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Combinatorial proofs in bordered Heegaard Floer homology

BOHUA ZHAN

Using bordered Floer theory, we give a combinatorial construction and proof of
invariance for the hat version of Heegaard Floer homology. As part of the proof, we
also establish combinatorially the invariance of the linear-categorical representation
of the strongly based mapping class groupoid given by the same theory.

57R58; 57R56

1 Introduction

Heegaard Floer homology, introduced by Ozsváth and Szabó [14; 15], gives several
kinds of invariants for closed 3–manifolds. The invariants are defined using holo-
morphic curves, so in general they are not directly computable from their definitions.
However, for the hat version of the invariant, denoted cHF, there are ways to give
combinatorial definitions. There are two steps in this process. First, we want to give
to a particular kind of description of a 3–manifold (such as a Heegaard splitting) a
description of cHF associated to that 3–manifold. This means that, at least in principle,
the invariant can be computed algorithmically for any 3–manifold. Second, we want to
give combinatorial proofs for the main properties of cHF, beginning with the statement
that it depends only on the diffeomorphism class of the 3–manifold, rather than on a
particular description of it.

Bordered Floer theory gives a way to extend the hat version of Heegaard Floer homology
to 3–manifolds with one or two boundary components. The theory is also defined
using holomorphic curves. However, some of the invariants associated to certain simple
types of 3–manifolds with boundary have been computed. By breaking an arbitrary
closed 3–manifold into simpler pieces, the theory gives a combinatorial description
of cHF (see Lipshitz, Ozsváth and Thurston [11]) achieving the first step in the process
described above.

In this paper, we give the second step of the process; namely, we prove combinatorially
that the construction of cHF given by bordered Floer theory in fact produces an invariant
of the 3–manifold. One main result we use is an alternative description of bCFAA.IZ/
given by Zhan [21]. This allows us to use a combinatorial construction that is easier to
reason about.
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An intermediate statement in the proof, which may be of independent interest, is that
bordered Floer theory gives a linear-categorical representation of the strongly based
mapping class groupoid, which contains the strongly based mapping class group. By a
linear-categorical representation of a group or groupoid, we mean assigning homotopy
equivalence classes of bimodules to each element of the group (resp. groupoid), in
such a way that composition in the group (resp. groupoid) corresponds to taking an
appropriate tensor product of bimodules.

Sarkar and Wang [16] gave the first combinatorial description of cHF, giving a sys-
tematic way to convert any Heegaard diagram into a nice diagram, in which counting
holomorphic curves is combinatorial. Ozsváth, Stipsicz, and Szabó [13] gave the
first combinatorial proof of invariance for cHF, using another way to convert general
Heegaard diagrams into convenient diagrams — a more restricted kind of nice diagram —
and by studying Heegaard moves on convenient diagrams.

Linear-categorical representations of important groups in topology have also been
investigated before. Bordered Floer theory actually gives a family of representations of
the strongly based mapping class groupoid. For a given genus g , the representations
are indexed by an integer w , called the weight, between �g and g . The representation
that is relevant for 3–manifold invariants, and that we will focus on in this paper,
corresponds to w D 0. The cases w D˙g are trivial. The cases w D˙.g� 1/ are
described combinatorially by Lipshitz, Ozsváth and Thurston [9], and a combinatorial
proof of invariance is given by Siegel [19]. Linear-categorical representations of other
groups occurring in topology have also been studied; see the introduction by Khovanov
and Thomas [7] for a review and a list of references. One major example is linear-
categorical representations of the braid group, studied by, for example, Khovanov and
Seidel [6], Seidel and Thomas [18], Cautis and Kamnitzer [3], Seidel and Smith [17],
and Khovanov [5].

In Section 2, we review the structure of bordered Floer theory, and describe its com-
binatorial construction as considered here. In Section 3, we prove some preliminary
results on type DA bimodules and our construction of the type DA invariants. Using
these results, we prove in Section 4 the intermediate statement on the linear-categorical
representation of the strongly based mapping class groupoid. Finally, we complete the
proof of invariance for closed 3–manifolds in Section 5.
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want to thank the Simons Center for Geometry and Physics for their hospitality while
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Figure 1: Linear pointed matched circle with k D 2

2 Overview of the construction

In the first part of this section, we briefly review the structure of bordered Floer theory,
as is defined analytically in [10; 12]. In the second part, we describe some of the
existing combinatorial constructions given in [11], and then the construction that will
be studied in this paper.

2A Pointed matched circles and strand algebras

In bordered Floer theory, the connected, compact, orientable surfaces that serve as
boundary components of 3–manifolds are specified using pointed matched circles. A
pointed matched circle is a quadruple Z D .Z; z; a;M /, consisting of a circle Z , a
point z 2 Z , a set of 4k points a � Z n fzg, and a two-to-one map M from a to
f1; 2; : : : ; 2kg, pairing the points in a , that satisfies the following condition: if we
thicken the circle Z to an annulus Z � Œ0; 1� and attach a 1–handle to the outside
boundary Z�f1g of the annulus joining each pair of points in a , then the new outside
boundary must be a single circle. Given this requirement, we may glue a disk onto
that boundary, obtaining a genus k surface Fı.Z/ with one boundary component
Z � f0g and a basepoint z on the boundary. We say that the pointed matched circle Z
parametrizes Fı.Z/. Let �Z be the pointed matched circle obtained by reversing
orientation on Z . Then Fı.�Z/ is the orientation reversal of Fı.Z/.

Let F.Z/ be the result of filling the boundary of Fı.Z/ with a disk. Then F.Z/
is a closed surface of genus k , marked with a homotopically trivial circle Z and a
basepoint z 2Z . We will also say F.Z/ is parametrized by Z .

An example of a pointed matched circle for k D 2 is shown in Figure 1.

To each pointed matched circle Z , bordered Floer theory associates a combinatorially
defined DG algebra A.Z/. We refer to the original papers for the description of A.Z/.
Here we just fix some notations and terminologies used in this paper. For any generator
a 2 A.Z/, the multiplicity of a, denoted mult.a/, is an element in H1.Z n fzg; a/

recording how many times the strands in a cover each nonbasepoint interval on Z .
The length of a is the sum of coefficients in mult.a/. Equivalently, it is the sum of
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lengths of the strands in a. It is clear from the definitions that the algebra A.�Z/ is
the opposite algebra of A.Z/. In particular, there is a canonical identification of their
generators. For any a 2A.Z/, let a denote the corresponding element in A.�Z/. If
i 2 A.Z/ is an idempotent, let o.i/ 2 A.Z/ denote the idempotent complementary
to i . A chord is a single strand on Z . For any given chord � , we define a.�/ 2A.Z/
to be the sum of all generators that result from adding horizontal strands to � .

Given a 3–manifold Y with one boundary component @Y , a parametrization of @Y by
a pointed matched circle Z D .Z; z; a;M / is a diffeomorphism �W F.Z/! @Y . This
marks @Y with a circle and a basepoint on the circle, which by abuse of notation we will
also call Z and z . Bordered Floer theory associates two invariants to a 3–manifold Y

with boundary @Y parametrized by Z :
� A type A invariant bCFA.Y /A.Z/ is a right A1–module over A.Z/.
� A type D invariant A.�Z/ bCFD.Y / is a left type D module over A.�Z/.

They are invariants of Y up to homotopy equivalence of A1–modules or type D

modules. We use the following standard convention in expressing types of actions on
the module: each algebra is written on the side it acts on, subscripts indicate A1–
actions, and superscripts indicate type D actions. These may be omitted when there is
no danger of confusion.

These invariants satisfy the following pairing theorem: let Y1 and Y2 be two 3–
manifolds with boundaries parametrized by Z and �Z , respectively. Let Y DY1[@Y2

be the closed 3–manifold obtained by gluing them along their boundaries (with the
gluing map induced by the parametrizations). Then the chain complex cCF.Y /, whose
homology is cHF.Y /, is given by

(1) cCF.Y /' bCFA.Y1/A.Z/� A.Z/ bCFD.Y2/

[10, Theorem 1.3].

The theory extends to 3–manifolds with two boundary components as follows: given Y

with two boundary components @LY and @RY , fix parametrizations �1W F.Z1/!@LY

and �2W F.Z2/! @RY . This induces circles Z1 and Z2 on @LY and @RY , and
basepoints z1 2 Z1; z2 2 Z2 . We further fix a map  from the framed cylinder
.S1; z/� Œ0; 1� into Y , so that .S1; z/� f0g and .S1; z/� f1g map to .Z1; z1/ and
.Z2; z2/, respectively. We call the totality of the data .Y; @LY; @RY; �1; �2;  / a
strongly bordered 3–manifold with two boundary components. From now on whenever
we mention a 3–manifold Y with two boundary components, we mean a strongly
bordered 3–manifold, omitting the other data when they are clear from context. To a
3–manifold Y with two boundary components, bordered Floer theory associates the
following invariants:
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� A type AA invariant bCFAA.Y /A.Z1/;A.Z2/ is a right A1–bimodule over A.Z1/

and A.Z2/.

� A type DD invariant A.�Z1/;A.�Z2/ bCFDD.Y / is a left type D bimodule over
A.�Z1/ and A.�Z2/.

� A type DA invariant A.�Z1/ bCFDA.Y /A.Z2/ is a left type D , right A1–bimodule
over A.�Z1/ and A.Z2/.

� A type AD invariant A.�Z2/ bCFAD.Y /A.Z1/ is a right A1 , left type D bimodule
over A.Z1/ and A.�Z2/.

These bimodules satisfy similar pairing theorems, as described in [12, Section 7.1].
The general rule is that box tensor products can be taken between a right A1–action
and a left type D action over the same algebra A.Z/. Taking this box tensor product
corresponds to gluing two boundaries parametrized by Z and �Z .

Following the convention in [21], we will write actions on the various kinds of mod-
ules and bimodules as sums of arrows. For example, if the coefficient of y is 1 in
m1;i;j .xI a1; : : : ; ai I b1; : : : ; bj /, where each ak ; 1 � k � i and bl ; 1 � l � j is a
generator of the appropriate algebra, we say there is an arrow

m1;i;j W .xI a1; : : : ; ai I b1; : : : ; bj /! y :

Likewise, an arrow in the type DA action is of the form

ı1
1Ci W .x; a1; : : : ; ai/! b˝y ;

and an arrow in the type DD action is of the form

ı1
W x! a˝ b˝y :

We will also need the concept of duality on bimodules, called opposite structures in [12,
Definition 2.2.31, 2.2.53]. For a left type DD bimodule A;BM , its dual M A;B is the
type DD bimodule over the same generators, where each arrow ı1

M
W x! a1˝a2˝y

in the type DD action of A;BM corresponds to an arrow ı1

M
W y! a1˝a2˝x in the

type DD action of M A;B . In this way the left actions by A and B (equivalently left
actions by Aopp and Bopp ) become right actions. Thus, we will also write the dual as
Aopp;Bopp

M . Similarly, we can define duals on type DA and type AA bimodules. The
dual commutes with box tensor product, that is,

MA � AN DN A � AM DMAopp � Aopp
N ;

where M and N may have additional actions.
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2B Gradings on bordered invariants

In this section we give a brief overview of gradings on the bordered invariants. For
details, see [10, Chapter 10] and [12, Section 6.5].

We begin with gradings on the DG algebra A.Z/. There are two kinds of gradings: one
by a larger group G0.Z/, and a refined grading by a smaller group G.Z/. Both G.Z/
and G0.Z/ are noncommutative, equipped with a distinguished central element �.

An element of G0.Z/ is specified by a pair .k; ˛/, where k 2 1
2
Z and ˛ 2H1.Z

0; a/.
With points of a labeled 1; : : : ; 4k , we can write ˛ as a sequence of integers ˛i ; 1� i �

4k � 1, where ˛i is the multiplicity of ˛ at the interval Œi; i C 1�. Then multiplication
on G0.Z/ is defined by

.k; ˛/ � .l; ˇ/D .kC l CL.˛; ˇ/; ˛Cˇ/;

where

L.˛; ˇ/D

4k�2X
iD1

1
2
.˛iˇiC1�˛iC1ˇi/:

Actually, the grading lies in an index 2 subgroup of G0.Z/, but we will not make use
of this here.

For later use, we define an antihomomorphism

RW G0.Z/!G0.�Z/
given by

R.k; ˛1; : : : ; ˛4k�1/D .k;�˛4k�1; : : : ;�˛1/:

To define the grading of a generator of A.Z/, we first define a map

mW H1.Z
0; a/�H0.a/!

1
2
Z:

For an interval ˛ (with orientation from Z ) and a point p , let m.˛;p/ equal 1 if p is
in the interior of ˛ , 1

2
if p is on the boundary, and 0 otherwise. This is then extended

bilinearly to all of H1.Z
0; a/�H0.a/ to define m.

Given a generator a2A.Z/, let � be the nonhorizontal strands of a. Let inv.�/ be the
number of inversions in �, S 2H0.a/ be the starting points of �, and Œa� 2H1.Z

0; a/

be the multiplicity of a. Then

gr0.a/D .inv.�/�m.Œa�;S/; Œa�/:

Next, we consider relative gradings on the type D invariant. Fix a bordered Heegaard
diagram H . Let x;y be generators and B 2 �2.x;y/, define g0.B/ 2G0.Z/ as

g0.B/D .�e.B/� nx.B/� ny.B/; @
@.B//:
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Here e.B/ is the Euler measure of B , and nx.B/; ny.B/ are multiplicities of B

at x;y (each corner around x or y counts as multiplicity 1
4

), and @@.B/ is the
boundary of B on H1.Z

0; a/.

There is a grading set for each spinc class on H (in most bordered cases we consider here,
there is just one spinc class). The grading set S 0

D
.H; s/ for the Heegaard diagram H

and spinc class s is defined as follows: choose a base generator x0 with spinc class s.
Let P 0.x0/ be the set of g0.P / for all P 2 �2.x0;x0/ (the domains in �2.x0;x0/

are called periodic domains). Then

S 0D.H; s/DG0.�Z/=R.P 0.x0//:

This grading set has an obvious left action by G0.Z/. For another generator x in the
same spinc class, choose a domain B0 2 �2.x0;x/, and set

gr0.x/DR.g0.B0// �R.P
0.x0//:

The type D action respects this relative grading in the sense that, for each arrow
ı1W x! a˝y in the action, we have

��1 gr0.x/D gr0.a/ gr0.y/:

Relative gradings on type A invariants are similar. The grading set is

S 0A.H; s/D P 0.x0/nG
0.Z/:

This carries a natural right action by G0.Z/. For any generator x in the spinc class s,
choose a domain B0 2 �2.x0;x/ and set

gr0.x/D P 0.x0/ �g
0.B0/:

The A1–action respects the relative grading in the sense that, for each arrow

m1;k W .xI a1; : : : ; ak/! y ;

we have
�k�1 gr0.x/ gr0.a1/ � � � gr0.ak/D gr0.y/:

Gradings on bimodules are defined similarly. In particular, a domain in a Heegaard
diagram with two boundary components parametrized by Z1 and Z2 gives rise to an
element of

G0.Z1/��G0.Z2/DG0.Z1/�G0.Z2/=.�1 D �2/:

The grading set is a certain coset of G0.Z1/��G0.Z2/.

