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Independence of Roseman moves including triple points

KENGO KAWAMURA

KANAKO OSHIRO

KOKORO TANAKA

The Roseman moves are seven types of local modifications for surface-link diagrams
in 3–space which generate ambient isotopies of surface-links in 4–space. In this
paper, we focus on Roseman moves involving triple points, one of which is the
famous tetrahedral move, and discuss their independence. For each diagram of any
surface-link, we construct a new diagram of the same surface-link such that any
sequence of Roseman moves between them must contain moves involving triple
points (and the number of triple points of the two diagrams are the same). Moreover,
we find a pair of diagrams of an S2 –knot such that any sequence of Roseman moves
between them must involve at least one tetrahedral move.

57Q45; 57R45

1 Introduction

Throughout this paper, we work in the smooth category. A surface-link (or a †2 –
link) is a submanifold of 4–space R4 diffeomorphic to a closed surface †2 . If it
is connected, then it is called a surface-knot (or a †2 –knot). Surface-links are not
necessarily assumed to be orientable in this paper. Two surface-links are said to be
equivalent if they can be deformed into each other through an isotopy of R4 .

A diagram of a surface-link is its image via a generic projection from R4 to R3 ,
equipped with the height information as follows: in a neighborhood of each double
point, there are intersecting 2–disks such that one is higher than the other with respect
to the 4th coordinate that was dropped by the projection. The height information is
indicated by removing the regular neighborhood of the double point in the lower disk
along the double point curves. A diagram is regarded as a disjoint union of connected
compact orientable surfaces, each of which is called a sheet, and is composed of the four
kinds of local pictures shown in Figure 1, each of which is the image of a neighborhood
of a typical point: a regular point, a double point, an isolated triple point or an isolated
branch point.
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Figure 1: Local pictures of the projection image. From left to right: a regular
point, double point, triple point, and branch point.

Two surface-link diagrams are said to be equivalent if they are related by (ambient
isotopies of R3 and) a finite sequence of the seven types of Roseman moves, shown in
Figure 2, where we omit height information for simplicity, and the symbols B, T and D
stand for branch point, triple point and double point curve, respectively. Roseman
[17] proved that two surface-links are equivalent if and only if they have equivalent
diagrams. We refer to Carter, Kamada and Saito [4], and Carter and Saito [3] for more
details on surface-links and their diagrams.

In this paper, we focus on Roseman moves involving triple points, that is, the three
moves of type T1, T2 and BT, and discuss their independence. The move of type T2

is also called the tetrahedral move and is closely related to the Zamolodchikov equation,
which is a higher dimensional analogue of the Yang–Baxter equation; see [3, Chapter 6]
for details.

B1

B2

BT

D1

D2

T1

T2

Figure 2: Roseman moves

1A Problems

Independence of Roseman moves is already well understood in terms of local moves. We
summarize the known results below. The first and third were proved by Kawamura [12]
and the second was proved by Homma and Nagase [7] and Yashiro [23].
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� Type B1 can be realized by a finite sequence of types B2 and D1.
� Type B2 can be realized by a finite sequence of types B1 and D2.
� No types other than B1 and B2 can be realized by the other six types.

However, these results do not give us an answer to the following question: for two
diagrams of a surface-link, what types should appear in a sequence of Roseman moves
between them? For example, consider the following problem.

Problem 1.1 (1) Are there two diagrams of a surface-link such that any sequence
of Roseman moves between them must contain moves involving branch points?

(2) Are there two diagrams of a surface-link such that any sequence of Roseman
moves between them must contain moves involving triple points?

Many studies of Problem 1.1(1) have been made; see, for example, Oshiro and Tanaka
[16], Satoh [19] and Takase and Tanaka [21]. On the contrary, there are only a few
results on Problem 1.1(2), Jabłonowski [9], for example. To make the problem concrete,
we define the notion of the S –dependence of diagrams for a subset S of the set
consisting of the seven types of Roseman moves, and formulate our problem.

