8, we conclude that mD2kC1

for some k 2 Z, and for any g 2G n f1g we have ng D 2lg and lg 2 Z. Hence

F.�/D .2kC 1/�C
X

g2Gnf1g

2lgg�:

Using that F.g/D g , we also deduce that

F.g0�/D .2kC 1/g0�C
X

g2Gnf1g

2lgg0g�
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for any fixed g0 2G nf1g. Thus the image of F in �3S.2/ ŒG�Š
L

G Z=8 is additively
generated by the rows of a jGj � jGj–matrix of the form0B@2kC 1 even

: : :

even 2kC 1

1CA
where each diagonal entry is equal to 2kC 1 and all the other entries are even. Since
the determinant of this matrix is odd and hence a unit in Z=8, the homomorphism
F W �3S.2/ ŒG�!�3S.2/ ŒG� is an isomorphism, and hence the element � is in the image
of F .

Finally, it remains to show that � 2 �7S� �7SŒG� is in the image of F . Recall that �
is a generator of �7S.2/ Š Z=16. We use the Toda bracket relation

8� D h�; 8; �i in ��S.2/

(see eg [49, Lemmas 5.13 and 5.14]) that holds without indeterminacy as �4S D 0.
This implies that

8� D h�; 8; �i in ��SŒG�:

Now since F is an exact functor, one obtains

8F.�/D hF.�/; 8;F.�/i:

Recall that
F.�/D .2kC 1/�C

X
g2Gnf1g

2lgg�:

Let F.�/Dm� C
P

g2Gnf1g ngg� . By [4, Theorem 1.3] and the relation 16� D 0,
we get

8

�
m� C

X
g2Gnf1g

ngg�

�
D

�
.2kC 1/�C

X
g2Gnf1g

2lgg�; 8; .2kC 1/�C
X

g2Gnf1g

2lgg�

�
D 8.2kC 1/2�:

Hence we see that m is odd and the numbers ng are even. Now a similar argument as
in the case of � implies that F W �7SŒG� �! �7SŒG� is surjective, and hence � is in
the image of F .

By combining the results of this subsection with Corollary 4.1.4, we conclude that,
under the assumptions of Theorem 3.1.3, the functor F W Ho.SpO

G;.2//! Ho.SpO
G;.2//

becomes an equivalence when restricted to the full subcategory of free G–spectra,
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or equivalently, when restricted to Ho..Mod-†1CG/.2//. In fact, we have proved the
following more general proposition.

Proposition 4.2.1 Let G be any finite group and

F W Ho..Mod-†1CG/.2// �! Ho..Mod-†1CG/.2//

an exact endofunctor that preserves arbitrary coproducts such that

F.†1CG/D†1CG

and F.g/Dg in Œ†1CG; †1CG�G for all g2G . Then F is an equivalence of categories.

5 Double coset embedding

In this section, we will show that the graded maps between the generators f†1CG=H j

H �Gg of Ho.SpO
G / can be embedded into a certain direct sum indexed on a set of

double cosets. This will be very useful in the proof of Theorem 3.1.3.

5.1 Formulation

Let G be a finite group with subgroups H and K . For the rest of this section, we fix
once and for all a set fgg of double coset representatives for K nG=H . Recall that for
any g 2G , the conjugated subgroup gHg�1 is denoted by gH . Further,

�gW Œ†
1
CG=H; †1CG=K�G� �! Œ†1CG=.gH \K/; †1CG=.gH \K/�G�

will stand for the map which is defined by the following commutative diagram:

Œ†1CG=H; †1CG=K�G�

g�

��

�g
// Œ†1CG=.gH \K/; †1CG=.gH \K/�G�

Œ†1CG=gH; †1CG=K�G�
.trK

gH\K
/�
// Œ†1CG=gH; †1CG=.gH \K/�G�

.res
gH
gH\K

/�

OO

The aim of this section is to prove:

Proposition 5.1.1 The map

Œ†1CG=H; †1CG=K�G�
.�g/Œg�2KnG=H

�����������!

M
Œg�2KnG=H

Œ†1CG=.gH \K/; †1CG=.gH \K/�G�

is a split monomorphism.
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The author suspects that this statement is known to the experts. However, since we
were unable to find a reference, we decided to provide a detailed proof here. The proof
is mainly based on the equivariant Spanier–Whitehead duality (see [30, Sections III.2
and V.9] and [35, Section XVI.7]) and on a combinatorial analysis of certain pointed
G –sets.

5.2 Induction and coinduction

Let H be a subgroup of G with inclusion i W H ,!G . The class of all finite-dimensional
orthogonal H –representations of the form i�V , where V is a finite-dimensional
orthogonal G–representation, contains the trivial representation and is closed under
direct sums. Hence, according to [33, Section II.2, Theorem III.4.2], there is a stable
model category SpO

H�G of H –equivariant orthogonal spectra indexed on the class of
such representations (compare Subsection 2.7). Since finite-dimensional orthogonal
H –representations that come from G–representations are cofinal in the class of all
finite-dimensional orthogonal H –representations, [33, Remark V.1.10] implies that the
Quillen adjunction

idW SpO
H�G

�!
 � SpO

H W id

is a Quillen equivalence. Next, recall that there is a Quillen adjunction

G ËH �W SpO
H�G

�!
 � SpO

G WResG
H ;

where .GËH X /.V /DGC^H X.i�V / for any X 2SpO
H�G and any finite-dimensional

orthogonal G –representation V ; see [33, Lemma V.2.2]. The functor ResG
H is just the

restriction along the map i W H ,! G . In fact, the functor ResG
H preserves weak

equivalences, and moreover, it is also a left Quillen functor as we see from the
Quillen adjunction

ResG
H W SpO

G
�!
 � SpO

H�G WMapH .GC;�/:

The right adjoint is defined by MapH .GC;X /.V /DMapH .GC;X.i
�V //. Now since

the functor idW SpO
H�G!SpO

H is a left Quillen functor, we also get a Quillen adjunction

ResG
H W SpO

G
�!
 � SpO

H WMapH .GC;�/:

These Quillen adjunctions induce corresponding adjunctions on the derived level:

G ËH �W Ho.SpO
H /� Ho.SpO

H�G/
�!
 � Ho.SpO

G / WResG
H

and
ResG

H W Ho.SpO
G /
�!
 � Ho.SpO

H / WMapH .GC;�/:
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Here we slightly abuse notation by denoting point-set level functors and their associated
derived functors with the same symbols. Next, note that the equivalence

Ho.SpO
H /� Ho.SpO

H�G/

is a preferred one and is induced from the Quillen equivalence at the very beginning of
this subsection.

