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Homological stability for automorphism groups of RAAGs

GIOVANNI GANDINI

NATHALIE WAHL

We show that the homology of the automorphism group of a right-angled Artin group
stabilizes under taking products with any right-angled Artin group.

20F28; 20F65

Introduction

It has been conjectured that, for any (finitely generated) discrete group G , the homology
groups Hi.Aut.G�n/IZ/ and Hi.Aut.Gn/IZ/ should be independent of n, for n� i ,
generalizing the classical stability results for GLn.Z/ and Aut.Fn/ when GDZ. (See
the conjectures of Hatcher and Wahl [9, Conjecture 1.4], Wahl and Randal-Williams
[17, Conjecture 5.16], and the classical results in Charney [1], Hatcher [7], Hatcher
and Vogtmann [8], Maazen [15], and van der Kallen [13].)

The stabilization of Hi.Aut.G�n/IZ/ for i large has been shown to hold for most
groups by the main theorem of Collinet, Djament and Griffin [3], and [9, Corollary 1.3].1

The stabilization of Hi.Aut.Gn/IZ/ in contrast has so far only been known in two
extreme cases: when G is abelian and when G has trivial center and does not factorize
as a direct product. Indeed, in the first case Aut.Gn/ is isomorphic to GLn.End.G//,
which is known to stabilize (see Proposition 5.2), while in the second case, the group
Aut.Gn/ is isomorphic to Aut.G/ o†n (see Johnson [12]), a group that is also known
to stabilize [9, Proposition 1.6].2 In the present paper, we verify that the second
conjecture holds for G any right-angled Artin group, possibly factorizable, possibly
with a nontrivial center. This proves a first “mixed case” of the conjecture, which
interpolates between the two previously known cases.

A right-angled Artin group (or RAAG) is a group with a finite set of generators s1; : : : ; sn

and relations that are commutation relations between the generators, ie relations of the

1[3] gives stability for Aut.G�n/ with G any group with a finite free product decomposition (eg. a
finitely generated group) without Z factor, while [9] treats the cases with G arising as fundamental groups
of certain 3–manifolds, allowing Z factors in the free product decomposition.

2Slightly more generally, for the second case, one can get stability for Aut.Gn/ for G a product of
certain such center-free groups using [12].
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form sisj D sj si for certain pairs fi; j g. The extreme examples of RAAGs are the
free groups Fn if no commutation relation holds, and the free abelian groups Zn if all
commutation relations hold. Given any two RAAGs A and B , their product is again
a RAAG. We consider in the present paper the sequence of groups Gn DAut.A�Bn/

associated to A and B , and the sequence of maps

�nW Gn D Aut.A�Bn/ ! GnC1 D Aut.A�BnC1/

taking an automorphism f of A�Bn to the automorphism f �B of A�BnC1 leaving
the last B factor fixed. Note that when A is the trivial group, the group GnDAut.Bn/

is a group as in the second conjecture above.

Our main result is the following:

Theorem A (stability with constant coefficients) Let A;B be any RAAGs. The map

Hi.Aut.A�Bn/IZ/!Hi.Aut.A�BnC1/IZ/

induced by �n is surjective for all i � 1
2
.n� 1/ and an isomorphism for i � 1

2
.n� 2/.

If B has no Z–factors, then surjectivity holds for i � 1
2
.n/ and injectivity holds

for i � 1
2
.n� 1/.

We prove this stability theorem using the general method developed by Randal-Williams
and the second author in [17]. This method provides a more general stability result,
namely stability in homology not only with constant coefficients Z as above, but also
with both polynomial and abelian coefficients, and we establish our main result also in
this level of generality as Theorem 5.1. Theorems B and C are further special cases of
Theorem 5.1.

Stability for Aut.A�Bn/ with the (abelian) coefficients H1.Aut.A�Bn// implies
the following:

Theorem B (stability for commutator subgroups) Let A;B be any RAAGs and let
Aut0.A�Bn/ denote the commutator subgroup of Aut.A�Bn/. The map

Hi.Aut0.A�Bn/IZ/!Hi.Aut0.A�BnC1/IZ/

induced by �n is surjective for all i � 1
3
.n� 2/ and an isomorphism for i � 1

3
.n� 4/.

If B has no Z–factors, then surjectivity holds for i � 1
3
.n� 1/ and injectivity holds

for i � 1
3
.n� 3/.

An example of a polynomial coefficient system for the groups Aut.A �Bn/ is the
sequence of “standard” representations H1.A�Bn/, and stability with polynomial
coefficients yields the following in that case:
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Theorem C (stability with coefficients in the standard representation) Let A;B be
any RAAGs. Then the map

Hi.Aut.A�Bn/IH1.A�Bn//!Hi.Aut.A�BnC1/IH1.A�BnC1//

is surjective for all i � 1
2
.n� 2/ and an isomorphism for i � 1

2
.n� 3/. If B has

no Z–factors, then surjectivity holds for i � 1
2
.n� 1/ and injectivity for i � 1

2
.n� 2/.

To prove the above theorems, we show that right-angled Artin groups under direct
product fit in the setup of homogeneous categories developed in [17], and recalled
here in Section 1. The main ingredient of stability is the high connectivity of certain
semi-simplicial sets Wn.A;B/ associated to the sequence of groups Aut.A�Bn/. We
define and study those semi-simplicial sets in Section 2, together with three closely
related simplicial complexes In.A;B/, SIn.A;B/ and Sn.A;B/. Sections 1 and 2
are written in the general context of families of groups closed under direct product.
In Section 3, we show that right-angled Artin groups admit a “prime decomposition”
with respect to direct product, and we give a description of the automorphism group
of such a group in terms of this decomposition. Section 4 then uses these results that
are specific to RAAGs together with the complexes defined in Section 2 to prove that
the semi-simplicial sets Wn.A;B/ are highly connected. For the connectivity results,
we use join complex methods from [9], as well as an argument of Maazen [15] for
the case B D Z. Finally Section 5 states the general stability result, which, given the
connectivity result, is a direct application of the main result in [17].
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1 Families of groups

We consider here families of groups F which are closed under direct product. We say
that F satisfies cancellation if for all A;B;C in F , we have that

A�C Š B �C H) AŠ B:

Cancellation is not satisfied for the family of all finitely generated groups; see eg [11,
Section 3] or [10] for an example where cancellation with Z fails. Cancellation holds
for the family of all finitely generated abelian groups by their classification, the family
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of all finite groups [10], or for the family of all right angled Artin groups as we will
show in Section 3.