Now we briefly discuss refined gradings, which contain essentially the same information,
but are cleaner to work with theoretically.
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The group G.Z/ can be considered as a subgroup of G0.Z/, generated by � and
elements of the form .0; Œp; q�/, where p; q is a pair of matched points, and Œp; q�
denotes the interval in H1.Z

0; a/ between p and q . An element .k; ˛/ of G0.Z/ is
in G.Z/ if and only if M�.@˛/D 0, where @W H1.Z

0; a/!H0.a/ is the boundary
operator and M�W H0.a/! Z2k is a map sending each matched pair of points to the
same basis element of Z2k .

To construct the refined grading on A.Z/, we first choose a base idempotent s0 in
A.Z/. Then for every idempotent s , choose a grading element  .s/D .k; ˛/ 2G0.Z/
such that M�.@˛/D s� s0 . For an algebra element a with left idempotent s and right
idempotent t , we set

gr.a/D  .s/ gr0.a/ .t/�1:

It is easy to check that this element lies in G.Z/ and that the two conditions on the
grading are satisfied.

Similarly, we can refine the grading on the bordered invariants to use G.Z/ rather
than G0.Z/. We will omit the details here.

We will not perform any detailed grading computations in this paper, but will simply
note that all such computations can be done combinatorially from the Heegaard diagram.
For a module (or bimodule) M of any type, grading imposes a constraint on what kind
of arrows can appear in the A1 or type D action on M . One such constraint is this:
if a domain in a Heegaard diagram with two boundary components touches the two
boundaries at intervals i and i 0 , respectively, then for each arrow in the algebra action
of a bimodule corresponding to that Heegaard diagram, its multiplicities at i and at i 0

must be the same. Such constraints are crucial in establishing uniqueness properties of
bimodule invariants, to be discussed in the following sections.

2C The strongly based mapping class groupoid

An important class of 3–manifolds with two boundary components is the mapping
cylinders of surface diffeomorphisms. Gluing with these 3–manifolds can be considered
as changing the parametrization on the boundary of a bordered 3–manifold.

The strongly based mapping class groupoid of genus g is a category whose objects are
pointed matched circles with 4g points. Each object Z corresponds to a surface Fı.Z/
of genus g , with standard parametrization by Z . The morphisms from Z1 to Z2 in
the category are isotopy classes of diffeomorphisms �W Fı.Z1/! Fı.Z2/, sending
the basepoint z1 2 Fı.Z1/ to the basepoint z2 2 Fı.Z2/. Identity and composi-
tion in the category correspond to the identity diffeomorphism and composition of
diffeomorphisms, respectively.
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If we fix a pointed matched circle Z and only consider morphisms from Z to itself,
we obtain the strongly based mapping class group of Fg;1 (where Fg;1 denotes a
genus g surface with one circle boundary). This is simply the group of isotopy classes
of boundary-preserving self-diffeomorphisms of Fg;1 .

Given a diffeomorphism �W Fı.Z1/!Fı.Z2/, we can construct its mapping cylinder
Y .�/D F.Z2/� Œ0; 1� as a strongly bordered 3–manifold with two boundary compo-
nents, parametrized by �Z1 and Z2 . The left boundary @LY .�/ D F.Z2/� f0g is
parametrized by the induced map ��W �F.Z1/!�F.Z2/ (reverse orientation and
extend over the disk filling the boundary), while the right boundary is parametrized
by the identity map on F.Z2/. The map  W .S1; z/ � Œ0; 1�! Y .�/ is simply the
inclusion .Z; z/� Œ0; 1�! F.Z2/� Œ0; 1�.

This establishes a one-to-one correspondence between strongly bordered 3–manifolds
that are topologically Fg � Œ0; 1�, and morphisms in the strongly based mapping
class groupoid with genus g . For a morphism �W Fı.Z1/ ! Fı.Z2/, we write
bCFAA.�/A.�Z1/;A.Z2/ to denote the type AA invariant bCFAA.Y .�//A.�Z1/;A.Z2/ as-

sociated to the mapping cylinder of � . Likewise, we use notations A.Z1/ bCFDA.�/A.Z2/

and A.Z1/;A.�Z2/ bCFDD.�/ for the other invariants corresponding to Y .�/.

For future reference, we write down the pairing theorems involving DA invariants. For
morphisms �1W F

ı.Z1/! Fı.Z2/ and �2W F
ı.Z2/! Fı.Z3/, the DA invariant for

�2 ı�1W F
ı.Z1/! Fı.Z3/ is given by

(2) A.Z1/ bCFDA.�2 ı�1/A.Z3/ D
A.Z1/ bCFDA.�1/A.Z2/� A.Z2/ bCFDA.�2/A.Z3/:

For a morphism �W Fı.Z1/! Fı.Z2/ and a 3–manifold Y with boundary parametr-
ized by  W F.�Z2/! @Y , let Y 0 be the same manifold with boundary parametrized
by  ı��W F.�Z1/! @Y , then

(3) A.Z1/ bCFD.Y 0/D A.Z1/ bCFDA.�/A.Z2/� A.Z2/ bCFD.Y /:

2D Invariants of the identity diffeomorphism

Let IZ be the identity morphism Fı.Z/!Fı.Z/. All bimodule invariants associated
to IZ have special significance in the theory. First, it can be shown [12, Section 8.1]
that

bCFDA.IZ/' A.Z/IA.Z/;

where the latter denotes the identity type DA bimodule over A.Z/. This is the bimodule
generated over F2 by idempotents of A.Z/, and with the algebra action given by

ı1
2.i; a/D a˝ j ;
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for any generator a 2A.Z/, where i and j are the left and right idempotents of a.

The type DD invariant A.Z/;A.�Z/ bCFDD.IZ/ and AA invariant bCFAA.IZ/A.�Z/;A.Z/
relate the type A and type D invariants through taking the tensor product. For any
3–manifold Y with one boundary component parametrized by Z , the relations are

bCFA.Y /A.Z/ D bCFAA.IZ/A.�Z/;A.Z/� A.�Z/ bCFD.Y /;(4)

A.�Z/ bCFD.Y /D bCFA.Y /A.Z/� A.Z/;A.�Z/ bCFDD.IZ/:(5)

One implication is that bCFD.Y / and bCFA.Y / contain the same information about Y .
Likewise, there are relations among the bimodule invariants, showing that all bimodule
invariants also contain the same information. For any 3–manifold Y with two boundary
components parametrized by Z1 and Z2 , we have

A.�Z1/ bCFDA.Y /A.Z2/(6)

D bCFAA.IZ2
/A.�Z2/;A.Z2/�A.�Z2/

A.�Z1/;A.�Z2/ bCFDD.Y /;

bCFAA.Y /A.Z1/;A.Z2/(7)

D bCFAA.IZ1
/A.�Z1/;A.Z1/�A.�Z1/

A.�Z1/ bCFDA.Y /A.Z2/;

A.�Z1/ bCFDA.Y /A.Z2/(8)

D bCFAA.Y /A.Z1/;A.Z2/�A.Z1/
A.Z1/;A.�Z1/ bCFDD.IZ1

/;

A.�Z1/;A.�Z2/ bCFDD.Y /(9)

D
A.�Z1/ bCFDA.Y /A.Z2/�A.Z2/

A.Z2/;A.�Z2/ bCFDD.IZ2
/:

The above equations are special cases of the pairing theorems, where one of the bordered
3–manifolds is a cylinder with trivial parametrization. They indicate the importance
of finding combinatorial descriptions of bCFDD.IZ/ and bCFAA.IZ/, which we now
consider.

First, we describe the combinatorial model cDD.IZ/ of A.Z/;A.�Z/ bCFDD.IZ/, given
in [11, Theorem 1]. It is generated over F2 by the set of pairs of complementary
idempotents i ˝ i 0 , with i 2 A.Z/ and i 0 D o.i/ 2 A.�Z/. The type DD action is
given by

(10) ı1.i ˝ i 0 /D
X
�2C

ia.�/Da.�/j

i0a.�/Da.�/j 0

.a.�/˝ a.�//˝ .j ˝ j 0 /;

Algebraic & Geometric Topology, Volume 16 (2016)
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where C is the set of chords on Z whose two endpoints are not matched. Intuitively,
the arrows in the type DD action are exactly those whose two algebra outputs both
contain exactly one chord connecting two unpaired points, and covering corresponding
intervals in A.Z/ and A.�Z/.

Next, we consider the invariant bCFAA.IZ/A.�Z/;A.Z/ . A formula for it is given in
[12, Proposition 9.2] as follows (here we simplify A.Z/ to A and A.�Z/ to A0 ):

(11) bCFAA.IZ/A0;A DMorA
�
A0A0A0 �A0

A;A0 bCFDD.IZ/; AIA
�

D
� bCFDD.IZ/A

0;A �A0 A0A0A0

�
�A AAA:

This bimodule has a large number of generators, making it difficult to use for the
computations needed in this paper. The main result of [21] is to describe a bimodulecAA.IZ/ homotopy equivalent to this (and hence is also a combinatorial model of
bCFAA.IZ/), but with a minimal number of generators. The bimodule cAA.IZ/ is

generated over F2 by the set of pairs of complementary idempotents, but with much
more complex A1–bimodule actions. We will briefly review this construction in
Section 3C.

One of the pairing theorems imply the following relation among the combinatorial
models for IZ :

(12) A.Z/IA.Z/ ' cAA.IZ/A.�Z/;A.Z/ �A.�Z/
A.Z/;A.�Z/ cDD.IZ/:

The two sides are not equal but only homotopy equivalent. This homotopy equivalence
is proven combinatorially as Corollary 3.10 in Section 3D.

2E Invariants of arcslides

The strongly based mapping class groupoid is generated by a particularly simple class
of morphisms called arcslides. We will now review their definitions and the invariants
associated to them. The relations among arcslides will be described at the beginning of
Section 3.

Given a pointed matched circle Z1 , and two matched pairs of points B D .b1; b2/ and
C D .c1; c2/ in a�Z1 , such that b1 and c1 are adjacent in a , an arcslide of b1 over c1

moves b1 to be adjacent to c2 , on the side opposite to its original position with respect
to c1 . This results in a new pointed matched circle Z2 . Such a move corresponds to a
certain diffeomorphism Fı.Z1/! Fı.Z2/, which we will also call an arcslide. See
Figure 2 for two examples of arcslides. The first example is an overslide meaning b1

is outside the interval Œc1; c2�. The second example is an underslide meaning b1 is
inside that interval.
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Figure 2: Two examples of arcslides

y

y

Figure 3: Examples of Heegaard diagrams of arcslides

Given an arcslide � W Fı.Z1/! Fı.Z2/, the invariant bCFDD.�/ is a left type DD
bimodule over A.Z1/ and A.�Z2/. Constructing a combinatorial model of this
bimodule, denoted cDD.�/, is the main subject of [11]. This model is computed from
a standard Heegaard diagram for the mapping cylinder Y .�/. For the two arcslides in
Figure 2, these standard Heegaard diagrams are shown in Figure 3. The tiny circles
in the diagrams are 1–handle attachment points, paired according to their vertical
positions. The larger circles are ˇ circles, and all other arcs inside the boundary are
˛–arcs. Later on, we will draw more schematic versions of these diagrams, omitting
some of the ˇ circles and attaching points of 1–handles.
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Each generator of cDD.�/ corresponds to a g–tuple of intersection points between ˛
and ˇ curves, where each ˇ circle contains exactly one point, and each ˛–arc contains
at most one point. The (type D ) idempotent of the generator specifies which pairs
of ˛–arcs are not occupied by the generator. For the standard Heegaard diagram of
arcslides, a generator is uniquely specified by its idempotents on the two sides.

There is an obvious identification between pairs of points on the two sides, using which
we can talk about two idempotents on different sides being complementary, etc. There
are two types of generators in cDD.�/. A generator of type X has complementary
idempotents, and a generator of type Y has idempotents that are complementary except
for both containing the C pair and neither containing the B pair. The type X generators
are those that do not occupy the intersection point y in Figure 3, while the type Y

generators do.

The type DD action on the bimodule can be described as follows: given a pointed
matched circle Z , let C.Z/ denote the collection of sets of chords in Z . For some
� 2 C.Z/, let a.�/ 2 A.Z/ denote the sum of all generators of A.Z/ produced by
adding horizontal strands to � (this definition extends the case where � is a chord). For
any arcslide � W Fı.Z1/! Fı.Z2/, there is a collection of pairs C� � f.�i ; �i/ j �i 2

C.Z1/; �i 2 C.Z2/g such that

(14) ı1.i ˝ i 0 /D
X

.�k ;�k/2C�
ia.�k/Da.�k/j

i0a.�k/Da.�k/j
0

j˝j 0 is a generator

.a.�k/˝ a.�k//˝ .j ˝ j 0 /;

where generators are represented by their type D idempotents.

Intuitively, there is a term in the type DD action whenever the idempotent agrees, and
the moving strands part of the algebra coefficients match one of the fixed patterns.
Depending on whether the arcslide is an underslide or an overslide, there are six or
eight types of elements in C� . See [11, Figures 21 and 28] for diagrams of these
patterns. Note that not all pairs in Figure 28 are actually in C� : there is an additional
choice involved. In the following computations we will only use some of the simpler
pairs, involving algebra elements that have small total length. In particular we will not
need to consider any pair where a choice is necessary.

The following properties of cDD.�/ can be directly verified for the above description:

Relation with Heegaard diagram Every arrow in the type DD action comes from
a domain in the Heegaard diagram. For a Heegaard diagram H , write ˛ and ˇ to
denote the union of ˛ and ˇ curves, respectively. A domain in H is a nonnegative
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integral linear combination of connected components of H n f˛;ˇg. Each arrow
x! a1˝ a2˝y in the type DD action comes from a domain B , such that a1 and
a2 have multiplicities equal to the multiplicities of B at the corresponding boundaries.
Moreover, let @˛B be the part of the boundary of B on the ˛ curves, and let @.@˛B/
be the part of the boundary of @˛B in the interior of the diagram, as a signed sum of
intersection points, then @.@˛B/D x�y . Intuitively, the ˛–boundaries of B start at
points of x and end at points of y , and vice versa for the ˇ–boundary.

Grading There is a refined grading on the generators of cDD.�/ to a particular grading
set S� , which has left-right actions by G.Z1/ and G.Z2/. Both actions are free and
transitive, which means S� induces a group isomorphism G.Z1/!G.Z2/. This group
isomorphism is an invariant of � , up to composing by inner automorphisms of G.Z1/

and G.Z2/. In other words, � induces an element in the set of outer isomorphisms
Out.G.Z1/;G.Z2//. In fact, this outer isomorphism corresponds to the actions of �
on the homology of the surface; see [11, Section 6.2] for details.