The adjunctions recalled here are, in fact, special instances of the “change of groups”
and “change of universe” functors of [33, Chapter V]. The functor G ËH � is usually
called the induction and the functor MapH .GC;�/ is called the coinduction.

Now let G ËH X denote the balanced product GC ^H X for any pointed G–set
(space) X . Consider the natural point-set level map

wH W G ËH X �!MapH .GC;X /

given by

wH .Œg;x�/.
 /D

�

gx if 
g 2H;

� if 
g 62H:

We remind the reader of the following result due to Wirthmüller:

Proposition 5.2.1 (Wirthmüller isomorphism; see eg [36]) The map wH induces a
natural isomorphism between the derived functors

G ËH �W Ho.SpO
H / �! Ho.SpO

G / and MapH .GC;�/W Ho.SpO
H / �! Ho.SpO

G /:

That is, the left and right adjoint functors of

ResG
H W Ho.SpO

G / �! Ho.SpO
H /

are naturally isomorphic.

As a consequence of the Wirthmüller isomorphism, one gets that for any subgroup
L�G , the equivariant spectrum †1CG=L is self-dual. Indeed, the map

†1CG=LŠG ËL S
wL
���!MapL.GC;S/ŠMap.†1CG=L;S/ŠD.†1CG=L/

is an isomorphism in Ho.SpO
G /, where D is the equivariant Spanier–Whitehead duality

functor [30, Sections II.6, III.2, V.9; 35, Section XVI.7].

We conclude the subsection with the following well-known lemma and its corollaries.
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Lemma 5.2.2 (Double coset formula) Suppose G is a finite group with arbitrary
subgroups H and K . For g 2 G , let cgW

gH !H denote the map cg.x/D g�1xg .
Then for any pointed H –set X , the K–equivariant maps

K ËgH\K Res
gH
gH\K .c

�
gX / �! ResG

K .G ËH X /; Œk;x� 7! Œkg;x�;

induce a natural splitting_
Œg�2KnG=H

K ËgH\K Res
gH
gH\K .c

�
gX /Š ResG

K .G ËH X /:

Corollary 5.2.3 Suppose G is a finite group with subgroups H and K . Then for any
Y 2 Ho.SpO

H /, there is a natural splitting_
Œg�2KnG=H

K ËgH\K Res
gH
gH\K .c

�
gY /Š ResG

K .G ËH Y /:

Note that, if X is a pointed G –set, then there is a natural isomorphism

G ËH ResG
H X ŠG=HC ^X

given by Œg;x� 7! .Œg�^gx/.

Corollary 5.2.4 The maps

G=.gH \K/C �!G=HC ^G=KC; Œx� 7! Œxg�^ Œx�;

of pointed G –sets induce a natural splitting_
Œg�2KnG=H

G=.gH \K/C
Š
��!G=HC ^G=KC:

Proof By the last observation and Lemma 5.2.2, we have a chain of isomorphisms of
pointed G –sets:_

Œg�2KnG=H

G=.gH \K/C Š
_

Œg�2KnG=H

G ËK .K=.gH \K//C

ŠG ËK

� _
Œg�2KnG=H

K=.gH \K/C

�

ŠG ËK

� _
Œg�2KnG=H

K ËgH\K S0

�
ŠG ËK ResG

K .G ËH S0/ŠG ËK ResG
K .G=HC/

ŠG=KC ^G=HC ŠG=HC ^G=KC:
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Here the last isomorphism is the twist. Going through these explicit isomorphisms, we
see that any Œx� 2G=.gH \K/C is sent to Œxg�^ Œx� 2G=HC ^G=KC .

5.3 Proof of Proposition 5.1.1

As we already mentioned after Proposition 5.2.1, we have the isomorphisms

D.†1CG=L/Š†1CG=L; L�G;

in Ho.SpO
G /, where D is the equivariant Spanier–Whitehead duality. It follows from

[30, Sections II.6, III.2, V.9] (see also [29]) that, under these isomorphisms, the transfer
maps correspond to restrictions. In particular, for any g 2G , the diagram

D.†1CG=.gH \K//
D.trK

gH\K
/
// D.†1CG=K/

†1CG=.gH \K/
resK

gH\K
//

Š

OO

†1CG=K

Š

OO

commutes. Combining this with the Spanier–Whitehead duality, for any g 2 G , one
gets the following commutative diagram with all vertical maps isomorphisms:

Œ†1CG=gH; †1CG=K�G�

Š

��

.trK
gH\K

/�
// Œ†1CG=gH ; †1CG=.gH \K/�G�

Š

��

Œ†1CG=gH^D.†1CG=K/;S�G�
.1^D.trK

gH\K
//�

//

Š

��

Œ†1CG=gH^D.†1CG=.gH \K//;S�G�

Š

��

Œ†1CG=gH ^†1CG=K;S�G�

Š

��

.1^resK
gH\K

/�

// Œ†1CG=gH ^†1CG=gH\K;S�G�

Š

��

Œ†1.G=gHC ^G=KC/;S�G�
.1^resK

gH\K
/�

// Œ†1.G=gHC ^G=gH\KC/;S�G�

Again using the Spanier–Whitehead duality and that †1CG=L is self-dual for L�G ,
we also have that, for every g 2G , the diagrams
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Œ†1CG=H; †1CG=K�G�
g�

//

Š

��

Œ†1CG=gH; †1CG=K�G�

Š

��

Œ†1CG=H ^D.†1CG=K/;S�G�

Š

��

.g^1/�
// Œ†1CG=gH ^D.†1CG=K/;S�G�

Š

��

Œ†1CG=H ^†1CG=K;S�G�
.g^1/�

//

Š

��

Œ†1CG=gH ^†1CG=K;S�G�

Š

��

Œ†1.G=HC ^G=KC/;S�G�
.g^1/�

// Œ†1.G=gHC ^G=KC/;S�G�

and

Œ†1CG=gH;†1CG=gH\K�G�
.res

gH
gH\K

/�

//

Š

��

Œ†1CG=gH\K;†1CG=gH\K�G�

Š

��

Œ†1CG=gH^D.†1CG=gH\K/;S�G�
.res

gH
gH\K

^1/�

//

Š

��

Œ†1CG=gH\K^D.†1CG=gH\K/;S�G�

Š

��

Œ†1CG=gH^†1CG=gH\K;S�G�
.res

gH
gH\K

^1/�

//

Š

��

Œ†1CG=gH\K^†1CG=gH\K;S�G�

Š

��

Œ†1.G=gHC^G=gH\KC/;S�G�
.res

gH
gH\K

^1/�

// Œ†1.G=gH\KC^G=gH\KC/;S�G�

commute. Hence by definition, for any g 2G , the morphism

�gW Œ†
1
CG=H; †1CG=K�G� �! Œ†1CG=.gH \K/; †1CG=.gH \K/�G�

is isomorphic to the morphism induced by the composite

G=.gH \K/C ^G=.gH \K/C

res
gH
gH\K

^1
��

// G=HC ^G=KC

G=gHC ^G=.gH \K/C
1^resK

gH\K
// G=gHC ^G=KC

g^1

OO

after applying the functor Œ†1.�/;S�G� . To simplify notations let us denote this
composite of maps of pointed G–sets by �gW G=.