Definition 1.2 For a subset S of the set fB1;B2;D1;D2;T1;T2;BTg consisting of
the seven types of Roseman moves, two diagrams of a surface-link are said to be
S –dependent if any sequence of Roseman moves between them contains at least one
move in S .

Problem 1.3 For a subset S of the set fB1;B2;D1;D2;T1;T2;BTg, are there two
diagrams of a surface-link such that they are S –dependent? We note that if we choose S

as fB1;B2;BTg (resp. fT1;T2;BTg) then the problem is equivalent to Problem 1.1(1)
(resp. (2)). We also note that if S 0 � S then an S 0–dependent pair is S –dependent by
definition. Since we are now interested in Roseman moves involving triple points, we
will take S as a subset of fT1;T2;BTg in what follows.

1B Results

Jabłonowski [9] observed a fT1;T2;BTg–dependence of surface-link diagrams, and
showed that there is a pair of diagrams of the trivial .S2[T 2/–link such that the pair is
fT1;T2;BTg–dependent and each of the two diagrams has no triple points. Surface-link
diagrams which he constructed are oriented, and have multicomponents and positive
genus, which were crucial conditions in his proof. In Section 2, we will generalize
his result for any surface-link (including unoriented surface-links, surface-knots and
S2 –links), and prove the following.
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Theorem 1.4 For each diagram D of any surface-link F , there is a diagram D0 of F

such that the pair of D and D0 is fT1;T2g–dependent and the number of triple points
of D is equal to that of D0 .

The first author [12] observed the independence of the moves of types T1 and T2 as
local moves, and showed that there is a pair of diagrams of the trivial S2 –link with three
(resp. four) components such that the pair is fT1g–dependent (resp. fT2g–dependent).
Note that his proof does not work well for surface-links with two (resp. three) or less
components. In Section 3, we will give the first example for the fT2g–dependence in
the case of an S2 –knot, and prove the following.

Theorem 1.5 There is an S2 –knot with a pair of diagrams that is fT2g–dependent.
In other words, any sequence of Roseman moves between the diagrams must involve at
least one tetrahedral move.

Here are some questions for future research.

Problem 1.6 For each diagram D of any surface-link F , is there a diagram D0 of F

such that the pair D and D0 is fT2g–dependent?

Problem 1.7 Is there a pair of diagrams of a surface-link with two or less components
that is fT1g–dependent? (See Remark 2.4.)

Problem 1.8 For each diagram D of any surface-link F , is there a diagram D0 of F

such that the pair D and D0 is fT1g–dependent?

Acknowledgments The authors would like to thank Michal Jabłonowski for referring
us to Rosicki [18]. The second author is partially supported by Grant-in-Aid for
Young Scientists (B) (No. 25800052), Japan Society for the Promotion of Science.
The third author is partially supported by Grant-in-Aid for Scientific Research (C)
(No. 26400082), Japan Society for the Promotion of Science.

2 fT1; T2g–dependent diagram pair

In this section, we study fT1;T2g–dependences of equivalent surface-link diagrams
using the notion of coloring numbers, and prove Theorem 1.4. Throughout this paper,
for a surface-link diagram D , let SD denote the set of all sheets of D . Moreover, we
represent the orientation of an oriented surface-link diagram by assigning its coorienta-
tion, depicted by an arrow which looks like the symbol * as in Figure 3, to each sheet
of the diagram.
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sk

sj

si

Figure 3: Coloring condition along a double point curve: C.si/�C.sj /D C.sk/

2A Coloring of surface-link diagrams

Let D be an oriented surface-link diagram and � a (nonempty) set with a binary
operation �W ���!�. We say that a map C W SD !� is an �–coloring of D if
it satisfies the coloring condition C.si/�C.sj /D C.sk/ for each double point curve
of D , where si , sj and sk are three sheets meeting at the double point curve such that
the coorientation of sj points from si to sk as in Figure 3. Note that there might be
no �–colorings of D for given D and �. For an �–coloring C , the image C.s/ of
a sheet s is called the color of s .