Given a family of groups F , we let GF denote its associated groupoid, namely the
groupoid with objects the elements of F and morphisms all group isomorphisms. Let e

denote the trivial group. When F is closed under direct product, we have that .GF ;�; e/

is a symmetric monoidal groupoid.

Recall from [17, Section 1.1] and [6, page 219] the category UGFDhGF ;GF i associated
to .GF ;�; e/: it has the same objects as GF , namely the elements of F , and morphisms
from A to B given as pairs .X; f /, where X 2 F and f W X � A '

�! B is an
isomorphism, up to the equivalence relation that .X; f /� .X 0; f 0/ if there exists an
isomorphism �W X !X 0 such that f D f 0 ı .� �A/.

Recall from [17, Definition 1.2] that a monoidal category .C;˚; 0/ is called homo-
geneous if 0 is initial in C and for every A;B in C , the following two properties
hold:

H1 Hom.A;B/ is a transitive Aut.B/–set under postcomposition.

H2 The map Aut.A/! Aut.A˚B/ taking f to f ˚B is injective with image
Fix.B;A˚B/.

Here Fix.B;A˚B/ is the set of � 2Aut.A˚B/ satisfying that �ı.�A˚B/D �A˚B

in Hom.B;A˚B/, for �AW 0!A the unique morphism.

Proposition 1.1 If F satisfies cancellation, then the category UGF is a symmetric
monoidal homogeneous category whose underlying groupoid is GF .

Proof As .GF ;�; e/ is symmetric monoidal, UGF is symmetric monoidal by [17,
Proposition 1.6], and e is initial in UGF . We have that GF satisfies cancellation by
assumption, and for any A;B 2 F , the map AutGF .A/! AutGF .A�B/ taking f
to f �B is injective. Then [17, Theorem 1.8] implies that UGF is a homogeneous
category. Finally, if A �B Š e , we must have A D B D e and the unit e has no
nontrivial automorphisms. Hence GF satisfies the hypothesis of Proposition 1.10
in [17], which gives that GF is the underlying groupoid of UGF .

Remark 1.2 If one wants to consider a family F that does not satisfy cancellation,
one can replace GF by a groupoid that does satisfy cancellation (by forgetting that
certain objects are isomorphic) and obtain an associated homogeneous category. For
simplicity, we will only consider families satisfying cancellation.
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We end the section by showing that the homogeneous categories UGF considered here
are not pathological in the sense that they satisfy the following standardness property:
Let .C;˚; 0/ be a homogeneous category and .A;X / a pair of objects in C . We say
that C is locally standard at .A;X / [17, Definition 2.5] if:

LS1 The morphisms �A˚X ˚ �X and �A˚X ˚X are distinct in Hom.X;A˚X˚2/.

LS2 For all n� 1, the map Hom.X;A˚X˚n�1/! Hom.X;A˚X˚n/ taking f
to f ˚ �X is injective.

Proposition 1.3 For any family F , the category UGF is locally standard at any
pair .A;X /.

To prove this proposition, it is easiest to use an alternative description of the morphisms
in the category UGF , given by the following:

Lemma 1.4 The association ŒX; f � 7! .f .X /; f jA/ defines a one-to-one correspon-
dence between HomUGF .A;B/ and the set of pairs .H;g/ with H �B and gW A!B

an injective homomorphism such that B DH �g.A/.

Proof of Lemma 1.4 First note that both f .X / and f jA are independent of the
representative of ŒX; f �, so the association is well-defined.

Suppose ŒX; f � and ŒY;g� are morphisms from A to B in UGF satisfying that
.f .X /; f jA/D .g.Y /;gjA/. Then g�1jf .X / ıf jX W X ! Y is an isomorphism and
f D g ı ..g�1jf .X / ıf jX /�A/ as both maps agree on their restrictions to X and A.
Hence ŒX; f �D ŒY;g�.

We are left to check that any .H;g/ is in the image. This follows from the fact that,
given such an .H;g/, the map H �gW H �A! B is an isomorphism.

Proof of Proposition 1.3 We need to check the two axioms LS1 and LS2. For LS1,
we need that the maps �A � X � �X and �A�X � X from X to A � X 2 in UGF
are distinct. From the definition of the monoidal structure in UGF given in the
proof of Proposition 1.6 of [17], we have that �A � X � �X D ŒA � X;A � b�1

X ;X
�

and �A�X � X D ŒA � X; idA�X 2 �, where bX ;X D b�1
X ;X
W X 2 ! X 2 denotes the

symmetry. The fact that they are distinct then follows from the lemma as, for example,
.A� b�1

X ;X
/je�e�X ¤ idA�X 2 je�e�X .

For LS2, we need to show that the map ���X W Hom.X;A�X n�1/!Hom.X;A�X n/

is injective. This follows again from Lemma 1.4 as .H; f /� �X D .H � in.X /; f / in
the description of the morphisms given by the lemma, where in.X /�A�X n denotes
the last X factor. This association is injective.
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2 Simplicial complexes and semi-simplicial sets associated to
a family of groups

To a family of groups F closed under direct product, we associated in the previous
section a category UGF with objects the elements of F . Using the morphism sets in
this category, the paper [17] associates to any pair of objects A;X 2 F and any n� 0,
a semi-simplicial set Wn.A;X / and a simplicial complex Sn.A;X /. In the present
section, we recall the definitions of Sn.A;X / and Wn.A;X / and introduce new
simplicial complexes In.A;X / and SIn.A;X / likewise associated to A;X 2 F . We
then study the relationship between these four different simplicial objects. To prove
homological stability, we will need to show that the semi-simplicial sets Wn.A;X /

are highly connected. This will be done in Section 4 in the case of the family of all
right-angled Artin groups using the three simplicial complexes introduced here. We
give in the present section results that allow transfer of connectivity from one of the
above spaces to another that work in a general context and that will be combined in
Section 4 with results specific to right-angled Artin groups. For simplicity, we will
again assume that F satisfies cancellation.

Standing assumption for the section F is a family of finitely generated groups,
closed under direct product, and satisfying cancellation.