gH \ K/C ^ G=.gH \ K/C !

G=HC^G=KC . Thus, in order to prove Proposition 5.1.1, it suffices to check that the
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map of pointed G –sets_
Œg�2KnG=H

.G=.gH \K/C ^G=.gH \K/C/
.�g/Œg�2KnG=H

����������!G=HC ^G=KC

has a G–equivariant section. This follows from the commutative diagram of pointed
G –sets_
Œg�2KnG=H

.G=.gH \K/C ^G=.gH \K/C/
.�g/Œg�2KnG=H

// G=HC ^G=KC

_
Œg�2KnG=H

G=.gH \K/C

W
Œg�2KnG=H

�g

jj
Š

OO

where the vertical map is the isomorphism from Corollary 5.2.4, and

�gW G=.
gH \K/C �!G=.gH \K/C ^G=.gH \K/C

is the diagonal defined by Œx� 7! Œx�^ Œx� for any g .

6 A short exact sequence

This section constructs a split short exact sequence that will play a fundamental role in
the inductive proof of Theorem 3.1.3. The author thinks that this short exact sequence
is well-known to the experts. However, since we were unable to find a reference, we
decided to provide a detailed proof here.

6.1 Geometric fixed points and the inflation functor

To construct the desired short exact sequence, we need the geometric fixed point functor

ˆN
W SpO

G �! SpO
J

associated to an extension of finite groups

EW 1 �!N
�
��!G

"
���! J �! 1:

This functor is constructed in [33, Section V.4] and has some useful properties. In
particular, the following holds:
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Proposition 6.1.1 [33, Proposition V.4.5] Let A be a pointed G–space and V a
finite-dimensional orthogonal G –representation. Then there is a natural isomorphism
of J–spectra

ˆN .FV A/Š FV N AN:

Also, the functor ˆN W SpO
G �! SpO

J preserves cofibrations and acyclic cofibrations.

Corollary 6.1.2 For any based G–space A, there is a natural isomorphism of J–
spectra

ˆN .†1A/Š†1.AN /:

Next, we will also need the inflation (change of scalars) functor "�W SpO
J ! SpO

G

associated to an extension of finite groups

EW 1 �!N
�
��!G

"
���! J �! 1:

This functor is a left adjoint to the point-set level (categorical) fixed point functor. In
fact, it is a left Quillen functor.

By Proposition 6.1.1 and Ken Brown’s lemma, one can derive the functor ˆN and get
the functor

ˆN
W Ho.SpO

G / �! Ho.SpO
J /:

We can also derive the left Quillen functor "� and obtain the derived inflation

"�W Ho.SpO
J / �! Ho.SpO

G /:

The following result follows from [30, Proposition II.9.10] and [33, Sections VI.3–5].

Proposition 6.1.3 There is a triangulated natural isomorphism

�W id
Š
��!ˆN "�

of endofunctors on Ho.SpO
J /.

6.2 Weyl groups

Let G be a finite group and H a subgroup of G . Then H is a normal subgroup
of its normalizer N.H / D fg 2 G j gH D Hgg, and the quotient group W .H / D

N.H /=H is called the Weyl group of H . According to the previous subsection, the
short exact sequence

1 �!H
�
��!N.H /

"
���!W .H / �! 1
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gives us the geometric fixed point functor

ˆH
W Ho.SpO

N.H // �! Ho.SpO
W .H //

and the inflation functor

"�W Ho.SpO
W .H // �! Ho.SpO

N.H //:

We will denote the composite functor

ˆH
ıResG

N.H /W Ho.SpO
G / �! Ho.SpO

W .H //

by ˆH
res . It then follows from Corollary 6.1.2 that there is an isomorphism

ˆH
res.†

1
CG=H /Š†1C .G=H /H

in Ho.SpO
W .H //. (This holds already on the point-set level.) Since .G=H /H DW .H /

as W .H /–sets, one gets an isomorphism

ˆH
res.†

1
CG=H /Š†1CW .H /

in Ho.SpO
W .H //. Further, by definition, one has "�.†1CW .H // D †1CN.H /=H in

Ho.SpO
N.H //, and hence we get

G ËN.H / "
�.†1CW .H //D†1CG=H:

Having these identifications in mind, we are now ready to formulate the following:

Proposition 6.2.1 Let W denote the Weyl group, W .H /. The composite

Œ†1CW; †1CW �W�
GËN.H /"

�

�������! Œ†1CG=H; †1CG=H �G�
ˆH

res
����! Œ†1CW; †1CW �W�

is an isomorphism.

Proof By Proposition 6.1.3, we have the natural isomorphism

�W id
Š
��!ˆH "�;

which is a triangulated transformation. Since .G ËN.H / �;ResG
N.H /

/ is a Quillen
adjunction (see Subsection 5.2), the derived unit map

id
�
��! ResG

N.H /.G ËN.H /�/

is a triangulated transformation as well; see Subsection 2.2. Hence, the composite

ˆH �"� ı�W id
�
��!ˆH "�

ˆH �"�

�����!ˆH .ResG
N.H /.G ËN.H / "

�//DˆH
res.G ËN.H / "

�/
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is a triangulated transformation. Moreover, it follows from Proposition 6.1.3 and
the identifications we did before Proposition 6.2.1 that this natural transformation
is an isomorphism in Ho.SpO

W .H // when applied to †1CW .H /. Consequently, by
Lemma 2.2.1, the restriction of the functor ˆH .ResG

N.H /
.G ËN.H / "

�// to the localiz-
ing subcategory of Ho.SpO

W .H // generated by †1CW .H / is isomorphic to the identity
functor and thus an equivalence of categories. This implies the desired result.

