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Profinite and discrete G–spectra and
iterated homotopy fixed points

DANIEL G DAVIS

GEREON QUICK

For a profinite group G , let .�/hG , .�/hd G and .�/h
0G denote continuous ho-

motopy fixed points for profinite G –spectra, discrete G –spectra and continuous
G –spectra (coming from towers of discrete G –spectra), respectively. We establish
some connections between the first two notions, and by using Postnikov towers,
for K Cc G (a closed normal subgroup), we give various conditions for when the
iterated homotopy fixed points .X hK /hG=K exist and are X hG . For the Lubin–
Tate spectrum En and G <c Gn , the extended Morava stabilizer group, our results
show that EhK

n is a profinite G=K–spectrum with .EhK
n /hG=K 'EhG

n ; we achieve
this by an argument that possesses a certain technical simplicity enjoyed by nei-
ther the proof that .Eh0K

n /h
0G=K ' Eh0G

n nor the Devinatz–Hopkins proof (which
requires jG=Kj <1) of .EdhK

n /hd G=K ' EdhG
n , where EdhK

n is a construction
that behaves like continuous homotopy fixed points. Also, we prove that (in gen-
eral) the G=K–homotopy fixed point spectral sequence for ��..EhK

n /hG=K / , with
E

s;t
2 D H s

c .G=KI�t .E
hK
n // (continuous cohomology), is isomorphic to both the

strongly convergent Lyndon–Hochschild–Serre spectral sequence of Devinatz for
��.E

dhG
n / and the descent spectral sequence for ��..Eh0K

n /h
0G=K / .

55P42; 55S45, 55T15, 55T99

1 Introduction

If G is a (discrete) group acting on a spectrum X , one can form the homotopy fixed
point spectrum X hG . The spectrum X hG is defined as the G–fixed points of the
function spectrum F.EGC;X /, where EG is a free contractible G–space. If G

carries a (nondiscrete) topology with respect to which the action on X is in some sense
continuous, one would like to have constructions of (i) a continuous homotopy fixed
point spectrum that respects the continuous action, and (ii) an associated homotopy
fixed point spectral sequence whose E2 –term consists of continuous cohomology
groups. When G is a profinite group, this construction problem has been studied (a) for
discrete and continuous G –spectra by Behrens and the first author [3; 1], and (b) for

Published: 12 September 2016 DOI: 10.2140/agt.2016.16.2257

http://msp.org
http://www.ams.org/mathscinet/search/mscdoc.html?code=55P42, 55S45, 55T15, 55T99
http://dx.doi.org/10.2140/agt.2016.16.2257


2258 Daniel G Davis and Gereon Quick

profinite G–spectra by the second author [24]. This was done by building on earlier
work, in the case of discrete objects, by Jardine [20; 21] and Thomason [29] (see the
helpful paper [22] by Mitchell), and Goerss [14], and, in the case of profinite objects,
by the second author [23; 25]. Motivated by the fact that a profinite G –set that is finite
is also a discrete G –set, one of the purposes of this paper is to compare approaches (a)
and (b) in certain cases and let the tools of one approach supplement the techniques of
the other.

1A Iterated continuous homotopy fixed points and profinite G–spectra

It is a standard fact that if H is any (discrete) group and N is any normal subgroup,
then for any H –space X , the space X hN can be identified with the H=N –space
MapN .EH;X / so that the iterated homotopy fixed point space .X hN /hH=N is defined.
Furthermore, it is well-known that .X hN /hH=N is just X hH .

We continue to let G be a profinite group, and we consider the setting of profinite
G –spectra. If K is a closed normal subgroup of G and X is any profinite G –spectrum,
the fixed points satisfy the equality X G D .X K /G=K . This identity and the aforemen-
tioned fact that .X hN /hH=N 'X hH motivate the following question about continuous
homotopy fixed points .�/hG for profinite G –spectra: is there an equivalence

(1) X hG
' .X hK /hG=K

between these two spectra? (In (1) and henceforth, whenever the group P is profinite,
the notation .�/hP denotes homotopy fixed points for profinite P –spectra.)

In the setting of profinite groups and for any object in some category of G–spectra,
the above question was first asked by Devinatz [7, page 130], and for the category of
discrete G –spectra, the question was studied in detail by the first author [5; 6] and by
Behrens and the first author [1]. The equivalence (1) would simplify the analysis of
the homotopy fixed points under G by reducing it to the study of those under proper
closed normal subgroups K and the quotients G=K .

Unfortunately, it is not known in general that the homotopy fixed point spectrum X hK

has the same topological characterization as the profinite G –spectrum X . For example,
when the profinite group G=K is not finite, X hK is not known in general to be a
profinite G=K–spectrum. These basic issues in the problem of iteration are considered
in more detail in this paper in Section 4A and Section 4B, and to make progress on
them, the following terminology is helpful.

Definition 1.1 The profinite group G has finite cohomological dimension if there
exists a positive integer r such that the continuous cohomology H s

c .GIM /D 0 for all
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s � r and every discrete G –module M (this notion is more commonly referred to as
finite strict cohomological dimension). We say that G has finite virtual cohomological
dimension if G contains an open subgroup U that has finite cohomological dimension.

To address the situation described just before Definition 1.1, we provide various sets of
sufficient conditions on G and X that allow for the formation of the iterated continuous
homotopy fixed points .X hK /hG=K and the obtaining of equivalence (1). A useful tool
for this work is a comparison result between profinite and discrete homotopy fixed points:
for certain X that are built out of simplicial finite discrete G –sets (see Definition 3.1),
the two notions of continuous homotopy fixed points are each defined, and under the
assumption that G has finite virtual cohomological dimension, Theorem 3.2 gives
an equivalence

X hG
'X hd G ;

where on the right side, X is regarded as a discrete G –spectrum and .�/hd G denotes
homotopy fixed points for discrete G –spectra.

Another very helpful tool is the notion of a K–Postnikov G –spectrum, where K is a
closed normal subgroup of G : such an object is a certain type of profinite G –spectrum
that has well-behaved Postnikov sections with respect to K (see Definition 4.8 for the
details). For these objects, we have the following iteration result.

Theorem 1.2 (Theorem 4.10) If G=K has finite virtual cohomological dimension
and X is a K–Postnikov G –spectrum, then there is an equivalence

X hG
' .X hK /hG=K :

For the duration of this paragraph, we assume that G is strongly complete (equivalently,
every subgroup of G that has finite index is open in G ), and we let Z be a (naive) G –
spectrum with stable homotopy groups ��.Z/ degreewise finite. These two conditions
imply that Z can be realized by the profinite G–spectrum F s

G
Z ; see Theorem 3.5,

which is recalled from [25], for the details. In Theorem 4.21, we use Theorem 1.2
to show that if G=K has finite virtual cohomological dimension and F s

G
Z is a K–

Postnikov G–spectrum, then the equivalence (1) is valid for F s
G

Z and, as carefully
explained (as the theory gradually develops) in Section 4, it is natural to write

.ZhK /hG=K
'ZhG :

By Lemma 4.22, whenever a profinite group G is a closed subgroup of a p–adic analytic
profinite group, then, as needed in the above paragraph, G (and G=K ) is strongly
complete and G=K has finite virtual cohomological dimension. In Theorem 4.14,
Corollary 4.15 and Remark 4.16, we give various conditions on a profinite G –spectrum
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that imply it is a K–Postnikov G –spectrum. To illustrate the results mentioned in this
paragraph and the preceding one, we give the following interesting result.

Theorem 1.3 Let p be any fixed prime. If the profinite group G is p–adic analytic
with a closed normal subgroup K , and Z is any G–spectrum with �t .Z/ a finite
p–torsion abelian group for every t 2 Z, then

.ZhK /hG=K
'ZhG :

Remark 1.4 Theorem 1.3 is easily stated and compelling, but its brief proof involves
a little page-turning. By Dixon, du Sautoy, Mann and Segal [12, Theorem 9.6], K is
p–adic analytic, so it is of type p–FP1 ; see Symonds and Weigel [28, page 377, The-
orem 5.1.2]. By Theorem 3.5, for every t , there is an isomorphism �t .Z/Š�t .F

s
G

Z/

of G –modules and �t .F
s
G

Z/ is a discrete G –module; see just after Definition 3.1. By
Remark 4.16, H s

c .KI�t .F
s
G

Z// is finite for all s and t . By Corollary 4.15, F s
G

Z is
a K–Postnikov G –spectrum.

Let J be any small category. Our next step is to apply the above tools and results to
the homotopy limit of fXˇgˇ2J , a diagram of K–Postnikov G –spectra that is natural
in ˇ . This concept (with matching name) is formalized in Definition 4.23; as explained
in Remark 4.24, the definition just unpacks the meaning present in the name in a natural
way. For such diagrams, we obtain the following result.

Theorem 1.5 (Theorem 4.25) If G is a profinite group with G=K having finite
virtual cohomological dimension, then there is an equivalence

..holimˇ Xˇ/
hK /hG=K

' .holimˇ Xˇ/
hG

and a conditionally convergent spectral sequence

E
s;t
2
DH s

c

�
G=KI�t ..holimˇ Xˇ/

hK /
�
D) �t�s..holimˇ Xˇ/

hG/:

In the above spectral sequence, the E2 –term is continuous cohomology with coefficients
the profinite G=K–module �t ..holimˇ Xˇ/

hK /.

In Corollary 4.29, we use Theorem 1.5 to give a result about when holimˇ2J Zˇ can
be realized by a profinite G –spectrum for which the equivalence (1) holds; here J is a
small category as above, fZˇgˇ2J is a diagram of G –spectra that have all homotopy
groups finite, and each Zˇ must be a fibrant spectrum.
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Remark 1.6 If K is nontrivial and nonopen in a profinite group G and Y is a discrete
G–spectrum that is not coconnective (that is, there is no k such that �t .Y / D 0

whenever t > k ), the most fruitful condition for obtaining the equivalence

.Y hd K /hd G=K
' Y hd G

is the requirement that Y be a hyperfibrant discrete G –spectrum (see [5]; some details
about this are recalled in Remark 4.5). But in general, hyperfibrancy is a highly
nontrivial condition, and in practice, one of the properties that has been used to show
that it holds is that of being a certain type of Galois extension (for example, the
conclusion of the first sentence in [1, proof of Lemma 6.3.6] gives the first isomorphism
in [5, proof of Lemma 7.1], and this last lemma is needed to prove the hyperfibrancy
result [5, Corollary 7.2]). Our work in this paper shows that the Postnikov tower of a
profinite G –spectrum is quite useful in the study of iterated continuous homotopy fixed
points, and it has allowed us to avoid dealing with hyperfibrancy for noncoconnective
spectra and Galois extensions.

1B An application of our theory: the action of Gn on En

For the study of continuous actions by profinite groups in homotopy theory, a fundamen-
tal and motivating example is the action of the extended Morava stabilizer group Gn

on the Lubin–Tate spectrum En . We quickly review this example.

Let p be a fixed prime, n� 1 an integer and Fpn the field with pn elements. Let Sn

be the nth Morava stabilizer group, that is, the automorphism group of the height n

Honda formal group law over Fpn . We denote by Gal.Fpn=Fp/ the Galois group
of Fpn over Fp , and let

Gn D Sn Ì Gal.Fpn=Fp/

be the semidirect product. Let K.n/ be the nth Morava K–theory spectrum with
K.n/� D Fp Œv

˙1
n � and jvnj D 2.pn� 1/. The Lubin–Tate spectrum En is the K.n/�–

local Landweber exact spectrum whose coefficients are given by

En� DW .Fpn/ŒŒu1; : : : ;un�1��Œu;u
�1�;

where W .Fpn/ is the ring of Witt vectors of the field Fpn , jui j D 0 for all i , and
juj D �2. The group Gn acts on the graded ring En� , and by Brown representability,
this action is induced by an action of Gn on En by maps of ring spectra in the stable
homotopy category. Furthermore, by work of Goerss, Hopkins and Miller (see Goerss
and Hopkins [16] and Rezk [27]), this homotopy action is induced by an action of Gn

on En before passage to the stable homotopy category.
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Now Gn is a profinite group and each homotopy group �tEn has the structure of a
continuous profinite Gn –module. From Morava’s change of rings theorem, we know
that the continuity of the action of Gn on each �tEn is an important property for stable
homotopy theory (to view Morava’s theorem in action, see, for example, Devinatz
and Hopkins [11, Section 2]). The most succinct way to convey the importance of
this continuous action is to note that, for any finite spectrum Y , there is a strongly
convergent homotopy fixed point spectral sequence that has the form

H s
c .GnI�t .En ^Y //D) �t�s.LK.n/.Y //;

where the E2 –term is continuous cohomology, �t .En ^Y / is a continuous profinite
Gn –module (this structure is induced by Gn acting diagonally on En ^ Y , with Y

given the trivial Gn –action), and LK.n/.�/ denotes Bousfield localization with respect
to K.n/ (this result is due to [1, Corollary 8.2.4, Theorem 8.2.5] and [11, Theorem 1];
see also Hopkins, Mahowald and Sadofsky [17, Proposition 7.4]). Therefore, to make
sense of En as a continuous Gn –spectrum is a fundamental problem.