Given groups A;X in F , we will consider injective maps f W X k !A�X n so that
there is a splitting A�X n D f .X k/�H with H in F . As F satisfies cancellation,
we always have that H ŠA�X n�k . We call such a map f an F –split map, and we
call the pair .f;H / an F –splitting.

Recall that a simplicial complex Y is defined from a set of vertices Y0 by giving a
collection of finite subsets of Y0 which are closed under taking subsets. The subsets of
cardinality pC1 are called the p–simplices of Y . On the other hand, a semi-simplicial
set W is a collection of sets Wp of p–simplices for each p � 0 related by boundary
maps di W Wp !Wp�1 for each 0 � i � p satisfying the simplicial identities. Both
simplicial complexes and semi-simplicial sets admit a realization that has a copy of
�p for each p–simplex of the simplicial object. When we talk about connectivity of
such objects, we always refer to the connectivity of their realization.

We define now three simplicial complexes and one semi-simplicial set whose objects
are either F –split maps or F –splittings.

Definition 2.1 To a pair of groups X;A2F and a natural number n� 0, we associate
the following simplicial complexes:

Algebraic & Geometric Topology, Volume 16 (2016)
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� In.A; X/ A vertex in In.A;X / is an F –split map f W X ! A�X n . Dis-
tinct vertices f0; : : : ; fp form a p–simplex in In.A;X / whenever the map
.f0; : : : ; fp/W X

pC1!A�X n is F –split.

� SIn.A; X/ A vertex in the simplicial complex SIn.A;X / is an F –splitting
.f;H / with f 2 In.A;X /. Distinct vertices .f0;H0/; : : : ; .fp;Hp/ form a p–
simplex of SIn.A;X / if hf0; : : : ; fpi is a p–simplex of In.A;X / and fi.X /�

Hj for each i ¤ j .

� Sn.A; X/ The vertices of Sn.A;X / are the same as those of SIn.A;X /.
Distinct vertices .f0;H0/; : : : ; .fp;Hp/ form a p–simplex of Sn.A;X / if there
exists an F –splitting .f;H /, with f D .f0; : : : ; fp/W X

pC1!A�X n , such
that Hj DH �

Q
i¤j fi.X / for each j .

We moreover associate the following semi-simplicial set:

� Wn.A; X/ A p–simplex in Wn.A;X / is an F –splitting .f;H /, with f a
map X pC1!A�X n . The j th face dj .f;H / is given by .f ıdj ;H �f .ij //

for dj W X p ! X pC1 which is the map skipping the .j C 1/st factor and
ij D �X j �X � �X p�j W X !X pC1 .

Using Lemma 1.4, one checks immediately that Wn.A;X / identifies with the semi-
simplicial set of [17, Definition 2.1] associated to the category UGF , and Sn.A;X /

identifies with the simplicial complex of [17, Definition 2.8] likewise associated
to UGF .

The following proposition shows that, in the context we work with, we can always
approach the connectivity of Wn.A;X / via that of Sn.A;X /.

Proposition 2.2 Let F be a family of groups satisfying cancellation and let a; k � 1.
The simplicial complex Sn.A;X / is n�a

k
–connected for all n � 0 if and only if the

semi-simplicial set Wn.A;X / is n�a
k

–connected for all n� 0.

Proof As UGF is symmetric monoidal, homogeneous (Proposition 1.1) and locally
standard (Proposition 1.3), Proposition 2.9 of [17] yields that the semi-simplicial
sets Wn.A;X / satisfy condition (A) in that paper (see [17, Section 2.1]). The result
then follows from [17, Theorem 2.10].

Note that there is an inclusion of simplicial complexes

Sn.A;X / ,! SIn.A;X /:
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Indeed, the two complexes have the same set of vertices, and simplices of Sn.A;X /

satisfy the condition for being a simplex of SIn.A;X /. There is also a forgetful map

SIn.A;X /! In.A;X /:

Recall from [9, Definition 3.2] that a join complex over a simplicial complex X is
a simplicial complex Y together with a simplicial map � W Y ! X satisfying the
following properties:

(1) � is surjective.

(2) � is injective on individual simplices.

(3) For each p–simplex � D hx0; � � � ;xpi of X the subcomplex Y .�/ of Y con-
sisting of all the p–simplices that project to � is the join Yx0

.�/� � � � �Yxp
.�/

of the vertex sets Yxi
.�/D Y .�/\��1.xi/.

We say that Y is a complete join over X if Yxi
.�/D ��1.xi/ for each � and each xi .

Join complexes usually arise via labeling systems (see [9, Example 3.3]): a labeling
system for a simplicial complex X is a collection of nonempty sets Lx.�/ for each
simplex � of X and each vertex x of � , satisfying Lx.�/�Lx.�/ whenever x2��� .
One can think of Lx.�/ as the set of labels of x that are compatible with � . We can
use the labeling system L to define a new simplicial complex X L having vertices the
pairs .x; l/ with x 2X and l 2Lx.hxi/. A collection of pairs ..x0; l0/; � � � ; .xp; lp//

then forms a p–simplex of X L if and only if � D hx0; � � � ;xpi is a p–simplex of X

and li 2Lxi
.�/ for each i . Then the natural map � W X L!X forgetting the labels

represents X L as a join complex over X .

Proposition 2.3 The complex SIn.A;X / is a join complex over In.A;X /.

Proof We check that SIn.A;X / can be constructed from In.A;X / via a labeling
system in the sense described above. For each simplex � D hf0; : : : ; fpi of In.A;X /

and each vertex fi in � , we define the set of labels of fi compatible with � as

Lfi
.�/ WD

˚
H �A�X n

W .fi ;H / 2 SIn.A;X /; fj .X /�H for each fj ¤ fi 2 �
	
:

These sets are nonempty because the fact that hf0; : : : ; fpi is a simplex of In.A;X /

implies that there exists an F –splitting .f;H / with

f D .f0; : : : ; fp/W X
pC1
!A�X n

DH �f .X pC1/:

Let HiDH�
Q

j¤ifj .X /. Then Hi 2Lfi
.�/. We clearly have that for any fi 2 � �� ,

Lfi
.�/�Lfi

.�/, and SIn.A;X /D .In.A;X //
L .
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This will allow us to use results from [9] to obtain in good cases a connectivity bound
for SIn.A;X / from one for In.A;X /.

We now show that, under one additional assumption, Sn.A;X / and SIn.A;X / are
isomorphic, in which case we will also get a connectivity result for Sn from that
of SIn .