6.3 The short exact sequence

Suppose G is a finite group and F a set of subgroups of G . The set F is said to be a
family of subgroups of G if it is closed under conjugation and taking subgroups.

Recall that, for any finite group G and any family F , there is a classifying space
(G –CW complex) EF characterized up to G –homotopy equivalence by the property
that EFH is contractible if H 2F and EFH D∅ if H 62F ; see eg [14].

Let P denote the family of proper subgroups of G . Consider the equivariant map
EPC

proj
���! S0 which sends the elements of EP to the nonbase point of S0 . The

mapping cone sequence of this map (called the isotropy separation sequence) combined
with the tom Dieck splitting [10, Theorem II.7.7] gives the following well-known fact:

Proposition 6.3.1 Let G be a finite group. Then there is a split short exact sequence

0 �! ŒS; †1CEP �G�
proj�
���! ŒS;S�G�

ˆG

���! ŒS;S�� �! 0:

Now suppose H is a subgroup of G . Then for any X 2 Ho.SpO
G /, there is a natu-

ral isomorphism
G ËH ResG

H X ŠG=HC ^
L X

given on the point-set level by Œg;x� 7! .Œg�^gx/. In particular,

G ËH SŠ†1CG=H:

Having this preferred isomorphism in mind, we will once and for all identify G ËH S
with †1CG=H . Next, let P ŒH � denote the family of proper subgroups of H . Note
that this is a family with respect to H and not necessarily with respect to the whole
group G . Here is the main result of this section, which is an important tool in the proof
of Theorem 3.1.3.

Proposition 6.3.2 Let G be a finite group, H a subgroup, and W the Weyl group,
W .H /. Then there is a split short exact sequence

Œ†1CG=H;G ËH †1CEP ŒH ��G�
proj�
>�! Œ†1CG=H; †1CG=H �G�

ˆH
res
�� Œ†1CW; †1CW �W� ;
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where the morphism projW GËH †1CEP ŒH ��!†1CG=H is defined as the composite

G ËH †1CEP ŒH �
GËH proj
�������!G ËH SŠ†1CG=H:

Before proving this proposition we have to recall some important technical facts.

6.4 Technical preparation

It follows from the definition that, for any K 2P ŒH �, the set of H –fixed points of
G=K is empty. Together with Corollary 6.1.2, this implies that ˆH

res.†
1
CG=K/D �

in Ho.SpO
W .H //. Since the classifying space EP ŒH � is built out of H –cells of orbit

type H=K with K �H and K ¤H , one obtains:

Proposition 6.4.1 Let G be a finite group. For any subgroup H � G , the G–CW
complex G �H EP ŒH � is built out of G–cells of orbit type G=K with K �H and
K ¤H . Furthermore, ˆH

res.G ËH †1CEP ŒH �/D � in Ho.SpO
W .H //.

Next, we recall that the functor MapH .GC;�/W Ho.SpO
H /! Ho.SpO

G / is right ad-
joint to ResG

H . Recall also the map wH W G ËH .�/! MapH .GC;�/ that induces
the Wirthmüller isomorphism; see Proposition 5.2.1. The following proposition is a
consequence of the Wirthmüller isomorphism.

Proposition 6.4.2 For any Y in Ho.SpO
H /, the natural map

ŒS;G ËH Y �G�
wH �
���! ŒS;MapH .GC;Y /�

G
� Š ŒResG

H .S/;Y �
H
� D ŒS;Y �

H
�

is an isomorphism.

Corollary 6.4.3 Let G be a finite group with subgroups H and K . Then for any
spectrum Y 2 Ho.SpO

H /, there is a natural isomorphism

Œ†1CG=K;G ËH Y �G� Š
M

Œg�2KnG=H

ŒS;Res
gH
K\gH .c

�
g.Y //�

K\gH
� :

Algebraic & Geometric Topology, Volume 16 (2016)



Rigidity in equivariant stable homotopy theory 2211

Proof By adjunction, Corollary 5.2.3 and Proposition 6.4.2, one has the following
chain of isomorphisms:

Œ†1CG=K;G ËH Y �G� Š ŒG ËK S;G ËH Y �G� Š ŒS;ResG
K .G ËH Y /�K�

Š

�
S;

_
Œg�2KnG=H

K ËK\gH Res
gH
K\gH .c

�
g.Y //

�K

�

Š

M
Œg�2KnG=H

ŒS;K ËK\gH Res
gH
K\gH .c

�
g.Y //�

K
�

Š

M
Œg�2KnG=H

ŒS;Res
gH
K\gH .c

�
g.Y //�

K\gH
� :

6.5 Proof of Proposition 6.3.2

In this subsection we prove that the sequence

Œ†1CG=H;G ËH †1CEP ŒH ��G�
proj�
>�! Œ†1CG=H; †1CG=H �G�

ˆH
res
�� Œ†1CW; †1CW �W�

is a split short exact sequence. It follows from Proposition 6.2.1 that

ˆH
resW Œ†

1
CG=H; †1CG=H �G� �! Œ†1CW; †1CW �W�

is a retraction and thus, in particular, surjective. Further, Proposition 6.4.1 implies that

ˆH
res ı proj� D 0:

Hence, it remains to show that the map

proj�W Œ†
1
CG=H;G ËH †1CEP ŒH ��G� �! Œ†1CG=H; †1CG=H �G�

is injective and KerˆH
res � Im.proj�/. For this we choose a set fgg of double coset

representatives for H nG=H . By Corollary 6.4.3, the following is a commutative
diagram with all vertical arrows isomorphisms:

Œ†1CG=H;G ËH †1CEP ŒH ��G�

D

��

proj�
// Œ†1CG=H; †1CG=H �G�

Š

��

Œ†1CG=H;G ËH †1CEP ŒH ��G�

Š

��

.GËH proj/�
// Œ†1CG=H;G ËH S�G�

Š

��M
Œg�2H nG=H

ŒS; †1C Res
gH
H\gH .c

�
g.EP ŒH �//�H\

gH
�

L
Œg�2HnG=H

.proj/�
//

M
Œg�2H nG=H

ŒS;S�H\
gH

�
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We will now identify the summands of the lower horizontal map. For this, one has to
consider two cases.