An �–coloring is said to be trivial if it is a constant map. An oriented surface-link
diagram has a trivial �–coloring if and only if there exists an element a 2� such that
a� aD a. Let Col�.D/ denote the set of all �–colorings of D . If � is finite, then
we can count the number of the elements of Col�.D/, and we call it the �–coloring
number of D and denote it by # Col�.D/. Note that an �–coloring number may
depend on the choice of diagram for an oriented surface-link.

We say that � is involutory if for any a; b 2 �, .a � b/ � b D a holds. If � is
involutory, the coloring condition does not depend on the coorientation of sj , since
C.si/ �C.sj / D C.sk/ if and only if C.si/ D C.sk/ �C.sj /. Then an �–coloring
can be defined for an unoriented diagram of a (possibly nonorientable) surface-link.

2B Quandle and fT1; T2g–dependence

The notion of quandles was introduced by Joyce [10] and Matveev [14] in 1982. We
note that an involutory quandle, which was originally called a kei, had already been
studied by Takasaki [15] in 1943. A quandle is a set Q with a binary operation
�W Q�Q!Q satisfying the following three axioms:

(Q1) For any a 2Q, a� aD a.

(Q2) For any a; b 2Q, there exists a unique c 2Q such that c � b D a.

(Q3) For any a; b; c 2Q, .a� b/� c D .a� c/� .b � c/.
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Axioms (Q1), (Q2) and (Q3) correspond to Reidemeister moves of types I, II and III
respectively.

Example 2.1 Let S4 denote the set f0; 1; 2; 3g with the binary operation defined by
the following table:

S4 W

0 1 2 3

0 0 2 3 1
1 3 1 0 2
2 1 3 2 0
3 2 0 1 3

In this table, the .i C 1; j C 1/–entry represents i � j . Then S4 satisfies the three
axioms and we call it the tetrahedron quandle, which will be used in Section 3.

For a diagram D of an oriented surface-link F , it is known that the Q–coloring number
# ColQ.D/ is an invariant of F for a finite quandle Q; see, for example, [4; 18]. More
precisely, it is known that

� the invariance under Roseman moves of types B1, B2 and BT comes from (Q1),
� the invariance under Roseman moves of types D1 and D2 comes from (Q2), and
� the invariance under Roseman moves of types T1 and T2 comes from (Q3).

Hence if we consider the case where a set � with a binary operation satisfies quandle
axioms (Q1) and (Q2) but not (Q3), then we have the following.

Lemma 2.2 Let � be a set with a binary operation satisfying quandle axioms .Q1/

and .Q2/ but not .Q3/. If diagrams D and D0 of an oriented surface-link are not
fT1;T2g–dependent, then # Col�.D/D # Col�.D0/ holds.

Proof Since D and D0 are not fT1;T2g–dependent, there exists a finite sequence of
Roseman moves without T1– and T2–moves. The quandle axiom (Q3) affects only
the invariance by T1– and T2–moves, and hence # Col�.D/D # Col�.D0/ holds.

2C Proof of Theorem 1.4

Let X be the set f0; 1; 2g with the binary operation �W X �X ! X defined by the
following table:

0 1 2

0 0 2 1
1 1 1 0
2 2 0 2
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D0: D1:

Figure 4: Two diagrams D0 and D1 of the trivial S2 –knot

In this table, the .iC1; jC1/–entry represents i�j . The binary operation of X satisfies
the quandle axioms (Q1) and (Q2) but not (Q3). For example, .0� 1/� 2D 2� 2D 2

and .0�2/� .1�2/D 1�0D 1. Since the binary operation of X is involutory, we can
apply Lemma 2.2 to unoriented diagrams of a (possibly nonorientable) surface-link.
We found that the same binary operation was used by Cheng and Gao in [5] for the
study of classical knot diagrams. They used X –coloring numbers to investigate the
independence of Reidemeister move of type III.