For the closed subgroups G of Gn , Devinatz and Hopkins [11] gave a construction of
commutative S –algebras, here denoted by EdhG

n , that behave like continuous homotopy
fixed point spectra. However, the construction of the EdhG

n does not make use of a
continuous action of G on En . Using the construction of EdhU

n for open normal
subgroups U of Gn , a new and systematic definition of homotopy fixed points with
respect to a continuous G –action, for arbitrary closed subgroups G , was given in [3]:
we denote these continuous homotopy fixed points by Eh0G

n . The formation of the
Eh0G

n is based on the notion of discrete G–spectrum (a spectrum that is built out of
simplicial discrete G –sets) and homotopy limits of towers of discrete G –spectra (such
homotopy limits are the continuous G –spectra of [3]).

In [24], a different construction for a continuous homotopy fixed point spectrum EhG
n

and its descent spectral sequence, independent of [11] and [3], has been obtained. The
approach of [24] is to consider En as an object in the category of profinite G –spectra,
which, in contrast to the discrete G –spectra mentioned above, are G –spectra that are
built out of simplicial profinite G –sets. In this framework, the profinite G –spectrum
En is a (homotopy) limit of certain spectra that are simultaneously discrete G –spectra
and profinite G –spectra.

Each one of the above approaches has its own advantages (and drawbacks). But, as
one might expect, for every closed subgroup G , there are equivalences

EdhG
n 'Eh0G

n 'EhG
n

by [1, Theorem 8.2.1] and [24, top of page 220], respectively.
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It is no surprise that, for the profinite Gn –spectrum En , there are iteration issues
related to those mentioned just before Definition 1.1. For example, in [11] Devinatz and
Hopkins did not obtain a construction of a continuous homotopy fixed point spectrum
.EdhK

n /hG=K when G=K is not finite. Nevertheless, by a sophisticated study of the
structure of EdhK

n as a EdhG
n –module, Devinatz [7] was able to construct a strongly

convergent (Adams-type) Lyndon–Hochschild–Serre spectral sequence

(2) H�c .G=KI��.E
dhK
n //D) ��.E

dhG
n /;

with E2 –term given by continuous cohomology.

In [5], the first author was able to make sense of Eh0K
n (as defined in [3]) as a continuous

G=K–spectrum for an arbitrary closed normal subgroup K . Moreover, it was shown
in [5] that there is an equivalence

Eh0G
n ' .Eh0K

n /h
0G=K

and a descent spectral sequence

(3) H�c .G=KI��.E
h0K
n //D) ��.E

h0G
n /

that is isomorphic to spectral sequence (2) by [5, Theorem 7.6].

Though it is somewhat of an oversimplification, let us describe the results of the
preceding paragraph as taking place in the “world of continuous G–spectra” (this
terminology is an adaptation of the “G –world” terminology of Jardine [21]; for example,
see [21, page 211]). Then one of the purposes of this paper is to show that analogous
results hold in the setting of profinite G –spectra by applying results that were described
in Section 1A and by using the independent construction of continuous homotopy fixed
points in [24]. We accomplish this goal by obtaining the following two results.

Theorem 1.7 Let G be an arbitrary closed subgroup of Gn, and let K be a closed
normal subgroup of G . The continuous homotopy fixed point spectrum EhK

n has
a model in the category of profinite G=K–spectra, there is an iterated continuous
homotopy fixed point spectrum .EhK

n /hG=K, and there is an equivalence

EhG
n ' .EhK

n /hG=K :

The proof of Theorem 1.7 is given in Section 5, and the helpful notion of “model” that
is used in the theorem is explained in a precise way in Definition 4.1.

Before stating Theorem 1.8, we would like to be more explicit about the first two con-
clusions of Theorem 1.7 and thereby quickly illustrate that profinite iteration problems
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are not easy to solve. The proof of Theorem 1.7 shows that the spectrum EhK
n can be

identified with the profinite G=K–spectrum

(4) holim
k�0

holim
q2Z

F s
G=K

�
colim
U CoG

Map.EG;PqE0n;Ik
/KU

�
;

so that

.EhK
n /hG=K

D

�
holim

k�0
holim
q2Z

F s
G=K

�
colim
U CoG

Map.EG;PqE0n;Ik
/KU

��hG=K
:

In expression (4), all the undefined notation is carefully explained in later sections,
but to gain a fairly complete understanding of what spectrum (4) is describing, it
suffices to say that (a) in each of its applications above (and as mentioned just after
Theorem 1.2), F s

G=K
.�/ returns a profinite G=K–spectrum that is weakly equivalent

to the G=K–spectrum that is its input, and (b) morally, PqE0n;Ik
is “the qth Postnikov

section of the Gn –spectrum En=Ik ”, where

��.En/Š lim
k�0

��.En/=Ik :

Theorem 1.8 Let G and K be as in Theorem 1.7. There is a strongly convergent
spectral sequence for iterated continuous homotopy fixed points

H s
c .G=KI�t .E

hK
n //D) �t�s.E

hG
n /;

with E2 –term equal to the continuous cohomology of G=K with coefficients the
profinite G=K–module �t .E

hK
n /. This spectral sequence is isomorphic to the spectral

sequences of (2) and (3) from the E2 –term onward.

The proof of Theorem 1.8 is in Section 5. Though this theorem is clearly the result
that one desires to more fully tie together EdhG

n , EhG
n and Eh0G

n , its proof is quite
intricate and a (very) brief road map might be useful: the proof can be described as
consisting of a chain of isomorphisms between spectral sequences.

1C The importance of iterated homotopy fixed points
in chromatic homotopy theory

It is worth noting that iterated continuous homotopy fixed points for En are not just
of purely theoretical interest. For example, [5, page 2883] (building on Devinatz
[8, page 133]) shows that certain instances of .Eh0K

n /h
0G=K play a useful role in

the work of Devinatz [8; 9] on the major conjecture in chromatic homotopy theory
that ��

�
LK.n/.S

0/
�

is a module of finite type over Zp . Also, given a continuous
epimorphism Gn ! Zp of groups with kernel K and the topological generator 1
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of Zp , Devinatz and Hopkins [11, Proposition 8.1] show that a model for .EdhK
n /hZp ,

the continuous Zp –homotopy fixed points of EdhK
n , is given by taking the homotopy

fiber of the map

EdhK
n

id�1
���!EdhK

n :

(This construction of the continuous Zp –homotopy fixed points is a special case of a
well-known technique; for example, see Goerss, Henn and Mahowald [15, Section 2.2].)
This homotopy fiber sequence plays a role in constructing an interesting element in
��1.LK.n/.S

0// for all n and p [11, Theorem 6].

Other examples of the value of .Eh0K
n /h

0G=K are in Westerland [30, end of Section 1.1,
Section 5.5]. In the last case, a doubly iterated homotopy fixed point spectrum

..Eh0K
n /h

0G=K /h
0Gn=G

makes an appearance (see [30, Section 2.2, Corollary 3.25, Section 5.5] for the defi-
nitions of K and G ). Given these examples, we expect there to be situations where
.EhK

n /hG=K will be a useful tool in chromatic theory.

1D A technical advantage of our proof of Theorem 1.7
that is not possessed by the Davis and Devinatz–Hopkins proofs

We close our introduction by pointing out a subtle feature of our proof (Theorem 1.7)
that .EhK

n /hG=K 'EhG
n is always valid, a feature that is not enjoyed (i) by the proof

in [5] that .Eh0K
n /h

0G=K 'Eh0G
n always holds, or (ii) by the proof of Devinatz and

Hopkins that, when G=K is finite, .EdhK
n /hG=K 'EdhG

n (see [11, Theorem 4, proof
of Proposition 7.1]). To see this subtlety, we begin by noting that [11, Corollary 5.5]
implies that, if U is an open subgroup of Gn , then there is an equivalence

(5) LK.n/.E
dhU
n ^En/'

Y
Gn=U

En;

where the right-hand side is a finite product of jGn=U j copies of En . For our purposes
here, we want to point out that the proof of (5) (see [11, pages 24–30]) is highly
nontrivial, and in particular, it uses (see [11, page 29, the proof of Theorem 5.3]) the
deep result due to Hopkins and Ravenel that there exists a finite spectrum W with
torsion-free Z.p/–homology, such that the continuous cohomology groups

H s;�
c .U I��.En ^W /=In��.En ^W //

vanish for all s greater than some s0 (see Ravenel [26, Lemmas 8.3.5–8.3.7]). It is
worth noting that this result of Hopkins and Ravenel played a key role in the proof
of the very important smashing conjecture (which states that LE.n/.�/ is a smashing
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localization, where E.n/ is the Johnson–Wilson spectrum; see [26, Theorem 7.5.6,
Chapter 8]).

(To keep our explanation of the above point from being too long, the rest of our
discussion is written in a style that assumes the reader has certain portions of [5; 11]
readily available.)

The proof in [11] of the iteration result in (ii) above depends on (5). The details for
this assertion are as follows: [11, proof of Proposition 7.1] uses the isomorphism in
[11, (6.5)], and the proof of this isomorphism uses (5) (see the second equality in [11,
proof of Proposition 6.3]). Similarly, the proof of the iteration result in (i) applies (5).
In detail: the result in (i) is [5, Theorem 7.3], its proof depends on [5, Lemma 7.1], the
proof of this lemma uses [11, Proposition 6.3], and as noted above, the proof of this
proposition uses (5).

However, the proof of Theorem 1.7 avoids using (5): this is not hard to see by going
over the proof and by noting that, in its use of the proof of Theorem 4.10 (see the
proof of Theorem 4.25), it is able to utilize [5, proof of Lemma 4.9] thanks to the
use of Postnikov towers (the properties of Postnikov towers that are relevant here are
discussed in the first paragraph of Section 4C). By contrast, the proof of the result in (i)
(that is, [5, proof of Theorem 7.3]) also used [5, proof of Lemma 4.9], but to do so,
it needed to apply (5), as described above. Thus, the proof of well-behaved iteration
for En in the profinite setting has the interesting technical advantage that it is simpler
than the proofs referred to in (i) and (ii), in that the proof in the profinite setting does
not depend on the deep result of Hopkins and Ravenel.
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2 Spectra with a continuous G–action

Everywhere in this paper, unless stated otherwise, G denotes a profinite group. In this
section, we quickly review the categories of spectra with continuous G –action that we
need for our work.
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2A Discrete G–spectra

We summarize the most important properties of simplicial discrete G –sets and discrete
G–spectra. More details can be found in Goerss [14], Davis [3], and Behrens and
Davis [1].

A G –set S is called discrete if the action is continuous when S is given the discrete
topology. This is equivalent to requiring that the stabilizer of any element in S be an
open subgroup in G and to asking that S be equal to the colimit of fixed points

S D colimU SU

over the open subgroups U of G . A simplicial discrete G –set is a simplicial object in
the category of discrete G–sets. By defining morphisms as levelwise G–equivariant
maps, we obtain the category of simplicial discrete G –sets, which we denote by SG .

In [14, Theorem 1.12], Goerss showed that there is a model structure on SG for which
the cofibrations are the monomorphisms and the weak equivalences are the morphisms
whose underlying maps of simplicial sets are weak equivalences in the standard model
structure on the category S of simplicial sets. The category S�G of pointed simplicial
discrete G –sets inherits a model structure from SG in the usual way: a map is a weak
equivalence (cofibration, fibration) if its underlying map in SG is a weak equivalence
(cofibration, fibration, respectively).

In order to stabilize the category S�G , we consider the category Sp.S�G/ of discrete
G–spectra. An object X of Sp.S�G/ consists of a sequence fXngn�0 of pointed
simplicial discrete G –sets Xn together with structure maps

�nW S
1
^Xn!XnC1

in S�G , where we consider S1 as a pointed simplicial discrete G –set with trivial G –
action. A map f W X ! Y of discrete G –spectra is a sequence of maps fnW Xn! Yn

in S�G which are compatible with the structure maps.

