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An annular refinement of the transverse element
in Khovanov homology

DIANA HUBBARD

ADAM SALTZ

We construct a braid conjugacy class invariant � by refining Plamenevskaya’s trans-
verse element  in Khovanov homology via the annular grading. While � is not
an invariant of transverse links, it distinguishes some braids whose closures share
the same classical invariants but are not transversely isotopic. Using � we construct
an obstruction to negative destabilization (stronger than  ) and a solution to the
word problem in braid groups. Also, � is a lower bound on the length of the spectral
sequence from annular Khovanov homology to Khovanov homology, and we obtain
concrete examples in which this spectral sequence does not collapse immediately. In
addition, we study these constructions in reduced Khovanov homology and illustrate
that the two reduced versions are fundamentally different with respect to the annular
filtration.

20F36, 57M25, 57M27, 57R17

1 Introduction

Khovanov homology has proven to be a powerful tool for studying links and link cobor-
disms in S3 . Given a link L with diagram D , the homology of the bigraded Khovanov
chain complex CKh.D/ is a link invariant denoted Kh.L/. In Plamenevskaya [29], the
author constructs from Khovanov homology an invariant of transverse links presented
as braid closures.1 Recall that the Khovanov chain complex is constructed by assigning
a vector space to each complete resolution of a diagram. This vector space over Z=2Z
is generated by labelings of the components in each resolution by the symbols vC
and v� . The diagram of an n–strand braid closure L has a unique resolution into
an n–strand unlink, and the transverse element  .L/ is the labeling of each component
of this unlink by v� . It is easy to see that  .L/ is a cycle.

1Recall that Orevkov and Shevchishin [26], and independently Wrinkle [32], have shown that there is
a one-to-one correspondence between transverse links in S3 (up to transverse isotopy) and braids (up to
positive stabilization and isotopy). We review this correspondence in Section 2.
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Theorem (Plamenevskaya [29]) Let L and L0 be transversely isotopic transverse
links with braid closure diagrams D and D0 , respectively. Then any sequence of
transverse Reidemeister moves connecting the two diagrams D and D0 induces a map
CKh.D/! CKh.D0/ which sends  .L/ to  .L0/.

This implies that the homology class Œ .L/� (and indeed, the chain  .L/) is a trans-
verse invariant which detects the classical self-linking number. An invariant of transverse
links is called effective if it takes on different values for a pair of transverse links with
the same self-linking number and smooth link type. A smooth link type is called
transversely nonsimple if it supports transversely nonisotopic links with the same
self-linking number. It is not known if Plamenevskaya’s invariant is effective.

Given a link L equipped with an embedding into a thickened annulus (ie L�A�I�S3),
its Khovanov chain complex can be endowed with an additional grading which we
call the k –grading, first studied in Asaeda, Przytycki and Sikora [3] and Roberts [30].
For a resolution with a single component, k.v˙/ D ˙1 if the component is not
null-homotopic in A�I , and k.v˙/D 0 otherwise. We extend the grading to tensor
products by summation. The Khovanov differential is nonincreasing in the k –grading,
which induces a filtration on the Khovanov complex. The homology of the associated
graded chain complex is called annular Khovanov homology, denoted here as AKh.L/
(elsewhere also called sutured annular Khovanov homology or sutured Khovanov
homology and denoted SKh.L/). AKh is an invariant of annular links and not a
transverse invariant. (See Section 2 for more details.) For a braid closure x̌, the
element  . x̌/ 2 CKh. x̌/ is the unique element with lowest k –grading.

Standard algebraic machinery (see Hutchings [18] for an introduction and McCleary [25]
for a thorough treatment) produces a spectral sequence from the associated graded
object of a filtered complex to the homology of that complex and therefore from AKh
to Kh. Our original goal in this work was to define a (perhaps effective) transverse
invariant by exploring the behavior of Plamenevskaya’s class in this spectral sequence.
AKh is known to distinguish some braids whose closures are smoothly isotopic but not
transversely isotopic (see Hubbard [16]), and so it is natural to suspect that the spectral
sequence from AKh to Kh also captures nonclassical information.

In this paper we define a refinement of Plamenevskaya’s invariant that measures how
long  .L/ survives in the spectral sequence, or equivalently, the lowest filtration level
at which the class of  .L/ vanishes. For a braid ˇ with closure x̌, write

Fi. x̌/D fx 2 CKh. x̌/ W k.x/� ig:

Algebraic & Geometric Topology, Volume 16 (2016)
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Definition 1 Let ˇ be an n–strand braid with closure x̌ and suppose that  . x̌/ is a
boundary in CKh. x̌/. Define

�.ˇ/D nCminfi W Œ . x̌/�D 0 2H.Fi/g:

If  . x̌/ is not a boundary then define �.ˇ/D1.

However, �.ˇ/ is a conjugacy class invariant of braids rather than a transverse invariant.