Stabilization Given arcslide � W Fı.Z1/! Fı.Z2/, let VZ1 D Z1#Z1 and VZ2 D

Z2#Z1 , where Z1 is the genus 1 pointed matched circle, and # denotes connect sum
on pointed matched circles. Let V� W F. VZ1/! F. VZ2/ be the arcslide acting as identity
on the new handle, and as � elsewhere. This is called the stabilization of � . ThencDD.�/ and cDD. V�/ are related as follows: fix any idempotent io on Z1 (occupying
one of the two possible pairs), then there is an injection from generators of cDD.�/
into generators of cDD. V�/, sending i ˝ i 0 in cDD.�/ to .i#io/˝ .i

0#o.io// in cDD. V�/.
For any generator x in cDD.�/, let Vx be the corresponding generator in cDD. V�/. Then
for any two generators x , y in cDD.�/, there is a one-to-one correspondence between
arrows from x to y in the DD action of cDD.�/ and arrows from Vx to Vy in the
DD action of cDD. V�/ that do not cover any region around the adjoined Z1 , with
x! a˝b˝y corresponding to Vx! Va˝ Vb˝ Vy , where Va and Vb are obtained from a

and b by adjoining the appropriate idempotents.

Duality For any arcslide � W Fı.Z1/! Fı.Z2/, let � W Fı.�Z1/! Fı.�Z2/ be
the arcslide with reversed orientation. Now we have that A.Z1/;A.�Z2/ cDD.�/ and
A.�Z1/;A.Z2/ cDD.�/ are dual to each other (using definition of dual at the end of
Section 2A); that is,

(15) A.Z1/;A.�Z2/ cDD.�/' A.�Z1/;A.Z2/ cDD.�/:

Furthermore, the invariant A.Z2/;A.�Z1/ cDD.��1/ is homotopy equivalent to the right
side of (15), after switching the two algebra actions. This comes from the fact that the
mapping cylinder of ��1 is the mirror image of the mapping cylinder of � .
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2F Main constructions

We now summarize the combinatorial constructions that will be studied in this paper.
From here on, we will no longer use the analytical definitions of invariants, but define
everything combinatorially from scratch. We will use notations such as bCFAA to denote
(combinatorially defined) homotopy equivalence classes of bimodules, and notations
such as cDD , cDA to denote particular combinatorial models in the equivalence classes
of bimodules. For modules with one algebra action, we will use bCFA and bCFD
for both models and equivalence classes, as no confusion will arise there. Since all
combinatorial definitions below use either constructions derived from the analytical
definition, or the appropriate box tensor product, it is clear that the entire construction
agrees with the analytical definitions.

First, we will use models cDD.IZ/, A.Z/IA.Z/ , and cAA.IZ/ to define bCFDD.IZ/,
bCFDA.IZ/, and bCFAA.IZ/, respectively. Then Corollary 3.10 shows (12) holds

for our combinatorial construction. This means box tensoring with bCFDD.IZ/ and
bCFAA.IZ/ are inverse operations on equivalence classes of bimodules.

Next, we define cDA.�/ as the box tensor product

(16) A.Z1/cDA.�/A.Z2/ D
cAA.IZ2

/A.�Z2/;A.Z2/�A.�Z2/
A.Z1/;A.�Z2/ cDD.�/

Given this, we can define cDA.�/ for an arbitrary element � of the strongly based
mapping class groupoid, by factoring � into arcslides. The precise statement is the
following.

Construction 2.1 Given an element �W Fı.Z1/! Fı.ZnC1/ of the strongly based
mapping class groupoid, with factorization � D �n ı � � � ı �1 , where �i W F

ı.Zi/!

Fı.ZiC1/. Write � for the sequence �1; : : : ; �n . Define

A.Z1/cDA.�;�/A.ZnC1/ D
A.Z1/cDA.�1/A.Z2/� � � �� A.Zn/cDA.�n/A.ZnC1/:

Theorem 2.2 The homotopy type of cDA.�;�/ does not depend on the choice of
factorization � . Hence, cDA.�;�/ is an invariant of � up to homotopy equivalence.

This theorem is proven in Section 4. Given this, we can define bCFDA.�/ to be the
equivalence class of cDA.�;�/, for any choice of factorization � .

The other bimodule invariants bCFDD.�/, bCFAA.�/, and bCFAD.�/ for a general
morphism �W Fı.Z1/! Fı.Z2/ can be defined as follows:

A.Z1/;A.�Z2/ bCFDD.�/D A.Z1/ bCFDA.�/A.Z2/�A.Z2/
A.Z2/;A.�Z2/ bCFDD.IZ2

/;

bCFAA.�/A.�Z1/;A.Z2/ D
bCFAA.IZ1

/A.�Z1/;A.Z1/�A.Z1/
A.Z1/ bCFDA.�/A.Z2/;

A.�Z2/ bCFAD.�/A.�Z1/ D
bCFAA.IZ1

/A.�Z1/;A.Z1/�A.Z1/
A.Z1/;A.�Z2/ bCFDD.�/:
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z 1 2 3 4 5 6 7 8 4g

� � �

� � �

Figure 4: Heegaard diagram for the 0–framed handlebody. The numbers at
bottom label points in Zg . Points in �Zg are labeled in the reverse order.

Since cDD.IZ/ is the quasi-inverse of cAA.IZ/ (that is, inverse up to homotopy
equivalence), we know bCFDD.�/ for an arcslide � can also be represented by cDD.�/.
Also, expanding out the definitions, we see bCFAD.�/' bCFAA.�/� bCFDD.IZ2

/.

This concludes our construction of bimodule invariants (we will not need bimodule
invariants other than those for mapping classes of surface diffeomorphisms). To
construct invariants of closed 3–manifolds, we need one more building block: bCFD
of the 0–framed handlebody Hg . Here Hg is the 3–manifold with one parametrized
boundary given by the Heegaard diagram in Figure 4.

In this diagram, the small circles are 1–handle attachment points, paired consecutively.
The larger circles are ˇ circles, and all other arcs inside the boundary are ˛ arcs. From
the way the ˛ arcs meet the boundary, we see that the boundary of Hg is parametrized
by the split pointed matched circle of genus g , denoted Zg . This is the pointed matched
circle with matching

.1; 3/; .2; 4/; .5; 7/; .6; 8/; : : : ; .4g� 3; 4g� 1/; .4g� 2; 4g/:

While it is true that �Zg DZg , we will usually distinguish them in order to emphasize
orientation changes.

The orientation reversal �Hg is called the 1–framed handlebody. Its boundary
is parametrized by �Zg . The Heegaard diagram for �Hg is the reflection of that
for Hg .

The invariant bCFD.Hg/ has left type D action by A.�Zg/. It can be defined using the
following model: there is a single generator x , corresponding to the set of intersection
points indicated in Figure 4. The idempotent of x contains pairs .2; 4/; .6; 8/; : : :
in �Zg (pairs corresponding to ˛–arcs not occupied by x ; note the labeling of points
in �Zg is reversed). The type D action is

ı1.x/D
X
�2D

a.�/ �x;

where D is the set of chords f2! 4; 6! 8; : : :g. The invariant bCFD.�Hg/ can be
defined to be the dual of bCFD.Hg/.
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We now give the combinatorial construction of cHF.Y / for a closed 3–manifold Y ,
following the spirit of the construction in [11].

Construction 2.3 Let Y be a closed 3–manifold. Choose a Heegaard splitting Y1[uY2

of Y , where uW @Y1!�@Y2 is the gluing map. Fix circle and basepoint .Z; z/ on the
gluing boundary Y1\Y2 , and diffeomorphisms f1W H

g! Y1 and f2W �Hg! Y2 ,
preserving .Z; z/, from the standard handlebodies to Y1 and Y2 . Let f1�W F

ı.Zg/!

@Y1 and f2�W F
ı.�Zg/! @Y2 be the restrictions of f1 and f2 to the boundary. Let

 D f �1
2�
ıuıf1� be the induced gluing map. This is an element of the strongly based

mapping class group on Fı.Zg/. DefinecHF.Y;Y1;Y2;u; f1; f2/

D
� bCFAA. /A.�Zg/;A.Zg/� A.�Zg/ bCFD.Hg/

�
� A.Zg/ bCFD.�Hg/:

Theorem 2.4 The homotopy type of cHF.Y;Y1;Y2;u; f1; f2/ does not depend on the
choice of Heegaard splitting Y D Y1[u Y2 or the parametrizations f1; f2 . Therefore
it gives an invariant of Y up to homotopy equivalence.

We will prove Theorem 2.4 combinatorially in Section 5. Given this theorem, we
can write cHF.Y / for cHF.Y;Y1;Y2;u; f1; f2/, for some choice of Heegaard splitting
and parametrizations. From the construction, it is clear that this is equivalent to the
definition of cHF.Y / using holomorphic curves.

3 Computations on DA invariants

In this section, we prove some preliminary results on type DA bimodules, and perform
some computations on the type DA invariants of arcslides, in preparation for the proof
of Theorem 2.2 in Section 4.

First, we give an outline for the proof of Theorem 2.2. We want to show that the
combinatorial construction of cDA.�;�/ does not depend on the choice of factorization
of � into arcslides � . For this purpose, it is necessary to understand relations among
arcslides. This is studied in detail in [1; 2]. The notions of pointed matched circles
and arcslides correspond to linear chord diagrams and chord slides in these papers. We
now give a summary of the results.

Locally, an arcslide can be viewed as one end of the B pair sliding along the C pair:

)
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In this diagram, the three short segments denote portions of the straight line in the
pointed matched circle. The upper, stationary arc denotes the C pair; and the lower,
moving arc denotes the B pair.

There are five types of relations on arcslides, and together they generate all relations.
The local diagrams for the five types of relations are as follows (see [2, Theorem 6.2,
Figure 6.1]):

� Triangle

) ) )

� Involution
) )

� Commutativity

) )

) )

� Left pentagon

) ) ) ) )

� Right pentagon

) ) ) ) )

Each relation gives one way to factor the identity morphism IZ starting and ending at
some pointed matched circle Z . For proving Theorem 2.2, it suffices to check that for
each such factorization

IZ D �n ı � � � ı �1;

the corresponding homotopy equivalence

(17) A.Z/IA.Z/ ' cDA.�1/� � � �� cDA.�n/

holds. Note that in general, the starting and ending pointed matched circles of each �i

may be different from Z . This is the main reason why we need to consider strongly
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based mapping class groupoids, even if we are only interested in statements about
strongly based mapping class groups.

The overall strategy for verifying (17) is as follows: from the description of cDA.�i/,
we can readily enumerate the set of generators on the right side of the equation. There
are, however, more generators on the right side than on the left side. The cancellation
lemma for type DA bimodules describes conditions under which we can prove that a
bimodule is homotopy equivalent to one with two fewer generators. Using it, we can
remove generators from the right side in pairs, so that the set of remaining generators
matches that on the left side. The cancellation lemma is stated and proven in Section 3A.

It turns out that a type DA bimodule with the same set of generators as A.Z/IA.Z/ , and
with a few more properties in common with A.Z/IA.Z/ , must be homotopy equivalent
to A.Z/IA.Z/ . We prove two lemmas of this kind, which we call rigidity lemmas, in
Section 3B. The first lemma will be used to prove the involution relation, and the second
lemma will be used for all other relations. The idea here is that once the involution
relation is proven, we can show that cDA.�/ is quasi-invertible for any arcslide � ,
which implies that any box tensor product of such bimodules is also quasi-invertible
(recall that a type DA bimodule AMB is quasi-invertible if there exists BNA such that
AMB � BNA '

AIA ). This means checking the quasi-invertibility condition in the
second lemma becomes trivial, and we can avoid checking the more involved condition
in the first lemma that it replaces. We note here that the rigidity lemmas depend on
specific properties of A.Z/, and is not applicable to DG algebras in general.

To apply the cancellation lemma, and in the case of the involution relation, the rigidity
lemma, we need to compute certain arrows in the type DA action of the bimodule on the
right side. To prepare for this, we review the construction of cAA.IZ/ in Section 3C,
and compute in Section 3D some arrows in the type DA action of cDA.�/ for arcslides �
(the components in the tensor product).

3A Cancellation lemmas

In this section we state cancellation lemmas for type D modules and type DA bimodules
over DG algebras. Both are generalizations of the cancellation lemma in the case of
chain complexes. These results are well known; see, for example, [8, Section 2.6].

Let A be a DG algebra over a ground ring k, where k is a direct sum of copies of F2

(in our application, ADA.Z/ and k is generated by the indecomposable idempotents).
Let M be a left type D module over A with a fixed set of generators G . We can
describe the action ı1 on M in terms of coefficients as follows: for any x 2 G , expand
ı1.x/ as

ı1.x/D
X
y2G

cxy ˝y

Algebraic & Geometric Topology, Volume 16 (2016)



2590 Bohua Zhan

x a

b y

Figure 5: Standard example of a zigzag in M . This becomes x !

cxbc�1
ab

cay ˝y in M 0 .

for some choice of cxy .

Here the tensor product is implicitly taken over k, and as a result there is some flexibility
in the choice of cxy . We generally choose cxy to consist of as few generators of A as
possible, except when choosing cxy to be invertible whenever possible.

Now suppose that for some a; b 2 G , the coefficient cab is invertible in A, and
d.cab/ D 0. Then there is a new type D module M 0 , generated by G0 D G n fa; bg
and with type D action

(18) ı10

.x/D
X
y2G0

.cxy C cxbc�1
ab cay/˝y

for any x2G0 . The first part of each term in the sum is simply the original ı1 (excluding
terms involving a and b ). The second part is as follows: for each zigzag in M , as
shown in Figure 5, the term cxbc�1

ab
cay ˝y is added to ı10

x . The coefficient can be
read out by following the arrows from x to y , treating a reversed arrow as taking
inverse.

Theorem 3.1 (cancellation lemma for type D modules) With the above definitions,
the action ı10

on M 0 satisfies the type D structure equation, and the resulting type D

module M 0 is homotopy equivalent to M .

Proof We prove this by giving explicit type D morphisms and homotopies, in terms
of coefficients as we did for the type D action. The necessary data are morphisms
f W M !M 0 and gW M 0!M , and homotopy hW M !M , satisfying the identities
f ıgD IM 0 and g ıf D IM Chı ı1C ı1 ıh. The morphisms f and g are given by

f .a/D 0; f .b/D
X
y2G0

c�1
ab cay ˝y; and f .x/D 1˝x for x 2 G0I(19)

g.x/D 1˝xC cxbc�1
ab ˝ a:(20)

Part of f can be visualized using the zigzag by following arrows from b to y . Likewise,
part of g can be visualized by following arrows from x to a. The homotopy hW M!M

is given by h.b/D c�1
ab
˝ a and h.x/D 0 for any x ¤ b .
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It remains to verify that ı10

satisfies the type D structure equations, and the maps f;g ,
and h satisfy the required identities. This can be done by converting the equations into
their coefficient form. For example, the type D structure equation

.�2˝ IM / ı .IA˝ ı
1/ ı ı1

C .�1˝ IM / ı ı1
D 0;

when written in terms of coefficients, becomes

(21) d.cxy/C
X
z2G

cxzczy D 0

for any x;y 2 G .