Proposition 2.4 Suppose that for any simplex h.f0;H0/; : : : ; .fp;Hp/i of SIn.A;X /

we have that
Tp

iD0
Hi 2 F . Then the inclusion Sn.A;X / ,! SIn.A;X / is an isomor-

phism.

Lemma 2.5 Suppose A;B;A0;B0 are groups such that A�BDA0�B0 and A0 �A.
Then ADA0 � .B0\A/.

Proof Consider the inclusion A0�.B0\A/!A. This is an injective group homomor-
phism. Now every a 2A�A�B DA0 �B0 can be written as aD a0b0 with a0 2A0

and b0 2 B0 . But then b0 D .a0/�1a 2A and hence a 2A0 � .B0\A/ and the map is
also surjective.

Proof of Proposition 2.4 Recall that Sn.A;X / and SIn.A;X / have the same set
of vertices, and that there is an inclusion Sn.A;X / ,! SIn.A;X /, that is simplices
of Sn.A;X / are also simplices in SIn.A;X /. So we are left to check that simplices
of SIn.A;X / are also always simplices in Sn.A;X /. So consider a p–simplex
h.g0;K0/; : : : ; .gp;Kp/i of SIn.A;X /. We have that

g D .g0; : : : ;gp/W X
pC1
! A�X n

is split injective. To show that these vertices form a p–simplex in Sn.A;X /, we need
to find a complement K �A�X n for g with K 2 F satisfying that

(1) Kj DK �
Y
i¤j

gi.X /:

Note that if K satisfies (1), it necessarily is a complement for g as Kj�gj .X /DA�X n

for each j . Let K D
T

j Kj � A�X n . By the assumption, we have that K 2 F .
We will now check that it satisfies (1), which will finish the proof. By renaming
the factors, it is enough to prove that equation (1) holds for j D 0. We do it by
induction: we start with K0 DK0 . Suppose r � 2 and assume that we have proved
that K0 D

Tr�1
jD0Kj �g1.X /� � � � �gr�1.X /. We have that

r�1\
jD0

Kj �g1.X /� � � � �gr�1.X /�g0.X /DK0 �g0.X /DA�X n
DKr �gr .X /:

Algebraic & Geometric Topology, Volume 16 (2016)
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Now gr .X / � Kj for all j D 0; : : : ; r � 1. Applying the lemma, we thus get thatTr�1
jD0 Kj D gr .X /�

��Tr�1
jD0 Kj

�
\Kr

�
, which gives the induction step.

The following proposition will also be useful in the sequel:

Proposition 2.6 The action of Aut.A �X n/ on A �X n induces an action on the
complexes In.A;X / and Sn.A;X / which is transitive on the set of p–simplices for
every p in both cases, and the composed map Sn.A;X /! SIn.A;X /! In.A;X / is
equivariant with respect to these actions.

Proof The action is induced by postcomposition by automorphisms on the split
maps f W X pC1 ! A � X n , and by evaluation on splittings H � A � X n . The
map Sn.A;X /! In.A;X / forgets the choice of splitting and is hence equivariant.
For Sn.A;X /, transitivity of the action is axiom H1 in the homogeneous category UGF
[17, Definition 1.2], which is satisfied by Proposition 1.1. For In.A;X /, it follows
from the corresponding fact for Sn.A;X / and the fact that every simplex of In.A;X /

admits a lift in Sn.A;X /.

3 RAAGs and their groups of automorphisms

Now we consider the family F of all right-angled Artin groups, and give in this section
a few properties that are particular to these groups and that will allow us to prove the
connectivity result necessary for stability. In particular, we show that the family of
RAAGs satisfies cancellation and give a description of the automorphism group of a
direct product of RAAGs in terms of the automorphism groups of its factors. We start
by recalling what a RAAG is.

Given a finite simplicial graph � one can associate a group A� with one generator v
for each vertex of � and a commuting relation vw D wv for each edge .v; w/ in � .
Such a group A� is called a graph group or more commonly right-angled Artin group.
The main theorem of [4] says that the graph describing such a group is unique in the
sense that two such groups A� and A� 0 are isomorphic if and only if the graphs �
and � 0 are isomorphic.

The next proposition says that RAAGs admit a “prime decomposition” with respect to
direct product.

Proposition 3.1 Any RAAG A� admits a maximal decomposition as

A� DA�1
� � � � �A�k

with each A�i
a RAAG, and this decomposition is unique up to isomorphism and

permutation of the factors.
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Proof From Droms’ theorem [4], we have that the group A� splits as a direct prod-
uct A�1

�A�2
DA�1��2

if and only if the graph � is isomorphic to the join �1 ��2 .
This reduces the proposition to the existence and uniqueness of the maximal decomposi-
tion of a finite graph as a join. Let X be a finite simplicial graph. Since the graph is finite
there exists a maximal join decomposition X DX1 �X2 � � � � �Xn , with n<1. Now
suppose X DX1�X2�� � ��XnDY1�Y2�� � ��Ym are two distinct such decompositions.
Let k � 0 be maximal such that there is a permutation � 2†m with Xi D Y�.i/ for
each 1� i � k . By maximality, XkC1 is distinct from all the remaining Yi . We have
that XkC1 cannot be contained in some Yi otherwise Yi would decompose as a proper
join, a contradiction to the maximality of the join decomposition Y1 �Y2 � � � � �Ym .
Then XkC1 must intersect nontrivially r of the remaining Yi and so it itself must split
as an r –join, contradicting the maximality of the decomposition X1�X2� � � ��Xn .

Corollary 3.2 The family of RAAGs satisfies cancellation with respect to direct
product.

We are here interested in the automorphism groups of RAAGs. The papers [16;
14] establish that the automorphism group Aut.A�/ is generated by the following
automorphisms:

(1) Graph automorphisms Automorphisms of the graph � via a permutation of
its set of vertices V .

(2) Inversions For v 2 V , a map sending v! v�1 and fixing all other generators.

(3) Transvections For v ¤ w 2 V such that Link.v/ � Star.w/, a map sending
v! vw and fixing all other generators.

(4) Partial conjugations For v 2 V and C a component of �nStar.v/, the map
sending x! vxv�1 for every vertex x of C and fixing all other generators.

The next proposition builds on the work of Fullarton [5] to show how automorphisms
of RAAGs interact with the direct product decomposition of a RAAG.

