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Function spaces and classifying spaces
of algebras over a prop

SINAN YALIN

The goal of this paper is to prove that the classifying spaces of categories of algebras
governed by a prop can be determined by using function spaces on the category of
props. We first consider a function space of props to define the moduli space of
algebra structures over this prop on an object of the base category. Then we mainly
prove that this moduli space is the homotopy fiber of a forgetful map of classifying
spaces, generalizing to the prop setting a theorem of Rezk.

The crux of our proof lies in the construction of certain universal diagrams in cat-
egories of algebras over a prop. We introduce a general method to carry out such
constructions in a functorial way.

18D10, 18D50, 18G55, 55U10

Introduction

Associative algebras, Lie algebras, Poisson algebras and their variants play a key role
in algebra, topology, category theory, differential and algebraic geometry, mathematical
physics. They all share the common feature of being defined by operations with several
inputs and one single output (the associative product, the Lie bracket, the Poisson
bracket). A powerful device to handle such kinds of algebraic structure is the notion
of operad, which has proven to be a fundamental tool to study algebras such as the
aforementioned examples, feeding back important outcomes in these various fields.
However, algebraic structures equipped not only with products but also with coproducts
play a crucial role in various places in mathematics. It is worth mentioning, for instance,
the following important examples: Hopf algebras in representation theory and mathe-
matical physics, Frobenius algebras encompassing the Poincaré duality phenomenon in
algebraic topology (which corresponds to unitary and counitary Frobenius bialgebras,
see Kock [16]), Lie bialgebras introduced by Drinfeld in quantum group theory (see
Drinfel’d [6; 7]), involutive Lie bialgebras originally encoding operations on free loops
on surfaces in the work of Turaev [24] and then generalized to higher dimensional
manifolds by Chas and Sullivan [4] in string topology [3]. A convenient way to handle
such kinds of structure is to use the formalism of props, a generalization of operads
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encoding algebraic structures based on operations with several inputs and several
outputs. A dg prop is a collection of complexes P D fP .m; n/gm;n2N , where each
P .m; n/ represents formal operations with m inputs and n outputs. This collection P

is equipped with composition products grafting and concatenating these operations in a
compatible way.

This paper is a follow-up to Yalin [25], where we set up a homotopy theory for algebras
over (possibly colored) differential graded (dg for short) props. The crux of our approach
lies in the proof that the Dwyer–Kan classifying spaces attached to categories of algebras
over dg props are homotopy invariants of the dg prop. Such spaces have been introduced
by Dwyer and Kan in their seminal work on simplicial localization of categories; see
[10; 8; 9]. Recall from these papers that the classifying space of a category with weak
equivalences (for instance a model category) is the nerve of its subcategory of weak
equivalences. It encodes information about homotopy types and internal symmetries of
the objects, ie their homotopy automorphisms. The goal of the present paper is to give
another description of these classifying spaces, in terms of function spaces of dg prop
morphisms, in order to make their homotopy theory accessible to computation. These
function spaces are moduli spaces of algebra structures, that is, simplicial sets PfX g

whose vertices are dg prop morphisms P ! EndX representing a P –algebra structure
on an object X of the base category. For us, the base category is the category Ch of
Z–graded chain complexes over a field K. Let ChP be the category of P –algebras
and wChP be its subcategory obtained by restriction to morphisms which are quasi-
isomorphisms in Ch. Let us denote by N .�/ the nerve of a category. Our main theorem
reads as follows.

Theorem 0.1 Let P be a cofibrant dg prop defined in the category Ch of chain
complexes and let X 2 Ch. The commutative square

PfX g

��

// N wChP

��

fX g // N wCh

is a homotopy pullback of simplicial sets.

As a consequence, we get the following decomposition of function spaces in terms of
homotopy automorphisms.

Corollary 0.2 We have

PfX g �
a
ŒX �

L wChP .X;X /;
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where L.�/ is the simplicial localization functor of Dwyer–Kan [8], and ŒX � ranges
over the weak equivalence classes of P –algebras having X as underlying object. In
particular, the simplicial monoids of homotopy automorphisms L wChP .X;X / are
homotopically small in the sense of Dwyer–Kan, that is, their homotopy groups are all
small as sets.