The model structure on S�G is left proper and cellular; see [14] or [1, Lemma 2.1.3].
This allows one to use Hovey’s stabilization methods [18] in order to prove the following
theorem, as in [1, Theorem 2.2.1]; the initial proof using presheaves of spectra was
given in [3].

Theorem 2.1 The category Sp.S�G/ admits a model structure in which a map is a
weak equivalence (cofibration) if its underlying map of Bousfield–Friedlander spectra
is a weak equivalence (cofibration).
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Remark 2.2 For a discrete G–spectrum X , there is an induced action of G on
��X such that each stable homotopy group �kX is a discrete G–module; see [3,
Corollary 3.12].

Remark 2.3 There is also a version of discrete G –spectra based on symmetric spectra;
see [1, Section 2.3]. But for the purposes of this paper, it suffices to consider the model
structure of the previous theorem on Sp.S�G/.

2B Mapping spectra I

In order to study homotopy fixed points we will need the following notion of a mapping
spectrum. Let T be any set. Then the set Mapc.G;T / of continuous functions G!T ,
where T is regarded as a space with the discrete topology, is a discrete G–set with
G–action given by .gf /.h/ D f .hg/. If Y is a simplicial set, the mapping space
Mapc.G;Y / is defined to be the simplicial discrete G –set given in degree m by

Mapc.G;Y /m DMapc.G;Ym/:

Now let X be any spectrum. The continuous mapping spectrum Mapc.G;X / is defined
to be the discrete G –spectrum whose nth space is

Mapc.G;Xn/:

It is not hard to see that there is an isomorphism of spectra

Mapc.G;X /Š colim
N CoG

Y
G=N

X;

where the colimit is over the open normal subgroups of G . Also, if X is a discrete
G –spectrum, we again write Mapc.G;X / for the continuous mapping spectrum that
is obtained as above, by just regarding X as a spectrum.

2C Profinite G–spectra

A profinite space is a simplicial object in the category yE of profinite sets. Together
with levelwise continuous maps, profinite spaces form a category that is denoted by yS .
If S denotes the category of simplicial sets, then the forgetful functor j � jW yS! S has a
left adjoint y. � /W S! yS which we call profinite completion. There is a model structure
on yS for which the cofibrations are the monomorphisms and a weak equivalence is a
map f which induces isomorphisms on �0 , the profinite fundamental group, and on
continuous cohomology with finite local coefficients. We refer to Quick [23; 25] for
the details.
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Let S be a profinite set with a continuous map �W G�S! S that satisfies the axioms
of a group action. We call such an S a profinite G –set. If X is a profinite space and
G acts continuously on each Xn such that the action is compatible with the structure
maps, then we call X a profinite G–space. We use ySG to denote the category of
profinite G –spaces with G –equivariant maps of profinite spaces as morphisms. If X is
a pointed profinite space with a continuous G –action that fixes the basepoint, then we
call X a pointed profinite G–space. We denote the corresponding category by yS�G .
Also, we let yS� denote the category of pointed profinite spaces.

The category yS�G carries a fibrantly generated left proper simplicial model structure
for which a map f W X ! Y is a weak equivalence if and only if its underlying map is
a weak equivalence in yS� , and is a cofibration if and only if f is a levelwise injection
and the action of G on Yn�f .Xn/ is free for each n� 0. The corresponding homotopy
category is denoted by yH�G .

We would like to stabilize the category of pointed profinite spaces. Since the simplicial
circle S1 D �1=@�1 is a simplicial finite set and hence an object in yS� , we may
stabilize yS� by considering sequences of pointed profinite spaces together with bonding
maps for the suspension. In more detail, a profinite spectrum X consists of a sequence
of pointed profinite spaces Xn 2 yS� and maps �nW S

1^Xn!XnC1 in yS� for n� 0.
A morphism f W X ! Y of spectra consists of maps fnW Xn! Yn in yS� for n � 0

such that �n.1^fn/D fnC1�n . We denote by Sp.yS�/ the corresponding category of
profinite spectra.

There is a stable simplicial model structure on the category Sp.yS�/. Also, the levelwise
profinite completion functor is a left Quillen functor from Bousfield–Friedlander spectra
Sp.S�/ to Sp.yS�/.

A profinite G –spectrum X is a sequence of pointed profinite G –spaces fXng together
with pointed G–equivariant maps S1 ^Xn ! XnC1 for each n � 0, where S1 is
equipped with a trivial G –action. A map of profinite G –spectra X ! Y is a collection
of maps Xn ! Yn in yS�G compatible with the structure maps of X and Y . The
following theorem was proved in [25].

Theorem 2.4 There is a stable left proper simplicial model structure on Sp.yS�G/ in
which a map between fibrant profinite G–spectra is an equivalence if and only if it is
an equivalence in Sp.yS�/.

In general, equivalences in Sp.yS�G/ do not have the nice characterization given in the
above theorem, and we recall that an arbitrary morphism in Sp.yS�G/ is an equivalence
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exactly when any projective cofibrant replacement induces an equivalence of mapping
spaces upon application of the functor

mapSp.yS�G/
.�;E/W Sp.yS�G/! S

for all �–spectra E in Sp.yS�G/; we refer the reader to [25] for more detail. Also,
to add a little to the use of equivalences in Sp.yS�/ in Theorem 2.4, we recall that an
equivalence between fibrant objects in Sp.yS�/ is also an equivalence between fibrant
objects in Sp.S�/.

Finally, if X is a profinite G –spectrum, then there is an induced action of G on each
stable profinite homotopy group �k.RGX /, where RG denotes a fibrant replacement
functor for profinite G –spectra; this G –action is compatible with the profinite structure,
and each stable profinite homotopy group �k.RGX / is a continuous profinite G–
module. Thus the topological G –module structure of �k.RGX / reflects the character
of X as a profinite G –spectrum, and to ease our notation, we will write just �kX for
this G –module.

2D Mapping spectra II

For a detailed discussion of continuous mapping spectra for profinite spectra and
profinite G–spectra, we refer the reader to Quick [24]. Here we summarize only the
basic definitions.

For X;Y 2 yS� , the mapping space mapyS�.X;Y / is defined to be the simplicial set
whose set of n–simplices is given as the set of maps

mapyS�.X;Y /n D HomyS�.X ^�Œn�C;Y /:

For X;Y 2 yS�G , the mapping space mapyS�G
.X;Y / is defined to be the simplicial set

whose set of n–simplices is given as the set of maps

mapyS�G
.X;Y /n D HomyS�G

.X ^�Œn�C;Y /;

where �Œn�C is considered as a pointed profinite G –space with trivial G –action.

Let Y be a profinite space and W be a pointed profinite space. The functor yS! yS�
that sends Y to YC (defined by adding a disjoint basepoint) is the left adjoint of the
functor that forgets the basepoint. As in [24], we will use the notation Map.Y;W / for
the pointed simplicial set mapyS�.YC;W / whose basepoint is the map YC!�!W .
This defines a functor

Map.�;�/W yS
op
� yS�! S�:
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For a profinite space Y and a profinite spectrum X , we denote by Map.Y;X / the
spectrum whose nth space is given by the pointed simplicial set Map.Y;Xn/. This
defines a functor

Map.�;�/W yS
op
�Sp.yS�/! Sp.S�/:

Now let Y be a profinite G–space and let W be a pointed profinite G–space. The
pointed simplicial set MapG.Y;W / is defined to be mapyS�G

.YC;W /, a pointed sim-
plicial set with basepoint equal to the map YC!�!W . This defines a functor

MapG.�;�/W yS
op
G �
yS�G! S�:

When Y is a profinite G –space and W is a pointed profinite G –space, we equip the
pointed simplicial set Map.Y;W / with a G –action by defining .gf /.y/ WDgf .g�1y/.
With this G –action, MapG.Y;W / is the pointed space of G –fixed points of the pointed
space Map.Y;W /.

If Y is a profinite G –space and X is a profinite G –spectrum, then MapG.Y;X / is the
spectrum whose nth space is given by the pointed simplicial set MapG.Y;Xn/. This
construction yields a functor

MapG.�;�/W yS
op
G �Sp.yS�G/! Sp.S�/:

The reader will have noticed that there are various mapping spectra “out of a profinite
group” appearing in the theories of discrete and profinite G –spectra. In fact, there are
other constructions besides just

MapH .EG;X /DMap.EG;X /H

for a profinite G –spectrum X and a closed subgroup H in G (this mapping spectrum
was seen in (4); EG is defined in Section 3A) and Mapc.G;Z/ for any spectrum Z .
There is the discrete G–spectrum Map`c.G;Z/: its underlying spectrum is the same
as that of Mapc.G;Z/, but its G –action is induced by the G –action that is defined on
each of the sets

Mapc.G;Zn/m DMapc.G; .Zn/m/

by .gf /.h/D f .g�1h/ (the notation “Map`c.G;Z/” follows that of [3, page 328]; the
motivation for this construction comes from Devinatz and Hopkins [11, Theorem 1(iii),
Warning 4.19]). We also have the symmetric spectrum Mapc.G;Y /, where Y is any
symmetric spectrum, that is defined in [1, Section 2.4] (and used throughout [1]). Some
of the relationships between the various constructions in the mini-topic of continuous
mapping spectra “out of G ” are considered in [24, Section 3.4 and page 219].
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3 Comparing continuous homotopy fixed points

In this section we recall the definition of homotopy fixed points for each of discrete
and profinite G–spectra and show that they agree in certain cases where they are
both defined. Our recollections start with the profinite case; details can be found in
Quick [24]. As usual, G denotes a profinite group.

3A Homotopy fixed points of profinite G–spectra

A very convenient feature of the profinite approach is that the universal classifying
space EG of our profinite group (given, as usual, in degree n by GnC1 ) is naturally
a profinite G–space. Thus for a profinite G–spectrum X, it is possible to form the
continuous mapping spectrum MapG.EG;X /. Moreover, EG is a cofibrant profinite
G–space since G acts freely in each degree, and hence we can consider EG as a
cofibrant resolution of a point in ySG . If X is a fibrant profinite G–spectrum, then
MapG.EG;X / is a fibrant spectrum, giving a homotopically well-behaved version of
the fixed points MapG.f�g;X /. Thus, we let RG denote a fibrant replacement functor
in Sp.yS�G/. In [24], for any profinite G –spectrum X , the continuous homotopy fixed
points of X under G were defined to be

(6) X hG
WDMapG.EG;RGX /;

and it was shown that if X ! Y is an equivalence in Sp.yS�G/, then the induced map
X hG! Y hG is an equivalence between �–spectra in Sp.S�/.

One advantage of the construction in (6) is that the associated descent spectral sequence
arises naturally from the filtration of EG just as in the classical case for finite groups.
This descent spectral sequence has the form

(7) E
s;t
2
DH s

c .GI�tX /D) �t�sX hG ;

where the E2 –term is the continuous cohomology of G with coefficients in the profinite
G –module �tX .

One way to describe the above spectral sequence is as follows. Let X be a fibrant profi-
nite G –spectrum. We can consider MapG.EG;RGX / as coming from a cosimplicial
spectrum MapG.G

�C1;X / whose nth spectrum is MapG.G
nC1;X /; here, GnC1 is

the constant simplicial profinite G –space associated to the profinite group GnC1 . Then
there is an equivalence

X hG
' holim� MapG.G

�C1;X /;
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and spectral sequence (7) is isomorphic to the spectral sequence associated to the tower
of spectra

fTotk.MapG.G
�C1;X //gk :

We refer the reader to [24, Section 3] for the proofs and more details.

3B Homotopy fixed points of discrete G–spectra

For discrete G –spectra, the bad news is that, in general, EG is not a simplicial discrete
G –set. But the good news (for example, see Goerss [14, Lemma 2.3, Corollary 2.4])
is that a one-point space is a cofibrant object in SG . Thus, instead of using EG , the
homotopy fixed points of a discrete G–spectrum X are defined as the fixed points
of a fibrant replacement Xf;G in Sp.S�G/. As stated in the introduction, we denote
these homotopy fixed points by X hd G in order to distinguish them from the previous
construction. Thus, as in Davis [3], we set

X hd G
WD .Xf;G/

G :

A nice feature of this definition is that it is clear that homotopy fixed points are the
right derived functor of the right Quillen functor .�/G W Sp.S�G/! Sp.S�/, so that if
kW X ! Y is a weak equivalence of discrete G –spectra, then the map

khd G
W X hd G

D .Xf;G/
G '
��! .Yf;G/

G
D Y hd G

is an equivalence of spectra. In the definition of khd G above, Xf;G and Yf;G are the
output of a fibrant replacement functor .�/f;G W Sp.S�G/! Sp.S�G/ for the model
category of discrete G –spectra.