Case 1 H\gH DH : In this case, Res
gH
H\gH .c

�
g.EP ŒH �//D c�g.EP ŒH �/ is a model

for the classifying space of P ŒH � (and hence G –homotopy equivalent to EP ŒH �/).
By Proposition 6.3.1, we get a short exact sequence

0! ŒS; †1C Res
gH
H\gH .c

�
g.EP ŒH �//�H\

gH
�

proj�
���! ŒS;S�H\

gH
�

ˆH\gH

������! ŒS;S��! 0:

Case 2 H \ gH is a proper subgroup of H : In this case, Res
gH
H\gH .c

�
g.EP ŒH �// is

an .H \ gH /–contractible cofibrant .H \ gH /–space and hence the map

ŒS; †1C Res
gH
H\gH .c

�
g.EP ŒH �//�H\

gH
�

proj�
���! ŒS;S�H\

gH
�

is an isomorphism.

After combining the latter diagram with case 1 and case 2, we see that the map

proj�W Œ†
1
CG=H;G ËH †1CEP ŒH ��G� �! Œ†1CG=H; †1CG=H �G�

is injective. It still remains to check that KerˆH
res � Im.proj�/. For this, first note

that H \ gH DH if and only if g 2N.H /. Further, if g 2N.H /, then the double
coset class HgH is equal to gH . Hence the set of those double cosets Œg� 2H nG=H

for which the equality H \ gH D H holds is in bijection with the Weyl group W .
Consequently, using the latter diagram, case 1 (and hence Proposition 6.3.1) and case
2, one gets an isomorphism

Œ†1CG=H; †1CG=H �G� = Im.proj�/Š
M
W

ŒS;S�� Š Œ†
1
CW; †1CW �W� :

On the other hand, we have already checked that

ˆH
resW Œ†

1
CG=H; †1CG=H �G� �! Œ†1CW; †1CW �W�

is surjective and this yields an isomorphism

Œ†1CG=H; †1CG=H �G� =KerˆH
res Š Œ†

1
CW; †1CW �W� :

Combining this with the previous isomorphism implies that the graded abelian group

Œ†1CG=H; †1CG=H �G� = Im.proj�/
is isomorphic to

Œ†1CG=H; †1CG=H �G� =KerˆH
res:

Now if the grading � > 0, then Œ†1CG=H; †1CG=H �G� is finite, and it follows that
Im.proj�/ and KerˆH

res are finite groups of the same cardinality; see Subsection 2.8.
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Since we already know that Im.proj�/�KerˆH
res (we have already observed that this is

a consequence of Proposition 6.4.1.), one finally gets the equality Im.proj�/DKerˆH
res .

For �D 0, a five lemma argument completes the proof. We do not give here the details
of the case � D 0 as it is irrelevant for our proof of Theorem 3.1.3.

7 Proof of the main theorem

In this section we complete the proof of Theorem 3.1.3 and hence of Theorem 1.1.1.

We will start by recalling from [33, Section IV.6] the F –model structure on the category
of G–equivariant orthogonal spectra, where F is a family of subgroups of a finite
group G .

7.1 The F –model structure and localizing subcategory determined by F

Let G be a finite group and F a family of subgroups of G .

Definition 7.1.1 A morphism f W X ! Y of G–equivariant orthogonal spectra is
called an F –equivalence if it induces isomorphisms

f�W �
H
� X

Š
��! �H

� Y

on H –equivariant homotopy groups for any H 2F . Similarly, a morphism gW X!Y

in Ho.SpO
G / is called an F –equivalence if it induces an isomorphism on �H

� for any
H 2F .

The category of G–equivariant orthogonal spectra has a stable model structure with
weak equivalences the F –equivalences and with cofibrations the F –cofibrations; see
[33, Theorem IV.6.5]. By restricting our attention to those orbits G=H that satisfy
H 2F , we can obtain the generating F –cofibrations and acyclic F –cofibrations in
a similar way as for the absolute case of SpO

G [33, Section III.4]; see Sections 2.6
and 2.7. In particular, retracts of relative F –cell complexes built out of generating
F –cofibrations are exactly F –cofibrations. We will denote this model category by
SpO

G;F .

The following proposition relates the classifying space EF with the concept of an
F –equivalence.

Proposition 7.1.2 [33, Proposition IV.6.7] A morphism f W X!Y of G –equivariant
orthogonal spectra is an F –equivalence if and only if 1^f W EFC^X !EFC^Y

is a G –equivalence, ie a stable equivalence of orthogonal G –spectra.

Algebraic & Geometric Topology, Volume 16 (2016)



2214 Irakli Patchkoria

By definition of F –equivalences and F –cofibrations, we get a Quillen adjunction

idW SpO
G;F
�!
 � SpO

G W id :

After deriving this Quillen adjunction one obtains an adjunction

LW Ho.SpO
G;F /

�!
 � Ho.SpO

G / WR

on the homotopy level. We now examine the essential image of the left adjoint functor
L. Since a weak equivalence in SpO

G is also a weak equivalence in SpO
G;F , the unit

id �! RL

of the adjunction .L;R/ is an isomorphism of functors. Hence the functor

LW Ho.SpO
G;F / �! Ho.SpO

G /

is fully faithful.

Proposition 7.1.3 For any X 2 SpO
G;F , there are natural isomorphisms

L.X /ŠEFC ^
L X ŠEFC ^X:

Proof Let �X W X
c!X be a (functorial) cofibrant replacement of X in SpO

G;F . By
[33, Theorem IV.6.10], we have that the projection map EFC ^X c!X c is a weak
equivalence in SpO

G . On the other hand, Proposition 7.1.2 implies that the morphism
of G –spectra 1^�X W EFC ^X c!EFC ^X is a weak equivalence in SpO

G . This
completes the proof.

Next, note that the triangulated category Ho.SpO
G;F / is compactly generated with

f†1CG=H jH 2F gI

see Subsection 2.2. Indeed, this follows from the following chain of isomorphisms:

Œ†1CG=H;X �
Ho.SpO

G;F /

� Š ŒEFC ^†
1
CG=H;EFC ^X �G�

Š Œ†1CG=H;EFC ^X �G� Š �
H
� .EFC ^X /Š �H

� X:

The first isomorphism in this chain follows from Proposition 7.1.3 and from the fact
that L is fully faithful. The second isomorphism holds since H 2 F . Finally, the
last isomorphism follows from the fact that EFC is pointed H –homotopy equivalent
to S0 .