Proposition 2.3 Let D0 be the trivial diagram of the trivial S2 –knot, that is, D0 is
the standard 2–sphere in R3 . There exists a diagram D1 of the trivial S2 –knot such
that the pair of D0 and D1 is fT1;T2g–dependent, and they have no triple points.

Proof Let D1 be the S2 –knot diagram obtained by spinning the tangle diagram in
Figure 4. Since the tangle diagram in Figure 4 represents the unknotted tangle, D1

represents the trivial S2 –knot. Moreover, D0 and D1 have no triple points. Since
D0 consists of a single sheet and X consists of three elements, D0 has three trivial
X –colorings, and hence we have # ColX .D0/D 3. On the other hand, D1 has three
trivial X –colorings and four nontrivial ones, and hence we have # ColX .D1/ D 7.
Thus, we have # ColX .D0/¤ # ColX .D1/, which implies that the pair of D0 and D1

is fT1;T2g–dependent by Lemma 2.2.

Remark 2.4 Since there exists a finite sequence of Roseman moves of types B1,
B2 and T1 between D0 and D1 above, the pair of them is not fT2g–dependent. It
is therefore natural to ask the following question: is the pair of D0 and D1 above
fT1g–dependent? (See Problem 1.7.)

Proof of Theorem 1.4 For any diagram D of a surface-link F , we set a diagram D0 to
be a connected sum D]D1 of D and D1 as in Figure 5, where D1 is the diagram of the
trivial S2 –knot in Figure 4. Then D0 is a diagram of F and the number of triple points
of D is equal to that of D0 . Let s1 be the sheet of D1 where we have performed the
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D :  D0 :

Figure 5: The diagrams D and D0 DD ]D1 of the surface-link F

connected sum. Then for each element, say a, in X , there are at least two X –colorings
of D1 such that the sheet s1 receives the color a. Hence the X –coloring number of D0

is at least twice of that of D , that is, # ColX .D0/� 2� # ColX .D/ > # ColX .D/� 3.
By Lemma 2.2, we conclude that the pair of D and D0 is fT1;T2g–dependent.

Remark 2.5 Theorem 1.4 is a generalization of Jabłonowski’s result [9, Theorem 1.3].
However we cannot prove that the pair of his surface-link diagrams is fT1;T2g–
dependent by using X –coloring number.

3 fT2g–dependent diagram pair

Carter et al [1] studied the number of Reidemeister moves of type III needed to move
between two diagrams of the same classical knot using a modification of quandle
cocycle invariants. In this section, we study the fT2g–dependence of equivalent S2 –
knot diagrams using a similar idea to the one in [1].

3A Multiset ˆ�.D/

Let D be a diagram of an oriented surface-link and � a triple point of D . For a small
neighborhood of � , the complement of D is divided into eight regions. We denote
by R one of the eight regions from which all coorientations of the three sheets point
outward. Let sT , sM and sB be the top, middle and bottom sheets of � respectively,
which bounds the region R. Note that when three sheets form a triple point, they
have positions top, middle and bottom with respect to the height information of the 4th

coordinate dropped by the projection from R4 to R3 .

Let Q be a quandle and A an abelian group. We set a function � W Q3! A. For a
Q–coloring C W SD !Q of the diagram D , the (Boltzmann) weight B� .�;C / of �
is defined to be " �.C.sB/;C.sM /;C.sT // 2A, where "DC1 if the coorientations
of sT , sM and sB in this order matches the orientation of R3 and "D�1 otherwise.
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We denote by W� .D;C / the sum of the weights of all triple points of D , that is,

W� .D;C /D
X

�2ftriple points of D g

B� .�;C / 2A:

Let D and D0 be oriented surface-link diagrams such that D0 is obtained from D by a
single T2–move. For a Q–coloring C of D , there is a unique Q–coloring C 0 of D0

such that these two Q–colorings coincide in the complement of the 3–ball where the
T2–move is performed. For such pairs of .D;C / and .D0;C 0/, we have the following.