To obtain a descent spectral sequence in this setting, it is convenient to consider a
description of homotopy fixed points that is different from the above definition. Let
�G.�/ be the endofunctor

X 7!Mapc.G;X /DW �G.X /

on discrete G –spectra (the object Mapc.G;X / is defined in Section 2B). The iterated
application of �G.�/ defines a cosimplicial object

.�GX /� DMapc.G
�C1;X /

in discrete G –spectra, with

.�GX /j ŠMapc.G
jC1;X /

for each j � 0.
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Whenever G has finite virtual cohomological dimension and X
'
��! Y is a weak

equivalence in Sp.S�G/ with Y fibrant as a spectrum, it follows from [3] that there is
an equivalence

(8) X hd G
' holim� Mapc.G

�C1;Y /G

and a descent spectral sequence

(9) E
s;t
2
DH s

c .GI�tX /D) �t�sX hd G

whose E2 –term is the continuous cohomology of G with coefficients in the discrete
G –module �tX .

3C Comparison of homotopy fixed points

In this section, we show that, under mild assumptions on the profinite group G , the two
notions of continuous homotopy fixed points coincide in several situations in which
they are both defined.

Definition 3.1 A fibrant profinite G –spectrum X is called an f –G –spectrum if each
space Xn is a simplicial finite discrete G –set.

Let X be an f –G–spectrum. Since X is fibrant as a profinite G–spectrum, the
homotopy groups of X are all finite discrete G–modules by Quick [25, proof of
Proposition 3.9]. Thus an f –G–spectrum is an f –spectrum in the sense of Brown
and Comenetz [2, page 5] (that is, each homotopy group of X is finite), which explains
part of the motivation for the terminology of Definition 3.1. Since X is both a profinite
and a discrete G –spectrum, we have our two different notions of continuous homotopy
fixed points at hand.

Theorem 3.2 Let G be a profinite group with finite virtual cohomological dimension,
and let X be an f –G –spectrum. There is an equivalence of spectra

(10) X hG
'X hd G :

Proof By [3], since X is fibrant as a spectrum and G has finite virtual cohomological
dimension, we can use the homotopy limit holim� Mapc.G

�C1;X /G as a model
for X hd G . There is an isomorphism of cosimplicial spectra

(11) MapG.G
�C1;X /ŠMapc.G

�C1;X /G
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(see [24, page 219, especially (16), and the proof of Lemma 4.9]). By [24, Proposi-
tion 3.23], this shows that we have equivalences

X hG
' holim� MapG.G

�C1;X /' holim� Mapc.G
�C1;X /G :

Hence there is an equivalence of spectra X hG 'X hd G, as desired.

Remark 3.3 Let X be any f –G–spectrum. It is worth noting that, even when G

does not have finite virtual cohomological dimension, Davis [4, Theorem 3.5] shows
that the spectrum

colim
N CoG

.holim� Mapc.G
�C1;X //N ;

a colimit over the open normal subgroups of G , is a fibrant discrete G –spectrum. Thus,

X hG
' holim� Mapc.G

�C1;X /G

Š

�
colim
N CoG

�
holim� Mapc.G

�C1;X /
�N �G

'

�
colim
N CoG

�
holim� Mapc.G

�C1;X /
�N �hd G

so that X hG can always be regarded as being the G –homotopy fixed points of some
discrete G –spectrum.

After a few preparatory comments, we recall a theorem that gives an example of a
way that f –G –spectra arise. We call a spectrum X 2 Sp.S�/ a G –spectrum (without
taking any topology into account) if each space Xn is a pointed G–space and the
G –actions are compatible with the bonding maps S1 ^Xn!XnC1 .

Definition 3.4 A G –spectrum Z is called � –finite if all its homotopy groups are finite.

Let X be an arbitrary f –G –spectrum; since the homotopy groups of X are all finite
discrete G–modules, the underlying G–spectrum of X is � –finite. With respect to
this conclusion, the following converse was proved in [25, Theorem 5.15] for the case
when G is strongly complete (that is, if every subgroup of finite index is open in G ).

Theorem 3.5 Let G be a strongly complete profinite group, and let X be a � –finite
G –spectrum. Then there is a G –equivariant map

's
W X ! F s

GX

of spectra from X to an f –G –spectrum F s
G

X such that 's is a stable equivalence of
underlying spectra.
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The assignment X 7! F s
G

X is functorial in the sense that, given a G –equivariant map
hW X ! Y between � –finite G –spectra, there is a map F s

G
.h/ in Sp.yS�G/ such that

the diagram

X

��

h
// Y

��

F s
G

X
F s

G
.h/

// F s
G

Y

of underlying spectra commutes.

In Theorem 3.5, if the map h is a stable equivalence of spectra, then the map F s
G
.h/ is

too, and hence F s
G
.h/ is a weak equivalence of discrete G–spectra. However, when

the map h is a stable equivalence of spectra, it is not known that F s
G
.h/ is a weak

equivalence of profinite G–spectra (nevertheless, there is still the equivalence (12)
below).

Theorem 3.5 motivates the following definition.

Definition 3.6 Let G be a strongly complete profinite group and let X be a � –finite
G–spectrum. Then both .F s

G
X /hG and .F s

G
X /hd G can be formed and it is natural

to define
X hG

WD .F s
GX /hG and X hd G

WD .F s
GX /hd G :

Each of the two notions of homotopy fixed points in Definition 3.6 have a homotopy
invariance property: whenever G is a strongly complete profinite group and hW X ! Y

is a G–equivariant map between � –finite G–spectra that is a stable equivalence of
spectra, then the map

(12) .F s
G.h//

hG
W X hG

D .F s
GX /hG '

��! .F s
GY /hG

D Y hG

is an equivalence (the verification that this map is an equivalence is delayed until
Remark 4.13 since the argument depends on some material that is developed later) and,
since F s

G
.h/ is a weak equivalence of discrete G –spectra, the map

.F s
G.h//

hd G
W X hd G

D .F s
GX /hd G '

��! .F s
GY /hd G

D Y hd G

is an equivalence.

The following result, which is immediate from Theorem 3.2, describes a case when the
two notions of homotopy fixed points in Definition 3.6 are equivalent to each other.
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Corollary 3.7 Let G be a strongly complete profinite group with finite virtual cohomo-
logical dimension, and let X be a � –finite G –spectrum. Then there is an equivalence

X hG
'X hd G :

4 Iterated homotopy fixed point spectra
in the profinite setting

4A Recollections of basic facts and the main problem

We begin by recalling some material about iterated homotopy fixed points from
Quick [24]. Let K be a closed subgroup of G and let N.K/ be the normalizer
of K in G . Also, let X be any fibrant profinite G –spectrum. The composition

(13) MapK .EG;X /
'
��!MapK .EK;X /

'
��!MapK .EK;RK X /DX hK

of weak equivalences of spectra shows that it is natural to make the identification

X hK
DMapK .EG;X /:

With this identification, it is clear that the profinite quotient group N.K/=K acts
on X hK. Note that by setting K D G , our discussion shows that there is the use-
ful identification

X hG
DMapG.EG;X /:

To simplify our notation, we now assume that K is a closed normal subgroup of G .
There is a canonical map

X hG
!X hK

that is defined by

X hG
DMapG.EG;X /DMap.EG;X /G!Map.EG;X /K DX hK ;

and it is easy to see that this map factors into the identity map

X hG
DMap.EG;X /G

D
��! .Map.EG;X /K /G=K D .X hK /G=K

followed by the natural inclusion .Map.EG;X /K /G=K ! X hK . When the G=K–
spectrum X hK is a profinite G=K–spectrum, then composition of the above identity
map with the canonical map

.X hK /G=K ! .X hK /hG=K
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yields a map

(14) X hG
! .X hK /hG=K :

Thus a natural problem in the theory of profinite G–spectra is to show that when-
ever X hK is a profinite G=K–spectrum, map (14) to the iterated continuous homotopy
fixed points .X hK /hG=K is an equivalence.

The first issue in studying map (14) is that X hK does not, in general, carry the
structure of a profinite G=K–spectrum. This observation relies on the fact that the set
of continuous maps between two profinite sets is not, in general, a profinite set itself.
But there are interesting cases when it can be shown that (14) is an equivalence.

To understand the simplest case, we consider the situation when K is open in G , so
that the group G=K is finite. Whether or not X hK is a profinite G=K–spectrum, since
G=K is a finite discrete space, the fibrant spectrum X hK is automatically a discrete
G=K–spectrum. Hence there is always the canonical map

X hG
! F.E.G=K/C;X

hK /G=K D .X hK /hd G=K

that is defined to be the composition of the aforementioned identity map with the
canonical map .X hK /G=K ! .X hK /hd G=K . (In the preceding sentence, .X hK /hd G=K

is equal to the “usual” homotopy fixed point spectrum for the discrete group G=K ; we
remark that in forming this spectrum, no fibrant replacement of X hK is needed since
X hK is already a fibrant spectrum.) Then an adjunction argument suffices to prove
that the map X hG! .X hK /hd G=K is an equivalence (see [24, Section 3.5]).

Furthermore, if X hK is a fibrant profinite G=K–spectrum, then the fibrant replacement
map X hK!RG=K X hK of profinite G=K–spectra, when regarded as a map of spectra,
is a weak equivalence between fibrant objects that is G=K–equivariant. Hence, the
map .X hK /G=K ! .X hK /hd G=K can be identified with the map

.X hK /G=K !MapG=K .E.G=K/;RG=K X hK /D .X hK /hG=K :

Therefore, whenever X hK is a fibrant profinite G=K–spectrum, the weak equivalence
X hG '

��! .X hK /hd G=K can be identified with map (14) to the iterated continuous
homotopy fixed point spectrum .X hK /hG=K , giving our first case of when (14) is a
weak equivalence.

4B Some definitions and observations that help with understanding
the problem of iteration

Now we give some preliminary considerations that lead to our second case of when
map (14) is an equivalence.
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Definition 4.1 Let G be a profinite group and X a G –spectrum. We say that X has
a model in the category of profinite G –spectra (or that X has a profinite G –model X 0 )
if there exists a fibrant profinite G –spectrum X 0 and a zigzag .of any finite length/ of
G –equivariant morphisms of G –spectra between X and X 0 such that each underlying
morphism of Bousfield–Friedlander spectra is a weak equivalence. For example, if the
three arrows in the diagram

Y0
'
��! Y1

'
 �� Y2

'
��! Y3

denote G–equivariant maps between G–spectra, with each a weak equivalence of
spectra, then Y0 has a profinite G –model Y3 when Y3 is a fibrant profinite G –spectrum,
and Y3 has a profinite G –model Y0 when Y0 is a fibrant profinite G –spectrum.

Remark 4.2 Let G and X be as in Definition 4.1. Since the homotopy groups of a
fibrant profinite G–spectrum are profinite G–modules, when the homotopy groups
�tX are not profinite G –modules, then the model described above cannot exist for X .
Also, we point out that if G is strongly complete and X is � –finite, then the discrete
G –spectrum F s

G
X is a model for X as a profinite G –spectrum.

Definition 4.3 Let G be a profinite group and K a closed normal subgroup of G .
Let X be a fibrant profinite G –spectrum such that X hK has a profinite G=K–model
X 0.K/. Then we define the iterated continuous homotopy fixed points of X to be

.X hK /hG=K
WD .X 0.K//hG=K :

Remark 4.4 Definitions 4.1 and 4.3 motivate the following question: if G is a profinite
group and X is a G –spectrum that has X 0 and X 00 as profinite G –models, are .X 0/hG

and .X 00/hG weakly equivalent? Though we do not have an answer to this general
question, we are able to handle it in the following special case: if G is strongly complete
and X 0 and X 00 are f –G–spectra (thus, X , X 0 and X 00 are � –finite G–spectra),
then there is an equivalence

.X 0/hG
' .X 00/hG :

For the subject matter of this paper, this assertion is quite pertinent: for example, it
is applicable to situations that could occur in the settings of part (a) of Definition 4.8
when G=K is strongly complete, Theorem 4.14, and Remark 4.17. It is easy to see that
a proof of this special case follows from the technique used in the following argument.
Given G strongly complete and f –G –spectra X 0 and X 00 , we suppose additionally
that X 0 and X 00 are models via the existence of the zigzag

X 0 X
'

h1
oo

'

h2
// X 00
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of stable equivalences of spectra that are G–equivariant. It follows that there is the
commutative diagram

X 0

'

f1

��

X

'

f2

��

'

h2
//

'

h1
oo X 00

'

f3

��

F s
G

X 0 F s
G

X
'

F s
G
.h2/
//

'

F s
G
.h1/

oo F s
G

X 00

in which the vertical maps are the usual ones obtained by applying F s
G

and every map is
G –equivariant and a stable equivalence of spectra. Since the four spectra in the corners
of the diagram are f –G –spectra, they are discrete G –spectra, and so f1 and f3 are
morphisms of profinite G –spectra. Therefore, to each of the four morphisms f1 , f3 ,
F s

G
.h1/ and F s

G
.h2/, we can apply the following fact: if W !Z is a map of profinite

G –spectra and a stable equivalence of spectra, with W and Z f –G –spectra, then the
induced map W hG!ZhG is a stable equivalence (for a justification of this fact, we
refer the reader to the proof of a more general result in Remark 4.20). We find that
there is the zigzag

.X 0/hG '
��! .F s

GX 0/hG '
 �� .F s

GX /hG '
��! .F s

GX 00/hG '
 �� .X 00/hG

of equivalences, which yields the desired conclusion.