Theorem 0.1 is a broad generalization of the first main result of Rezk’s thesis [21,
Theorem 1.1.5], which concerns the case of operads in simplicial sets and simplicial
modules. However, the method of [21] relies on the existence of a model category
structure on algebras over operads, which does not exist anymore for algebras over
dg props. The crux of the proof of Theorem 0.1 lies in the construction of functorial
diagram factorizations in categories of algebras over dg props. We use a new approach,
relying on universal categories of algebras over dg props, to perform such constructions
in our context. This method enables us to get around the lack of model structure.

We would like to emphasize some links with two other objects encoding algebraic
structures and their deformations. Theorem 0.1 asserts that we can use a function space
of dg props, the moduli space PfX g, to determine classifying spaces of categories
of algebras over dg props N wChP . The homotopy groups of this moduli space,
in turn, can be approached by means of a Bousfield–Kan-type spectral sequence.
The E2 –page of this spectral sequence is identified with the cohomology of certain
deformation complexes. These complexes have been studied in Frégier, Markl and
Yau [11], Markl [18] and Merkulov and Vallette [19]. These papers prove the existence
of an L1–structure on such complexes which generalizes the intrinsic Lie bracket of
Schlessinger and Stasheff [23]. We aim to apply this spectral sequence technique and
provide new results about the deformation theory of bialgebras in an ongoing work.
To complete this outlook, we point out that Ciocan-Fontanine and Kapranov in [5]
used a similar approach to that of Rezk in order to define a derived moduli space of
algebras structures in the formalism of dg schemes. The author recently proved in [27],
by different methods, that the simplicial moduli spaces considered in the present paper
are also the global points of derived moduli stacks in the setting of Toën and Vezzosi’s
derived algebraic geometry, and that the deformation complexes of [19] really compute
the tangent complexes of these stacks.

Organization In Section 1, we briefly recall several properties of dg props and their
algebras, and we define the notion of moduli space of algebraic structures. In Section 2,
we revisit the notion of a colored dg prop as a symmetric monoidal dg category generated
by words of colors. Then we carry out the main technical construction of this section:
a dg category associated to the data of a small category J and a colored dg prop PI
encoding I–diagrams of P –algebras, where I is a subcategory of J . This category
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of “formal variables” is used to explain how a functorial I–diagram of P –algebras
can be extended to a functorial J –diagram of P –algebras under several technical
assumptions. This construction applies in particular to the functorial factorizations of
morphisms provided by the axioms of model categories. In Section 3, we prove that
the classifying space of quasi-isomorphisms of P –algebras is weakly equivalent to the
classifying space of acyclic surjections of P –algebras. For this, we need to examine in
Section 3 how the internal and external tensor products of a diagram category behave
with respect to its injective and projective model structures. The projective case is more
subtle and does not appear in the literature. Then we combine the results of Section 2,
those of Section 3 and Quillen’s Theorem A to provide this weak equivalence (induced
by an inclusion of categories). Finally, in Section 4 we rely on the previous results to
generalize [21, Theorem 1.1.5] to the dg prop setting.

Acknowledgements I would like to thank Benoit Fresse for his useful remarks. I also
thank the referee for careful reading and useful comments.

1 Props, algebras and moduli spaces

Throughout this paper, we work in the category Ch of Z–graded chain complexes over
a field K. We write “dg” as an abbreviation for “differential graded”. We briefly recall
our conventions and the main definitions concerning dg props in this section. We refer
to [12] for a more comprehensive account.

1.1 Background on props and their algebras

An S–biobject in Ch is a double sequence fM.m; n/ 2 Chg.m;n/2N2 , where each
M.m; n/ is equipped with a right action of the symmetric group on m letters †m , a
left action of the symmetric group on n letters †n , such that these actions commute
with each other.