Proposition 7.1.4 The essential image of the functor LW Ho.SpO
G;F /! Ho.SpO

G / is
exactly the localizing subcategory generated by f†1CG=H jH 2F g.
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Proof The functor L is exact, and as we already noted, Ho.SpO
G;F / is generated by

the set f†1CG=H jH 2F g. Next, by Proposition 7.1.3, for any H 2F ,

L.†1CG=H /ŠEFC ^†
1
CG=H:

The projection map EFC^†
1
CG=H !†1CG=H is a weak equivalence in SpO

G . The
rest of the proof follows from the fact that L is full.

Next, we need the following simple lemma from category theory.

Lemma 7.1.5 Let
LW D �! � E WR:

be an adjunction and assume that the unit

id �! RL

is an isomorphism (or, equivalently, L is fully faithful). Further, suppose we are
given morphisms

X
˛
��!Z

ˇ
 �� Y

in E such that X and Y are in the essential image of L, and that R.˛/ and R.ˇ/ are
isomorphisms in D . Then there is an isomorphism 
 W X Š

��! Y in E such that the
following diagram commutes:

X



//

˛
  

Y

ˇ~~

Z

Proof One has the commutative diagram

LR.X /

counitŠ

��

LR.˛/

Š
// LR.Z/

counit
��

LR.Y /
LR.ˇ/

Š
oo

counitŠ

��

X
˛

// Z Y
ˇ

oo

where the left and right vertical arrows are isomorphisms since X and Y are in the
essential image of L and the functor L is fully faithful. We can choose 
 W X Š

��! Y

to be the composite

X
counit�1

������! LR.X /
LR.˛/
�����! LR.Z/

.LR.ˇ//�1

��������! LR.Y /
counit
����! Y:
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Corollary 7.1.6 Let F be a family of subgroups of G and suppose X and Y are in
the essential image of LW Ho.SpO

G;F /!Ho.SpO
G / (which is the localizing subcategory

generated by f†1CG=H jH 2F g according to Proposition 7.1.4). Further assume that
we have maps

X
˛
��!Z

ˇ
 �� Y

such that �H
� ˛ and �H

� ˇ are isomorphisms for any H 2 F (or, in other words, ˛
and ˇ are F –equivalences). Then there is an isomorphism 
 W X Š

��! Y such that the
following diagram commutes:

X



//

˛
  

Y

ˇ~~

Z

Proof We apply the previous lemma to the adjunction

LW Ho.SpO
G;F /

�!
 � Ho.SpO

G / WR;

and use the isomorphism �H
� R.T /Š �H

� T for H 2F .

7.2 Inductive strategy and preservation of induced classifying spaces

Recall that we are given an exact functor of triangulated categories

F W Ho.SpO
G ;.2/ / �! Ho.SpO

G ;.2/ /

that preserves arbitrary coproducts and such that

F.†1CG=H /D†1CG=H; H �G;

and

F.g/D g; F.resH
K /D resH

K ; and F.trH
K /D trH

K ; g 2G; K �H �G:

We want to show that F is an equivalence of categories. Proposition 5.1.1 implies that,
in order to prove that F is an equivalence, it suffices to check that, for any subgroup
H �G , the map between graded endomorphism rings

F W Œ†1CG=H; †1CG=H �G� ! ŒF.†1CG=H /;F.†1CG=H /�G� D Œ†
1
CG=H; †1CG=H �G�
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is an isomorphism. Indeed, there is a commutative diagram

Œ†1CG=H; †1CG=K�G�

g�

��

F
// Œ†1CG=H; †1CG=K�G�

g�

��

Œ†1CG=gH; †1CG=K�G�

.trK
gH\K

/�
��

F
// Œ†1CG=gH; †1CG=K�G�

.trK
gH\K

/�
��

Œ†1CG=gH; †1CG=.gH\K/�G�

.res
gH
gH\K

/�

��

F
// Œ†1CG=gH; †1CG=.gH\K/�G�

.res
gH
gH\K

/�

��

Œ†1CG=.gH\K/; †1CG=.gH\K/�G�
F
// Œ†1CG=.gH\K/; †1CG=.gH\K/�G� :

for any g 2G , which implies that the diagram

Œ†1CG=H; †1CG=K�G�
.�g/Œg�2KnG=H

//

F

��

M
Œg�2KnG=H

Œ†1CG=.gH\K/; †1CG=.gH\K/�G�

L
Œg�2KnG=H

F

��

Œ†1CG=H; †1CG=K�G�
.�g/Œg�2KnG=H

//
M

Œg�2KnG=H

Œ†1CG=.gH\K/; †1CG=.gH\K/�G�

commutes. If we now assume that, for any subgroup L�G , the map

F W Œ†1CG=L; †1CG=L�G� �! Œ†1CG=L; †1CG=L�G�

is an isomorphism, then the right vertical map in the latter commutative square is an
isomorphism. Proposition 5.1.1 implies that the horizontal maps are injective. Hence,
by a simple diagram chase, it follows that the left vertical morphism is injective as well.
But now we know that, for � D 0, the morphism

F W Œ†1CG=H; †1CG=K�G� �! Œ†1CG=H; †1CG=K�G�

is the identity, and for �> 0, it has the same finite source and target; see Subsection 2.8.
Combining this with the latter injectivity result allows us to conclude that the map

F W Œ†1CG=H; †1CG=K�G� �! Œ†1CG=H; †1CG=K�G�

is an isomorphism for any integer �. Finally, since the set f†1CG=H j H � Gg is
a set of compact generators for the triangulated category Ho.SpO

G ;.2//, Lemma 2.2.2
completes the proof of Theorem 3.1.3.
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Hence it remains to show that, for any subgroup H � G , the map between graded
endomorphism rings

F W Œ†1CG=H; †1CG=H �G� ! ŒF.†1CG=H /;F.†1CG=H /�G� D Œ†
1
CG=H; †1CG=H �G�

is an isomorphism. We proceed by induction on the cardinality of H . The induction
starts with the case H D e . Proposition 4.2.1 tells us that the map

F W Œ†1CG; †1CG�G� �! Œ†1CG; †1CG�G�

is an isomorphism, and hence the basis step is proved. The induction step follows from
the next proposition, which is one of the main technical results of this paper.

Proposition 7.2.1 Let G be a finite group and H a subgroup of G . Assume that, for
any subgroup K of G that is proper subconjugate to H , the map

F W Œ†1CG=K; †1CG=K�G� ! ŒF.†1CG=K/;F.†1CG=K/�G� D Œ†
1
CG=K; †1CG=K�G�

is an isomorphism. Then the map

F W Œ†1CG=H; †1CG=H �G� ! ŒF.†1CG=H /;F.†1CG=H /�G� D Œ†
1
CG=H; †1CG=H �G�

is an isomorphism.