As at the beginning of Section 4A, we let X be an arbitrary fibrant profinite G–
spectrum. By letting fUj g be the collection of open normal subgroups of G , we can
write G D limj G=Uj . For each j , we let

Kj WDKUj ;

an open normal subgroup of G . For indices i; j such that Uj � Ui , there is the
canonical surjection G=Kj !G=Ki , the natural G=Kj –equivariant map

X hKi DMap.EG;X /Ki !Map.EG;X /Kj DX hKj

between fibrant spectra, and the isomorphism G=K Š limj G=Kj . Also, there is the
induced map

.X hKi /hd G=Ki '
��! .X hKj /hd G=Kj

that is equal to the canonical composition

.X hKi /hd G=Ki ! F.E.G=Ki/C;X
hKi /G=Kj ! F.E.G=Kj /C;X

hKj /G=Kj

and is a weak equivalence (for each j , since G=Kj is a finite group, .X hKj /hd G=Kj

is equivalent to X hG by Quick [24], as discussed earlier). Hence by taking the colimit
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over all j , we obtain an equivalence

X hG
' colimj .X

hKj /hd G=Kj :

Hence, if X hK is a profinite G=K–spectrum and the colimit on the right-hand side
above is equivalent to .X hK /hG=K (this is plausible if there is an equivalence of the
right-hand side with F.limj E.G=Kj /C; colimj X hKj /G=K ), then it would follow that
(14) is an equivalence for the closed normal subgroup K . Unfortunately, this is not
always the case.

Remark 4.5 For the duration of this remark (and the next), we let K be an arbitrary
closed subgroup of G . A problem similar to what was just described above occurs for
discrete G–spectra: in Davis [5], a discrete G–spectrum Y is called hyperfibrant if
the canonical map colimj Y hd Kj ! Y hd K is an equivalence for all K . In [loc. cit.],
it was shown that if Y is a hyperfibrant discrete G–spectrum and H is any closed
subgroup of G that is normal in K , then the identification Y hd H D colimj Y hd H Uj

makes Y hd H a discrete K=H –spectrum. Hence .Y hd H /hd K=H is defined, and if K

is normal in G , then
.Y hd K /hd G=K

' Y hd G :

Remark 4.6 As in Remark 4.5, let K be any closed subgroup of G . We recall how
a version of the issue discussed above is handled in the corresponding “pro–setting”
in Fausk [13, Section 11.1]. If Y is a pro–G–spectrum, in addition to considering
the K–homotopy fixed point pro–spectrum Y hK , Fausk uses a technique that was
reviewed in Remark 4.5: he defines the K–G–homotopy fixed point pro–spectrum
Y hGK to be hocolimj .Yf /

hKj , where Yf is a fibrant replacement of Y . Then Fausk
shows that when K is normal in G , there is an equivalence

.Y hGK /hG=K
' Y hG

in the Postnikov model structure on pro–spectra. In [13, Lemma 11.4], Fausk describes
a situation when Y hGK can be identified with Y hK .

Given the difficulties described above, our next step in studying the problem of iteration
is to consider a special case. To help with this, we observe that, because X is a fibrant
profinite H –spectrum for each closed subgroup H of G , there is a canonical map

colimj X hKj Š
��! colimj Tot.Map.K�j ;X //! Tot.Map.K�;X // Š��!X hK ;

where K is any closed subgroup of G (for the isomorphisms, see [24, Proposition 3.23]).
A version of the following result in the setting of discrete G –spectra was obtained in
[5, end of Section 3].
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Lemma 4.7 Let G be a profinite group and K a closed subgroup. Let X be an
f –G –spectrum and q an integer such that �tX D 0 for all t � q . Then the canonical
map

colimj X hKj '
��!X hK

is an equivalence of spectra.

Proof For each closed subgroup H of G , by [24, Proposition 3.23], the homotopy
spectral sequence for Tot.Map.H �;X // is a descent spectral sequence E

�;�
r .H / that

has the form
E

s;t
2
.H /DH s

c .H I�tX /D) �t�s.X
hH /;

where the continuous cohomology group has coefficients in the finite discrete H –
module �tX . For the subgroups K and all Kj , the associated spectral sequences
assemble to yield a map of conditionally convergent spectral sequences

colimj E�;�r .Kj /!E�;�r .K/:

Since K D
T

j Kj , the E2 –terms satisfy

colimj E
s;t
2
.Kj /D colimj H s

c .Kj I�tX /ŠH s
c .KI�tX /DE

s;t
2
.K/:

By Mitchell [22, Proposition 3.3], the spectral sequence colimj E
�;�
r .Kj / has abutment

equal to the colimit of the abutments ��.X hKj / if there exists a fixed m such that
H s

c .Kj I�tX /D 0 for all t �m, all s � 0 and all j . By hypothesis, this condition
is satisfied. Hence, since the map of spectral sequences is an isomorphism from the
E2 –terms onward, we see that the map of abutments colimj ��.X

hKj /! ��.X
hK /

is an isomorphism.

4C The notion of a K–Postnikov G–spectrum and its use
with iterated continuous homotopy fixed points

Let X be an f –G–spectrum and let K be a closed normal subgroup of G . As in
Quick [24, Section 3.2], for each integer q , let

PqX WD coskq X

be the qth Postnikov section of X in Sp.yS�G/. Since X is an f –G –spectrum, each
of X and the Postnikov sections PqX , for every q , are f –H –spectra, where H is
any closed subgroup of G . As explained in Davis [5, page 2888, end of Section 3],
by applying the fact that each discrete G–spectrum PqX satisfies a coconnectivity
condition, we see that
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� for any closed subgroup H in G , by Davis [6, Theorem 7.2], there is an
equivalence

.PqX /hd H
' holim� Mapc.H

�C1;PqX /H ;

and hence Remark 3.3 shows that

.PqX /hd H
' .PqX /hH

for every integer q ;

� each PqX is a hyperfibrant discrete G –spectrum; and thus,

� there is the natural identification

.PqX /hd K
D colimj .P

qX /hd Kj ;

showing that each .PqX /hd K is a discrete G=K–spectrum.

The above discussion shows that we can regard each G=K–spectrum .PqX /hK as a
discrete G=K–spectrum by the identification

.PqX /hK
D .PqX /hd K

(this identification can also be obtained by using Lemma 4.7).

Before giving our next result, we introduce some helpful terminology. We note that,
though the following definition is not short, it is also not complicated: the crux of
the notion it defines (“K–Postnikov G –spectrum”) is almost completely captured by
its property (a), and each of properties (b), (c) and (d) is just a basic compatibility
condition that one would expect to be satisfied when the zigzags in the defining data
satisfy a minimal level of naturality.

Definition 4.8 Let X be an f –G –spectrum and let K be a closed normal subgroup
of G . Then we say that X is a K–Postnikov G –spectrum if there is an inverse system
fX q.K/gq2Z of G=K–spectra that has the following properties:

(a) for each q , the spectrum X q.K/ is an f –G=K–spectrum and a model for the
G=K–spectrum .PqX /hK in the category of profinite G=K–spectra;

(b) for each q , there is an equivalence ..PqX /hd K /hd G=K ' .X q.K//hd G=K I

(c) there is an equivalence

holimq..P
qX /hd K /hd G=K

' holimq.X
q.K//hd G=K

I

(d) the fibrant profinite G=K–spectrum holimqX q.K/ is a model for the G=K–
spectrum holimq.P

qX /hK in the category of profinite G=K–spectra.
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Remark 4.9 If X is a K–Postnikov G–spectrum, then because each X q.K/ is a
discrete G=K–spectrum, it follows automatically that each map X q.K/!X q�1.K/

has the requisite continuity properties for being a morphism in the category of profinite
G=K–spectra, and hence the inverse system fX q.K/gq2Z is a diagram in that category.

Our next result illustrates the utility of Definition 4.8. After proving this result, we
give a discussion of when an f –G–spectrum possesses the properties required by
this definition.

Several key ingredients in the next result and its proof are from an unpublished man-
uscript by the first author (however, the proof below does not depend in any way on
this manuscript) that uses Postnikov towers to study the problem of iterated homotopy
fixed points in the setting of discrete G –spectra. The aforementioned ingredients and
manuscript build on the idea that Postnikov towers are a helpful tool for building
homotopy fixed point spectra for profinite group actions, and as far as we know, this
idea is primarily due to Fausk [13] (and Goerss [14] and Jardine [21]).

Theorem 4.10 Let G be a profinite group and let K be a closed normal subgroup of G

such that G=K has finite virtual cohomological dimension. If X is a K–Postnikov
G –spectrum, then there is an equivalence

X hG
' .X hK /hG=K :

Proof There is the following chain of equivalences:

X hG
DMapG.EG; limq PqX /' holimq.P

qX /hG
' holimq.P

qX /hd G

' holimq.colimj .P
qX /hd Kj /hd G=K

' holimq.X
q.K//hd G=K

' holimq.X
q.K//hG=K

ŠMapG=K .E.G=K/; holimq X q.K//

D .holimq X q.K//hG=K
D .X hK /hG=K :

Above, the second equivalence is from an application of the fact that each PqX is a
fibrant profinite G –spectrum and, as in [24, page 205, (9)], fMapG.EG;PqX /gq2Z

is a tower of fibrations of fibrant objects in spectra; the fourth equivalence follows from
[5, proof of Lemma 4.9]; the sixth equivalence is due to Theorem 3.2; the fibrancy of
holimq X q.K/ as a profinite G=K–spectrum implies the next-to-last equivalence (an
equality); and the last equivalence, an identity that is an example of Definition 4.3, is
because the equivalences

holimq X q.K/'holimq.P
qX /hK

' limq.P
qX /hK

ŠMapK .EG; limqPqX /DX hK

show that holimq X q.K/ is indeed a model for X hK in the category of profinite
G=K–spectra.
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Remark 4.11 In the proof of Theorem 4.10, we showed that holimqX q.K/ is a
profinite G=K–model for X hK. Now suppose that Y is another profinite G=K–model
for X hK. For this abstract situation, as explained in Remark 4.4, we do not know in
general that there must be an equivalence .holimq X q.K//hG=K ' Y hG=K. However,
we do not regard this lack of an equivalence as problematic: we believe that in most
specific situations, holimq X q.K/ and Y will be related in a concrete way that allows
one to obtain an equivalence between their G=K–homotopy fixed point spectra. For
example, in Remark 4.19, two models (F s

G
X and F s

H
X ) are related in a specific

way that gives equivalent homotopy fixed point spectra by an argument that is, in an
appreciable way, simpler than the abstract argument of Remark 4.4 (which also gives
the desired equivalence).

Remark 4.12 The first displayed line of the proof of Theorem 4.10 shows that if G is
an arbitrary profinite group and X is an f –G –spectrum, then there are equivalences

(15) X hG
' holimq.P

qX /hG
' holimq.P

qX /hd G :

The equivalence between the first and third expressions in (15) gives

X hG
' holim

q�0
.PqX /hd G

D

�
holim

q�0
PqX

�hG
;

where the last expression, .holimq�0 PqX /hG , is the G–homotopy fixed point spec-
trum of the continuous G–spectrum holimq�0 PqX (we mean this in the sense of
Davis [3]; fPqX gq�0 is a tower of discrete G–spectra that are fibrant as spectra).
This observation gives a version of Theorem 3.2 with the hypothesis on cohomological
dimension removed.