Definition 1.1 A dg prop is an S–biobject in Ch endowed with associative horizontal
composition products

ıhW P .m1; n1/˝P .m2; n2/! P .m1Cm2; n1C n2/;

vertical associative composition products

ıvW P .k; n/˝P .m; k/! P .m; n/

and units �W K! P .n; n/. These products satisfy the exchange law

.f1 ıh f2/ ıv .g1 ıh g2/D .�1/jg1jjf2j.f1 ıv g1/ ıh .f2 ıv g2/
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and are compatible with the actions of symmetric groups and with the differentials.
Morphisms of dg props are equivariant morphisms of collections compatible with the
composition products. We denote by Prop the category of dg props.

The following definition shows how a given dg prop encodes algebraic operations on
the tensor powers of a chain complex.

Definition 1.2 (1) The endomorphism dg prop of a chain complex X is given by
EndX .m; n/ D HomCh.X

˝m;X˝n/, where HomCh.�;�/ is the internal hom
bifunctor of Ch. The horizontal composition is given by the tensor product of
homomorphisms and the vertical composition is given by the composition of
homomorphisms.

(2) Let P be a dg prop. A P –algebra is a chain complex X equipped with a dg
prop morphism P ! EndX .

Hence any “abstract” operation of P is sent to an operation on X , and the way abstract
operations compose under the composition products of P tells us the relations satisfied
by the corresponding algebraic operations on X .

One can carry out similar constructions in the category of colored S–biobjects in order
to define colored dg props and their algebras.

Definition 1.3 Let C be a non-empty set, called the set of colors.

(1) A C –colored S–biobject M is a double sequence of chain complexes

fM.m; n/g.m;n/2N2 ;

where each M.m; n/ admits commuting right †m action and left †n action as
well as a decomposition

M.m; n/D
M

ci ;di2C

M.c1; : : : ; cmI d1; : : : ; dn/

compatible with these actions. The objects M.c1; : : : ; cmI d1; : : : ; dn/ should
be thought of as spaces of operations with colors c1; : : : ; cm indexing the m

inputs and colors d1; : : : ; dn indexing the n outputs.

(2) A C –colored dg prop P is a C –colored S–biobject endowed with a horizontal
composition

ıhW P .c11; : : : ; c1m1
I d11; : : : ; d1n1

/˝ � � �˝P .ck1; : : : ; ckmk
I dk1; : : : ; dkn1

/

! P .c11; : : : ; ckmk
I dk1; : : : ; dknk

/� P .m1C � � �Cmk ; n1C � � �C nk/
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and a vertical composition

ıvW P .c1; : : : ; ck I d1; : : : ; dn/˝P .a1; : : : ; amI b1; : : : ; bk/

! P .a1; : : : ; amI d1; : : : ; dn/� P .m; n/;

which is equal to zero unless bi D ci for 1 � i � k . These two compositions
satisfy associativity axioms (we refer the reader to [14] for details).

Definition 1.4 (1) Let fXcgC be a collection of chain complexes. The C –colored
endomorphism dg prop EndfXcgC

is defined by

EndfXcgC
.c1; : : : ; cmI d1; : : : ; dn/D HomCh.Xc1

˝ � � �˝Xcm
;Xd1

˝ � � �˝Xdn
/:

(2) Let P be a C –colored dg prop. A P –algebra is the data of a collection of
objects fXcgC and a C –colored dg prop morphism P ! EndfXcgC

.

Remark 1.5 Let I be a small category and let P be a dg prop. We can build an ob.I/–
colored dg prop PI such that the PI –algebras are the I–diagrams of P –algebras
in Ch in the same way as in [17]. We refer the reader to Definition 2.3 where this
construction is made explicit.

We provide Ch with the model category structure such that the weak equivalences
are quasi-isomorphisms and fibrations are degreewise surjections. The category of
S–biobjects is a diagram category over Ch, so it inherits a cofibrantly generated model
category structure in which weak equivalences and fibrations are defined componentwise.
The free dg prop functor [12, Appendix A] gives rise to an adjunction ChS � Prop
between the category of S–biobjects ChS and the category of dg props Prop, which
transfers this model category structure to the category of dg props.