Theorem 2 � is an invariant of conjugacy classes in the braid group Bn . It may
increase by 2 under positive stabilization and is thus not a transverse invariant.

Nevertheless, � can distinguish conjugacy classes of some braids whose closures are
transversely nonisotopic but have the same classical invariants.

Proposition 3 For any a; b 2 f0; 1; 2g, the pair of closed 4–braids

A.a; b/D �3�
�2
2 �2aC2

3
�2�
�1
3 ��1

1 �2�
2bC2
1

and
B.a; b/D �3�

�2
2 �2aC2

3
�2�
�1
3 �2bC2

1
�2�
�1
1 ;

related by a negative flype, can be distinguished by � : indeed, �.A.a; b// D 4 and
�.B.a; b//D 2. For any pair .a; b/, the braids A.a; b/ and B.a; b/ are transversely
nonisotopic but have the same classical invariants (see Khandhawit and Ng [19]).

Lipshitz, Ng and Sarkar [24], using a filtered refinement of  .L/ valued in the Lee–
Bar-Natan deformation of Khovanov homology, showed that Plamenevskaya’s class is
invariant under negative flypes. The above proposition could be seen as evidence that
� carries nonclassical information even if  does not.

� has nice properties mirroring those of  , and our calculations have some interesting
consequences. In Section 4 we collect these observations. In particular, we show using
Proposition 3 that the spectral sequence from AKh to Kh does not necessarily collapse
immediately, providing a counterexample to Conjecture 4.2 from Hunt, Keese, Licata
and Morrison [17]. In addition, our work together with that in Baldwin and Grigsby [4]
provides a solution (faster than that of [4]) to the word problem for braids.

Recall that the Khovanov chain complex has two reduced variants obtained by placing a
basepoint on the link diagram (see Khovanov [21]). The homologies of these complexes
are isomorphic as bigraded objects up to a global grading shift. The behavior of � under
positive stabilization provided some promise that a reduced analogue of � might be a
transverse invariant. In Section 5 we define � for both versions of reduced Khovanov
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homology. However, these constructions depend on the placement of the basepoint.
We still have some hope that these reduced constructions will provide nonclassical
transverse information. In any case, the fact that the two reduced variants are largely
independent demonstrates that the two reductions of Khovanov homology are quite
different with respect to the k –grading.

This project was inspired by similar spectral sequence constructions in Floer homology.
Let .Y; �/ be a contact three-manifold. Recall that there are elements c� 2bHF.Y /
(Heegaard Floer homology) and ∅� 2 ECH.Y / (embedded contact homology) which
are invariants of � . It is known that each of these elements vanishes if .Y; �/ is
overtwisted (Ozsváth and Szabó [27], Yau [33]) or if .Y; �/ contains Giroux n–torsion
for any n> 0 (Ghiggini, Honda and Van Horn-Morris [13]) (both converses are false).
In Latschev and Wendl [22], the authors study algebraic torsion in symplectic field
theory and show that it can obstruct fillability. Hutchings adapts this work to embedded
contact homology by constructing a relative filtration on ECH.Y /. He defines the
algebraic torsion of the contact element to be the lowest filtration level at which ∅�
vanishes. As ECH is known to be isomorphic to bHF (see Lee [23]) by an isomorphism
carrying ∅� to c� , it is reasonable to suspect that there is an analogous construction
in Heegaard Floer homology. This is the subject of ongoing work by Baldwin and
Vela-Vick and independently by Kutluhan, Matić, Van Horn-Morris, and Wand.

Now let L be a link with mirror m.L/, and let †.L/ be the double cover of S3

branched over L. There is a spectral sequence Ei.L/ so that E2 Š eCKh.m.L//
and E1 DbHF.†.L// (see Ozsváth and Szabó [28]). If L is a transverse link
then †.L/ inherits a contact structure �.L/. Plamenevskaya [29] conjectured and
Roberts [30] proved (see also Baldwin and Plamenevskaya [5] ) that  .L/ “converges”
to c�.L/ in the sense that there is some x 2 E0.L/ so that Œx�2 D  .L/ 2 E2.L/

and Œx�1 D c�.L/ 2 E1.L/. This is a weak sort of convergence — in particular,
the vanishing or nonvanishing of the two elements are independent — but it has been
used fruitfully in eg [5]. We hope to use this connection to derive contact-theoretic
information from � .

Acknowledgements We thank John Baldwin for suggesting the project and Eli Grigsby
for pointing us towards the annular grading. We also thank them as well as Olga
Plamenevskaya and David Treumann for helpful conversations and advice.