Remark 4.13 Let G be a strongly complete profinite group. Just after Definition 3.6
(see (12)), we stated that if hW X ! Y is a G–equivariant map between � –finite
G –spectra such that h is a stable equivalence of spectra, then the map

.F s
G.h//

hG
W X hG

D .F s
GX /hG '

��! .F s
GY /hG

D Y hG

is an equivalence. Now we are able to give a proof of this assertion. First, as noted
just after Theorem 3.5, the map F s

G
.h/ is a stable equivalence of spectra. Also, if Z

is a fibrant profinite G –spectrum, recall that its profinite homotopy groups ��.Z/ are
isomorphic to the stable homotopy groups ��.UZ/ of the fibrant spectrum UZ that
underlies Z ; see Quick [25, Proposition 4.8(b)]. Then for all integers q and t , since
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Pq.F s
G

X / and Pq.F s
G

Y / are fibrant profinite G –spectra,

�t .UPq.F s
GX //Š �t .P

q.F s
GX //

Š

�
�t .F

s
G

X /Š �t .UF s
G

X /Š �t .UF s
G

Y / t � q;

0 t > q:

Thus each induced map Pq.F s
G

X /! Pq.F s
G

Y / is a weak equivalence of discrete
G –spectra (because each such map induces an isomorphism on stable homotopy groups,
and hence is an equivalence of spectra). It follows that, for every q , the map

.Pq.F s
G.h///

hd G
W .Pq.F s

GX //hd G '
��! .Pq.F s

GY //hd G

is an equivalence between spectra. Also, there is the commutative diagram

.F s
G

X /hG
.F s

G
.h//hG

// .F s
G

Y /hG

MapG.EG; limq Pq.F s
G

X //

'

OO

//

'

��

MapG.EG; limq Pq.F s
G

Y //

'

OO

'

��

holimq MapG.EG;Pq.F s
G

X // // holimq MapG.EG;Pq.F s
G

Y //

(as noted in (13), the two upward-pointing vertical maps are equivalences and, as in the
proof of Theorem 4.10, the two downward-pointing vertical maps are equivalences).
This reduces showing that .F s

G
.h//hG is an equivalence to showing that the bottommost

horizontal map is an equivalence; therefore, we are done if we can show that for every q ,
the map

�q
WDMapG.EG;Pq.F s

G.h///W MapG.EG;Pq.F s
GX //!MapG.EG;Pq.F s

GY //

is an equivalence (by [24, Lemma 3.10], the source and target of this map are fibrant
spectra). Each map �q can be identified with the map

.Pq.F s
G.h///

hG
DMapG.EG;RG.P

q.F s
G.h////W .P

q.F s
GX //hG

!.Pq.F s
GY //hG ;

and this last map is an equivalence because

(16) .Pq.F s
GX //hG

' .Pq.F s
GX //hd G '

��! .Pq.F s
GY //hd G

' .Pq.F s
GY //hG ;

where the first and last equivalences in (16) follow from the first bullet point in the
discussion at the beginning of Section 4C. This proves the desired result.
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As in Theorem 4.10, we continue to let K be a closed normal subgroup of G and we
let X be an f –G –spectrum. Theorem 4.10 shows that it is quite useful when X is a
K–Postnikov G –spectrum, and so we now give a discussion about when this occurs.

Suppose that .PqX /hK is a � –finite G=K–spectrum, for each integer q , with G=K

strongly complete. (It is worth noting that if G is strongly complete, then so is G=K .)
By Lemma 4.7, the G=K–equivariant map

.PqX /hK
DMap.EG;PqX /K

'
 �� colimj Map.EG;PqX /Kj D colimj .P

qX /hKj

is a weak equivalence of spectra. The continuous surjection G=K! G=Kj makes
the discrete G=Kj –spectrum Map.EG;PqX /Kj a discrete G=K–spectrum, so that
the � –finite G=K–spectrum colimj Map.EG;PqX /Kj is a discrete G=K–spectrum.
Notice that the inverse system

(17)
˚
F s

G=K

�
colimj Map.EG;PqX /Kj

�	
q2Z

is a diagram of profinite G=K–spectra, each of which is an f –G=K–spectrum and a
profinite G=K–model for .PqX /hK. Since .PqX /hH ' .PqX /hd H for all closed
subgroups H , the discrete G=K–spectrum colimj Map.EG;PqX /Kj can be identi-
fied with the discrete G=K–spectrum .PqX /hd K D colimj .P

qX /hd Kj . Because

colimj Map.EG;PqX /Kj '
��! F s

G=K .colimj Map.EG;PqX /Kj /

is a weak equivalence of discrete G=K–spectra, there is a weak equivalence

.colimj Map.EG;PqX /Kj /hd G=K '
��!

�
F s

G=K

�
colimj Map.EG;PqX /Kj

��hd G=K
:

The preceding two sentences show that the system (17) satisfies property (b) of
Definition 4.8, and additionally, it is easy to see that properties (c) and (d) are satisfied,
completing a proof of the following result.

Theorem 4.14 Let K be a closed normal subgroup of the profinite group G, and let X

be an f –G –spectrum. If G=K is strongly complete and, for every q 2 Z, .PqX /hK

has finite homotopy groups, then X is a K–Postnikov G –spectrum.

Notice that, in Theorem 4.14, the hypotheses of the first sentence imply that, for each
q 2Z, since PqX is an f –K–spectrum, �t .P

qX / is a finite discrete K–module for
every integer t .

Corollary 4.15 Let G , K and X be as in the first sentence of Theorem 4.14 and
suppose that G=K is strongly complete. If H s

c .KI�t .X // is a finite group for all s� 0

and every integer t , then X is a K–Postnikov G –spectrum.
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Proof By Theorem 4.14, it suffices to show that, for each integer q , the spectrum
.PqX /hK has finite homotopy groups. We consider the conditionally convergent
descent spectral sequence

E
s;t
2
DH s

c .KI�t .P
qX //D) �t�s..P

qX /hK /:

For all s � 0 and any t > q , the vanishing of �t .P
qX / implies that E

s;t
2
D 0. It

follows that the filtration on the abutment is finite; for example, see Thomason [29,
Lemma 5.48]. Since any nonzero terms on the E2 –page of the above spectral sequence
are finite, we obtain the desired conclusion.

Remark 4.16 In Corollary 4.15, the hypotheses imply that �t .X / is a finite discrete
K–module for every integer t . Then it is worth noting that, in Corollary 4.15, the
finiteness condition on the continuous cohomology groups is plausible: for example,
by Symonds and Weigel [28, Proposition 4.2.2], if K is of type p–FP1 and M is a
finite discrete (p–torsion) Zp ŒŒK��–module, then H s

c .KIM / is finite for all s � 0; we
refer the reader to [28] for more details about this result.

Let q be any fixed integer. We consider in more detail the condition that .PqX /hK

has finite homotopy groups. As above, we assume that K is closed and normal in G

and X is an f –G –spectrum.

Suppose that K contains an open normal subgroup UK such that the abelian groups
H s

c .UK I�t .P
qX // are finite for all s� 0 and all t � q . As recalled earlier (from [24]),

since PqX is a fibrant profinite K–spectrum, there is a weak equivalence

.PqX /hK '
��! ..PqX /hUK /hd K=UK :

By arguing as in the proof of Corollary 4.15, the descent spectral sequence

H s
c .UK I�t .P

qX //D) �t�s..P
qX /hUK /

yields that .PqX /hUK is a � –finite K=UK –spectrum.

Remark 4.17 Without making any additional assumptions, we pause to consider the � –
finite K=UK –spectrum .PqX /hUK . Since the finite group K=UK is naturally discrete,
it is strongly complete, and hence, by Theorem 3.5, there is a K=UK –equivariant map

.PqX /hUK '
��! F s

K=UK
..PqX /hUK /

that is a weak equivalence, with target equal to an f –K=UK –spectrum, yielding a
particularly nice model for .PqX /hUK . It follows that there are equivalences of spectra

.PqX /hK
' ..PqX /hUK /hd K=UK ' holimK=UK

F s
K=UK

..PqX /hUK /:
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The last spectrum above can be regarded as a homotopy limit of a fibrant profinite
spectrum in the category of profinite spectra, showing that .PqX /hK can be regarded
as a profinite spectrum.

Now we go a little further with the above conclusion that .PqX /hUK is a � –finite
K=UK –spectrum. Since K=UK is a finite group and �t ..P

qX /hUK / is finite for
every integer t , the groups H s.K=UK I�t ..P

qX /hUK // are finite for all s and t .
Therefore, if for all integers t , H s.K=UK I�t ..P

qX /hUK // is zero for all s � r , for
some positive integer r , then once again, the descent spectral sequence

H s
�
K=UK I�t ..P

qX /hUK /
�
D) �t�s..P

qX /hK /

yields that .PqX /hK has finite homotopy groups, as desired.

4D More cases of well-behaved iteration via applications of Theorem 4.10

To obtain these additional cases, we begin with the following definition, a natural
extension of Definition 3.6.

Definition 4.18 If G is a strongly complete profinite group and X is a � –finite G –
spectrum, then F s

G
X is both a fibrant profinite H –spectrum and a discrete H –spectrum

for any closed subgroup H in G ; thus, for such H , we define

X hH
WD .F s

GX /hH and X hdH
WD .F s

GX /hdH :

In the above definition, when the closed subgroup H is a proper subgroup of G that is
strongly complete, then since X is a � –finite H –spectrum, the definition also yields
that X hH WD .F s

H
X /hH and X hd H WD .F s

H
X /hd H. Thus, in the remark below, we

show that our two definitions of X hH agree with each other and that our two definitions
of X hd H are equivalent.

Remark 4.19 Let G and X be as in Definition 4.18, and let H be a strongly complete
closed subgroup of G . Then there is a commutative diagram

X
'

//

'

��

F s
H

X

'

��

F s
G

X
'
// F s

H
.F s

G
X /

of weak equivalences in spectra that are H –equivariant. It is easy to see that

F s
GX

'
��! F s

H .F
s
GX /

'
 �� F s

H X
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is a zigzag of weak equivalences in the category of discrete H –spectra, and hence

.F s
GX /hd H

' .F s
H X /hd H ;

as desired. Now, as in Quick [24, Section 3.2], for each integer q , we let Pq denote
the functor

coskqW Sp.yS�H /! Sp.yS�H /; Z 7! PqZ WD coskq Z:

Notice that

.F s
GX /hH

' holimq.P
q.F s

GX //hH
' holimq.P

q.F s
GX //hd H

as in the proof of Theorem 4.10. Similarly, we have

.F s
H X /hH

' holimq.P
q.F s

H X //hd H :

Also, by considering homotopy groups, it is easy to see that, for each integer q ,

Pq.F s
GX /

'
��! Pq.F s

H .F
s
GX //

'
 �� Pq.F s

H X /

is a zigzag of weak equivalences in the category of discrete H –spectra. It follows that

.Pq.F s
GX //hd H '

��! .Pq.F s
H .F

s
GX ///hd H '

 �� .Pq.F s
H X //hd H

is a zigzag of weak equivalences between fibrant spectra that is natural in q , and hence

(18) .F s
GX /hH

' .F s
H X /hH :

Since F s
G

X is an f –H –spectrum, the equivalence (18) can also be obtained by
applying the argument in Remark 4.4 to the zigzag F s

G
X

'
 ��X

'
��!F s

H
X . However,

the argument given in the present remark is preferable to that of Remark 4.4 in the
sense that the crux of the former argument is a zigzag of length two, whereas the latter
argument requires a zigzag of length four.

Remark 4.20 In Definition 4.18, if H DG , we already know that the two notions of
homotopy fixed points are homotopy invariant. In fact, as we now explain, these two
notions are homotopy invariant for all H (even if H is not strongly complete). Let
G be strongly complete, let H be any closed subgroup of G, and let hW X ! Y be a
stable equivalence of spectra that is G –equivariant, with X and Y � –finite G –spectra.
Since F s

G
.h/ is a weak equivalence of discrete G –spectra, it is a weak equivalence of

discrete H –spectra; hence the map

.F s
G.h//

hd H
W X hd H

D .F s
GX /hd H '

��! .F s
GY /hd H

D Y hd H

is an equivalence. Now suppose that W and Z are fibrant profinite G–spectra that
are � –finite as G–spectra (these hypotheses are satisfied, for example, if W and Z
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are f –G–spectra), with `W W ! Z a map of profinite G–spectra that is a stable
equivalence of spectra. Then W and Z are fibrant profinite H –spectra, ` is a map of
profinite H –spectra and there is the induced morphism

Map.H �; `/W Map.H �;W /!Map.H �;Z/

of cosimplicial spectra, which induces a morphism from descent spectral sequence

E
s;t
2
DH s

c .H I�tW /D) �t�s.W
hH /

to descent spectral sequence

E
s;t
2
DH s

c .H I�tZ/D) �t�s.Z
hH /:

(The material in [24, Section 3.4 (after the proof of Lemma 3.21)] is a reference for
the above induced morphisms.) For any t 2 Z, the induced map �t .`/W �tW ! �tZ

between the stable profinite homotopy groups is an isomorphism between finite discrete
H –modules (for example, the stable profinite homotopy group Pt WD �t .RGW / is
Hausdorff and isomorphic to the finite stable homotopy group �t .W /, so that the
topology of the profinite space Pt is the discrete topology). Hence the E2 –terms of
the two conditionally convergent spectral sequences above are isomorphic, yielding
successively that the map ��.`hH / is an isomorphism and, finally, `hH W W hH!ZhH

is a stable equivalence. This conclusion implies that

.F s
G.h//

hH
W X hH

D .F s
GX /hH '

��! .F s
GY /hH

D Y hH

is an equivalence, as desired. With this argument and Remark 4.13, we now have two
proofs that, given h as above, .F s

G
.h//hG is an equivalence; though the argument in this

remark is shorter, we do not regard this situation as one of excess, since the observations
and main techniques (utilizing Postnikov towers in the world of profinite G–spectra
and homotopy fixed points for discrete G–spectra) of the proof in Remark 4.13 are
interesting and useful.