Proposition 3.3 Given a RAAG A� with maximal decomposition

A� D Zd
� .A�1

/i1 � � � � � .A�k
/ik ;

with the A�i
distinct and not equal to Z, we have

Aut.A�/Š Zd j� 0j Ì
�
GLd .Z/�Aut.A� 0/

�
Š Zd j� 0j Ì

�
GLd .Z/� .Aut.A�1

/ o†i1
/� � � � � .Aut.A�k

/ o†ik
/
�

where � 0 D .�i1
�1/� � � � � .�ik

�k/ with j� 0j its number of vertices, and where Zd j� 0j

is generated by transvections v! vz for v 2 � 0 and z 2 Zd .
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Proof The first isomorphism is given by Propositions 3.1 and 3.2 in [5]. To get the
second isomorphism, we are left to study Aut.A� 0/, the automorphism group of a
RAAG A� 0 with no Z–factor. If A� 0 is unfactorizable, there is nothing to show, so
we assume that it is factorizable. We have an inclusion

.Aut.A�1
/ o†i1

/� � � � � .Aut.A�k
/ o†ik

/ ,! Aut.A� 0/

so all we need to check is that every automorphism of A� 0 comes from the left-hand
side. We do this by inspecting the generators in the classification recalled above.
We see that type (2) automorphisms are internal to each factor, ie are elements of
some Aut.A�i

/. Type (3) can only be internal to a factor for A� 0 because A� 0 has no
Z–factors, and likewise for type (4) because A� 0 is a direct product. Finally, type (1)
automorphisms, the graph automorphisms, satisfy

Aut.� 0/D Aut
�
.�i1

�1/� � � � � .�ik
�k/

�
D .Aut.�1/ o†i1

/� � � � � .Aut.�k/ o†ik
/:

Indeed suppose � is such a graph automorphism and let v be a vertex of some copy
of �i and suppose that �.v/ is a vertex of a copy of some �j . As �i is not a join,
we must have that � restricted to that �i gives an injective map �i ,! �j . If i D j ,
this map must be an isomorphism. If not, ��ijj , which lies in the link of v , cannot
be mapped to itself by � . So there must be a vertex of some �j mapped to some
other �k with a corresponding injection induced by � . By the pigeonhole principle,
the sequence of such graph injection will end in some copy of �i after finitely many
steps, which then implies that in fact �i Š �j Š �k Š � � � . Hence each �i has to be
mapped by such a � to some standard copy of �i in the join and the automorphism
group of the join is as described.

4 Connectivity of the simplicial complexes

In this section we show that the semi-simplicial sets Wn.A;X / of Section 2 are highly
connected for any unfactorizable X when F is the family of all RAAGs. We will treat
separately the cases X ¤ Z and X D Z. In both cases, we will deduce this result
from a computation of the connectivity of the simplicial complexes In.A;X /. In the
first case we will show that In.A;X /Š Sn.A;X / while for X D Z, following [17,
Section 5.3] in the case of GLn.R/, we will show that Sn.A;Z/Š SIn.A;Z/ and use
that SIn.A;Z/ is a join complex over In.A;Z/. The connectivity of Wn.A;X / will
then follow using Proposition 2.2.

The proof of connectivity of In.A;X / when X ¤Z is a “coloring argument”, while for
X DZ, we follow closely the work of Maazen [15]. The semi-simplicial set Wn.e;Z/ is
essentially already in the work of Charney [2] under the name SU.Zn/. Charney’s proof
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of connectivity can be adapted to the present setting and yields the same connectivity
as we get.

Case X ¤ Z

The main result of the section is the following:

Theorem 4.1 Let A;X be RAAGs such that X ¤ Z. Then the semi-simplicial
set Wn.A;X / is .n�2/–connected.

The proof of the theorem will use the following:

Proposition 4.2 Let A;X be RAAGs such that X ¤Z is unfactorizable and A has no
direct factor X . Then RAAG-split maps f W X p!A�X n have unique complements.
Moreover, the complexes In.A;X / and Sn.A;X / are isomorphic.

Proof The map Sn.A;X /! In.A;X / forgetting the chosen complements is surjec-
tive. To show that it is also injective, it is enough to check that it is injective on vertices.
Hence the first part of the statement in the proposition in the case p D 1 implies the
second.

By Proposition 2.6, it is enough to check the uniqueness of complements for the standard
p–simplex �p D hfn�p; : : : ; fni for each p , with fj W X !A�X n including X as
the j th X –factor. The standard simplex �p admits as a complement the subgroup
Hp DA�X n�p�1 � e �A�X n�p�1 �X pC1 . Again by Proposition 2.6, any other
complement for �p can be obtained from Hp by acting by an automorphism of A�X n

fixing the last p C 1 factors X . But from the description of the automorphisms
(Proposition 3.3), we see that Hp is fixed by all such automorphisms and hence Hp is
the only possible complement.

Let X Dhv1; v2; : : : vr i where v1; : : : ; vr is the standard vertex generating set of X . A
vertex f 2 In.X;A/ is determined by the tuple f D .f .v1/; : : : ; f .vr //2 .A� X n/r .
Write X n D X1 � � � � � Xn . By Proposition 2.6, we can write f D � ı f1 for
f1W X ! A � X n the inclusion as X1 , the first X –factor, and � 2 Aut.A �X n/.
By Proposition 3.3, it follows that f .vi/D wz

i1

1
� � � z

id

d
, for z1; : : : ; zd the canonical

generators of Zd �A and w 2Xj for some j independent of i . We say that j is the
color of f . Note that the unique complement of f is H DA�

Q
i¤j .Xi/ if the color

of f is j .

Lemma 4.3 Let A;X be RAAGs such that X ¤ Z is unfactorizable and is not a
factor in A. Then vertices f0; : : : ; fp 2 In.A;X / form a simplex if and only if the fi

have distinct colors in the above sense.
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Proof Simplices of In.A;X / have this property by Proposition 2.6 and Proposition 3.3.
Conversely, suppose f0; : : : ; fp are vertices of In of distinct colors. Then the map
f D .f0; : : : ; fp/W X

pC1!A�X n is an injective homomorphism and

H DA�
Y

i¤col.f0/;:::;col.fp/

Xi

is a complement for it. Hence .f0; : : : ; fp/ is a p–simplex of In .