2 Preliminaries

Let L � S3 be a link with diagram D . Suppose that D has c crossings. Each
crossing may be resolved in one of two ways as shown in Figure 1. Thus a diagram
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An annular refinement of the transverse element in Khovanov homology 2309

0

1

Figure 1: Resolutions for the Khovanov chain complex

with c crossings admits 2c complete resolutions, indexed by f0; 1gc .2 Let V be
the vector space generated over Z=2Z by the symbols vC and v� . For a complete
resolution I with m closed components, define CKhI .D/D V ˝m . Concretely, the
simple tensors in CKhI .D/ are labelings of the components of the resolved diagram
with vC and v� . We refer to these as canonical generators. The underlying vector
space for the Khovanov chain complex is CKh.D/D

L
I2f0;1gc CKhI .D/. The vector

space CKh.D/ admits two gradings called h and q . See [20] and [6] for a more
complete description of CKh, its gradings, and its differential. There are two versions
of reduced Khovanov homology, which we study in Section 5.

Let A � R2 be a standard annulus in R2 . An annular link is a link L � A� Œ0; 1�.
Let 
 be a simple closed curve from the inner boundary of A �

˚
1
2

	
to the outer

boundary. Let � W A � I ! A be the projection. Let L be an annular link with
diagram D . A component C of the resolved diagram is called trivial if the mod 2
intersection number of �.C / with �.
 / is 0 and is called nontrivial otherwise. The
k –grading of a generator x is

k.x/D #fnontrivial circles in x labeled vCg� #fnontrivial circles in x labeled v�g:

Roberts [30], following [3], shows that the Khovanov differential is nonincreasing in k .
Thus the subcomplexes Fi.D/D fx 2 CKh.D/ W k.x/� ig form a bounded filtration
of CKh.L/. Moreover, the filtered chain homotopy type of CKh.D/ is an invariant
of L as an annular link. For a filtered complex .X 0; d 0;F 0i/ the associated graded
object is the direct sum of complexes

L
i F
0
i=F
0
i�1

. There is a spectral sequence from
the associated graded object to the homology of the total complex, see [25]. The
associated graded object of the Khovanov chain complex filtered by k is called annular
Khovanov homology and is denoted by AKh.L/. Roberts concludes the following:

2We implicitly order the crossings of D . All of the constructions in this paper are independent of the
choice of ordering.
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Theorem 4 [30] For any annular link L there is a spectral sequence from AKh.L/
to Kh.L/.

Braid closures may be naturally regarded as annular links, and annular Khovanov
homology has proven to be a powerful tool in studying braids. See, for example, [15],
[4], [14], and [16].

Braid closures are also closely related to transverse links. We will say that a link
L � R3 is transverse if it is everywhere transverse to the standard radial contact
structure � D ker.dz C r2d�/. (For convenience we state these results for R3 but
they all extend to S3 .) Two links are transversely isotopic if they are isotopic through
transverse links. A link which is braided around the z–axis may be isotoped to a
transverse link, and Bennequin [7] shows that every transverse link may be isotoped
to such a braid closure. The transverse Markov theorem of [26] and [32] states that
if ˇ and ˇ0 are braids with transverse closures x̌ and x̌0 then x̌ and x̌0 are transversely
isotopic if and only if ˇ and ˇ0 are related by a sequence of conjugations, positive
stabilizations, and positive destabilizations. Positive stabilization is the operation which
sends ˇ 2Bn to ˇ�n 2BnC1 , and destabilization is its inverse. There are two classical
invariants of transverse links, the underlying smooth link type and the self-linking
number. The self-linking number of x̌ is

sl. x̌/D a.ˇ/� n

where a.ˇ/ is the sum of the exponents of ˇ . An invariant of transverse links is called
effective if it separates transverse links in the same smooth isotopy class with the same
self-linking number. For more on the connection between transverse links and braids,
see [10].

Now let ˇ be an n–strand braid whose closure x̌ is the transverse link L. Let D be a
diagram for x̌. Recall that  .D/ is defined as the generator in the braidlike resolution
with only v� labels. An easy calculation shows that q. .D//D sl.L/. Suppose that
ˇ0 is another braid whose closure is transversely isotopic to L. Then for any sequence
of conjugations and positive (de)stabilizations that transforms ˇ into ˇ0 , the naturally
induced map CKh. x̌/! CKh. x̌0/ carries  . x̌/ to  . x̌0/. Thus  .L/ 2 CKh.L/ is
well defined. Note that while the k –grading of  .L/ is not well defined (it is decreased
by positive stabilization, see Section 4.3), the element  .D/ generates F�n , the lowest
nontrivial level of the k –filtration. It is easy to show that  .L/ is a cycle.

It is not known if  .L/ is effective. Plamenevskaya showed that Œ . x̌/� ¤ 0 if ˇ
is negatively destabilizable, if ˇ can be written with ��1

i but not �i [29], or if ˇ is
non-right-veering (with Baldwin, [4]). On the other hand, if ˇ is quasipositive then
Œ .ˇ/�¤ 0 [29].