Lemma 3.1 [2] There exist some a; b; c; d 2Q such that

W� .D;C /�W� .D
0;C 0/D˙

�
�.a; c; d/� �.a� b; c; d/� �.a; b; d/

C �.a� c; b � c; d/C �.a; b; c/� �.a� d; b � d; c � d/
�

for the pairs of Q–colored diagrams .D;C / and .D0;C 0/ related by a single T2–move.

We denote by ˆ� .D/ the multiset fW� .D;C / j C 2 ColQ.D/g. For an unoriented
diagram D of an orientable surface-link, by considering all possible orientations of D ,
we define the multiset (of multisets) ˆunori

�
.D/ by

fˆ� . ED/ j ED 2 foriented diagrams representing Dgg:

3B Quandle 3–cocycle condition and fT2g–dependence

For a quandle Q and an abelian group A, a function � W Q3!A is called a quandle
3–cocycle if it satisfies the following conditions:

(i) For any a; b 2Q, �.a; a; b/D 0 and �.a; b; b/D 0.

(ii) For any a; b; c; d 2Q,

�.a;c;d/��.a�b;c;d/��.a;b;d/C�.a�c;b�c;d/C�.a;b;c/��.a�d;b�d;c�d/D0:

These conditions are called the quandle 3–cocycle conditions, which arise from quandle
cohomology theories [2].

Lemma 3.1 shows that condition (ii) coincides with the difference of the sum of the
weights for two Q–colored surface-link diagrams related by a single T2–move. This
implies that when a function � W Q3!A satisfies condition (ii), the multiset ˆ� .D/ for
a diagram D of an oriented surface-link is unchanged under T2–moves. Additionally,
we can easily check that condition (ii) does not affect the other types of Roseman
moves. We can similarly see that condition (i) guarantees the invariance of ˆ� .D/
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under BT–moves. It is shown in [2] that if the function � satisfies the quandle 3–
cocycle conditions, the multiset ˆ� .D/ is independent of the choice of diagram, and
thus, it is an invariant of oriented surface-links. Now, we consider the case where a
function � W Q3!A satisfies condition (i) but not (ii).

Proposition 3.2 For a quandle Q and an abelian group A, we set a function � WQ3!A

satisfying quandle 3–cocycle condition (i) but not (ii). Let D and D0 be oriented
diagrams which represent the same oriented surface-link. If D and D0 are not fT2g–
dependent, then ˆ� .D/Dˆ� .D0/.

Proof Since D and D0 are not fT2g–dependent, there exists a finite sequence of
Roseman moves without T2–moves. The quandle 3–cocycle condition (ii) affects only
the invariance by T2–moves, and hence, ˆ� .D/Dˆ� .D0/ holds.

For an unoriented diagram of an orientable surface-link, we have the following.

Corollary 3.3 For a quandle Q and an abelian group A, we set a function � W Q3!A

satisfying quandle 3–cocycle condition (i) but not (ii). Let D and D0 be unoriented
diagrams which represent the same orientable surface-link. If D and D0 are not
fT2g–dependent, then ˆunori

�
.D/Dˆunori

�
.D0/.

3C Proof of Theorem 1.5

To prove Theorem 1.5, we will construct two concrete S2 –knot diagrams using the
deform-spinning method defined by Litherland [13], which is reviewed below. This is a
method of constructing S2 –knots from a classical knot such that a deformation can be
applied during the spinning process. Note that the twist-spinning method by Zeeman
[24] and the roll-spinning method by Fox [6] are special cases of the deform-spinning
method.