Recall that a simplicial complex S is Cohen–Macaulay of dimension n if it has
dimension n, is .n�1/–connected, and the link of any p–simplex in S is .n�p�2/–
connected.

Proposition 4.4 Let A;X be RAAGs such that X ¤ Z is unfactorizable and it is
not a factor in A. Then the simplicial complex In.X;A/ is Cohen–Macaulay of
dimension n� 1. In particular, it is .n�2/–connected.

Proof Consider the map � W In.A;X /!�n�1 taking a vertex f to its color. This is
a simplicial map which exhibits In.A;X / as a complete join over �n�1 in the sense
of [9, Definition 3.2] (see also Section 2). Indeed, this map is surjective as well as
injective in individual simplices. Also, for every simplex � D hi0; : : : ; ipi in �n�1 ,
we have that ��1.�/D ��1.i0/�� � ���

�1.ip/ as vertices of In form a simplex if and
only if they have different colors by the lemma. The result is then a direct application of
[9, Proposition 3.5] and the fact that �n�1 is Cohen–Macaulay of dimension n�1.

We are finally ready to prove the main result of the section:

Proof of Theorem 4.1 If AŠA0�X k for some k > 0, we replace Wn.A;X / by the
isomorphic complex WnCk.A

0;X /. Hence we may assume that A has no X –factor.
By Proposition 4.4, we have that In.A;X / is .n�2/–connected for all n� 0. Hence by
Proposition 4.2, the same holds for Sn.A;X /. Finally by Proposition 2.2 with k D 1

and aD 2, we have that the same also holds for Wn.A;X /.

Case X D Z

The main result of the section is the following:

Theorem 4.5 Let A be a RAAG. Then we have that the semi-simplicial set Wn.A;Z/
is n�3

2
–connected.

Lemma 4.6 In.A;Z/Š In.e;Z/ for any RAAG A with no Z–summand.
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Proof There is an inclusion ˛W In.e;Z/! In.A;Z/ induced by composing maps
to Zn with the canonical inclusion Zn!A�Zn , given that a complement in A�Zn

can be obtained from a complement in Zn by crossing with A. The map ˛ is simplicial
and injective, and we claim that it is also surjective. Indeed, by Proposition 2.6, vertices
of In.Z;A/ are maps f W Z!A�Zn that can be written as compositions f D � ıf1

for f1 the canonical inclusion as first Z–factor and � an automorphism of A�Zn .
Now f1 is in the image of ˛ , and by the classification of the automorphisms (or
Proposition 3.3), we can see that f D�ıf1 still is in the image of ˛ : as automorphisms
of A�Zn take Zn to itself, the map f has image in Zn . Moreover, a complement
for f is of the form A0 �H with A0 Š A and H � Zn a complement for ˛�1.f /.
Likewise, if vertices form a simplex in In.A;Z/, they will also form a simplex in
In.e;Z/.

Proposition 4.7 In.A;Z/ is Cohen–Macaulay of dimension n� 1.

Using the lemma, one can almost deduce the result from Corollary III.4.5 in [15],
though Maazen works with posets instead of simplicial complexes, and checks the
vanishing of the homology groups instead of the homotopy groups. The proof adapts
to our situation without any difficulty. We give it here for completeness.

Proof From Lemma 4.6, we may assume that A is the trivial group. For the rest of
the proof, we write In for In.e;Z/. We have that In has dimension n�1. We need to
show that it is .n�2/–connected, and that for every p� 0 the link of any p–simplex �
is .n�p�3/–connected. Allowing � to be an empty “.�1/–simplex”, we can also,
and will, consider the connectivity of In itself as being that of such a link. The link of
a p–simplex is nonempty whenever n�p�2� 0 and it has dimension n�p�2. We
prove that the connectivity holds for each link by induction on the pair of dimensions
.dim.Link/; dim.�// in lexicographic order. The cases of dim.Link/Dn�p�2�0 are
trivial as a nonempty space is .�1/–connected, and the empty space is .�2/–connected
(which is defined as a non-condition). So we fix n > p � �1 with n� p � 2 � 1

and we assume that we have proved that LinkIm
.�/ is .m�k�3/–connected for every

k –simplex � of Im with m > k � �1 and m � k � 2 � n � p � 2, with k < p

if m� k � 2D n�p� 2. Let � be a p–simplex of In . By Proposition 2.6, we may
assume that � D �p D hen�p; : : : ; eni is the .pC1/–tuple consisting of the last pC 1

standard generators of Zn , where we identify a map f W Z! Zn with the element
f .1/ 2Zn . We will show that LinkIn

.�/ is .n�p�3/–connected, which will give the
induction step and prove the result.

A vertex v in LinkIn
.�p/ is given as an n–tuple of integers v D ..v/1; : : : ; .v/n/. We

filter the link using the absolute value of the last coordinate. Let

Oq WD hv 2 LinkIn
.�p/ W j.v/nj � qi � LinkIn

.�p/;
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that is, Oq is the full subcomplex of LinkIn
.�p/ on the vertices whose last coordinate

in Zn has absolute value at most q . If p � 0, we have that O0 Š LinkIn�1
.�p�1/,

the link of the last p generators of Zn�1 in In�1 . Indeed, if v1; : : : ; vk 2 Zn have
their last coordinate equal to 0, then hv1; : : : ; vk ; en�p; : : : ; eni is a simplex of In if
and only if h Nv1; : : : ; Nvk ; en�p; : : : ; en�1i is a simplex of In�1 for Nvi 2 Zn�1 the first
n� 1 coordinates of vi . Hence by induction, O0 is .n�p�3/–connected in that case.
If p D �1, O0 Š In�1 is .n�3/–connected by induction. We will show that O1 is
.n�2/–connected when p D �1, so also .n�p�3/–connected. Then we will show
that in both cases, for every q � 0, if Oq is .n�p�3/–connected, then so is OqC1 .
This will prove the result given that O0 (or O1 if p D�1) is .n�p�3/–connected,
as by compactness, any map from a sphere into the link will have image in Oq for
some q � 1.