Now that we have shown that Definition 4.18 is robust, we can put it to work with the
following result.

Theorem 4.21 Let G be a strongly complete profinite group with K a closed normal
subgroup of G such that G=K has finite virtual cohomological dimension. If X is a
� –finite G –spectrum such that F s

G
X is a K–Postnikov G –spectrum, then there is an

equivalence of spectra
X hG

' .X hK /hG=K :
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Proof By Theorem 4.10, we have

X hG
D .F s

GX /hG
' ..F s

GX /hK /hG=K
D .X hK /hG=K :

The following result (which is actually just an assemblage of well-known facts) gives an
example of a single hypothesis that is sufficient to yield the group-theoretic conditions
that are required by Theorem 4.21 (in its first sentence).

Lemma 4.22 Suppose that G is a profinite group that is p–adic analytic. If G is a
closed subgroup of G and K is a closed normal subgroup of G , then G and G=K are
strongly complete, and G=K has finite virtual cohomological dimension.

Proof Since G is p–adic analytic, G and the quotient group G=K are p–adic
analytic groups by Dixon, du Sautoy, Mann and Segal [12, Theorem 9.6]. Since G is
p–adic analytic, it contains an open pro–p subgroup H that is finitely generated. It
follows that H is strongly complete, and hence G and G=K are strongly complete.
Also, since G=K is p–adic analytic, it has finite virtual cohomological dimension; for
example, see Davis [3, page 330].

We point out that, besides implying the group-theoretic conditions of Theorem 4.21,
the single hypothesis of Lemma 4.22 also implies (as stated explicitly in the lemma)
that G=K is strongly complete, and this property is required in Theorem 4.14 and
Corollary 4.15.

Now we want to apply Theorem 4.10 to suitable homotopy limits of profinite G –spectra:
to do this, we need the following definition, whose key components are properties (a)
and (b) below.

Definition 4.23 Let K be a closed normal subgroup of G and let J be a small
category. We say that fXˇgˇ2J is a diagram of K–Postnikov G –spectra that is natural
in ˇ whenever

(a) fXˇgˇ2J is a J –shaped diagram of profinite G –spectra,

(b) for each ˇ , Xˇ is a K–Postnikov G–spectrum, with fX q

ˇ
.K/gq2Z denoting

the inverse system of profinite G=K–models associated to Xˇ ,

(c) there is a .J � fqg/–shaped diagram fX q

ˇ
.K/gˇ;q of profinite G=K–spectra,

(d) there is an equivalence

holimˇ holimq..P
qXˇ/

hd K /hd G=K
' holimˇ holimq.X

q

ˇ
.K//hd G=K ;

(e) the fibrant profinite G=K–spectrum holimˇ holimq X
q

ˇ
.K/ is a model for G=K–

spectrum holimˇ holimq.P
qXˇ/

hK in the category of profinite G=K–spectra.
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Remark 4.24 In the above definition, we point out that properties (c), (d) and (e) are
criteria that one would expect to be satisfied on the basis of just (a) and (b) alone: they
are just expressing the requirement that the input data have enough naturality to be
practically useful (for example, properties (d) and (e) are saying that, in Definition 4.8,
properties (c) and (d), respectively, are natural in ˇ ).

Notice that if fXˇgˇ2J is a diagram of K–Postnikov G –spectra that is natural in ˇ ,
then holimˇ Xˇ is a fibrant profinite G –spectrum.

Theorem 4.25 Let G be a profinite group and K a closed normal subgroup of G such
that G=K has finite virtual cohomological dimension. If fXˇgˇ2J is a diagram of
K–Postnikov G –spectra that is natural in ˇ , then there is an equivalence of spectra

.holimˇ Xˇ/
hG
' ..holimˇ Xˇ/

hK /hG=K ;

and there is a conditionally convergent spectral sequence

E
s;t
2
DH s

c

�
G=KI�t ..holimˇ Xˇ/

hK /
�
D) �t�s..holimˇ Xˇ/

hG/;

where the E2 –term is the continuous cohomology of G=K with coefficients the profi-
nite G=K–module �t ..holimˇ Xˇ/

hK /.

Proof The f –G–spectra Xˇ satisfy the hypotheses of Theorem 4.10. Hence for
each ˇ , we have an equivalence

.Xˇ/
hG
' ..Xˇ/

hK /hG=K
D .holimq X

q

ˇ
.K//hG=K :

Since taking H –homotopy fixed points commutes with homotopy limits of fibrant
profinite H –spectra for any profinite group H (by [24, Proposition 3.12]), and the
G=K–spectrum .holimˇ Xˇ/

hK is easily seen to have holimˇ holimq X
q

ˇ
.K/ as a

profinite G=K–model, it follows that there is an equivalence:

.holimˇ Xˇ/
hG
' .holimˇ holimq X

q

ˇ
.K//hG=K

D ..holimˇ Xˇ/
hK /hG=K :

The second assertion now follows from the above equivalence: by applying (7), there
is a homotopy fixed point spectral sequence

E
s;t
2
DH s

c .G=KI�t .holimˇ holimq X
q

ˇ
.K///D) �t�s..holimˇ Xˇ/

hG/:

There is a G=K–equivariant isomorphism

�t ..holimˇ Xˇ/
hK /Š �t .holimˇ holimq X

q

ˇ
.K//

of abelian groups, and thus �t ..holimˇ Xˇ/
hK / can be identified with the profinite

G=K–module �t .holimˇ holimq X
q

ˇ
.K//.
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Remark 4.26 The discussion in Remark 4.11 applies to the fact that, in Theorem 4.25,
we showed that holimˇ holimq X

q

ˇ
.K/ is a model, in the category of profinite G=K–

spectra, for the G=K–spectrum .holimˇ Xˇ/
hK. Thus, we just briefly note that if Y

is another profinite G=K–model for .holimˇ Xˇ/
hK , it is not known that there is an

equivalence .holimˇ holimq X
q

ˇ
.K//hG=K' Y hG=K in general.

The following definition extends Definition 4.18 to homotopy limits of diagrams.

Definition 4.27 Let G be a strongly complete profinite group. Also, let fXˇgˇ2J ,
with J a small category, be a diagram of G–spectra such that each Xˇ is a � –finite
G –spectrum that is fibrant as a spectrum. Then we define

.holimˇ Xˇ/
hH
WD .holimˇ F s

G.Xˇ//
hH ;

where H is any closed subgroup of G .

Remark 4.28 We point out that the construction in Definition 4.27 has the following
desired properties: (a) the canonical map

holimˇ Xˇ
'
��! holimˇ F s

G.Xˇ/

is a weak equivalence of spectra that is G–equivariant, so that holimˇ Xˇ has the
fibrant profinite G –spectrum holimˇ F s

G
.Xˇ/ as a model in the category of profinite

G –spectra; (b) if the closed subgroup H is finite, there are equivalences

.holimˇ Xˇ/
hd H '
��!.holimˇ F s

G.Xˇ//
hd H
'.holimˇ F s

G.Xˇ//
hH
D.holimˇ Xˇ/

hH;

yielding agreement between the “classical” and “profinite” homotopy fixed points (the
first and last terms, respectively, above); and (c) if H is any closed subgroup that is
strongly complete, then

.holimˇ F s
G.Xˇ//

hH
' holimˇ.F

s
G.Xˇ//

hH
' holimˇ.F

s
H .Xˇ//

hH

' .holimˇ F s
H .Xˇ//

hH ;

so the two possible definitions of .holimˇ Xˇ/
hH (the first and last terms in the

preceding chain of equivalences) are equivalent to each other.

Given Definition 4.27, the following result is immediate from Theorem 4.25.

Corollary 4.29 Let G be a strongly complete profinite group, and let K be a closed
normal subgroup of G with G=K having finite virtual cohomological dimension.
Also, let fXˇgˇ2J , where J is a small category, be a diagram of G–spectra, with
each Xˇ both a fibrant spectrum and a � –finite G –spectrum. If the J –shaped diagram
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fF s
G
.Xˇ/gˇ of profinite G–spectra is a diagram of K–Postnikov G–spectra that is

natural in ˇ , then there is an equivalence of spectra

.holimˇ Xˇ/
hG
' ..holimˇ Xˇ/

hK /hG=K

and a conditionally convergent spectral sequence

E
s;t
2
DH s

c

�
G=KI�t ..holimˇ Xˇ/

hK /
�
D) �t�s..holimˇ Xˇ/

hG/

whose E2 –term is the continuous cohomology of G=K with coefficients the profinite
G=K–module �t ..holimˇ Xˇ/

hK /.

By Lemma 4.22, the conditions in the first sentence of Corollary 4.29 are satisfied
when the profinite group G is p–adic analytic.

5 Iterated continuous homotopy fixed points for En

We return to our main example of the extended Morava stabilizer group Gn and its
continuous action on the Lubin–Tate spectrum En . Let BP be the Brown–Peterson
spectrum for the fixed prime p . Its coefficient ring is BP� D Z.p/Œv1; v2; : : :�, where
vi has degree 2.pi � 1/. There is a map

r W BP�!En� DW .Fpn/ŒŒu1; : : : ;un�1��Œu;u
�1�;

defined by r.vi/D uiu
1�pi

for i < n, r.vn/D u1�pn

and r.vi/D 0 for i > n, that
makes En� a BP�–module; for more information on this and the remaining details
in this paragraph, see, for example, Devinatz and Hopkins [10, Introduction] and
Hopkins, Mahowald and Sadofsky [17, Section 7]. Let I be an ideal in BP� of the
form .pi0 ; v

i1

1
; : : : ; v

in�1

n�1
/ that is Gn –invariant (that is, Gn.IEn�/ D IEn� ). Such

ideals form a cofiltered system and their images in En� under r provide each �tEn

with the structure of a continuous profinite Gn –module: explicitly, we have

�tEn Š limI �tEn=I�tEn:

In fact, for t odd these groups vanish, for t even each quotient �tEn=I�tEn is a finite
discrete Gn –module (the Gn –action on each quotient is induced by the Gn –action
on �tEn ), and the above decomposition of �tEn as a limit of these finite discrete
Gn –modules is compatible with the Gn –action.

In the collection of ideals I , we can fix a descending chain of ideals

I0 � I1 � � � � � Ik � � � �

Algebraic & Geometric Topology, Volume 16 (2016)



2296 Daniel G Davis and Gereon Quick

with an associated tower

MI0
 MI1

 � � �  MIk
 � � �

of generalized Moore spectra with trivial Gn –action such that

LK.n/.S
0/' holimk.LEn

.MIk
//f ;

where LK.n/ denotes Bousfield localization with respect to K.n/ and .�/f is a
fibrant replacement functor for Bousfield–Friedlander spectra, and for each k � 0,
BP�.MIk

/ D BP�=Ik (see [17] and Hovey and Strickland [19, Section 4]). It is
useful to note that the last condition (about Brown–Peterson homology) implies that
for each k ,

�t .En ^MIk
/Š �tEn=Ik�tEn

for all t . Also, as in [17], there is an equivalence

En ' holimk.En ^MIk
/f

which is induced by the isomorphism En ŠEn ^S0 in the stable homotopy category
and the Gn –equivariant map

En ^S0 '
��! holimk.En ^MIk

/f

(in the source of this map, Gn acts trivially on S0 ), whose underlying map of spectra
is a stable equivalence.