The structure equation for a type D morphism �W M !N is

.�2˝ IN / ı .IA˝ ı
1
N / ı�

1
C .�2˝ IN / ı .IA˝�

1/ ı ı1
M C .�1˝ IN / ı�

1
D 0:

For any x 2 G.M / and y 2 G.N /, let �xy be the coefficient of y in �1.x/. Then,
applying the above equation to an arbitrary generator x of M , we see that the structure
equation is equivalent to

(22) d.�xy/C
X

z02G.N /

�xz0cz0y;N C

X
z2G.M /

cxz;M�zy D 0

for any y 2 G.N /.

The composition of two morphisms �W M !N and  W N ! P is given by

. ı�/1 D .�2˝ IP / ı .IA˝ 
1/ ı�1:

In terms of coefficients, this is

(23) . ı�/xy D

X
z2G.N /

�xz zy ;

for any x 2 G.M / and y 2 G.P /.

It is then routine to verify these equations, using the assumption that cab is invertible
and d.cab/D 0.

The cancellation lemma for type DA bimodules follows from that for type D modules,
by viewing type DA bimodules over A0 and A as type D modules over bCob.A/˝A0 ;
see [12, Remark 2.2.35].

Definition 3.2 Given a strand algebra A, let AC be the DG subalgebra of A gen-
erated by the nonidempotent generators. The cobar resolution Cob.A/ is defined as
T �.ACŒ1�

�/, the tensor algebra of the dual of AC . This can be given the structure of
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a DG algebra, whose product is that of tensor algebra, and whose differential consists
of the following arrows:

� a�
1
˝ � � � ˝ b� ˝ � � � ˝ a�

k
! a�

1
˝ � � � ˝ a�i ˝ � � � ˝ a�

k
for each i and term b

in dai ,

� a�
1
˝ � � � ˝ a�i ˝ � � � ˝ a�

k
! a�

1
˝ � � � ˝ b� ˝ b0� ˝ � � � ˝ a�

k
for each i and

generators b; b0 such that bb0 D ai .

Furthermore, we write bCob.A/ to denote the completion of Cob.A/ with respect to
the length filtration, that is, an element of bCob.A/ is a formal sum of elements in
.ACŒ1�

�/˝i for possibly infinitely many i .

The category of type DA bimodules over A0 on the D–side and A on the A–side is
equivalent to the category of type D modules over bCob.A/˝A0 , where the arrow

ı1
1Ci W .xI a1; : : : ; ai/! a0˝y

in the action of a type DA bimodule M corresponds to the arrow

ı1
W x! .a�1˝ � � �˝ a�i /˝ a0˝y

in the action of the type D module corresponding to M .

Using this correspondence, we can define coefficients on a type DA bimodule.

Definition 3.3 Given two generators x;y of M , define the coefficient Cxy to be
the formal sum, in bCob.A0/˝A, of .a�

1
˝ � � �˝ a�i /˝ a0 over all arrows of the form

ı1
1Ci
W .xI a1; : : : ; ai/! a0˝y . As in the type D case, we choose a0 to be invertible

whenever possible when writing the action in terms of arrows.

This allows us to state the cancellation lemma for type DA bimodules, following
immediately from the cancellation lemma in the type D case, and the equivalence of
categories.

Theorem 3.4 (cancellation lemma for type DA bimodules) Let A0

MA be a type DA
bimodule, with a fixed set G of generators. Suppose there are x;y 2 G such that
Cxy D 1˝ a with a 2 A invertible and da D 0. Then C�1

xy D 1˝ a�1 , and the
type DA bimodule M 0 generated by G0 D G n fx;yg and with coefficients C 0

ab
D

CabCCayC�1
xy Cxb is homotopy equivalent to M .
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We end with a remark on grading. If M is graded by a grading set SM , and if every
generator being cancelled is homogeneous in grading, then M 0 is also graded by SM ,
with the grading of each generator in M 0 equal to the grading of the corresponding
generator in M . The arrows that are added to M 0 satisfy the grading constraints,
because they come from traversing a zigzag as in Figure 5, where each of the three
arrows in the zigzag satisfy the grading constraints. The homogeneity condition of the
cancelled generators will be automatically satisfied in our case.

3B Characterization of the identity bimodule

In this section, we prove two lemmas describing conditions under which we can assert
a type DA bimodule A.Z/MA.Z/ is homotopy equivalent to the identity bimodule
A.Z/IA.Z/ . The main result we use is the characterization of cDD.IZ/ given in [11].
We will start by reviewing that result here.

Definition 3.5 [11, Definition 3.1] The diagonal subalgebra of A.Z/˝ A.�Z/
is the algebra generated by a˝ b , where a and b satisfy the following conditions:
mult.a/Dmult.b/, the left idempotents of a and b are complementary, and the right
idempotents of a and b are complementary.

Proposition 3.6 [11, Proposition 3.8, proof of Theorem 1] Let M be a left type DD
bimodule over A.Z/ and A.�Z/, where Z has genus greater than one. Suppose M

satisfies the following conditions, then M is isomorphic to cDD.IZ/:

(1) The generators of M are in one-to-one correspondence with the idempotents
of A.Z/, so that the generator corresponding to idempotent i has (type D )
idempotents i and o.i/.

(2) For any arrow x! a˝ b˝y in the differential of M , the element a˝ b lies
in the diagonal subalgebra.

(3) M is graded by a �–free grading set S , with a left-right G.Z/-G.Z/ action.

(4) The differential in M contains all arrows of the form

x! a.�/˝ a.�/˝y ;

where � is a length-1 chord.

In the case where Z has genus one, if M satisfies an additional stability condition, in
the sense of [11, Definition 1.8], then we can still conclude that M D cDD.IZ/.

The following result will be used in the proof of the second lemma.
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Proposition 3.7 Suppose a type DA bimodule A.Z/MA.Z/ satisfies the following two
conditions:

(1) M is homotopy equivalent to the identity bimodule A.Z/IA.Z/ .
(2) The generators of M are in one-to-one correspondence with the idempotents of

A.Z/, so that the generator corresponding to idempotent i has both left (type D)
and right (type A) idempotent equal to i .

Then the type DA action on M contains all arrows of the form

(24) ı1
2 W .x; a.�//! a.�/˝y ;

where � is a length-1 chord.

Proof Consider generators x;y corresponding to idempotents i; j 2A.Z/, and � a
length-1 chord, such that the idempotent matches in the arrow (24). We want to show
that (24) does exist as an arrow.

Let TD be a type D module over A.Z/ with two generators xD and yD , whose
idempotents are i and j , such that ı1.xD/ D a.�/˝ yD and ı1.yD/ D 0. Since
d.a.�//D 0, it is clear that ı1 satisfies the type D structure equation.

Likewise, let TA be the A1–module over A.Z/ with two generators xA and yA

whose idempotents are i and j , and m1;1W .xA; a.�//! yA is the only arrow in the
A1–action.

Consider the tensor product TA � N � TD , with N D M or N D I . This is a
chain complex with two generators xA˝x˝xD and yA˝y ˝yD , and there is an
arrow between these two if and only if the arrow (24) exists in N for the given x;y

and a.�/. In particular, TA � I � TD has zero homology. By assumption, M ' I ,
so TA � M � TD must also have zero homology. This shows the arrow (24) exists
in M .

Remark The argument in the above proof only works when � has length 1. If
otherwise, we may have d.a.�//¤ 0, and ı1 on TD no longer satisfies the type D

structure equation. Indeed, in the case where � has length 2, we may have:

d
� �

D D � :

Hence, if there are generators xD and yD in TD with arrow xD ! a.�/ ˝ yD ,
where the idempotents of xD and yD contain the middle point, then there must be an
additional generator zD with appropriate arrows from xD to zD and from zD to yD ,
so that the type D structure equation remains satisfied. This is why we may have, for
example, arrow (DA4) instead of (DA2) in A.Z/MA.Z/ , according the computations in
Section 3D1.
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We now state and prove the lemmas on the characterization of A.Z/IA.Z/ .

Lemma 3.8 Let M D A.Z/MA.Z/ be a left-right type DA bimodule over A.Z/-A.Z/.
Suppose M satisfies the following properties, then M is homotopy equivalent to the
identity bimodule A.Z/IA.Z/ .
� (ID-1) The generators of M are in one-to-one correspondence with the idem-

potents of A.Z/, so that the generator corresponding to idempotent i has both
left (type D ) and right (type A) idempotent equal to i .

� (ID-2) M can be graded by a principal left-right G.Z/-G.Z/ set, such that
the induced map � 2 Out.G.Z/;G.Z// (as in [11, Lemma 6.4]) is the identity
map, and there is a choice of refined relative grading with every generator having
grading zero. (The choice of grading refinement for G.Z/ is arbitrary but must
be the same on both sides).

� (ID-3) The type DA action on M contains all arrows of the form

ı1
2 W .x; a.�//! a.�/˝y ;

where � is a length-1 chord.
� (ID-4) M is stable in the sense of [11, Definition 1.8] (this condition is only

necessary when Z is the unique genus 1 pointed matched circle).

Proof Consider the type DD bimodule MDD DM � cDD.IZ/. We check that MDD

satisfies all the conditions of Proposition 3.6, which will show that MDD is isomorphic
to cDD.IZ/. Since cDD.IZ/ is quasi-invertible, this implies M ' I .

Using the fact that relative grading can be chosen on cDD.IZ/ so that every generator
has grading zero, condition (ID-2) on the grading of M implies a similar condition on
the grading of MDD . The constraint that the type DD action must respect the grading
implies that for each arrow

x! a˝ b˝y ;

the multiplicities of a and b must be the same. The idempotent conditions on the
diagonal subalgebra follow from the constraints on idempotents on each arrow, and the
fact that both x and y have complementary idempotents. This verifies condition (2)
of Proposition 3.6.

The other deductions are trivial. (ID-1), (ID-2) and (ID-3) imply conditions (1), (3)
and (4), respectively. Condition (ID-4) implies the stability of MDD , needed for the
genus 1 case.

The condition (ID-3) in the previous lemma can still be difficult to verify in actual
computations. It is possible to replace it as follows.
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Lemma 3.9 With the same notation as in Lemma 3.8, if M satisfies the conditions
(ID-1), (ID-2), (ID-4), and the following condition, then it is homotopy equivalent to I .

� (ID-3’) M is invertible, with a quasi-inverse M 0 that satisfies y conditions
(ID-1) and (ID-2).

Proof It suffices to show that (ID-3’), together with the other conditions, implies
(ID-3). We first show that ı1

1
D 0 on both M and M 0 , that is, there are no arrows of

the form
ı1

1 W x! a˝y :

By the grading constraints on any arrow, the algebra generator a must have multiplicity
zero. That is, it must be an idempotent in A.Z/. However, this would mean that the
grading of x and y differ by �, contradicting the assumption that all generators in M

(or M 0/ have grading zero.

Both M and its quasi-inverse M 0 also satisfy (ID-1), so by [12, Lemma 2.2.50] they
can be represented as A.Z/Œ��A.Z/ and A.Z/Œ�0�A.Z/ respectively, for A1–algebra
morphisms �; �0W A.Z/!A.Z/. Then M 0� M is represented by A.Z/Œ�0 ı��A.Z/ .

Since M 0� M satisfies the grading condition (ID-2), the map �0 ı� must preserve
gradings. This means that for aD a.�/ where � is a length-1 chord, the only possible
term in .�0 ı �/.a/ is a. Since M � M 0 is homotopy equivalent to identity, by
Proposition 3.7, we have .�0 ı �/.a/ D a, which implies �.a/ ¤ 0. By the same
grading argument, either �.a/ D 0 or �.a/ D a. So we must have �.a/ D a. This
shows � is the identity map on length-1 chords, which implies condition (ID-3).

3C Combinatorial model of ĈFAA.IZ/

In this section, we review the construction of the combinatorial model cAA.IZ/ of
bCFAA.IZ/ given in [21], in preparation for computing some arrows in cDA.�/ for

arcslides � in the next section.

The construction begins with (11). After expanding the definitions, this gives a model
of bCFAA.IZ/ generated by the set of pairs Œa1; a2�, where a1 and a2 are generators
of A.Z/, such that the initial idempotents of a1 and a2 are complementary. The
differential and type AA action on these generators are given as [21, Proposition 1].
The smaller model cAA.IZ/ is obtained from this using homological perturbation
theory. This involves finding the homology C 0 of C , the chain complex underlying
the larger model, and giving chain maps f W C ! C 0 , gW C 0 ! C , and homotopy
H W C!C verifying the homotopy equivalence between C and C 0 . The homology C 0

is generated by those Œa1; a2� where both a1 and a2 are idempotents (which are then
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complementary). The chain maps f and g are the obvious projection and inclusion
maps. The homotopy H is summarized in [21, Figures 6 and 9].

From homological perturbation theory, we obtain the following description of the
smaller model: the A1–bimodule cAA.IZ/A.�Z/;A.Z/ is generated by pairs of com-
plementary idempotents i 0˝i , where i 2A.Z/ and i 0D o.i/2A.�Z/. The generator
i 0˝ i has type A idempotents i 0 and i . Each arrow in the type AA action of cAA.IZ/
comes from a sequence of moves between generators of C . There are three types of
moves, the first two of which carry a coefficient.

� Move A1 If cb0 ¤ 0, with b0 2 A.�Z/, move from Œcb0; a2� to Œc; a2� with
coefficient b0 .

� Move A2 If a2b ¤ 0, with b 2 A.Z/, move from Œa1; a2� to Œa1; a2b� with
coefficient b .

� Move H Apply one of the arrows in the homotopy map H .

Each arrow then corresponds to a sequence Œa1;1; a1;2�; : : : ; Œa2n;1; a2n;2� of generators
of C , satisfying the following conditions:

� Œa1;1; a1;2�D Œo.i/; i � and Œa2n;1; a2n;2�D Œo.j /; j � for some idempotents i; j 2

A.Z/.
� Each Œa2k;1; a2k;2� is obtained from Œa2k�1;1; a2k�1;2� by applying either move

A1 or A2 .

� Each Œa2kC1;1; a2kC1;2� is obtained from Œa2k;1; a2k;2� by applying move H .

Let b0
1
; : : : ; b0p be the ordered sequence of coefficients for moves of type A1 , and

b1; : : : ; bq be the ordered sequence of coefficients for moves of type A2 , then such a
sequence of generators of C gives rise to an arrow

m1;p;qW .i
0
˝ i I b01; : : : ; b

0
pI b1; : : : ; bq/! j 0˝ j ;

where i 0 D o.i/ and j 0 D o.j /.