We start by showing that O1 is .n�2/–connected when p D�1. Recall that in this
case LinkIn

.�p/D In . We can construct O1 from O0 by attaching successively the
vertices v 2 In with j.v/nj D 1, along their link in O0 , then edges formed by such
vertices along their links in the newly formed complex, and so on. Explicitly this gives

O1 DO0

[
v12O1nO0

C.hv1i/
[

hv1;v2i

�O1nO0

C.hv1; v2i/ � � �
[

hv1;:::;vni

�O1nO0

C.hv1; : : : ; vni/

where C.hv1; : : : ; vki/D hv1; : : : ; vki� .LinkIn
.hv1; : : : ; vki/\O0/, attached succes-

sively along Lk WD @hv1; : : : ; vki � .LinkIn
.hv1; : : : ; vki/\O0/. For k D 1, we have

that LinkIn
.hv1i/\O0 D O0 as the last coordinate of v1 is ˙1. Hence this link is

.n�3/–connected. Now pick a vertex v 2O1nO0 . We can write

O0

[
v12O1nO0

C.hv1i/D Star.v/
[

v12O1nO0

v1¤v

C.hv1i/

where Star.v/DO0 �v is the star of v within this complex. It follows that this second
stage of the filtration is .n�2/–connected, being homotopic to a wedge of suspensions
of .n�3/–connected spaces.

For k > 1, we have again that all the vi have last coordinate ˙1. Let "i DC1 if .vi/n
and .v1/n have the same sign, and �1 otherwise. Then

LinkIn
.hv1; : : : ; vki/\O0 Š LinkIn�1

.hv2� "2v1; : : : ; vk � "kv1i/;

with vi � "iv1 denoting as above the first n�1 coordinates of this vector, noting that its
last coordinate is zero. Indeed, a simplex hw1; : : : ; wqi is in the first link if and only if
the wj have 0 as last coordinate and hw1; : : : ; wq; v1; : : : ; vki is a partial basis of Zn ,
which is the case if and only if hw1; : : : ; wq; v1; v2� "2v1; : : : ; vk � "kv1i is a partial
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basis of Zn , which is the case if and only if hw1; : : : ; wq; v2� "2v1; : : : ; vk � "kv1i

is a partial basis of Zn�1 . Hence this link is .n�k�2/–connected by induction. So
the space Lk , along which the cone C.hv1; : : : ; vki/ is attached, is .n�2/–connected.
Hence attaching each C.hv1; : : : ; vki/ keeps the space .n�2/–connected.

We are left to show that if Oq is .n�p�3/–connected then OqC1 is also .n�p�3/–
connected, where Oq is now the qth filtration of LinkIn

.�p/ without any special
assumption on p . We construct OqC1 from Oq by successively attaching the missing
vertices, edges, and so on, just like we constructed O1 from O0 above:

OqC1DOq

[
v12OqC1nOq

C.hv1i/
[

hv1;v2i�

OqC1nOq

C.hv1;v2i/ � � �
[

hv1;:::;vn�p�1i

�OqC1nOq

C.hv1; : : : ;vn�p�1i/:

Again we need to compute the connectivity of the link of hv1; : : : ; vki in LinkIn
.�p/

intersected with Oq . This link is a subcomplex of LinkLinkIn .�p/.hv1; : : : ; vki/. By
Proposition 2.6, this last link is isomorphic to LinkIn

.�pCk/, which by assumption is
.n�p�k�3/–connected.

Let �W Z!Z be a map satisfying �.z/D 0 if jzj< qC1, and jz��.z/.qC1/j< qC1

for jzj � qC 1. We have .v1/n D "1.qC 1/ for "1 D˙1. Now define

� W LinkLinkIn .�p/.hv1; : : : ; vki/! LinkLinkIn .�p/.hv1; : : : ; vki/\Oq

to be the map taking a vertex w to w� "1�..w/n/v1 . Then w� "1�..w/n/v1 2 Oq

and lies in LinkLinkIn .�p/.hv1; : : : ; vki/ if w was in that link. Moreover � is sim-
plicial and defines a retraction. It follows that LinkLinkIn .�p/.hv1; : : : ; vki/ \ Oq

is also at least .n�p�k�3/–connected. Hence attaching C.hv1; : : : ; vki/ along
@hv1; : : : ; vki� .LinkLink.�p/.hv1; : : : ; vki/\Oq/ does not change the connectivity as
the latter space is at least .n�p�3/–connected. The result follows.

Remark 4.8 The existence of the function � used in the proof makes Z, together
with the absolute value, a Euclidean ring. Maazen’s proof of the above statement was
set in the more general context of Euclidean rings.

Proposition 4.9 Let A be a right-angled Artin group with no Z–summand and let
h.K0; f0/; : : : ; .Kp; fp/i be a simplex of SIn.A;Z/. Then

T
j Kj Š A � Zm for

some m.

Proof Suppose that A has generators a1; : : : ; ar and Zn has generators z1; : : : ; zn .
We know that each Ki can be obtained from the standard A�Zn�1 � e �A�Zn by
applying an automorphism. From the description of the automorphisms of A�Zn , it
follows that Ki is generated by a1w1; : : : ; arwr ; t1; : : : ; tn�1 for some wj ; tj 2 Zn .
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Moreover, we know that Zn is generated by t1; : : : ; tn�1; fi , where fi WD fi.1/.
Hence we can rewrite the generators of Ki as a1 f

mi;1

i ; : : : ; ar f
mi;r

i ; t1; : : : ; tn�1 for
some mi;1; : : : ;mi;r 2 Z.

As fi 2 Kj whenever i ¤ j and akf
mi;k

i 2 Ki , each akf
m0;k

0
f

m1;k

1
: : : f

mp;k

p

lies in
T

iKi . Let A0 Š A denote the subgroup of A � Zn generated by the ele-
ments akf

m0;k

0
f

m1;k

1
� � � f

mp;k

p . We have that A�Zn DA0 �Zn . We want to show
that

T
i Ki DA0�

�T
i.Ki\Zn/

�
. The right side is included in the left side, so all we

need to show is that the left side is included in the right side. Let x 2
T

i Ki be some
element. As x 2Ki , we can write it as xDx0ix

00
i with x0i 2A0 and x00i 2Ki\Zn . Now

these different expressions of x are all equal, and all live in A�ZnDA0�Zn . It follows
that x0i D x0j and hence x00i D x00j for each i; j . It follows that x00

0
2
T

i.Ki \ Zn/

and x D x0
0
x00

0
2A0 �

�T
i.Ki \Zn/

�
. As

T
i.Ki \Zn/� Zn , the result follows.