For a classical knot K , consider a properly embedded arc K0 in the unit 3–ball B3

such that K is obtained from K0 by connecting the boundary points by a simple
arc in @B3 . Let ft W B

3 ! B3 .t 2 Œ0; 1�/ be an isotopy of B3 rel @B3 such that
f1.K0/DK0 . Define

.S4;F /D
[

t2Œ0;1�

.B3; ft .K0//=�;

where � stands for�
.f0.x/; 0/� .f1.x/; 1/ for x 2 B3,
.x; t/� .x; t 0/ for x 2 @B3 and t; t 0 2 Œ0; 1�:
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Figure 6: The motion picture of the 1–twist of �3.31/

Then F is a 2–sphere embedded in a 4–sphere S4 . Removing a point from S4 nF ,
we have an S2 –knot F in R4 . We call F a deform-spun S2 –knot of K . Note that the
family fft .K0/gt2Œ0;1� is a motion picture of tangles in B3 which describes F , and
thus, any deform-spun S2 –knot can be described by a motion picture of tangles in B3.

Let F be a deform-spun S2 –knot. Let pW R4 ! R3 be the projection induced by
the natural projection, say also p , from B3 to B2 dropping the 3rd coordinate. For
each t 2 Œ0; 1�, the image p.ft .K0// equipped with the height information is a tangle
diagram in B2 , and the family fp.ft .K0//gt2Œ0;1� with the height information is a
motion picture of tangle diagrams in B2 which describes a diagram of F . Thus we
can obtain a diagram of F by a motion picture of tangle diagrams in B2 . Note that
each Reidemeister move of type III in a motion picture produces a triple point of the
corresponding generic projection. Furthermore, for a quandle Q, we can also see a Q–
colored diagram of F by taking a motion picture of Q–colored tangle diagrams in B2.

Let �3.31/ denote the deform-spun S2 –knot described by the threefold repetition of the
motion of tangle diagrams in Figure 6, where the tangle diagrams in Figure 6 represent
the left-handed trefoil knot 31 . We note that �3.31/ is usually called the 3–twist-spun
S2 –knot of 31 and that this method of drawing motion pictures for twist-spun S2 –
knots was first given in [20]. Let �1=2.41/ be the deform-spun S2 –knot described
by the motion picture of tangle diagrams in Figure 7, where the tangle diagrams in
Figure 7 represent the figure-eight knot 41 . We note that �1=2.41/ is usually called
the .half-/roll-spun S2 –knot of 41 .

Proof of Theorem 1.5 Let D denote the diagram of �3.31/ described by the threefold
repetition of the motion of tangle diagrams in Figure 6, and let D0 be the diagram of
�1=2.41/ described by the motion picture of tangle diagrams in Figure 7. We note that
D has eighteen triple points and that D0 has twelve triple points. Since it is shown in
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=

Figure 7: The motion picture of �1=2.41/

[11; 22] that two S2 –knots �3.31/ and �1=2.41/ are equivalent, D and D0 are also
equivalent as S2 –knot diagrams. In what follows, we focus on proving that the pair
of D and D0 is fT2g–dependent.

Let S4 be the tetrahedron quandle given in Example 2.1 and define a map � W .S4/
3!Z

by �.x;y; z/D .x�y/.y � z/. Note that the map � satisfies the quandle 3–cocycle
condition (i) but not (ii). To prove this theorem, it is enough to show that the multiset
ˆunori
�

.D/ does not coincide with the multiset ˆunori
�

.D0/ by Corollary 3.3. More
precisely, for some oriented diagram ED0 of D0 , we show that there exists an S4 –
coloring C 0 of ED0 such that the weight sum W� . ED

0;C 0/ is nonzero. On the other
hand, for any oriented diagram ED of D and any S4 –coloring C of ED , we show that
the weight sum W� . ED;C / is zero, that is, ˆunori

�
.D/D f016; 016g, where 016 is the

multiset composed of 16 zeros.