Algebraic & Geometric Topology, Volume 16 (2016)
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3 Definition and invariance of �

Let Bn be the braid group on n strands and let ˇ 2 Bn be a braid with transverse
element  . x̌/. The k –filtration on CKh. x̌/ has the form

0� F�n � F2�n � � � � � Fn�2 � Fn D CKh. x̌/

where F�n is generated by  . x̌/, so  . x̌/ 2 Fi for i � �n. We restate Definition 1:

Definition Let ˇ 2 Bn and suppose that  . x̌/ is a boundary in CKh. x̌/. Define

�.ˇ/D nCminfi W Œ . x̌/�D 0 2H.Fi/g:

If  . x̌/ is not a boundary, then define �.ˇ/D1.

We will say that y 2 CKh. x̌/ realizes �.ˇ/ if dy D . x̌/ and k.y/D �.ˇ/�n. Note
that � is always even and that 2 � �.ˇ/ � 2n. The only element with k –grading n

is the all vC labeling of the braidlike resolution, so in fact �.ˇ/� 2.n� 1/. We now
show that � is a well-defined function on Bn . First, we prove an algebraic lemma.

Lemma 5 Let .X; d;F/ and .X 0; d 0;F 0/ be complexes with bounded filtrations, and
suppose that f W X !X 0 is a filtered chain map. For any nonzero cycle x 2X , define
�.x/ D minfi W Œx� D 0 2 H�.Fi/g or �.x/ D 1 if x is not a boundary. Define �0

analogously on X 0 . Suppose that f .x/ D y ¤ 0. Then �.x/ � �0.y/. If there is a
filtered chain map gW X 0!X with g.y/D x , then �.x/D �0.y/.

Proof Chain maps carry cycles to cycles, so if �.x/ is defined then so is �0.y/. There
is nothing left to prove if �.x/ D 1, so suppose that �.x/ is finite. Then there is
some w 2F�.x/ so that dwD x , and .f ıd/.w/D y D .d ıf /.w/. As f is filtered,
f .w/2F 0�.x/ , so �0.y/� �.x/. If there is a filtered chain map g with g.y/D x , then
the opposite inequality shows that �.x/D �0.y/.

The � of Lemma 5 differs from that of Definition 1 in that the latter is normalized
using the braid index, but the lemma clearly still applies to the definition.

Proposition 6 Suppose that ˇ and ˇ0 are words in the Artin generators so that ˇD ˇ0

in Bn . Then �.ˇ/D �.ˇ0/.

Proof It will suffice to show that �.ˇ/ is invariant under Reidemeister 2 and Reide-
meister 3 moves which do not cross the braid axis. These moves induce natural maps
on the Khovanov chain complex which carry  .ˇ/ to  .ˇ0/, see [29]. For a digestible
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summary of these maps, see [6]. If these maps are filtered, then Lemma 5 completes
the proof.

The map induced by Reidemeister 2 (and its inverse) is a direct sum of identity maps
and compositions of saddles with cups and caps. The saddles, cups, and caps do not
cross the braid axis. Certainly the identity map is filtered. One may check directly
that saddle maps are filtered; alternatively, observe that a saddle may be viewed as a
component of the Khovanov differential of some annular link and so it must be filtered.
Cups and caps that do not cross the braid axis cannot change the k –grading. Thus the
Reidemeister 2 map is filtered. An identical analysis shows that the Reidemeister 3
maps are filtered.

Considering braids instead of their closures, we obtain the following.

Proposition 7 � is an invariant of conjugacy classes in Bn .

However, � is certainly not a complete invariant of conjugacy classes and it is not known
if it can be used to solve the conjugacy problem in the braid group. The conjugacy
problem in the braid group was solved by Garside in [11] and has been extensively
studied ever since (see [12]). It would be interesting to understand the meaning of � in
relation to this work.

A program to compute � is available at www2.bc.edu/adam-r-saltz/kappa.html.

4 Examples and properties of �

4.1 Main example

An immediate first question is whether elements in k –grading �nC2 always suffice to
kill  . x̌/ whenever Œ . x̌/�D 0, that is, whether � D 2 for all braids with Œ . x̌/�D 0.
Proposition 3, using examples from [19, Theorem 1.1], shows that this is false. We
restate it here for convenience:

Proposition For any a; b 2 f0; 1; 2g, the pair of closed 4–braids

A.a; b/D �3�
�2
2 �2aC2

3
�2�
�1
3 ��1

1 �2�
2bC2
1

and
B.a; b/D �3�

�2
2 �2aC2

3
�2�
�1
3 �2bC2

1
�2�
�1
1 ;

related by a negative flype, can be distinguished by � : indeed, �.A.a; b// D 4 and
�.B.a; b//D 2.

Proof By computation.

Algebraic & Geometric Topology, Volume 16 (2016)
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We do not know if this relation holds for all a; b 2 Z�0 . Recall that since the closed
braids A.a; b/ and B.a; b/ are in the same isotopy class (as they are related by a flype),
they have isomorphic Khovanov homologies. However, annular Khovanov homology
can differentiate them (see [16]) for a; b 2 f0; 1; 2g.