Proof of Theorem 4.5 Just as in the proof of Theorem 4.1, we may assume that A

has no Z–factor. From Proposition 2.3, we have that SIn.A;Z/ is a join complex
over In.A;Z/ (in the sense of [9, Definition 3.2], see also Section 2). As In.A;Z/
is Cohen–Macaulay of dimension n� 1 by Proposition 4.7, Theorem 3.6 of [9] gives
that SIn.A;Z/ is n�3

2
–connected for all n� 0. By Proposition 4.9, the hypothesis of

Proposition 2.4 is satisfied, and hence Sn.A;Z/ is isomorphic to SIn.A;Z/. So the
connectivity also holds for Sn.A;Z/. Hence by Proposition 2.2 with k D 2 and aD 3,
we have that the same also holds for Wn.A;X /.

5 Stability theorem

We consider in this section the family of all right-angled Artin groups with C D
UGRAAGs the associated homogeneous category, as defined in Section 1. Let A;X be
RAAGs, and denote by CA;X the full subcategory of C on the objects A �X n for
all n�0. Recall from [17, Section 4.2] the lower suspension functor †X W CA;X !CA;X

taking A�X n to A�X nC1 and a morphism f W A�X n!A�X k to the composition
.bX ;A �X k/ ı .X � f / ı .b�1

X ;A
�X n/, where bX ;AW X �A! A �X denotes the

symmetry. Recall from [17, Definition 4.10] that a functor

F W CA;X ! Z-Mod

is a coefficient system of degree r at N if the kernel of the suspension map F!F ı†X

is trivial when evaluated at A�X n with n�N , and the cokernel is of degree r � 1

at N � 1, with degree �1 at N meaning taking the value 0 at A �X n whenever
n�N . In particular, constant coefficient systems are of degree 0 at 0. A coefficient
system F is split if it splits as a functor.
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Applying the main results of [17] to our situation, we get the following stability theorem:

Theorem 5.1 Let A and X be RAAGs, where X is unfactorizable. Suppose that
F W CA;X !Z -Mod is a coefficient system of degree r at N . Let n>N . Then the map
Aut.A�X n/! Aut.A�X nC1/ taking an automorphism f to f �X induces a map

Hi

�
Aut.A�X n/IF.A�X n/

�
!Hi

�
Aut.A�X nC1/IF.A�X nC1/

�
which is surjective for all i � 1

2
.n� 1/� r and an isomorphism for all i � 1

2
.n�3/�r .

If the coefficient system is split, this range improves to i � 1
2
.n� r � 1/ for surjectivity

and i � 1
2
.n� r � 3/ for injectivity, and if the coefficient system is constant, the

isomorphism holds for i � 1
2
.n� 2/.

Moreover, let Aut0.A�X n/ denote the commutator subgroup of Aut.A�X n/, and
let n> 2N . Then the map

Hi

�
Aut0.A�X n/IF.A�X n/

�
!Hi

�
Aut0.A�X nC1/IF.A�X nC1/

�
is surjective for all i � 1

3
.n� 2/� r and an isomorphism for all i � 1

3
.n� 5/� r . If

the coefficient system is split, this range improves to i � 1
3
.n� 2r � 2/ for surjectivity

and i � 1
3
.n� 2r � 5/ for injectivity, and if the coefficient system is constant, the

isomorphism holds for i � 1
3
.n� 4/.

If X ¤ Z–summand, one can replace n by nC 1 in all the bounds of the theorem.

Proof By Proposition 1.1, the category C D UGRAAGs is symmetric monoidal homo-
geneous, and hence pre-braided and locally homogeneous at any .A;X / in the sense
of [17, Definitions 1.1 and 1.4]. Theorem 4.1 gives that it satisfies LH3 of that paper
with slope 2 at .A;X / for all A and all irreducible X ¤ Z [17, Definition 2.2], and
Theorem 4.5 that it satisfies LH3 with slope 2 at .A�Z;Z/ for all A. The result then
follows from Theorems 3.1, 3.4 and 4.20 of [17] for .A;X / with X unfactorizable
not equal to Z, and for .A�Z;Z/, using the argument of [17, Corollary 3.9] for the
second part of the statement.

Theorems A and B are obtained by applying the above theorem to constant coefficient
systems for each irreducible factor of B D X1 � � � � �Xk . Theorem C is obtained
likewise applying the theorem to the coefficient system defined by the abelianization,
noting that this is a split coefficient system of degree 1 at 0.

Note that van der Kallen obtains better bounds for GLn.Z/, which is the case when
A is the trivial group and B DX D Z. Most particularly, for Theorem B his bound
has slope 2 instead of slope 3 as we have (see [13, Theorem 4.6] or Proposition 5.2)
However his argument does not obviously extend to all RAAGs. (The argument of van
der Kallen is explained at the end of Section 5.3 in [17].)
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Finitely generated abelian groups

Homological stability for the automorphism groups of finitely generated abelian groups
under taking direct product can be deduced directly from existing results in the literature,
without needing to prove new connectivity results. We give the exact statement and its
proof here for completeness.

Proposition 5.2 Let G be a finitely generated abelian group. Then the homomorphism
Aut.Gn/!Aut.GnC1/ taking an automorphism f of Gn to the automorphism f �G

of GnC1 fixing the last factor, induces maps

Hi.Aut.Gn/IZ/!Hi.Aut.GnC1/IZ/;

Hi.Aut0.Gn/IZ/!Hi.Aut0.GnC1/IZ/

which are surjective for all i � 1
2
n and isomorphisms for i � 1

2
.n� 1/.

(As in the introduction, Aut0.Gn/ denotes the commutator subgroup of Aut.Gn/.)

Proof A finitely generated abelian group G is a Z–module, and the automorphism
group Aut.Gn/ is isomorphic to GLn.End.G//, for End.G/ its ring of endomorphisms.
By [18, Theorem 3.4], End.G/ has 2 in its stable range (in the terminology of [18], see
Definition 1.5 in that paper), and so satisfies Bass’ condition SR3 or has sdimD1 in the
terminology of [13, Section 2.2]. The result then follows from [13, Theorem 4.11] using
the fact that GL0n.R/ is isomorphic to its subgroup of elementary matrices (Whitehead’s
lemma).

Theorem 5.6 of [13] and Theorem 5.10 of [17] can likewise be applied to show that
homological stability for the groups Aut.Gn/ with G finitely generated abelian also
holds with polynomial twisted coefficients.
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