Theorem 1.6 (see [12, Theorem 4.9] and [14, Theorem 1.1]) (1) Suppose that
char.K/> 0. The category Prop0 of dg props with non-empty inputs (or outputs)
equipped with the classes of componentwise weak equivalences and component-
wise fibrations forms a cofibrantly generated semi-model category.

(2) Suppose that char.K/ D 0. Then the entire category of dg props inherits a
cofibrantly generated model category structure with the weak equivalences and
fibrations as above.

(3) Suppose that char.K/ D 0. Let C be a non-empty set. Then the category
PropC of C –colored dg props forms a cofibrantly generated model category
with fibrations and weak equivalences defined componentwise.
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A semi-model category structure is a slightly weakened version of a model category
structure where the lifting axioms only work for cofibrations with cofibrant domain,
and where the factorization axioms only work for a map with a cofibrant domain (see
the relevant section of [12]). The notion of a semi-model category is sufficient to apply
the usual constructions of homotopical algebra. A dg prop P has non-empty inputs if
it satisfies

P .0; n/D

�
K if nD 0;

0 otherwise:

We define in a symmetric way a dg prop with non-empty outputs. Such dg props usually
encode algebraic structures without unit or without counit, for instance Lie bialgebras.

We will use all the time the existence of a (semi)-model category structure on dg props.
Our results hold over a field of any characteristic: we can work alternatively with
every dg prop in characteristic zero or with dg props with non-empty inputs/outputs in
positive characteristic.

Finally, we recall from [12] the construction of the endomorphism dg prop associated
to a diagram F W J ! Ch,

EndF .m; n/ WD

Z
i2J

HomCh.X
˝m
i ;X˝n

i /;

where Xi D F.i/. This end can equivalently be defined as a coreflexive equalizer

EndF .m; n/ //
Y
i2J

HomCh.X
˝m
i ;X˝n

i /
d0
//

d1

//

Y
uW i!j

HomCh.X
˝m
i ;X˝n

j /

s0

ee

where d0 is the product of the maps

u� D .F.u/
˝n
ı�/W HomCh.X

˝m
i ;X˝n

i /! HomCh.X
˝m
i ;X˝n

j /

induced by the morphisms uW i ! j of J , and d1 is the product of the maps

u� D .�ıF.u/˝m/W HomCh.X
˝m

j ;X˝n
j /! HomCh.X

˝m
i ;X˝n

j /:

The section s0 is the projection on the factors associated to the identities idW i ! i .
This construction allows us to characterize a diagram of P –algebras F W J ! ChP ,
where ChP is the category of P –algebras in chain complexes, as a dg prop morphism

P ! EndU.F /;

where U.F / is the diagram of chain complexes underlying F .
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1.2 Moduli spaces of algebra structures

Throughout the text, we use the Kan–Quillen model category structure on simplicial sets.
A moduli space of algebra structures over a dg prop P , on a given chain complex X ,
is a simplicial set whose points are the dg prop morphisms P ! EndX and connected
components are homotopy classes of P –algebra structures on X . Such a moduli space
can be more generally defined on diagrams of chain complexes. We then deal with
endomorphism dg props of diagrams. To properly construct such a simplicial set and
give its first fundamental properties, we have to recall some results about cosimplicial
and simplicial resolutions in a model category. For the sake of brevity and clarity, we
refer the reader to [13, Chapter 16] for a complete treatment of the notions of simplicial
resolutions, cosimplicial resolutions and Reedy model categories.

Definition 1.7 Let M be a model category and let X be an object of M.

(1) A cosimplicial resolution of X is a cofibrant approximation to the constant
cosimplicial object cc�X in the Reedy model category structure on cosimplicial
objects M� of M.

(2) A simplicial resolution of X is a fibrant approximation to the constant simplicial
object cs�X in the Reedy model category structure on simplicial objects M�op

of M.

Definition 1.8 Let M be a model category and let X be an object of M.

(1) A cosimplicial frame on X is a cosimplicial object zX in M, together with a
weak equivalence zX ! cc�X in the Reedy model category structure of M� .
It has to satisfy the two following properties: the induced map zX 0!X is an
isomorphism, and if X is cofibrant in M then zX is cofibrant in M� .