4.2 Negative stabilization

Proposition 8 If a closed n–braid ˇ is a negative stabilization of another braid, then
�.ˇ/D 2.

Proof In [29, Theorem 3], Plamenevskaya constructs an element y2CKh.ˇ/ such that
dy D  .ˇ/ as follows: Consider the resolution formed from taking the 0–resolution
of the negative crossing from the negative stabilization, the 1–resolution for all other
negative crossings, and the 0–resolution for all positive crossings. The element y is
obtained by assigning each circle in this resolution the label v� . It is clear that y has
k –grading �nC 2.

4.3 Positive stabilization

Define an arc of a closed braid diagram to be a segment of the link that goes from one
crossing to another crossing without traversing over or under any other crossings. An
innermost arc is one for which we can draw a straight line from the braid axis to any
point on the arc without crossing any other arcs. An innermost point is a point lying
on an innermost arc.

Given an n–strand braid ˇ , we define Spˇ to be ˇ positively stabilized once at an
innermost point p , that is, �n is inserted at the point p on the diagram.

Proposition 9 �.ˇ/ is not a transverse invariant.

Proof This is due to the fact that the chain map corresponding to positive stabi-
lization is not filtered (see Proposition 11). We have a concrete example: Con-
sider the braid B.0; 0/ from Proposition 3. By computation, �.B.0; 0// D 2 and
�.SpB.0; 0//D 4 for all choices of innermost points p .

We note here that we can define a transverse invariant using � , though it is not clear
how to compute it unless the transverse link is known to be represented by a braid
with � D 2.

Definition 10 For an n–braid ˇ , define �min.ˇ/ to be the minimum �.K/ over all
transverse representatives K of ˇ . It is a transverse invariant.

Algebraic & Geometric Topology, Volume 16 (2016)
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We can give bounds on the behavior of � under positive stabilization:

Proposition 11 �.ˇ/� �.Spˇ/� �.ˇ/C 2

Proof Spˇ has a positive crossing at p , and for an n–strand braid ˇ we refer to this
crossing as �n;p . Suppose that �n;p appears last in the crossing ordering. We show the
first inequality. As described in [6], there is a chain map �W CKh.Spˇ/! CKh.ˇ/
whose kernel contains all elements in resolutions of Spˇ where �n;p is 1–resolved
and satisfying

�.z˝ v�/D z and �.z˝ vC/D 0:

for elements in resolutions where �n;p is 0–resolved (see Figure 2). Consider an
element y 2 CKh.Spˇ/ realizing �.Spˇ/. The element y takes the form

z1˝ v�C z2˝ vCC z3:

So
d.�.y//D d.z1/D �.dy/D �. .Spˇ//D  .ˇ/:

Hence z1 kills  .ˇ/, and so we have

�.Spˇ/Dmax k.z1˝ v�; z2˝ vC; z3/C nC 1

� k.z1˝ v�/C nC 1D k.z1/C n

� �.ˇ/:

As described in [6] (see also [29]), there is a chain map �W CKh.ˇ/! CKh.Spˇ/

satisfying �. .ˇ//D  .Spˇ/. It is given by

�.v�/D v�˝ v� and �.vC/D vC˝ v�C v�˝ vC:

Hence � can either decrease k –grading by one or increase it by one, depending on
whether the circles in question are trivial or nontrivial. Now, suppose we have an
element y 2 CKh.ˇ/ realizing �.ˇ/: Then �.y/ kills  .Spˇ/. The k –grading
of �.y/ is at most �.ˇ/� nC 1. Stabilization increases strand number by one, so
�.Spˇ/ could at most be

�.ˇ/� nC 1C nC 1D �.ˇ/C 2:

4.4 Other properties and consequences

Propositions 8 and 11 immediately give us bounds for � of braids related by exchange
moves and positive flypes:

Algebraic & Geometric Topology, Volume 16 (2016)
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�W

v�

vC

vC

v�

vC

v�

v�

v�

v� vC

�W0

0

C

Figure 2: Chain maps for positive stabilization

Proposition 12 If two braids � and ˇ are related by a single exchange move or a
single positive flype, then j�.�/� �.ˇ/j � 2.

Proof Exchange moves and positive flypes can both be expressed as a composition of
braid isotopies, one single positive stabilization, and one single positive destabilization
(see for instance [8], [24]).

Proposition 13 Suppose a closed n–braid ˇ can be represented by a braid word
containing a factor of ��1

i but no �i ’s for some i D 1; : : : ; n� 1. Then �.ˇ/D 2.

Proof The argument we give here is very similar to arguments found in [29]. Consider
the resolution formed from taking the 0–resolution of one of the ��1

i ’s, the 1–resolution
for all other negative crossings, and the 0–resolution for all positive crossings. We
claim that assigning each circle in this resolution v� yields an element y with dy D 

and k.y/D�nC 2. The differential d on y is the sum of all maps with y as their
initial end. By our choice of resolution, any map corresponding to a merge map sends y

to 0. Hence d is a sum of split maps. Topologically, the only split maps that can start
from this resolution are in the i th column; however, there are only negative crossings
in this column, and at this resolution they are all 1–resolved except for the one that is
0–resolved. So the only contributor to dy is the map resolving that crossing, sending y

to  .ˇ/.