An important property of cAA.IZ/, which follows directly from this construction, is
that for any arrow in the type AA action, the total multiplicity of the A.�Z/ inputs
(that is, the sum of multiplicities of b0

1
; : : : ; b0p ) equals that of the A.Z/ inputs (the

sum of multiplicities of b1; : : : ; bq ). From the definition using holomorphic curves,
this is clear since each arrow comes from a domain in the standard Heegaard diagram
of the identity diffeomorphism. We also note that cAA.IZ/ can be given a refined
relative grading where all generators have grading zero.
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The definition of the homotopy map H involves first defining a specific ordering <Z on
the 4g� 1 intervals of the pointed matched circle Z . This means the determination of
arrows is not local, in the sense that if we restrict to a certain interval of Z , containing
points paired outside the interval, then the type AA arrows restricted to that interval
may depend on how Z is configured outside the interval. However, we note that if
all points are paired within the interval, then the ordering <Z on these points (and
therefore the type AA arrows) is independent of outside configurations (this follows
directly from how the ordering <Z is defined). In particular, cAA.IZ/ behaves well
with respect to stabilization. That is, if VZ D Z#Z1 , then cAA.IZ/ is isomorphic to
the appropriate restriction of cAA.I

VZ/.

3D Certain arrows in dDA of arcslides

In this section we compute some of the arrows in cDA.�/ for a general arcslide � ,
using (16). From its description in the previous section, one can expect arrows incAA.IZ/ to be extremely complicated in general. The same would then be true for
arrows in cDA.�/. We manage this complexity by focusing only on arrows whose
algebra coefficients have a small total length (say length 1 or 2 on each side). It turns
out that these are sufficient to prove the necessary properties of the box tensor products
of cDA.�i/ that we will need to consider.

Since the algebra coefficients have small total length, the domain corresponding to the
arrow is supported in a small part of the Heegaard diagram. For arcslides, the parts of
the Heegaard diagram that we are particularly interested in are the differences with the
Heegaard diagram for the identity diffeomorphism, that is, around the points b1; c1; c2

and b0
1

.

One source of complexity comes from the fact that the definition of the homotopy
map H in the construction of cAA.IZ/ depends on the ordering <Z on the intervals
of the pointed matched circle. In a local situation, if we cannot tell which interval
comes first in the ordering, we will need to cover all possible cases. Note that only
the restriction of <Z to the intervals covered by the algebra coefficients matter for
determining the arrows.

When we show a set of local arrows in a given local situation and restriction of the
ordering <Z , we intend to make the following assertions:
� There is an arrow for every way of extending the local arrow by completing the

pointed matched circle and adding the appropriate number of horizontal lines to
the algebra coefficients.

� Every arrow in the bimodule action whose algebra coefficients lie within the
area shown can be obtained by extending one of the local arrows.
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We now begin with the simplest case: arrows in the type AA action on cAA.IZ/ where
the algebra coefficients have length 1 on either side. The coefficients must then cover
the same interval. The sequence of pairs Œai;1; ai;2� is

A2
�!

H
�!

A1
�! ;

where the middle H is [21, Case 3] of the homotopy map in the multiplicity-one case
given there. This gives the arrow

(AA1) m1;1;1W

�h i
I I

�
!

h i
:

From (AA1), we obtain a simple method of deriving arrows in cDA.�/ from arrows
in cDD.�/, in cases where the second coefficient of the type DD arrow has length 1

(the second algebra action is the one that is involved in the box tensor product). For
each type DD arrow ı1W x! a1˝ a2˝y , where a2 has length 1, there corresponds
a type DA arrow ı1

2
W .x; a2/! a1˝y , where by abuse of notation we use the same

symbol to denote corresponding generators of cDA.�/ and cDD.�/.

As an application, we give a combinatorial proof of the following corollary.

Corollary 3.10 The tensor product cAA.IZ/� cDD.IZ/ is homotopy equivalent to I .

Proof Directly check each of the conditions in Lemma 3.8. For condition (ID-2),
we use the refined relative grading on cAA.IZ/ with all generators having grading
zero. For condition (ID-3), use the type AA arrows computed here. For (ID-4), use the
stabilization property of cAA.IZ/ discussed at the end of Section 3C.

3D1 Type AA on a size-2 interval: the disjoint pairs case The next simplest case
for type AA arrows is the size-2 interval. First, we assume that no two of the three
points are paired with each other. There are four subcases, depending on whether the
middle idempotent is occupied on the left or on the right, and whether the lower or the
upper interval comes first in the ordering <Z .

Case 1 The middle idempotent is on the left, the lower interval comes first in ordering.
The only sequence covering the size-2 interval is

A2
�!

H
�!

A1
�!

H
�!

A1
�! ;
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giving the arrow

(AA2) m1;2;1W

�h i
I ; I

�
!

h i
:

Note that in the first H –move, we shift only the lower part of the strand to the left,
since the lower interval comes first in the ordering.

Case 2 The middle is idempotent on the left, the upper interval comes first in ordering.
The only sequence covering the size-2 interval is

A2
�!

H
�!

A1
�! ;

giving the arrow

(AA3) m1;1;1W

�h i
I I

�
!

h i
:

Here the upper interval comes first, so we shift the entire strand to the left in the first
H –move.

Case 3 The middle idempotent is on the right, the upper interval comes first in ordering.
In this case there are two possible sequences covering the size-2 interval. The first one
is

A2
�!

H
�!

A1
�! ;

giving the arrow

(AA4) m1;1;1W

�h i
I I

�
!

h i
:

The second one is

A2
�!

H
�!

A1
�!

H
�!

A1
�! ;

giving the arrow

(AA5) m1;2;1W

�h i
I ; I

�
!

h i
:
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Case 4 The middle idempotent is on the right, the lower interval comes first in ordering.
The only sequence covering the size-2 interval is

A2
�!

H
�!

A2
�!

H
�!

A1
�! ;

giving the arrow

(AA6) m1;1;2W

�h i
I I ;

�
!

h i
:

As examples, we show the computation of type DA arrows in cAA.IZ/� cDD.IZ/
that cover a size-2 interval. While the results in the remainder of this section will not
be used directly in what follows, it serves as a model for the calculations of similar
arrows in cDA.�/ for an arcslide � .

To compute the type DA arrows, we combine the previous results with what is known
about type DD arrows in cDD.IZ/. On the size-2 interval, the possibilities are given
below (on each line, ı1W x! .a; a0/˝y represents the arrow ı1W x! a˝ a0˝y ,
where a 2A.Z/ and a0 2A.�Z/):

ı1
W

� �
! ˝ ;(DD1)

ı1
W

� �
! ˝ ;(DD2)

ı1
W

� �
! ˝ ;(DD3)

ı1
W

� �
! ˝ ;(DD4)

ı1
W

� �
! ˝ ;(DD5)

ı1
W

� �
! ˝ :(DD6)

It is now a matter of combining these following the rules of the box tensor product. In
the figures below, for both type DD and type AA bimodules, we will show the first
algebra action on the left and the second algebra action on the right. This is purely
for ease of visualization, and does not indicate which side the algebras act on. Indeed,
both actions on the type DD bimodule are on the left, and both actions on the type AA
bimodule are on the right. Nevertheless, we will often talk about left action or left
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�2

Figure 6: Formation of type DA operation, case 1

idempotents to match how the figures are drawn. Moreover, we will put the DD arrows
on the left, and AA arrows on the right, since we are tensoring the second action incDD.IZ/ with the first action in cAA.IZ/.

Each type DA arrow comes from a single type AA arrow and zero or more type DD
arrows. The left outputs (in A.Z/) of the type DD arrows are multiplied together to
give the overall type D output, while the right outputs (in A.�Z/) are given as the
left inputs to the type AA arrow. The overall type A inputs in A.Z/ are given as the
right inputs to the type AA arrow.

The right idempotent of the DD generator must agree with the left idempotent of the AA
generator. The left idempotent of the DD generator and the right idempotent of the AA
generator then combine to form the idempotent of the resulting DA generator.

We now look at each of the four cases.

Case 1 The middle idempotent is on the left, the lower interval comes first in ordering.
This combination is shown in Figure 6. We use (DD1), (DD3), and (AA2). The
resulting arrow is

(DA1) ı1
2 W

�
;

�
! ˝ :

Case 2 The middle idempotent is on the left, the upper interval comes first in ordering;
see Figure 7 We use (DD5) and (AA3). The resulting arrow is the same as in (DA1),
so in this case the order of the two intervals already does not matter at the DA level.
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Figure 7: Formation of type DA operation, case 2

Figure 8: Formation of type DA operation, case 3

Case 3 The middle idempotent is on the right, the upper interval comes first in
ordering; see Figure 8. We use (DD6) and (AA4), and the resulting arrow is

(DA2) ı1
2 W

�
;

�
! ˝ :

Another combination, using (DD4), (DD2), and (AA5), gives the arrow

(DA3) ı1
2 W

�
;

�
! ˝ :

Case 4 The middle idempotent is on the right, the lower interval comes first in ordering,
shown in Figure 9. We use (DD6) and (AA6), and the resulting arrow is

(DA4) ı1
3 W

�
; ;

�
! ˝ :

This arrow shows that the model cAA.IZ/� cDD.IZ/ of bCFDA.IZ/ is not exactly
the same, but only homotopy equivalent to I .
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Figure 9: Formation of type DA operation, case 4

3D2 Pieces of arcslide We now compute some simple arrows in cDA.�/ for an
arcslide � . Since the method used here is similar to that in the previous section, we
will show only the results.

First, we consider the case where b1 is directly above c1 , and compute the arrows incDA.�/ corresponding to the region of the Heegaard diagram around b1 . The Heegaard
diagram around b1 is this:

The possible type DD arrows are the following:

ı1
W

� �
! ˝ ;(DD7)

ı1
W

� �
! ˝ ;(DD8)

ı1
W

� �
! ˝ ;(DD9)

ı1
W

� �
! ˝ ;(DD10)

ı1
W

� �
! ˝ :(DD11)

This comes directly from [11]. The only potentially tricky part is figuring out the
possible locations of idempotents. For example, in the arrow ı1W x! .a.�/; 1/˝y

(third and fourth arrows above; � is the chord c1! b1 ), the left idempotent of y must
be occupied at the B pair and unoccupied at the C pair. Since generators of cDD.�/
either have complementary idempotents or idempotents that are both occupied at C ,
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the right idempotent of y must be occupied at C (so y is of type X ). From the
idempotent of y , we can deduce that of x , and see that x is of type Y . Similar
arguments are used to list possible idempotents in the other cases.

Computing the type DA arrows in this case is relatively straightforward, as we are
combining with the arrow (AA1) on a size-1 interval. The results are as follows, where
(DA5)–(DA9) follow respectively from (DD7)–(DD11):

ı1
2 W

�
;

�
! ˝ ;(DA5)

ı1
2 W

�
;

�
! ˝ ;(DA6)

ı1
1 W

� �
! ˝ ;(DA7)

ı1
1 W

� �
! ˝ ;(DA8)

ı1
2 W

�
;

�
! ˝ :(DA9)

Now we consider other side of the same case, computing arrows in cDA.�/ corre-
sponding to the region around b0

1
. Since b1 is directly above c1 , we have b0

1
directly

below c2 , and the Heegaard diagram around b0
1

is this:

The type DD operations are these:

ı1
W

� �
! ˝ ;(DD12)

ı1
W

� �
! ˝ ;(DD13)

ı1
W

� �
! ˝ ;(DD14)

ı1
W

� �
! ˝ ;(DD15)

ı1
W

� �
! ˝ :(DD16)
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This time we will need to combine with type AA arrows on a size-2 interval, emulating
the method in Section 3D1. The results are the following:

.upper first/ ı1
2 W

�
;

�
! ˝ ;(DA10)

.lower first/ ı1
3 W

�
; ;

�
! ˝ ;(DA11)

ı1
2 W

�
;

�
! ˝ ;(DA12)

ı1
2 W

�
;

�
! ˝ ;(DA13)

ı1
2 W

�
;

�
! ˝ ;(DA14)

ı1
2 W

�
;

�
! ˝ :(DA15)

The first arrow follows from (DD12) and (AA4) only if the upper interval comes first
in the ordering <Z0 for the right pointed matched circle. The second arrow follows
from (DD12) and (AA6) only if the lower interval comes first in the ordering. The third
arrow does not depend on ordering. However, it is formed in different ways for the two
orderings: if upper interval comes first, it follows from (DD13) and (AA3); otherwise it
follows (DD16), (DD15), and (AA2). The last three arrows are independent of ordering.
They follow from (AA1) and respectively (DD14)–(DD16).

The cases where b1 is directly below c1 (and therefore b0
1

is directly above c2 ) are
very similar. Here is the Heegaard diagram around b1 :

The first two DA arrows are the same as (DA5) and (DA6), and the last three are
modified appropriately from (DA7)–(DA9). The Heegaard diagram around b0

1
is this:

The first three DA arrows are the same as arrows are modified appropriately from
(DA13)–(DA15).
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3D3 Type AA on a size-2 interval: the paired case We now consider the case of
a size-2 interval, where the top and bottom points are paired with each other. Here the
lower interval immediately precedes the upper interval in the ordering <Z . There are
no arrows starting at generators where the middle idempotent is on the same side as
the idempotent containing the top and bottom points. Starting at generators where the
middle idempotent is to the right, there is a sequence

A2
�!

H
�!

A2
�!

H
�!

A1
�! ;

giving the arrow

(AA7) m1;1;2W

�h i
I I ;

�
!

h i
:

Starting at generators where the middle idempotent is to the left, there is a sequence

A2
�!

H
�!

A1
�!

H
�!

A1
�! ;

giving the arrow

(AA8) m1;2;1W

�h i
I ; I

�
!

h i
:

Furthermore, there are several infinite series of arrows formed by repeating the moves
used above. We list the two arrows that will be used later in the paper:

A2
�!

H
�!

A2
�!

H
�!

A1
�!

H
�!

A1
�! ;

gives the arrow

(AA9) m1;2;2W

�h i
I ; I ;

�
!

h i
I

and

A2
�!

H
�!

A1
�!

H
�!

A2
�!

H
�!

A1
�! ;

gives the arrow

(AA10) m1;2;2W

�h i
I ; I ;

�
!

h i
:
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Note that in the derivation of the first arrow, we used [21, Case 3] of the homotopy
map H in the multiplicity greater than one case. From this we see that the type AA
bimodule can have infinitely many arrows. However, in our examples, only a finite
number of them will be used when constructing the action on type DA invariants.

3D4 Short underslide Using results from the previous section, we compute type DA
arrows for the short underslide. These are underslides where b1 is the only point
between c1 and c2 . Hence b1 and b0

1
are located in the same region of the Heegaard

diagram, which is the only region of interest. Here is the diagram for the case where b1

is directly above c1 :

The possible type DD arrows are the following:

ı1
W

� �
! ˝ ;(DD17)

ı1
W

� �
! ˝ ;(DD18)

ı1
W

� �
! ˝ ;(DD19)

ı1
W

� �
! ˝ :(DD20)

These give rise to type DA arrows

ı1
1 W

� �
! ˝ ;(DA16)

ı1
2 W

�
;

�
! ˝ ;(DA17)

ı1
2 W

�
;

�
! ˝ ;(DA18)

ı1
3 W

�
; ;

�
! ˝ ;(DA19)

ı1
2 W

�
;

�
! ˝ ;(DA20)

ı1
3 W

�
; ;

�
! ˝ :(DA21)
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Here arrows (DA16)–(DA18) follow respectively from (DD17)–(DD19). Arrow (DA19)
follows from (DD20) and (AA7). Arrow (DA20) follows from (DD19), (DD18), and
(AA8). Arrow (DA21) follows from (DD20), (DD18), and (AA9).