(2) A simplicial frame on X is a simplicial object zX in M, together with a weak
equivalence cs�X ! zX in the Reedy model category structure of M� . It
has to satisfy the following two properties: the induced map X ! zX 0 is an
isomorphism, and if X is fibrant in M then zX is fibrant in M�op

.

Proposition 1.9 [13, Proposition 16.1.9] Let M be a model category. There exist
functorial simplicial resolutions and functorial cosimplicial resolutions in M.

Proposition 1.10 [13, Proposition 16.6.3] Let X be an object of M.

(1) If X is cofibrant then every cosimplicial frame of X is a cosimplicial resolution
of X .

(2) If X is fibrant then every simplicial frame of X is a simplicial resolution of X .
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In a model category M, one can define homotopy mapping spaces MapM.�;�/, which
are simplicial sets equipped with a composition law defined up to homotopy. There
are two possible definitions. We can take either MapM.X;Y /DMorM.X ˝��;Y /,
where .�/˝�� is a cosimplicial resolution, or MapM.X;Y /DMorM.X;Y �

�

/, where
.�/�

�

is a simplicial resolution. When X is cofibrant and Y is fibrant, these two
definitions give the same homotopy type of mapping space and have also the homotopy
type of Dwyer and Kan’s hammock localization LH .M; wM/.X;Y /, where wM is
the subcategory of weak equivalences of M; see [9]. Moreover, the set of connected
components �0 MapM.X;Y / is the set of homotopy classes ŒX;Y �M in Ho.M/.

Proposition 1.11 [13, Corollaries 16.5.3 and 16.5.4] Let M be a model category
and C a cosimplicial resolution in M.

(1) If Y is a fibrant object of M, then MorM.C;Y / is a fibrant simplicial set.

(2) If pW X � Y is a fibration in M, then p�W MorM.C;X /� MorM.C;Y / is a
fibration of simplicial sets, acyclic if p is so.

(3) If pW X !
�

Y is a weak equivalence of fibrant objects in M, then

p�W MorM.C;X /!
� MorM.C;Y /

is a weak equivalence of fibrant simplicial sets.

Definition 1.12 Let P be a cofibrant dg prop in Ch. Let X be a chain complex. The
moduli space of P –algebra structures on X is the simplicial set defined by

PfX g DMorProp.P ˝�
�;EndX /;

where .�/˝�� is a functorial cosimplicial frame on Prop. We get a functor

Prop! sSet; P 7! PfX g;

where sSet is the category of simplicial sets.

We can already get two interesting properties of these moduli spaces.

Lemma 1.13 Let P be a cofibrant dg prop. For any chain complex X , the moduli
space PfX g is a fibrant simplicial set.

Proof Every chain complex is fibrant, and fibrations of dg props are defined compo-
nentwise, so EndX is a fibrant dg prop. Given that P is cofibrant, the mapping space
PfX g is fibrant.
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In this case, the connected components of this moduli space are exactly the homotopy
classes of P –algebra structures on X .

To conclude, let us note that these moduli spaces are a well defined homotopy invariant
of algebraic structures over a given object.

Lemma 1.14 Let X be a chain complex. Every weak equivalence of cofibrant dg props
P !
�

Q gives rise to a weak equivalence of fibrant simplicial sets

QfX g !
�

PfX g:

Proof Let 'W P !Q be a weak equivalence of cofibrant dg props. According to [13,
Proposition 16.1.24], the map ' induces a Reedy weak equivalence of cosimplicial
resolutions P ˝��!

�
Q˝�� . The dg prop EndX is fibrant, so we conclude by [13,

Corollary 16.5.5] that this weak equivalence of cosimplicial resolutions induces a weak
equivalence between the corresponding moduli spaces.