First, consider the multiset ˆunori
�

.D/. (We refer to [20] for computation of quandle
cocycle invariants of twist-spun S2 –knots.) Set the orientation of D as shown in
Figure 8 and we denote by ED the oriented diagram. Note that Figure 8 shows the first
1–twist of ED . We also note that each of the deformations (M1) and (M2) produces three
triple points. For any elements a; b 2 S4 , Figure 8 represents an S4 –coloring (of the
first 1–twist) of ED , that is, the assignment of elements of S4 satisfies the S4 –coloring
condition. Note that when we replace each element, say x 2 S4 , appearing in Figure 8
by x � a (resp. .x � a/� a), the motion of the replaced S4 –colored tangle diagrams
describes the S4 –coloring of the second (resp. third) 1–twist of ED . We also note that
the arc colored by a � b just before the deformation (M2) in Figure 8 receives the
color b just after the same deformation, because .a�b/�aD b holds for any a; b 2S4 .
Since ..x�a/�a/�aD b holds for any x; a 2S4 , the last S4 –colored tangle diagram
of the third 1–twist of ED coincides with the first one in Figure 8.
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Figure 8: S4 –coloring of the 1–twist of �3.31/

For the first 1–twist, the sum of the weights of the six triple points appearing in this
step is

(1) ��.b; b; a� b/� �.b; a; b/� �.b; a� b; a/

C �.b; a� b; a/C �.a; b; a/C �.a� b; a; a/;

where the first row is obtained from the deformation (M1) in Figure 8 and the second
row from (M2). It is easy to see that the third term and the fourth term cancel and the
first term and the last term are zero. Since

��.b; a; b/C �.a; b; a/D�.b� a/.a� b/C .a� b/.b� a/D 0;

the formula (1) is equal to 0. Similarly, for the second 1–twist, we also have

��.b � a; b � a; b/� �.b � a; a; b � a/� �.b � a; b; a/

C �.b � a; b; a/C �.a; b � a; a/C �.b; a; a/D 0;

and for the third 1–twist, we also have

��.a� b; a� b; b � a/� �.a� b; a; a� b/� �.a� b; b � a; a/

C �.a� b; b � a; a/C �.a; a� b; a/C �.b � a; a; a/D 0:

Therefore the sum of the weight of all eighteen triple points of ED is zero. This implies
that ˆ� . ED/D f016g. In the case where we set the reversed orientation for D , we can
similarly see that the multiset is f016g. Hence, we have ˆunori

�
.D/D f016; 016g.
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Figure 9: S4 –coloring of �1=2.41/

Let us consider the multiset ˆunori
�

.D0/. (We refer to [8] for computation of quandle
cocycle invariants of roll-spun S2 –knots.) Set the orientation and the S4 –coloring
of D0 as shown in Figure 9. We denote by ED0 the oriented diagram of D0 . Note that
each of the deformations (M1)–(M4) produces three triple points. By direct calculation,
we can see that the sum of the weights is

�.3; 0; 1/C �.1; 2; 1/� �.1; 3; 1/

C�.0; 1; 2/� �.2; 1; 3/� �.2; 3; 1/

C�.3; 1; 2/C �.1; 3; 2/� �.3; 0; 2/

C�.1; 0; 1/� �.3; 1; 3/� �.1; 0; 2/D 12;

where the first, second, third and last rows of the left-hand side are obtained from the
deformations (M1), (M2), (M3) and (M4) in Figure 9, respectively. This implies that
ˆ� . ED

0/ has a nonzero element, and we have ˆunori
�

.D0/¤ˆunori
�

.D/D f016; 016g.

By taking the connected sum of D and D0 above with the trivial orientable surface-knot
diagram, we can show the following in a similar way.

Corollary 3.4 For any positive integer g , there is an orientable surface-knot of genus g

with a pair of diagrams that is fT2g–dependent. In other words, any sequence of
Roseman moves between them must involve at least one tetrahedral move.
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