The diagram for the case where b1 is directly below c1 is this:

The possible type DD arrows are the following:

ı1
W

� �
! ˝ ;(DD21)

ı1
W

� �
! ˝ ;(DD22)

ı1
W

� �
! ˝ ;(DD23)

ı1
W

� �
! ˝ :(DD24)

These give rise to type DA arrows:

ı1
1 W

� �
! ˝ ;(DA22)

ı1
2 W

�
;

�
! ˝ ;(DA23)

ı1
2 W

�
;

�
! ˝ ;(DA24)

ı1
3 W

�
; ;

�
! ˝ ;(DA25)

ı1
2 W

�
;

�
! ˝ ;(DA26)

ı1
3 W

�
; ;

�
! ˝ :(DA27)

Here arrows (DA22)–(DA24) follow respectively from (DD21)–(DD23). Arrow (DA25)
follows from (DD24) and (AA7). Arrow (DA26) follows from (DD22), (DD23), and
(AA8). Arrow (DA27) follows from (DD22), (DD24), and (AA10).
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3D5 Type AA on two separated intervals with pairing To consider more local
situations for the arcslide, we will need type AA arrows on two separated intervals,
such that either the two inner positions or the two outer positions are paired. These
two cases are very similar, so we will only write out the first case here.

In this case, the upper interval immediately precedes the lower interval in the order-
ing <Z . If the middle idempotent (consisting of the two paired inner points) is occupied
on the left, then it is not possible to multiply both intervals to the right as the first step.
So the only possible sequence of Œai;1; ai;2� is the following:

A2
�!

H
�!

A2
�!

H
�!

A1
�!

giving the arrow

(AA11) m1;1;2W

 " #
I I ;

!
!

" #
:

In these diagrams, the two middle positions are paired, and there can be an arbitrary
number of points between them in the full pointed matched circle. Since no arrow incDD.IZ/ gives off an algebra element with two separate strands, this cannot be used to
form a type DA arrow for the identity.

If the middle idempotent is occupied on the right, it is possible to multiply both intervals
to the right as the first step, but not possible to multiply only the lower interval. So the
only sequence is

A2
�!

H
�!

A1
�!

H
�!

A1
�!

giving the arrow

(AA12) m1;2;1W

 " #
I ; I

!
!

" #
:

This leads to the following type DA arrow for identity:

(DA28) ı1
2 W

 
;

!
! ˝ :
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3D6 More pieces of arcslide We now compute some arrows whose corresponding
domains touch both c1 and c2 . We focus on the overslide cases; the underslide cases
are similar. First, if b1 is directly above c1 , the local Heegaard diagram is as follows.
We focus on arrows whose domain is restricted inside this diagram:

The two horizontal lines where the 1–handle is attached contain the ˛–arcs for the C

pair. Immediately above and below are the points b1 on the left and b0
1

on the right.
For clarity, we list all type DD and DA arrows in this region, even though some may
already have been covered in previous cases. These are the type DD arrows:

ı1
W

0@ 1A! ˝ ;(DD25)

ı1
W

0@ 1A! ˝ ;(DD26)

ı1
W

0@ 1A! ˝ ;(DD27)

ı1
W

0@ 1A! ˝ :(DD28)

These give rise to the following type DA arrows. Here (DA29)–(DA32) follow respec-
tively from (DD25)–(DD28):

ı1
1 W

0@ 1A! ˝ ;(DA29)

ı1
1 W

0@ 1A! ˝ ;(DA30)
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ı1
2 W

0@ ;

1A! ˝ ;(DA31)

ı1
2 W

0@ ;

1A! ˝ :(DA32)

The case where b1 is directly below c1 is again more complicated. Here is the local
Heegaard diagram:

The type DD arrows are these:

ı1
W

0@ 1A! ˝ ;(DD29)

ı1
W

0@ 1A! ˝ ;(DD30)

ı1
W

0@ 1A! ˝ ;(DD31)

ı1
W

0@ 1A! ˝ :(DD32)

The resulting type DA arrows are the following:

ı1
2 W

0@ ;

1A! ˝ ;(DA33)

ı1
2 W

0@ ;

1A! ˝ ;(DA34)
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ı1
2 W

0@ ;

1A! ˝ ;(DA35)

ı1
3 W

0@ ; ;

1A! ˝ ;(DA36)

ı1
2 W

0@ ;

1A! ˝ :(DA37)

Here, arrows (DA33)–(DA35) follow respectively from (DD29)–(DD31). Arrow
(DA36) follows from (DD32) and (AA11). Arrow (DA37) follows from (DD29),
(DD31), and (AA12).

4 Relations on the mapping class groupoid

In this section, we conclude the proof of Theorem 2.2. In Section 4A, we describe
how to enumerate the set of generators of a box tensor product of cDA.�i/, where �i

are arcslides, and how properties of cDD.�i/ carry over to properties of cDA.�i/ and
their box tensor products. With all these preparations in place, we prove (17) for the
involution relation in Section 4B, and for the other relations in Section 4C.

4A Compositions of arcslides

Given an arcslide � , the description of the set of generators of cDA.�/ follows from
that of cDD.�/ and cAA.IZ/. The generators are classified by their idempotents on
the two sides (type D idempotent on the left and type A idempotent on the right).
As before, we use the canonical identification of pairs of points between the pointed
matched circles on the two sides. There are two types of generators in cDA.�/:
� Type X The idempotents on the two sides contain the same pairs.
� Type Y The idempotents on the two sides differ at exactly one pair, with the

C pair occupied on the left and B pair occupied on the right.

Using this, and the definition of box tensor product, we can enumerate the set of
generators of cDA.�1/� � � �� cDA.�n/

for a sequence of arcslides �1; : : : ; �n . We now describe the procedure in detail.
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First, we combine the identification between pairs of points on the starting and ending
pointed matched circles of a single arcslide to obtain an identification of pairs on all
pointed matched circles appearing in the sequence. Note that even if the starting and
ending pointed matched circle of a sequence is the same, the identification of pairs
between the two, induced by the sequence of arcslides, may not be the identity. See
the triangle relation for an example.

With this identification of pairs throughout a sequence, we can talk about a pair of
points in the sequence. These are pairs of points, one for each pointed matched circle
in the sequence, that are identified to be the same. We assign a number from 1 to d to
each pair of points in the sequence that served as either the B pair or the C pair of
some arcslide, where d is the total number of such pairs.

Each generator of the box tensor product cDA.�1/� � � �� cDA.�n/ is of the form
x1˝ � � � ˝xn , where xi is a generator of cDA.�i/ for each 1 � i � n, and the right
idempotent of xi agrees with the left idempotent of xiC1 for each 1 � i < n. A
generator x1˝ � � �˝xn is determined by the set of occupied pairs at the starting and
ending pointed matched circles, and at each pointed matched circles in the middle. It
is clear that each unnumbered pair must be either occupied throughout or unoccupied
throughout. For the numbered pairs, the only possible changes are as follows: suppose
that for a certain arcslide �i in the sequence, the B pair is numbered bi and the C pair
is numbered ci ; then it is possible to have ci , but not bi , occupied in the left idempotent
of xi , and bi , but not ci , occupied in the right idempotent, with all other pairs staying
the same. This corresponds to choosing xi to have type Y .

We can therefore specify a type of generators by specifying which of the numbered
pairs are occupied at each pointed matched circle. At each arcslide, the generator is
either type X or type Y . In the first case, the occupied pairs must be the same before
and after, and in the second case, the C pair occurs before and is replaced by the
B pair. To choose a specific generator of a given type, it remains to choose which
unnumbered pairs to occupy throughout, so that the total number of occupied pairs
is g (half of the total 2g pairs).

We now study the involution relation as an example. This is the simplest case, which
nevertheless illustrates most of the reasoning required. One possible Heegaard diagram
for the involution relation is shown in Figure 10. There are two numbered pairs, that is,
d D 2. Pair 1 served as the C pair and pair 2 served as the B pair for both arcslides.
The possible types of generators are

. /X. /X. /; .1/X.1/X.1/; .2/X.2/X.2/; .12/X.12/X.12/; .1/X.1/Y.2/; .1/Y.2/X.2/:
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Figure 10: Heegaard diagram for the involution relation

For generators with X at both positions, any combination of occupying pairs is possible.
For generators with X at first position and Y at second position, pair 1 and not pair 2

are occupied in the middle, so 1 can be replaced by 2 at the end. This implies pair 1

and not pair 2 are occupied at the beginning, as well. The same reasoning can be used
for type YX , and to show that type Y Y is not possible.

Later, we may use .�/ to denote an arbitrary subset of the numbered pairs, that stays
the same for a given generator. So for example, we may collect the first four types
above into .�/X.�/X.�/ .

We now state several general facts about cDA.�/ and the box tensor products of such
bimodules. These follow from the corresponding facts about cDD.�/ in Section 2E,
and the definition of cDA.�/ as cAA.IZ/� cDD.�/.

Remark 4.1 (relation with Heegaard diagram) Just as in the type DD case, each
generator of cDA.�/ corresponds to a tuple of points in the standard Heegaard diagram
for the arcslide, with its left (type D ) idempotent the set of unoccupied ˛–arcs on the
left, and its right (type A) idempotent the set of occupied ˛–arcs on the right. When
Heegaard diagrams of arcslides are glued side-by-side along their boundaries, the result
is a larger Heegaard diagram that now contains ˛–circles. Note that the boundaries that
are glued along are removed from the resulting diagram. Each generator x1˝� � �˝xn

of the box tensor product corresponds to a tuple of points, with each ˛ and ˇ circles
containing exactly one point, and each ˛–arc containing at most one point.

As in the type DD case, each arrow in cDA.�/ corresponds to a domain away from
the basepoint in the Heegaard diagram of the arcslide. Likewise, each arrow in the
box tensor product cDA.�1/� � � �� cDA.�n/ corresponds to a domain in the Heegaard
diagram obtained by gluing the diagrams for �1; : : : ; �n in sequence. The multiplicity
of the domain on the left (resp. right) boundary equals the total multiplicity of the
algebra coefficients on the left (resp. right) of the arrow. The relation @.@˛B/D y �x ,
when domain B represents an arrow from x to y , still holds.
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Remark 4.2 (grading) The remarks on the grading set of cDD.�/ for an arcslide �
extends to a similar statement for cDA.�/, and by taking box tensor products, extends
to cDA.�;�/. Given �W Fı.Z1/! Fı.Z2/ and a factorization � of � , the bimodulecDA.�;�/ is graded by a set S with free and transitive left-right actions by G.Z1/

and G.Z2/. The grading set induces an element of Out.G.Z1/;G.Z2//. If � begins
and ends at the same pointed matched circle Z , then it induces an element of the outer
automorphism group Out.G.Z/;G.Z//. That element can be found from the action
of � on the homology of the surface. In particular, the identity morphism on Fı.Z/
induces the identity outer isomorphism on G.Z/.

Remark 4.3 (stabilization) Given � W Fı.Z1/ ! Fı.Z2/ and its stabilization V� W
F. VZ1/! F. VZ2/, the bimodule cDA.�/ is again an appropriate restriction of cDA. V�/.
This follows from the corresponding relations between cAA.Z/ and cAA. VZ/, for any
pointed matched circle Z . Taking box tensor products, the stabilization property
extends to a relation between cDA.�;�/ and cDA. V�; V�/, where V� is the element of the
mapping class groupoid that acts as identity on the adjoined Z1 , and as � elsewhere,
and where V� is the extension of the factorization � .

The corresponding duality statements will be left to the end of Section 4. By then we
will have defined all the other bimodule invariants for surface diffeomorphisms.

4B The involution relation

In this section we will verify the involution relation. Figure 10 shows one of the
possible cases: overslide in the upward direction. The computations for overslide in
the downward direction, and for underslides over a pair of points at distance greater
than 2 from each other, are similar.

Recall that the box tensor product is generated by three types of generators:

.�/X.�/X.�/; .1/X.1/Y.2/; .1/Y.2/X.2/:

For each type XY generator, there is a corresponding type YX generator that occupies
the same unnumbered pairs. The plan is to cancel out pairs of XY and YX generators
using this correspondence, and show that the resulting bimodule satisfies the four
conditions in Lemma 3.8.

There are five domains that contribute type DA arrows of interest. They are shown
in Figure 11. Domain C contributes an arrow with no A–side inputs and idempotent
D–side output from any XY generator to the corresponding YX generator. This
allows us to cancel all XY and YX generators using the cancellation lemma. We now
focus on the resulting bimodule, with the type XX generators.
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Figure 11: Domains A–E are connected components of Hnf˛;ˇg containing
the respective letters. The domains that contribute the type DA arrows of
interest are A , B , C , D C C , and E C C . If the upper point in pair 1

(resp. the visible point in pair 2) is the topmost (resp. bottommost) point in the
pointed matched circle, then the domain DCC (resp. ECC ) does not exist.

This bimodule clearly satisfies (ID-1). Condition (ID-2) can be checked by explicit
grading computations, which use only the combinatorial features of the Heegaard
diagram. In particular, the fact that the induced map � 2 Out.G.Z/;G.Z// is the
identity is equivalent to the fact that the action of this composition of arcslides on
H1.F.Z// is the identity. The stability condition (ID-4) follows from Remark 4.3.

It remains to verify (ID-3). For this, we need to classify all arrows whose coefficients
have length at most one on both boundaries. Such an arrow either exists before applying
the cancellation lemma, or is produced via a zigzag. In the first case, they correspond
to one connected domain between type XX generators. They include trivial horizontal
strips in regions away from the slide, the domain DCC , and the domain ECC . In
the second case, the zigzag must be of the form

XX XY

YX XX:
c1

c2

The coefficient c1 must have length one on the left boundary and length zero on the
right, and c2 must have length zero on the left and length one on the right, or vice-
versa. Looking at the Heegaard diagram, the only possibility is that c1 is produced by
domain A and c2 by domain B .

In what follows, we show that for each of the domains A;B;D C C , and E C C ,
and any starting and ending generators with matching idempotents, there is exactly
one arrow. These arrows, together with the ones coming from simple horizontal strips,
cover each length-1 interval exactly once, which verifies (ID-3).
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Domains A and B are straightforward since they involve only length-1 coefficients.
The next case is the domain DCC . If pair 2 is not occupied, the arrow follows from
(DA5) and (DA12):

If pair 2 is occupied, then the type DA arrows on the left side depends on the ordering.
However, in either case we get the same arrow after box tensoring. If the upper interval
comes first, it follows from (DA6) and (DA10):

Otherwise, it follows from (DA9), (DA7), and (DA11):

Algebraic & Geometric Topology, Volume 16 (2016)



Combinatorial proofs in bordered Heegaard Floer homology 2619

Now for the domain ECC . If pair 1 is occupied, the arrow follows from (DA32) and
(DA37):

If pair 1 is unoccupied, the arrow follows from (DA31), (DA30), and (DA36):

This finishes the verification of the involution relation, except for the case of a short
underslide. The computations in that case involve size-2 intervals where the top and
bottom points are paired, so we consider them separately. The diagram is shown in
Figure 12.
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B

A

Figure 12: Diagram for involution in the short underslide case. Domains A

and B are connected components of H n f˛;ˇg containing the respective
letters.