Now the profinite group Gn is strongly complete (for example, see Davis [3, page 330])
and each En ^MIk

is a � –finite Gn –spectrum. Thus, the functorial replacement of
Theorem 3.5 yields a fibrant profinite Gn –spectrum F s

Gn
..En ^MIk

/f / built out of
pointed simplicial finite discrete Gn –sets and a Gn –equivariant map

.En ^MIk
/f
'
��! F s

Gn
..En ^MIk

/f /DWE
0
n;Ik

;

which is a stable equivalence of underlying spectra. It follows that there is an equivalence

holimk.En ^MIk
/f
'
��! holimk E0n;Ik

of spectra, and the target of this equivalence can be regarded as a homotopy limit in
the category of profinite Gn –spectra. Thus, because of the equivalence

En ' holimk E0n;Ik
;

we denote by E0n the fibrant profinite Gn –spectrum

E0n WD holimk E0n;Ik
:
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In Quick [24], the continuous homotopy fixed points EhG
n under a closed subgroup G

of Gn are defined as
EhG

n WD .E0n/
hG :

These homotopy fixed points satisfy

(19) EhG
n ' holimk.E

0
n;Ik

/hG ;

since each E0n;Ik
is a fibrant profinite G –spectrum.

Given the above setup, we are now ready to give a proof of Theorem 1.7. This proof is
an application of Theorem 4.25 and involves the use of Corollary 4.15 and Remark 4.16
in a key way.

Proof of Theorem 1.7 Recall that G is an arbitrary closed subgroup of Gn and
K is any closed normal subgroup of G . Since Gn is a p–adic analytic group,
Lemma 4.22 implies that G and G=K are strongly complete and G=K has finite
virtual cohomological dimension.

Since E0n;Ik
is an f –Gn –spectrum, it is an f –G–spectrum, and it follows that

H s
c .KI�t .E

0
n;Ik

// is finite for all s and t from Symonds and Weigel [28, Proposi-
tion 4.2.2] (as recalled in Remark 4.16). Then, by applying Corollary 4.15, we can
conclude that E0n;Ik

is a K–Postnikov G–spectrum for each k . For each k and any
integer q , let

L
q

k
D F s

G=K .colimj Map.EG;PqE0n;Ik
/Kj /I

the diagram fLq

k
gq2Z is the inverse system of profinite G=K–models associated to

the K–Postnikov G –spectrum E0n;Ik
. (To avoid any confusion, we remind the reader

that fUj g is the collection of open normal subgroups of G (not Gn ) and Kj DKUj .)
It is easy to see that fE0n;Ik

gk is a diagram of K–Postnikov G –spectra that is natural
in k , and hence Theorem 4.25 yields the equivalence

EhG
n D .holimk E0n;Ik

/hG
' ..holimk E0n;Ik

/hK /hG=K
D .EhK

n /hG=K :

We now give the proof of Theorem 1.8. Our proof continues the setup and notation
that was established above in the proof of Theorem 1.7.

Proof of Theorem 1.8 Since fE0n;Ik
gk is a diagram of K–Postnikov G –spectra that

is natural in k , Theorem 4.25 shows that there exists a conditionally convergent spectral
sequence that has the form

(20) H s
c .G=KI�t .E

hK
n //D) �t�s.E

hG
n /:
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Now let H denote any closed subgroup of Gn and notice that, as at the end of the first
paragraph of the proof of Theorem 1.7, H has finite virtual cohomological dimension.
Thus, by applying Theorem 3.2 to the f –H –spectrum E0n;Ik

, we obtain, for each k ,
the equivalence .E0n;Ik

/hH ' .E0n;Ik
/hd H. We can build upon this equivalence to

obtain, for each k , the equivalences

(21) .E0n;Ik
/hH
' .E0n;Ik

/hd H
'

��
colim

N CoGn

EdhN
n

�
^MIk

�hd H
'EdhH

n ^MIk
;

where the above colimit is over the open normal subgroups of Gn . The second
equivalence follows from the fact that the composition�

colim
N CoGn

EdhN
n

�
^MIk

'
��!En ^MIk

'
��! .En ^MIk

/f
'
��!E0n;Ik

is a weak equivalence in the category of discrete H –spectra (the key ingredient here
is that the first map above is a weak equivalence of spectra: this is due to Devinatz
and Hopkins [11] and is made explicit in [3, Theorem 6.3, Corollary 6.5]). The last
equivalence in (21) is by [3, Corollary 9.8] and Behrens and Davis [1, Theorem 8.2.1].
By Devinatz [7, proof of Lemma 3.5], the spectrum EdhH

n ^MIk
has finite homotopy

groups, and hence so does the spectrum .E0n;Ik
/hH .

Our last conclusion implies that ��..E0n;Ik
/hK / and ��..E0n;Ik

/hG/ are degreewise
finite. Therefore, it follows from (19) (and from a second application of (19) with G set
equal to K ) as in Hopkins, Mahowald and Sadofsky [17, proof of Proposition 7.4] (see
also Davis [5, beginning of the proof of Theorem 7.6]) that the spectral sequence (20)
is the inverse limit over fkg of conditionally convergent spectral sequences Er .k/�

E
�;�
r .k/ that have the form

E
s;t
2
.k/DH s

c

�
G=KI�t ..E

0
n;Ik

/hK /
�
D) �t�s..E

0
n;Ik

/hG/;

where Er .k/ is constructed, for each k , as an instance of the descent spectral se-
quence (7), with abutment equal to ��..holimq L

q

k
/hG=K /.

We pause to introduce some helpful terminology: if Z� is a cosimplicial spectrum that
is fibrant in each codegree, then we refer to the conditionally convergent homotopy
spectral sequence

E
s;t
2
DH s Œ�t .Z

�/�D) �t�s.holim�Z�/

as the homotopy spectral sequence for holim�Z� . For clarity later, we go ahead
and point out that, as defined above, whenever we use this terminology, the relevant
homotopy limit (that is, holim�Z� ) is always indexed by �.
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By Quick [24, Proposition 3.20 and Lemma 3.21(b)], spectral sequence Er .k/ can be
regarded as the homotopy spectral sequence for

holim� MapG=K ..G=K/
�C1; holimq L

q

k
/:

Thus [24, Lemma 3.5] implies that Er .k/ is the homotopy spectral sequence for

holim� holimq MapG=K ..G=K/
�C1;L

q

k
/:

Since L
q

k
is an f –G=K–spectrum, the isomorphism (11) (in the proof of Theorem 3.2)

shows that Er .k/ is isomorphic to the homotopy spectral sequence for

holim� holimq Mapc..G=K/
�C1;L

q

k
/G=K :

It follows that Er .k/ is isomorphic to spectral sequence Hr .k/, which is defined to
be the homotopy spectral sequence for

holim� holim
q�0

Mapc..G=K/
�C1;L

q

k
/G=K '

�
holim

q�0
L

q

k

�hG=K
:

(Hr .k/ is an instance of the spectral sequence that is studied in [3, Theorem 8.8].) The
above equivalence uses that L

q

k
is a fibrant spectrum for each q � 0 and G=K has

finite virtual cohomological dimension, and the expression on the right-hand side above
is the G=K–homotopy fixed points of the continuous G=K–spectrum holimq�0 L

q

k

(in the sense of [3]).

We want to compare spectral sequence Hr .k/ with a certain other spectral sequence,
and to accomplish this, we need to do some preliminary work. The first step is to note
that, for each q � 0, there is a canonical map E0n;Ik

! PqE0n;Ik
in the category of

profinite Gn –spectra, and hence there is the induced G=K–equivariant map

(22) colimj Map.EG;E0n;Ik
/Kj ! colimj Map.EG;PqE0n;Ik

/Kj :

The source of the map (22) is the first term in the following chain of equivalences:

colimj Map.EG;E0n;Ik
/Kj D colimj .E

0
n;Ik

/hKj ' colimj .E
dhKj

n ^MIk
/

'EdhK
n ^MIk

;

where the second equivalence follows from (21) and the last equivalence is due to
Devinatz and Hopkins [11, Proposition 6.3] (for the details, see [5, Lemma 7.1]). As
recalled earlier, the spectrum EdhK

n ^MIk
has finite homotopy groups, and hence the

source colimj Map.EG;E0n;Ik
/Kj of the map (22) is a � –finite G=K–spectrum.

For each q � 0, there is a morphism

colimj Map.EG;E0n;Ik
/Kj !L

q

k
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of discrete G=K–spectra that is equal to the composition

colimj Map.EG;E0n;Ik
/Kj ! F s

G=K .colimj Map.EG;E0n;Ik
/Kj /!L

q

k
;

where the first map in the above composition exists by Theorem 3.5, since the source
is a � –finite G=K–spectrum, and the last map is obtained by applying F s

G=K
to the

map (22). It follows that, for each q � 0, there is an induced map

Mapc

�
.G=K/�C1; colimj Map.EG;E0n;Ik

/Kj
�G=K

!Mapc..G=K/
�C1;L

q

k
/G=K

of cosimplicial spectra, and hence there is a map

Mapc

�
.G=K/�C1; colimj Map.EG;E0n;Ik

/Kj
�G=K

! lim
q�0

Mapc..G=K/
�C1;L

q

k
/G=K

of cosimplicial spectra. Composition of the last map above with the canonical map
from the limit to the homotopy limit yields a map

Mapc

�
.G=K/�C1; colimj Map.EG;E0n;Ik

/Kj
�G=K
!holim

q�0
Mapc

�
.G=K/�C1;L

q

k

�G=K
that induces a morphism from Dr .k/, which is defined to be the homotopy spectral
sequence for

holim� Mapc

�
.G=K/�C1; colimj Map.EG;E0n;Ik

/Kj
�G=K

;

to the spectral sequence Hr .k/.

The isomorphism between spectral sequences Hr .k/ and Er .k/, which we established
earlier, implies that Hr .k/ has E2 –term isomorphic to

E
s;t
2
.k/DH s

c .G=KI�t ..E
0
n;Ik

/hK //:

Also, as in [3, Theorem 7.9], spectral sequence Dr .k/ has E2 –term equal to

H s
c .G=KI�t .colimj Map.EG;E0n;Ik

/Kj //;

with �t .colimj Map.EG;E0n;Ik
/Kj / equal to a discrete G=K–module. Since

colimj Map.EG;E0n;Ik
/Kj 'EdhK

n ^MIk
' .E0n;Ik

/hK ;

where the last equivalence above applies (21), and the finite profinite G=K–module
�t ..E

0
n;Ik

/hK / is automatically a discrete G=K–module, the E2 –terms of Dr .k/ and
Hr .k/ are isomorphic. Therefore, spectral sequences Er .k/ and Dr .k/ are isomorphic
to each other from the E2 –terms onward.
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In [5, proof of Theorem 7.6], there is a descent spectral sequence that is referred to as
E
�;�
r .K;G; k/ and which has the form

(23) H s
c .G=KI�t .E

h0K
n ^MIk

//D) �t�s.E
h0G
n ^MIk

/:

As done with the notation “.En ^MIk
/f ”, if Z denotes an arbitrary spectrum, we let

Zf be a functorial fibrant replacement of Z in the stable model category of spectra.
It follows from [5, (6.2)] that the spectral sequence E

�;�
r .K;G; k/ is the homotopy

spectral sequence for

holim� Mapc

�
.G=K/�C1; colim

N CoGn

.EdhNK
n ^MIk

/f

�G=K
:

Because

colimj Map.EG;E0n;Ik
/Kj 'EdhK

n ^MIk
' colim

N CoGn

.EdhNK
n ^MIk

/f ;

where the last equivalence follows from Devinatz and Hopkins [11, Definition 1.5] (for
some details, see [5, Lemma 5.2]), there is an isomorphism between spectral sequences
Dr .k/ and E

�;�
r .K;G; k/ (to see this, it is helpful to recall the definition of Dr .k/).

Since the spectral sequence (20) is the spectral sequence limk Er .k/, it is isomorphic
to the spectral sequence limk Dr .k/; thus it is isomorphic to the spectral sequence
limk E

�;�
r .K;G; k/, from the E2 –term onward. Since limk E

�;�
r .K;G; k/ is the

descent spectral sequence

H s
c .G=KI�t .E

h0K
n //D) �t�s.E

h0G
n /

of (3) (see [5, proof of Theorem 7.6]), which is isomorphic to the strongly convergent
spectral sequence

H s
c .G=KI�t .E

dhK
n //D) �t�s.E

dhG
n /

of (2) from the E2 –term onward, it follows that the spectral sequence (20) is isomorphic
to spectral sequences (2) and (3) from the E2 –term onward, and its strong convergence
follows from that of (2).
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