The following two definitions (with more detail) can be found in [4]. Let Dn denote
the standard unit disk with n marked points p1; : : : ;pn positioned along the real axis.

Algebraic & Geometric Topology, Volume 16 (2016)
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Definition 14 An arc 
 W Œ0; 1�!Dn is admissible if it satisfies

(i) 
 is a smooth imbedding transverse to @Dn ,

(ii) 
 .0/D�1 2C and 
 .1/ 2 fp1; : : : ;png,

(iii) 
 .t/ 2Dn� .@Dn[fp1; : : : ;png/ for all t 2 .0; 1/, and

(iv) d
=dt ¤ 0 for all t 2 Œ0; 1�.

Definition 15 Let � 2 Bn . We say � is right-veering if for all admissible arcs 
 ,
�.
 / is right of 
 when pulled tight.

Corollary 16 If an n–braid � is not right-veering, then �.�/D 2.

Proof By [4, Proposition 3.1] and [9, Proposition 6.2.7], � is conjugate to a braid
that can be represented by a word containing at least a factor of ��1

i but no �i ’s for
some i D 1; : : : ; n. The result follows by Proposition 13.

For a braid ˇ 2 Bn we denote its mirror as m.ˇ/ 2 Bn .

Corollary 17 If �.�/¤ 2 and �.m.�//¤ 2, then � D 1 2 Bn .

Proof The proof is similar to that of [4, Corollary 1]. By Corollary 16, � and m.�/

are right-veering and hence � is also left-veering. By [4, Lemma 3.1], � is the identity
braid.

We note that this provides a solution to the word problem in the braid group. This
solution is faster than that of [4] since it is only necessary to check if Plamenevskaya’s
invariant vanishes by the E3 page of the spectral sequence from annular Khovanov
homology to Khovanov homology. The word problem in the braid group has been
solved in many ways; the first solution was presented by Artin in [1] (see also [2]).
Garside presented a different solution in [11], which braid theorists like to use and has
been implemented in readily available computer programs.

� provides an obstruction to negative destabilization (Proposition 8). It can also provide
an obstruction to positive destabilization for a braid in the case that � ¤ 2 for its mirror.
Corollary 17 implies that it cannot provide an obstruction to destabilization in general.
One might hope to show that � ¤ 2 for a braid and � ¤ 2 for its mirror, implying that
the braid is neither negatively destabilizable nor positively destabilizable. However,
Corollary 17 shows that if this is the case, the braid is trivial.

We end this section with a remark on spectral sequences. For any annular link L, there
is a spectral sequence whose E0 page is the annular Khovanov complex of L and
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whose E1 page is, as a group, the annular Khovanov homology of L. Since there
are no differentials that drop the k –grading by one, the E2 page is identical to the
E1 page. Therefore the first page at which the spectral sequence could collapse is E3 .
The following proposition provides a counterexample to [17, Conjecture 4.2].

Proposition 18 The spectral sequence from annular Khovanov homology to Khovanov
homology does not always collapse at the E3 page.

Proof We consider the braid A.0; 0/ from Proposition 3. The distinguished ele-
ment  .A.0; 0// lives in homological grading 4 (before any final shifts) and has
k –grading �4. Recall that  .A.0; 0// is unique in the lowest k –grading. By Er

d;m
we

mean the r th page of the spectral sequence at homological grading d and k –grading m.

Following [18] (recall: the differentials on CKh increase homological grading),

E3
4;�4 D

fx 2 F�4 CKh4 W dx 2 F�7 CKh5g

F�5 CKh4Cd.F�2 CKh3/
D
fx 2 F�4 CKh4 W dx D 0g

d.F�2 CKh3/

D
spanf .A.0; 0//g

d.F�2 CKh3/
D Œ .A.0; 0//�¤ 0

since �.A.0; 0//¤ 2. However, Œ .A.0; 0//�D 0 2Kh4.A/, and hence Kh4.A.0; 0//

is not equal to
L4

kD�4 E3
4;k

.

Precisely the same argument yields a more general statement:

Proposition 19 Given a braid ˇ , the length of the spectral sequence from AKh. x̌/
to Kh. x̌/ is bounded below by �.ˇ/.

5 Invariants in reduced Khovanov homology

It is implicit in the proof of Proposition 11 that � increases under positive stabilization
at p precisely if every element which realizes � has a canonical summand in which
p lies on a trivial vC–labeled circle. This situation cannot occur in (one version
of) reduced Khovanov homology, and so one might hope that a “reduced �” is an
invariant of transverse links. That’s not quite the case — the eager reader may skip to
the examples at the end of this section — but the reduced invariants are interesting in
their own right.