Before starting to prove this proposition, one has to show that, under its assumptions,
the functor F preserves the object G ËH †1CEP ŒH �. More precisely, let P ŒH �

denote the family of proper subgroups of H . This is a family with respect to H and
not necessarily with respect to the whole group G . Next, let

projW G ËH †1CEP ŒH � �!†1CG=H

be the projection (as in Subsection 6.3). The following holds:

Lemma 7.2.2 Suppose G is a finite group and H a subgroup of G . Assume that, for
any subgroup K of G that is proper subconjugate to H , the map

F W Œ†1CG=K; †1CG=K�G� �! Œ†1CG=K; †1CG=K�G�

is an isomorphism. Then there is an isomorphism


 W F.G ËH †1CEP ŒH �/
Š
��!G ËH †1CEP ŒH �

such that the following diagram commutes:

F.G ËH †1CEP ŒH �/

F.proj/
��




Š
// G ËH †1CEP ŒH �

proj
��

F.†1CG=H / †1CG=H
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Proof Let P ŒH jG� denote the family of subgroups of G that are proper subconjugate
to H . By Proposition 7.1.4, the essential image of the fully faithful embedding

LW Ho.SpO
G;PŒH jG�/ �! Ho.SpO

G /

is the localizing subcategory generated by the set f†1CG=K j K 2 P ŒH jG�g. Ob-
viously, the spectrum G ËH †1CEP ŒH � is an object of this localizing subcategory
as the H –CW complex EP ŒH � is built out of H –cells of orbit type H=K with
K �H and K ¤H . Next, since the endofunctor F W Ho.SpO

G /! Ho.SpO
G / is exact,

preserves infinite coproducts and F.†1CG=L/D†1CG=L for any L�G , the spectrum
F.G ËH †1CEP ŒH �/ is contained in the essential image of LW Ho.SpO

G;PŒH jG�/!

Ho.SpO
G / as well. Hence by Corollary 7.1.6, it suffices to show the maps in the zigzag

F.G ËH †1CEP ŒH �/
F.proj/
�����! F.†1CG=H /D†1CG=H

proj
 ��G ËH †1CEP ŒH �

are P ŒH jG�–equivalences (which means that they induce isomorphisms on �K
� .�/

for any subgroup K 2P ŒH jG�). First, we check that the map

projW G ËH †1CEP ŒH � �!†1CG=H

is a P ŒH jG�–equivalence. Indeed, by Corollary 6.4.3, for any K 2P ŒH jG�, one has
the following commutative diagram:

�K
� .G ËH †1CEP ŒH �/

proj�
//

Š
��

�K
� .†

1
CG=H /

Š
��

Œ†1CG=K;G ËH †1CEP ŒH ��G�
proj�

//

Š
��

Œ†1CG=K;G ËH S�G�

Š
��M

Œg�2KnG=H

ŒS; †1C Res
gH
K\gH .c

�
g.EP ŒH �//�K\

gH
�

L
Œg�2KnG=H

.proj/�
//

M
Œg�2KnG=H

ŒS;S�K\
gH

�

If L is a subgroup of K \ gH , then g�1Lg is a subgroup of H . In fact, g�1Lg

is a proper subgroup of H since K 2P ŒH jG�. This implies that, for any subgroup
L�K\ gH , the space

.Res
gH
K\gH .c

�
g.EP ŒH �///L D .EP ŒH �/g

�1Lg

is contractible. Hence, Res
gH
K\gH .c

�
g.EP ŒH �// is a .K\ gH /–contractible cofibrant

.K\ gH /–space and we see that the map

projW †1C Res
gH
K\gH .c

�
g.EP ŒH �// �! S
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is a .K\ gH /–equivalence. From this, we conclude that the lower horizontal map in
the latter commutative diagram is an isomorphism. Hence the upper horizontal map is
an isomorphism for any subgroup K 2P ŒH jG�, and one concludes that the map

projW G ËH †1CEP ŒH � �!†1CG=H

is a P ŒH jG�–equivalence.

It remains to show that the morphism

F.proj/W F.G ËH †1CEP ŒH �/! F.†1CG=H /

is a P ŒH jG�–equivalence as well. We first note that the assumptions imply that, for
any K 2P ŒH jG� and any (not necessarily proper) subgroup L�H , the map

F W Œ†1CG=K; †1CG=L�G� �! ŒF.†1CG=K/;F.†1CG=L/�G� D Œ†
1
CG=K; †1CG=L�G�

is an isomorphism. Indeed, this follows from Proposition 5.1.1 as well as from the
following commutative diagram:

Œ†1CG=K; †1CG=L�G�
.��/Œ��2KnG=L

//

F

��

M
Œ��2KnG=L

Œ†1CG=.�L\K/; †1CG=.�L\K/�G�

L
Œ��2KnG=L

F

��

Œ†1CG=K; †1CG=L�G�
.��/Œ��2KnG=L

//
M

Œ��2KnG=L

Œ†1CG=.�L\K/; †1CG=.�L\K/�G�

The right vertical map is an isomorphism since �L\K is proper subconjugate to H

for any �. In particular, the map

F W Œ†1CG=K; †1CG=H �G� �! Œ†1CG=K; †1CG=H �G�

is an isomorphism. Next, using a standard argument on triangulated categories, we see
that, for any K 2P ŒH jG� and any X from the localizing subcategory of Ho.SpO

G /

generated by f†1CG=L jL�H g, the map

F W Œ†1CG=K;X �G� �! ŒF.†1CG=K/;F.X /�G�

is an isomorphism (recall F.†1CG=L/D†1CG=L for any L�G ). As a consequence,
we see that the morphism

F W Œ†1CG=K;G ËH †1CEP ŒH ��G� �! ŒF.†1CG=K/;F.G ËH †1CEP ŒH �/�G�
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is an isomorphism. Finally, for any K 2P ŒH jG�, consider the following commuta-
tive diagram:

Œ†1CG=K;G ËH †1CEP ŒH ��G�
proj�

//

FŠ

��

Œ†1CG=K; †1CG=H �G�

FŠ

��

ŒF.†1CG=K/;F.G ËH †1CEP ŒH �/�G�
F.proj/�

// ŒF.†1CG=K/;F.†1CG=H /�G�

Œ†1CG=K;F.G ËH †1CEP ŒH �/�G�
F.proj/�

// Œ†1CG=K;F.†1CG=H /�G�

As we already explained, the upper horizontal map is an isomorphism. Thus the lower
horizontal map in this diagram is an isomorphism as well, and therefore, the map

F.proj/W F.G ËH †1CEP ŒH �/ �! F.†1CG=H /

is a P ŒH jG�–equivalence.