The only difference in the verification is computing the arrow covering the upper
length-1 interval. This arrow comes from the domain AC 2B , and is produced by
(DA22), (DA24), and (DA21):

This concludes all cases of the involution relation. Two results follow immediately
from this relation.

Corollary 4.4 The bimodule cDA.�/ is quasi-invertible, and the same is true for any
box tensor product of such bimodules.

Proof For a single arcslide, the quasi-inverse is given by cDA.��1/. It is clear that
box tensor products of quasi-invertible bimodules are also quasi-invertible.

The computations here allow us to prove a uniqueness statement on cDD.�/. A similar
statement is proven in [11].

Corollary 4.5 Let � W Fı.Z1/!Fı.Z2/ be an arcslide. If a bimodule A.Z1/;A.�Z2/M

is stable, has the same generators and gradings as cDD.�/, and its type DD action
matches that of cDD.�/ on all arrows with total lengths of coefficients at most 3, then
M is homotopy equivalent to cDD.�/.
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Figure 13: Heegaard diagram for the triangle relation. Domains A , B and C

are connected components of H n f˛;ˇg containing the respective letters.

Proof Let MDA D cAA.I/� M . Since we only used type DD arrows whose coeffi-
cients have total length at most 3 in this section, we can perform the same computations
on MDA as on cDA.�/, showing that

MDA � cDA.��1/' I ' cDA.�/� cDA.��1/:

Since cDA.��1/ is quasi-invertible, we see MDA is homotopy equivalent to cDA.�/.
Since cAA.I/ is also quasi-invertible, we see M is homotopy equivalent to cDD.�/.

4C Other relations on arcslides

For each of the other relations on arcslides, we check the conditions in Lemma 3.9.
Condition (ID-2) is checked by grading computations as before. (ID-3) follows from
Corollary 4.4, with the quasi-inverse M 0 being the box tensor product of the inverse
arcslides in the opposite order. (ID-4) follows from Remark 4.3. It remains to verify
(ID-1); with the same technique given here we can show (ID-1) for the inverse M 0 .

4C1 Triangle For the triangle relation, the Heegaard diagram for one of the possible
cases is shown in Figure 13. The other cases differ from this one only by switching the
ordering of the points and underslides with overslides. The enumeration of generators,
and which pairs of generators can be cancelled, are essentially similar.

The roles of the numbered pairs are as follows:
� Arcslide 1 C D 2;B D 1.
� Arcslide 2 C D 1;B D 2.
� Arcslide 3 C D 2;B D 1.

Only the sequence YXY is forbidden. For that sequence, pair 1 must be occupied
after the first arcslide, and therefore after the second arcslide, so type Y is not possible
at the third arcslide.
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The possible types are these:

.�/X.�/X.�/X.�/; .2/Y.1/X.1/X.1/; .1/X.1/Y.2/X.2/; .2/X.2/X.2/Y.1/;

.2/Y.1/Y.2/X.2/; .1/X.1/Y.2/Y.1/; .2/Y.1/Y.2/Y.1/; .1/X.1/Y.2/X.2/:

There are two domains that give rise to cancellable arrows: domain A and B as shown
in the figure. Domain A gives rise to arrows from Y Y � to XX�, and domain B gives
rise to arrows from �Y Y to �XX . So the cancellable arrows are these:

Y Y Y !XXY; Y Y Y ! YXX;

.1/XY Y.1/! .1/XXX.1/; .2/Y YX.2/! .2/XXX.2/:

We choose to cancel everything except the second set Y Y Y ! YXX (cancelling
the first set of arrows eliminates the option of cancelling the second). These are the
remaining generators:

.2/YXX.1/; .1/XYX.2/; . /XXX. /; .12/XXX.12/:

Since each type of idempotents at the two ends occurs exactly once, we have verified
(ID-1). Note that pair 1 at the left becomes pair 2 at the right, and vice versa, under the
bijection of pairs coming from the equality of pointed matched circles at the two ends.

For the triangle relation, it is not immediately clear that there exists a refined relative
grading where all generators have grading zero, so we give more details on verifying
this condition. Choose a generator in class .2/YXX.1/ as the base generator (with
refined grading zero). To verify that any generator of class .1/XYX.2/ has grading
zero, it suffices to check that any potential domain connecting them has the expected
grading. The domain BCC is such a domain. Its grading can be computed to be the
same as that of a simple horizontal strip in the Heegaard diagram for identity, with
the same boundaries at the two sides. If the genus is greater than 2, then generators
of type . /XXX. / and .12/XXX.12/ exist. They are connected to .2/YXX.1/ or
.1/XYX.2/ by horizontal strips above either A or B . These domains also have the
same gradings as the simple horizontal strips in the diagram for identity with the same
boundaries, so the latter two types of generators must also have grading zero.

4C2 Commutativity The Heegaard diagram for one of the cases of the commutativity
relation is shown in Figure 14; as in the triangle case, the other possibilities are similar.
The role of the numbered pairs are as follows:
� Arcslide 1 C D 1;B D 2.
� Arcslide 2 C D 3;B D 4.
� Arcslide 3 C D 1;B D 2.
� Arcslide 4 C D 3;B D 4.
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Figure 14: Heegaard diagram for the commutativity relation. Domains A

and B are connected components of H n f˛;ˇg containing the respective
letters.

The restriction on the types is that at most one of the types at arcslides 1 and 3 can
be Y , and at most one at arcslides 2 and 4 can be Y . The possibilities are:

.�/X.�/X.�/X.�/X.�/; .1/Y.2/X.2/X.2/X.2/ .3 or 4/;

.1/X.1/X.1/Y.2/X.2/ .3 or 4/; .3/X.3/Y.4/X.4/X.4/ .1 or 2/;

.3/X.3/X.3/X.3/Y.4/ .1 or 2/; .13/Y.23/Y.24/X.24/X.24/;

.13/Y.23/X.23/X.23/Y.24/; .13/X.13/Y.14/Y.24/X.24/; .13/X.13/X.13/Y.23/Y.24/;

where .3 or 4/ means “with pairs 3 and/or 4 possibly added to each idempotent”.

The two domains giving rise to cancellable arrows are labelled A and B in the Figure 14.
Domain A gives rise to arrows from YaXb to XaY b , for any valid choice of a; b 2

fX;Y g. Likewise, domain B gives rise to arrows from aY bX to aXbY . So the
cancellable arrows are:

.1/YXXX.2/! .1/XXYX.2/ .3 or 4/; .3/XYXX.4/! .3/XXXY.4/ .1 or 2/;

.13/Y YXX.24/ ����! .13/YXXY.24/??y ??y

.13/XY YX.24/ ����! .13/XXY Y.24/:

The first two arrows cancel all generators with one Y . For generators with two Y ’s,
we can either cancel both horizontal arrows or both vertical arrows in the square above.
In the end, only generators of type .�/XXXX.�/ remain, which verifies (ID-1).
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Figure 15: Heegaard diagram for the pentagon relation. Domains A , B , and C

are connected components of H n f˛;ˇg containing the respective letters.

4C3 Left and right pentagon The Heegaard diagram for one of the cases of the left
pentagon relation is shown in Figure 15. Other cases of the left and right pentagon
relation are similar.

The role of the numbered pairs are as follows:

� Arcslide 1 C D 2;B D 3.

� Arcslide 2 C D 1;B D 2.

� Arcslide 3 C D 2;B D 3.

� Arcslide 4 C D 1;B D 3.

� Arcslide 5 C D 1;B D 2.

The possible types are:

� .�/X.�/X.�/X.�/X.�/X.�/ ,

� .12/Y.13/Y.23/X.23/X.23/X.23/ ,

� .12/X.12/X.12/Y.13/X.13/Y.23/ ,

� .12/Y.13/X.13/X.13/X.13/Y.23/ ,

� .1/X.1/Y.2/Y.3/X.3/X.3/ ,

� .2/Y.3/X.3/X.3/X.3/X.3/ , .12/Y.13/X.13/X.13/X.13/X.13/ ,

� .1/X.1/Y.2/X.2/X.2/X.2/ , .13/X.13/Y.23/X.23/X.23/X.23/ ,

� .2/X.2/X.2/Y.3/X.3/X.3/ , .12/X.12/X.12/Y.13/X.13/X.13/ ,

� .1/X.1/X.1/X.1/Y.3/X.3/ , .12/X.12/X.12/X.12/Y.23/X.23/ ,

� .1/X.1/X.1/X.1/X.1/Y.2/ , .13/X.13/X.13/X.13/X.13/Y.23/ .
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1 2 3 4

Figure 16: Domain BCC

Domains A, B , and C , respectively, give rise to the following arrows:

XXY ��! YXX ��; �XXY �! �Y YX�; ��YXY !��XYX:

Other domains that may give arrows are BCC and ACB . We first analyze BCC ,
showing that it will always contribute an arrow whenever idempotent matches. The
calculation involves box tensoring the four type DA bimodules as shown in Figure 16.

The arrow needed in the fourth piece is simple. For the third, there are several ways to
cover the domain. First, if pair 3 is unoccupied in the middle pieces, use (DA5):

If pair 3 is occupied, there are two different ways: (DA6), or (DA9) and (DA7):

and

Now looking at the possible arrows in the second piece, we see there is always exactly
one way to continue forming the arrow in the box tensor product to the second piece
(and then trivially to the first piece). If pair 3 is unoccupied, we use (DA12). If pair 3

is occupied, we use either (DA10) or (DA11), depending on the ordering <Z . This
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shows that the domain BCC gives rise to the following arrows:

�.1/X.1/X.1/X.1/Y.2/! �.1/Y.2/X.2/X.2/X.2/;

�.13/X.13/X.13/X.13/Y.23/! �.13/Y.23/X.23/X.23/X.23/:

Finally, we consider the domain ACB . This domain potentially contributes arrows of
the form XXXX�! Y YXX�. The only possible choice of idempotents is

.12/X.12/X.12/X.12/Y.23/X.23/! .12/Y.13/Y.23/X.23/X.23/X.23/:

Rather than computing the type DA arrows for this domain like in the previous case,
we note that the sequence

.12/XXYXY.23/! .12/YXXXY.23/! .12/Y YXXX.23/

must cancel against something in the type DA structure equation. This is possible only
if the domain ACB contributes an arrow.

In summary, the cancellable arrows are these:

.1/XXXXY.2/! .1/XYXXX.2/; .13/XXXXY.23/! .13/XYXXX.23/;

.2/XXYXX.3/! .2/YXXXX.3/; .12/XXYXX.13/! .12/YXXXX.13/;

.1/XXXYX.3/! .1/XY YXX.3/;

.12/XXYXY.23/ ����! .12/YXXXY.23/??y ??y

.12/XXXYX.23/ ����! .12/Y YXXX.23/:

The four types of generators starting with .12/ and ending with .23/ form the square
above, and are cancelled using either the horizontal or vertical arrows. The other ten
types of generators containing at least one Y are cancelled using the first five arrows.
So only generators of type .�/XXXXX.�/ remain, which verifies (ID-1).

This concludes the proof of Theorem 2.2, showing that the bimodule cDA.�;�/ is
independent of the choice of factorization � up to homotopy equivalence. This allows
us to write bCFDA.�/ for the homotopy equivalence class of cDA.�;�/, and define
the other invariants bCFDD.�/; bCFAA.�/, and bCFAD.�/ combinatorially by box
tensoring with appropriate identity bimodules.

We finish with a discussion of how duality on cDD.�/ extends to the other bimodule
invariants.
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Lemma 4.6 For any element �W Fı.Z1/! Fı.Z2/ of the strongly based mapping
class groupoid, we have

(25) A.�Z1/ bCFAD.��1/A.�Z2/ '
A.Z1/ bCFDA.�/A.Z2/:

Proof First, we consider the case of an arcslide � . Using the definition of bCFAD and
the fact that bCFAA.I/ and bCFDD.I/ are quasi-inverses, we have

A.Z2/;A.�Z1/ bCFDD.��1/' A.�Z1/ bCFAD.��1/A.�Z2/� A.Z2/;A.�Z2/ bCFDD.IZ2
/:

On the other hand,

A.�Z1/;A.Z2/ bCFDD.�/' A.Z1/ bCFDA.�/A.Z2/� A.Z2/;A.�Z2/ bCFDD.IZ2
/

'
A.�Z1/ bCFDA.�/A.�Z2/� A.�Z2/;A.Z2/ bCFDD.IZ2

/:

By the remarks on duality at the end of Section 2E, we see bCFDD.��1/ and bCFDD.�/
are homotopy equivalent after switching the two algebra actions. It is also clear from
the construction of bCFDD.IZ2

/ that it is isomorphic to bCFDD.IZ2
/ after switching

the algebra actions. This implies (25) for arcslides � .

For a general surface diffeomorphism � , factor it into arcslides �i . The statement then
follows from the case of arcslides, and the fact that taking duals distributes over the
box tensor product.

5 The 3–manifold invariant

In this section, we prove Theorem 2.4, showing that the homotopy type of the chain
complex cHF given in Construction 2.3 does not depend on the choices made. There
are two main components of the proof, given by the two lemmas below.

Let MCG0.Zg/ denote the strongly based mapping class group on Fg;1 , parametrized
by the genus g split pointed matched circle Zg . Recall that Hg denotes the 0–framed
handlebody, and its orientation reversal �Hg is the 1–framed handlebody.

Lemma 5.1 (stabilization) Let  be an element of MCG0.Zg/. Consider FgC1;1 ,
parametrized by ZgC1 as the surface obtained from Fg;1 by adding a handle in a
neighborhood of the basepoint. Let V be the element of MCG0.ZgC1/ that fixes the
new handle and acts as  elsewhere. Then

(26)
� bCFAA. /� bCFD.Hg/

�
� bCFD.�Hg/

'
� bCFAA. V /� bCFD.H gC1/

�
� bCFD.�H gC1/:
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Definition 5.2 Define MCGˇ
0
.Zg/ to be the subgroup of MCG0.Zg/ consisting of

maps that extend to automorphisms of Hg . Likewise, define MCG˛0.Z
g/ to be the

subgroup of MCG0.Zg/ consisting of maps that extend to automorphisms of �Hg

(using identification Zg D�Zg to consider �Hg as parametrized by Zg ).

Lemma 5.3 (reparametrization of the 0–framed handlebody) For each element � 2
MCGˇ

0
.Zg/, we have

(27) A.�Zg/ bCFAD.�/A.�Zg/� A.�Zg/ bCFD.Hg/' A.�Zg/ bCFD.Hg/:

We first show that these two lemmas imply Theorem 2.4.