In this section let p be a nondouble point on an n–strand annular braid diagram D
of x̌. For convenience, we will assume that the last tensor factor of each genera-
tor of CKh.D/ corresponds to the component containing p . There is a chain map
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xpW CKh.D/! CKh.D/ defined on generators by

xp.y˝ vC/D y˝ v� and xp.y˝ v�/D 0:

There are two flavors of reduced Khovanov homology. The reduced subcomplex
eCKhp.D/ is defined as ker.xp/. The reduced quotient complex CKhp.D/ is defined

as coker.xp/. The homologies of these complexes are both called reduced Khovanov
homology; the ambiguity is justified by the fact that their homologies are isomorphic as
h– and q–graded complexes (with a constant shift in the q–gradings). It is clear that
eCKhp.D/ has a basis of canonical generators. The projections of canonical generators

of the form y ˝ vC form a basis of CKhp.D/. Whenever we take a representative
of an element in the quotient complex, we will assume it is a sum of these canonical
generators.

The k –grading on CKh.D/ induces a k –grading on each variant. On eCKhp.D/
this is simply the restriction. We define the k –grading on CKhp.D/ via canonical
representatives: if y is the canonical representative of y 2CKhp.D/, then k.y/Dk.y/.
However, the isomorphism between the two variants is not in general k –filtered. Thus
we will distinguish their homologies as the reduced homology fKhp.D/ and the reduced
quotient homology Khp.D/. We write eF i and F i for the i th filtered levels of eCKhp.D/
and CKhp.D/ respectively.

Each complex supports a variant of the transverse element  .D/. The cycle corre-
sponding to  .D/ is also a cycle in the subcomplex eCKhp.D/ for any p . When we
wish to emphasize that we are considering  .D/ as an element of the subcomplex, we
will write it as z p.D/. Plamenevskaya defines the reduced quotient invariant  p.D/
to be the image of the chain v�˝ � � �˝ v�˝ vC in CKhp.D/. Both z p and  p are
invariant under braid conjugation and stabilization away from p in the same sense (and
with the same proofs) as  . Both cycles have the lowest k –grading in their respective
complexes, but  p does not necessarily generate that lowest level.

Note that these constructions depend on a choice of p on a particular diagram for a
link, so we will not write “ z p. x̌/” or “ p. x̌/”.

Definition 20 Let ˇ 2 Bn , let D be an annular diagram for x̌, and let p 2 D . If the
element z p.D/ is a boundary in eCKhp.D/, define

z�p.D/D nCminfi W Œ z p.D/�D 0 2H�.eF i.D//g:

If z p.D/ is not a boundary, then define z�p.D/ D 1. If  p.D/ is a boundary
in CKhp.D/, define

�p.D/D nCminfi W Œ p.D/�D 0 2H�.F i.D//g:

If  p.D/ is not a boundary, then define �p.D/D1.
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The arguments of Section 3 show that z�p.D/ and �p.D/ are invariant under positive
stabilization away from p and conjugations that do not cross p .

Lemma 21 For a fixed diagram D , either �.D/, z�p.D/, and �p.D/ are all finite or
all infinite. In the finite case, �.D/� z�p.D/� �p.D/� z�p.D/C 2.

Proof There is a short exact sequence of complexes

0 �! eCKhp.D/ i
�!CKh.D/ �

�!CKhp.D/ �! 0

where i is the inclusion and � is the projection to the quotient. The induced map on
homology i� carries Œ z p.D/� to Œ .D/�, so if Œ .D/�¤ 0 then Œ z p.D/�¤ 0. If i� is
injective, then Œ z p.D/�¤ 0 implies that Œ .D/�¤ 0. To show that i� is injective, we
repeat Shumakovitch’s argument [31] in our notation. Let �W CKh.D/! CKh.D/ be
the chain map defined on V by the rule �.vC/ D 0 and �.v�/ D vC and extended
to tensor powers by the Leibniz rule. Note that a map x0pW CKhp.D/! CKh.D/ is
defined by applying xp to canonical representatives. Let c 2 CKhp.D/ with canonical
representative c . Then .�ıx0p/.c/D .�ıxp/.c/, in which the only term with a vC label
at p is exactly c . We conclude that � ı � ıx0p is the identity map, and therefore the
short exact sequence splits. Thus i� is injective.

The first piece of the inequality follows immediately from the fact that eCKhp.D/ is
a subcomplex of CKh.D/. For the next part, suppose that z realizes �p.D/. Then
d.xpz/D  .D/ and k.xpz/� k.z/, so z�p.D/� �p.D/. On the other hand, suppose
that y realizes z�p.D/: Every canonical summand of y has a v� at p . Let yC be the
element obtained from y by changing those v� ’s to vC ’s. Clearly xpd.yC/D  .D/,
so

dyC D  p.D/C terms with v� at p:

Therefore dyCD p.D/ and �p.D/� k.yC/Cn� k.y/C2CnDz�p.D/C2. (This
also shows that z�p.D/ is finite if and only if �p.D/ is finite.)