7.3 Completing the proof of Theorem 3.1.3

In this subsection, we continue the induction started in the previous subsection and
prove Proposition 7.2.1. Finally, at the end, we complete the proof of Theorem 3.1.3
and hence prove the main Theorem 1.1.1.

Proof of Proposition 7.2.1 Recall (from Section 6) that W denotes the Weyl group
W .H /, and that the extension

1 �!H
�
��!N.H /

"
��!W �! 1

determines the inflation functor

"�W Ho.SpO
W / �! Ho.SpO

N.H //

and the geometric fixed point functor

ˆH
W Ho.SpO

N.H // �! Ho.SpO
W /:

Let yF W Ho.SpO
W / �! Ho.SpO

W / denote the composite

Ho.SpO
W /

"�

��! Ho.SpO
N.H //

GËN.H /�

�������! Ho.SpO
G /

F
��! Ho.SpO

G /
ResG

N.H /

������! Ho.SpO
N.H //

ˆH

���! Ho.SpO
W /:
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It follows from the identifications we did in Subsection 6.2 and from the properties of
F that the functor yF is exact, preserves infinite coproducts and sends †1CW to itself.
Moreover, it also follows that the restriction

yF jHo.Mod-†1
C

W /W Ho.Mod-†1CW / �! Ho.Mod-†1CW /

of yF on the localizing subcategory of Ho.SpO
W / generated by †1CW satisfies the

assumptions of Proposition 4.2.1. Hence the map

yF W Œ†1CW; †1CW �W� �! Œ†1CW; †1CW �W�

is an isomorphism. Next, by the assumptions and Proposition 5.1.1 (like in the proof
of Lemma 7.2.2), we see that for any proper subgroup L of H , the map

F W Œ†1CG=H; †1CG=L�G� �! Œ†1CG=H; †1CG=L�G�

is an isomorphism. This, using a standard argument on triangulated categories, implies
that for any X which is contained in the localizing subcategory of Ho.SpO

G / generated
by f†1CG=L jL 2P ŒH �g, the map

F W Œ†1CG=H;X �G� �! ŒF.†1CG=H /;F.X /�G�

is an isomorphism and hence, in particular, so is the morphism

F W Œ†1CG=H;G ËH †1CEP ŒH ��G� �! ŒF.†1CG=H /;F.G ËH †1CEP ŒH �/�G� :

Finally, we have the following important commutative diagram:

Œ†1CG=H;

GËH†
1
CEP ŒH ��G�

proj�
//

FŠ

��

Œ†1CG=H;

†1CG=H �G�

F
��

Œ†1CW;†1CW �W�
GËN.H /"

�

oo

yFŠ

��
ŒF.†1CG=H /;

F.GËH†
1
CEP ŒH �/�G�

F.proj/�
//

Š

��

ŒF.†1CG=H /;

F.†1CG=H /�G�

ˆH
res
// Œ yF .†1CW /; yF .†1CW /�W�

Œ†1CG=H;

GËH†
1
CEP ŒH ��G�

//
proj�

//
Œ†1CG=H;

†1CG=H �G�

ˆH
res

// // Œ†1CW;†1CW �W�

Lemma 7.2.2 implies that the lower left square commutes, and the lower left vertical
map is an isomorphism. Other squares commute by definitions. Further, according to
Proposition 6.3.2, the lower row in this diagram is a short exact sequence, and hence
so is the middle one.
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Now a simple diagram chase shows that the map

F W Œ†1CG=H; †1CG=H �G� ! ŒF.†1CG=H /;F.†1CG=H /�G� D Œ†
1
CG=H; †1CG=H �G�

is an isomorphism. Indeed, assume that � > 0 (the case � D 0 is obvious by
the assumptions on F ). Then the latter map has the same finite source and tar-
get, and hence it suffices to show that it is surjective. Fix � > 0 and take any
˛ 2 ŒF.†1CG=H /;F.†1CG=H /�G� . Since the map

yF W Œ†1CW; †1CW �W� �! Œ yF .†1CW /; yF .†1CW /�W�

is an isomorphism, there exists ˇ 2 Œ†1CW; †1CW �W� such that

yF .ˇ/DˆH
res.˛/:

By definition of the functor yF , the element

F.G ËN.H / "
�.ˇ//�˛ 2 ŒF.†1CG=H /;F.†1CG=H /�G�

is in the kernel of

ˆH
resW ŒF.†

1
CG=H /;F.†1CG=H /�G� �! Œ yF .†1CW /; yF .†1CW /�W� :

But the kernel of this map is contained in the image of

F W Œ†1CG=H; †1CG=H �G� �! ŒF.†1CG=H /;F.†1CG=H /�G�

since the middle row in the commutative diagram above is exact and the upper left
vertical map is an isomorphism. Consequently, F.G ËN.H / "

�.ˇ//�˛ is in the image
of F , and this completes the proof.

Proof of Theorem 3.1.3 Recall that our aim is to show that for any subgroup H �G ,
the map

F W Œ†1CG=H; †1CG=H �G� �! Œ†1CG=H; †1CG=H �G�

is an isomorphism. We have already shown (in Subsection 7.2) that this, together with
Proposition 5.1.1, would imply that the map

F W Œ†1CG=L; †1CG=L0�G� �! Œ†1CG=L; †1CG=L0�G�

is an isomorphism for any integer � and subgroups L;L0�G . Finally, by Lemma 2.2.2,
Theorem 3.1.3 will follow.

The strategy to prove the last claim about the graded endomorphisms was indicated
in Subsection 7.2. We proceed by induction on the cardinality of H . The induction
basis follows from Proposition 4.2.1 as we already explained. Now suppose n > 1,
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and assume that the claim holds for all subgroups of G with cardinality less than or
equal to n� 1. Let H be any subgroup of G that has cardinality equal to n. Then,
by the induction assumption, for any subgroup K which is proper subconjugate to H ,
the map

F W Œ†1CG=K; †1CG=K�G� �! Œ†1CG=K; †1CG=K�G�

is an isomorphism. Proposition 7.2.1 now implies that

F W Œ†1CG=H; †1CG=H �G� �! Œ†1CG=H; †1CG=H �G�

is an isomorphism and this completes the proof of the claim.
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