Proof of Theorem 2.4 There are two choices made in Construction 2.3: the choice
of Heegaard splitting Y D Y1 [ Y2 , and choice of parametrizations of Y1 and Y2

by standard handlebodies. It is well known that any two Heegaard splittings become
isotopic after a finite number of stabilizations. Also, any stabilization can be isotopied
to the standard one, adding a handle in a neighborhood of the basepoint. If  is a valid
choice of element in MCG0.Zg/ in the second stage of the construction, then V is a
valid choice of element in MCG0.ZgC1/ after a standard stabilization. So Lemma 5.1
implies that Construction 2.3 is invariant under stabilizations.

Now we consider choice of parametrizations of Y1 and Y2 . Recall  D f �1
2�
ıuıf1� ,

where uW @Y1!�@Y2 is the gluing map, f1W H
g! Y1 is the parametrization of Y1

by Hg , and f2W �Hg! Y2 is the parametrization of Y2 by �Hg . Hence, changing
parametrization of Y1 changes  to  0 D  ı �1 , where �1 2 MCGˇ

0
.Zg/, and

changing parametrization of Y2 changes  to  0D ��1
2
ı , where �2 2MCG˛0.Z

g/.

It remains to show the following:

bCFAA. ı�1/� bCFD.Hg/' bCFAA. /� bCFD.Hg/;

bCFAA.��1
2 ı /� bCFD.�Hg/' bCFAA. /� bCFD.�Hg/;

for �1 2MCGˇ
0
.Zg/ and �2 2MCG˛0.Z

g/.

The first equation follows directly from Lemma 5.3:

bCFAA. ı�1/� bCFD.Hg/' bCFAA. /� bCFAD.�1/� bCFD.Hg/

' bCFAA. /� bCFD.Hg/:

For the second equation, by taking the dual of (27), and using Lemma 4.6, we get

(28) A.Zg/ bCFDA.��1/A.Zg/� A.Zg/ bCFD.�Hg/' A.Zg/ bCFD.�Hg/
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� � �

� � �

adjoined

Figure 17: Proof of invariance under stabilization

for any � 2MCGˇ
0
.Zg/. Then the second equation follows, as

bCFAA.��1
2 ı /� bCFD.�Hg/' bCFAA. /� bCFDA.��1

2 /� bCFD.�Hg/

' bCFAA. /� bCFD.�Hg/;

since �2 2MCG˛0.Z
g/ implies �2 2MCGˇ

0
.Zg/.

Proof of Lemma 5.1 Choose factorization � for  , then V� is a factorization for V .
Choose cDA. ;�/ and cDA. V ; V�/ as models for the bCFDA invariants behind the
bCFAA invariants. The lemma then follows from the stabilization property for cDA. ;�/.

We can see this by comparing the Heegaard diagrams underlying the two sides of
(26). First, the Heegaard diagram for cDA. V ; V�/ is constructed from that for cDA. ;�/
by adjoining a horizontal strip of diagrams for the identity diffeomorphism of the genus
1 surface at the top. Likewise, the Heegaard diagrams of H gC1 and �H gC1 are
obtained from that of Hg and �Hg by adjoining diagrams of H 1 and �H 1 to the
top. These constructions are combined in Figure 17.

By Remark 4.1, generators in the chain complex

(29)
� bCFAA. /� bCFD.Hg/

�
� bCFD.�Hg/
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correspond to certain tuples of intersection points in the part of the diagram below the
dashed line in Figure 17, while generators in the chain complex

(30)
� bCFAA. V /� bCFD.H gC1/

�
� bCFD.�H gC1/

correspond to certain tuples of intersection points in the full diagram. Likewise, there is
a correspondence between arrows in the type DA action on the two sides, and domains
in appropriate parts of the diagram.

The choice of intersection points in the adjoined portion of the diagram is forced (as
marked in the figure), which means that it is the same for all generators in (30). So there
is a one-to-one correspondence between generators in (29) and (30). Moreover, since
there are no closed domains above the dashed line, all arrows in (30) automatically
have domains restricted below the dashed line. By Remark 4.3, there is a one-to-one
correspondence between these arrows and the arrows in (29). This shows the chain
complexes (29) and (30) are isomorphic, proving Lemma 5.1.

For Lemma 5.3, we need to show

bCFAD.�/� bCFD.Hg/' bCFD.Hg/

for any � 2 MCGˇ
0
.Zg/. It suffices to verify the equation for a set of generators

of MCGˇ
0
.Zg/.

We find generators for the strongly based mapping class group by appealing to results
on the usual mapping class group. Let Fg be the genus g surface with a basepoint.
Let MCG.Fg/ be the group of isotopy classes of diffeomorphisms on Fg that fixes the
basepoint, with isotopies also required to fix the basepoint. It is related to MCG0.Zg/

by a short exact sequence (see [4, Section 4.2.5]):

0! Z
�@
�!MCG0.Zg/!MCG.Fg/! 0:

Here �@ maps the generator of Z to the boundary Dehn twist in MCG0.Zg/. This is
the element that performs a Dehn twist along a loop parallel to the boundary of Fg;1 .

There is, likewise, a short exact sequence

0! Z
�@
�!MCGˇ

0
.Zg/!MCGˇ.Fg/! 0;

where MCGˇ.Fg/ is the subgroup of MCG.Fg/ consisting of restrictions of automor-
phisms of the 0–framed handlebody Hg . This exact sequence shows that a generating
set of MCGˇ

0
.Zg/ can be obtained by adding the boundary Dehn twist to the lifting of

a generating set of MCGˇ.Fg/.
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A generating set of MCGˇ.Fg/ is given in [20] (the corresponding notation in that paper
is MCG�.Fg/). We reproduce the list of generators, together with the action of each
generator on �1.Fg/ here. For an element  2MCGˇ.Fg/, let  ]W �1.Fg/!�1.Fg/

be its action on �1.Fg/. We let a1; b1; : : : ; ag; bg be a set of standard generators
of �1.Fg/, with each bi contractible in the handlebody, and each ai intersecting bi

once. Let si D a�1
i b�1

i aibi , so that sn � � � s2s1 D 1 is a relation in �1.Fg/. In [20],
a genus g surface is considered as a sphere with g handles attached. Each handle,
together with its immediate base, is called a knob. We refer to that paper for diagrams
and geometric description of these generators.

Theorem 5.4 (Suzuki [20]) The group MCGˇ.Fg/ is generated by �; !1;�1; �12;�12

and �12 , whose actions on �1.Fg/ are the following:

� Cyclic translation of handles �]W ai ! aiC1; bi ! biC1 , where indices are
taken modulo g .

� Twisting a knob !1]W a1! a�1
1

s�1
1
; b1! a�1

1
b�1

1
a1 , aj ! aj , bj ! bj for

2� j � n.

� Twisting a handle, or Dehn twist �1]W a1 ! a1b�1
1

, b1 ! b1 , aj ! aj ,
bj ! bj for 2� j � n.

� Interchanging two knobs �12]W a1 ! s�1
1

a2s1; a2 ! a1 , b1 ! s�1
1

b2s1 ,
b2! b1 , aj ! aj , bj ! bj for 3� j � n.

� Sliding along a2 �12]W a1 ! a1.b
�1
2

a�1
2

b2/, aj ! aj for j ¤ 1, b2 !

a2b2.a
�1
1

b1a1/.b
�1
2

a�1
2

b2/, bj ! bj for j ¤ 2.

� Sliding along b2 �12]W a1!b1a1b�1
2

s2.a
�1
1

b�1
1

a1/, a2!a2b2.a
�1
1

b�1
1

a1/b
�1
2

,
aj ! aj for j ¤ 1; 2, bi! bi for 1� i � g .

Of these, only � is nonlocal in the sense that it is not restricted to a part of the surface
with fixed genus. All other generators are restricted to a genus 1 or 2 part of the
surface. We can remove � in favor of other local generators by writing

��1
D �12 ı �23 ı � � � ı �g�1;g ı .!g]/

�2;

where !g] is similar to !1] , except acting on the gth handle, and �i;iC1 interchanges
the i th and .i C 1/th knobs. The equation can be verified by comparing the actions
of two sides on �1.Fg/: the initial .!g]/

�2 has the effect of conjugating ag and bg

by s�1
g . After interchanging the knobs in succession, the action of the right side on

�1.Fg/ is a1 ! s�1
1

s�1
2
� � � s�1

g agsg � � � s2s1 , a2 ! a1 , a3 ! a2 , and so on, and
similarly for the bi ’s. We then apply the relation sg � � � s2s1 D 1.
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Since the boundary Dehn twist equals �g , the gth power of the cyclic translation of
handles, the same generators also generate the group MCGˇ

0
.Zg/. Thus, we have

proven the following.

Corollary 5.5 The group MCGˇ
0
.Fg/ is generated by !1; !g; �1; �12; �12 and �i;iC1

for 1� i � g� 1.

Each of the generators in Corollary 5.5 is confined to one or two knobs on the surface.
Our strategy will be to check (27) on a surface of the corresponding genus, that is, 1
or 2, then extend the result to the general case. First, we compute a decomposition of
these generators into arcslides. An arcslide with B pair .b1; b2/ and C pair .c1; c2/,
with b1 sliding over c1 , is denoted b1! c1 . The points are always labeled 0 to 4g�1

from left to right. The results are

�12W 3! 4; 6! 7; 5! 6; 4! 5; 2! 3; 5! 6; 4! 5; 3! 4;

1! 2; 4! 5; 3! 4; 2! 3; 0! 1; 3! 4; 2! 3; 1! 2;

�12W 4! 3; 1! 0; 1! 2; 5! 4; 6! 5;

�12W 0! 1; 3! 4; 6! 7; 6! 5; 2! 3; 1! 2; 3! 2;

!1W 2! 3; 1! 2; 2! 3; 1! 2; 2! 3; 1! 2;

�1W 2! 3:

To verify these decompositions, we compute their actions on �1.F
ı.Zg//. For any

pointed matched circle Z , recall that the surface with circle boundary Fı.Z/ is formed
by attaching 1–handles to Z along the matched pairs of points in a�Z , then gluing
in a solid disk on the other side. Choosing z 2Z as the basepoint, the fundamental
group of Fı.Z/ is generated freely by paths through the 1–handles. We choose the
following orientation for the generators of the fundamental group. For the genus 1

cases, we have

!1W

0 1 2 3

a�1
1

b1

�1W

0 1 2 3

a1 b1

and for all genus 2 cases,

0 1 2 3 4 5 6 7

a�1
2

b2 a�1
1

b1
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a1 b1

� � � � � �

)

a1b1
b1

� � � � � �

a1
b1

� � � � � �

)
a1b�1

1 b1

� � � � � �

a1 b1

� � � � � �

)
a1

a1b1

� � � � � �

a1
b1

� � � � � �

) a1
a�1

1 b1

� � � � � �

Figure 18: Actions of arcslides on the fundamental group (underslide)

An arcslide � W Z1! Z2 induces an action

��W �1.F
ı.Z1//! �1.F

ı.Z2//

on the fundamental groups. We describe this action by expressing each generator of
�1.F

ı.Z2// (corresponding to a pair of matched points in Z2 ) in terms of the images
under �� of generators of �1.F

ı.Z1//. This can be computed from the definition of
arcslides; see, for example, [11, Figure 3]. The results are shown in Figures 18 and 19.
For example, the first diagram means that if the two displayed handles in the starting
pointed matched circle correspond to generators a1 and b1 , then the two displayed
handles in the ending pointed matched circle correspond to ��.a1b1/ and ��.b1/ (the
relation for handles unaffected by the arcslide is clear).

As an example, we verify the decomposition of �12 into arcslides. Only the two middle
pairs, corresponding to generators b2 and a�1

1
, are moved during this sequence of

arcslides. We follow what happens to these two pairs in Table 1. We identify pairs of
points in a sequence of arcslides as before. Each line in the table writes the generator
corresponding to pairs identified with the initial b2 and a�1

1
pairs in terms of ��.�/ of

the initial generators.

After this sequence of arcslides, the two middle pairs have switched positions. So the
action is a�1

1
! b�1

2
a2b2a�1

1
and b2! a2b2a�1

1
b1a1b�1

2
a�1

2
b2 . The first equation

can be rewritten as a1! a1b�1
2

a�1
2

b2 . This agrees with the fundamental group action
given in Theorem 5.4.

Proof of Lemma 5.3 The same argument as in the proof of Lemma 5.1 shows that if
bCFAD.�/� bCFD.Hg/' bCFD.Hg/, then bCFAD. V�/� bCFD.HgC1/' bCFD.HgC1/,
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a1
b1

� � � � � �

)
a�1

1
b1

b1

� � � � � �

a1
b1

� � � � � �

)
b1a�1

1
b1

� � � � � �

a1 b1

� � � � � �

)

a1b1

b1

� � � � � �

a1

b1

� � � � � �

) a1
a1b�1

1

� � � � � �

Figure 19: Actions of arcslides on the fundamental group (overslide)

Arcslide b2 a�1
1

4! 3 b2 b2a�1
1

1! 0 b2 a2b2a�1
1

1! 2 b�1
2

a2b2a�1
1

a2b2a�1
1

5! 4 b�1
2

a2b2a�1
1

a2b2a�1
1

b1

6! 5 b�1
2

a2b2a�1
1

a2b2a�1
1

b1a1b�1
2

a�1
2

b2

Table 1: Trajectories of generators b2 and a�1
1

under various arcslides.

where V� is the element of MCG0.ZgC1/ that fixes the new handle and acts as �
elsewhere. Here there is again an one-to-one correspondence on the generators between
bCFAD.�/� bCFD.Hg/ and bCFAD. V�/� bCFD.H gC1/. There is exactly one domain

in the adjoined portion that can (and does) contribute an arrow. The evaluation there is
equivalent to the evaluation of bCFAD.IZ/� bCFD.H 1/' bCFD.H 1/ on the genus 1

pointed matched circle, giving the arrow in bCFD.H gC1/ that is inside the adjoined
pointed matched circle. The remaining domains must be outside the adjoined region,
showing a one-to-one correspondence between arrows in bCFAD.�/� bCFD.Hg/, and
the remaining arrows in bCFAD. V�/� bCFD.H gC1/. This argument works whether
ZgC1 is formed as Z1#Zg or as Zg#Z1 .

From this, we see that it is sufficient to verify (27) for each of the generators of
MCGˇ

0
.Fg/ in its respective minimum genus (1 or 2) case.
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To do so, we decompose each generator � of MCGˇ
0
.Fg/ (for g D 1 or 2 depending

on � ) into arcslides �n ı � � � ı �1 , as given above. Then we directly compute the left
side of (27) using the constructions for cDA.�i/. This reduces to a finite computation,
which we performed on a computer using a Python program (which implements the
description of cAA.IZ/ and the box tensor product). The code for the computation can
be found at https://github.com/bzhan/auto2. The entire computation took less
than 20 seconds.

This concludes the proof of Lemma 5.3, and therefore Theorem 2.4.
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