The reduced invariants are stable under positive stabilization at p in the following
sense: let p0 be a point on the same arc as p . For each reduced complex, the positive
stabilization map is filtered and preserves Plamenevskaya’s invariant, so Lemma 5
implies that the appropriate version of � does not change. But after this operation
the image of p is not an innermost point. We instead study ESp0

, the operation of
stabilizing at p0 and then moving the basepoint to some point q on the new innermost
strand.

Proposition 22 Let D be a diagram of x̌. Then

z�q. ES
p0

D/� z�p.D/ and �q. ES
p0

D/� �p.D/C 2:

Algebraic & Geometric Topology, Volume 16 (2016)



2320 Diana Hubbard and Adam Saltz

Proof The first inequality follows from Lemma 5 once one makes the observation
that the positive stabilization map carries eCKhp.D/ to a subcomplex of eCKhq. ES

p0D/
and carries z p.D/ to z q.D/.

Suppose that z realizes �p.D/. Let q be a point on the innermost strand of Sp0D .
Recall that there is a map � on the Khovanov complex induced by positive stabilization.
This map descends to a map �W CKhp.D/! CKhp.S

p0D/ which sends z to a sum
of generators with v� at q and vC at p . Let z0 2 CKhq.

ESp0D/ be the element whose
canonical representative z0 is obtained from that of �.z/ by swapping these labels.
Note that dxqz0D �. .D//D xqdz0 , so dz0D q.D/. Clearly k.z0/� k.z/C1. The
second inequality follows after taking into account that the operation Sp0

increases
braid index by one.

Remark It is interesting to consider the sharpness of these inequalities using annular
Khovanov homology. The map xp is filtered and therefore induces a map on AKh.D/,
the annular Khovanov homology of D , which equals

L
Fi=Fi�1 .

Let p , p0 , z , and z0 be as in the previous proof. The point q lies on a nontrivial circle
in every resolution of Sp0D , so k.z0/ > k.Sp0

z/D k.z/ precisely if p lies on a trivial
circle in some canonical summand of z . Equivalently, k.z0/D k.z/ precisely if p lies
on a nontrivial circle in every canonical summand of z . Thus �p.D/D �q. ES

p0D/ if
and only if some z realizes �p.D/ and p lies on a nontrivial circle in every canonical
summand of z . Write hzi for the image of z in AKh.D/. Then �p.D/D �q. ES

p0D/
if and only if hzi 2 ker.xp/ for some z which realizes �p.D/.

Figure 3: The result of the operation ECp on two strands

While �p is not preserved under stabilization, it is preserved under a certain sort of con-
jugation over p . Denote by Cp the operation of performing a braidlike Reidemeister 2
move over p . (In terms of braid words, this inserts �n�1�

�1
n�1

or ��1
n�1

�n�1 .) Denote
by ECp the operation Cp followed by moving the basepoint to the innermost strand at q .
See Figure 3. The Reidemeister 2 map induces a filtered map CKhp.D/!CKhq.

ECpD/
which carries  to  .
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Proposition 23 �p.D/D �q. ECpD/

To dash any hope that �p or z�p might be a transverse invariant, we note that both
invariants depend on p . For �p this is true even for negative stabilizations.

Example Let ˇD �1�
�1
2
2B3 . Certainly  is null-homologous and � D z�p D 2 for

any p . Let p1 and p2 be points on the first and second strands of the braid. Then

�p1
D 2 and �p2

D 4:

For a meatier example, we revisit the transversely nonsimple family using the previously
advertised computer program.

Example Recall that Ng and Khandhawit define two infinite families of braids A.a; b/

and B.a; b/ so that, for any a; b 2 Z�0 , the closures of A.a; b/ and B.a; b/ have the
same topological knot type and self-linking number but are not transversely isotopic.
Write A0 and B0 for A.0; 0/ and B.0; 0/. We have already seen that �.A0/D 4 and
�.B0/D 2. For any p 2 xA0 we have z�p.A0/D 4 and �p.B0/D 4. On the other hand,
�p.A0/ and z�p.B0/ depend on p . See Figure 4.
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Figure 4: Values of �p and z�p may depend on p . The top braid is B0 and
the bottom braid is A0 . The number above each arc represents a value of �p

(for A0 ) or z�p (for B0 ) when p is placed on that arc.

Remark It is straightforward to check that the two candidates for “reduced annular
Khovanov homology” are not isomorphic (for example with the closed 2–braid �1 ).
This fact is not mentioned elsewhere in the literature. In addition, Shumakovitch’s
map � (see Lemma 21) is not a chain map on the annular complex as it does not
commute with the differential. These calculations show that the difference between
the two versions is significant, and that the two reductions might provide different
information.
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