Remark 1.15 The reader may have noticed that, using the existence of functorial
cosimplicial resolutions, Definition 1.12, Lemma 1.13 and Lemma 1.14 could have
been stated without the cofibrancy assumption on P . In this case, let

P �!
� cc�P

be such a cosimplicial resolution of a dg prop P , and

APfX g DMorProp.P
�;EndX /

be this alternative construction of the moduli space. Let

P1!
�

P

be a functorial cofibrant resolution of P . Then a cosimplicial frame on P1 is a
cosimplicial resolution of P1 by Proposition 1.10, hence a cosimplicial resolution
of P as well. By [13, Proposition 16.1.13], any two cosimplicial resolutions of a given
object are related by a zigzag whose middle object is a fibrant cosimplicial resolution,
and by [13, Corollary 16.5.5] a Reedy weak equivalence of cosimplicial resolutions
induces a weak equivalence of mapping spaces, hence

APfX g DMorProp.P
�;EndX /'MorProp.P1˝�

�;EndX /D P1fX g:

Our alternative construction of a moduli space directly from a dg prop P thus has the
homotopy type of the moduli space of homotopy P –algebra structures constructed in
Definition 1.12 from a cofibrant resolution of P .
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2 Dg categories associated to colored dg props

2.1 Colored dg props as symmetric monoidal dg categories

We revisit the definition of colored dg props by explaining how they can alternatively
be defined as symmetric monoidal dg categories “monoidally” generated by the set of
colors. We start with two simple examples before explaining the general construction.

Example 2.1 Any dg prop in Ch can alternatively be defined as a dg monoidal category
cat.P / such that ob.cat.P // D fx˝n; n 2 Ng (where x is a formal variable), the
tensor product is given by x˝m˝x˝n D x˝.mCn/ and the complexes of morphisms
by

Homcat.P/.x
˝m;x˝n/D P .m; n/:

The category of P –algebras consists of enriched symmetric monoidal functors

cat.P /! Ch

with their natural transformations.

Example 2.2 Let P be a (1–colored) dg prop. There exists a 2–colored dg prop Px!y

such that the category of Px!y –algebras is the category of morphisms f W X ! Y in
the category of P –algebras ChP . It has two colors x;y and it is generated for the com-
position products by P .x; : : : ;xIx; : : : ;x/D P .m; n/, by P .y; : : : ;yIy; : : : ;y/D

P .m; n/, and by an element f 2P .x;y/ which represents an abstract arrow f W x!y .
The associated dg monoidal category cat.Px!y/ is defined in the following way. Let
Freemon.x;y/ be the monoid freely generated by the two generators x and y , ie the
set of words in two letters w 2 Freemon.x;y/. Then the objects of cat.Px!y/ are the
“monoidal words”

ob.cat.Px!y//D fw˝.x;y/; w 2 Freemon.x;y/g;

where w˝.x;y/ is the formal tensor product corresponding to the word w . The
complexes of morphisms are

Homcat.Px!y/.w˝.x;y/; v˝.x;y//D Px!y.w; v/

where w is the ordered sequence of letters, ie colors, appearing in the word w . Algebras
over Px!y are enriched symmetric monoidal functors cat.Px!y/! Ch. A Px!y –
algebra is equivalent to a diagram of P –algebras f�! �g ! ChP .

These constructions can be generalized to arbitrary diagrams as follows.
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Definition 2.3 Let I be a small category. Then there exists an ob.I/–colored dg
prop PI consisting of abstract objects xi associated to i 2 I , and the morphisms of PI
are generated by operations p 2 PI.x

˝m
i ;x˝n

i / associated to each p 2 P .m; n/ and
each variable xi , as well as abstract arrows f W xi! xj associated to the morphisms
of I . The corresponding dg monoidal category cat.PI/ is defined as follows:

ob.cat.PI//D fw˝.xi ; i 2 ob.I//; w 2 Freemon.xi ; i 2 ob.I//g:

The tensor product is defined by

w˝.xi ; i 2 ob.I//˝ v˝.xi ; i 2 ob.I//D .w � v/˝.xi ; i 2 ob.I//:

The complexes of morphisms are

Homcat.PI/.w˝.xi ; i 2 ob.I//; v˝.xi ; i 2 ob.I///D PI.w; v/:

The composition on the dg hom is the vertical composition product of PI , and the
tensor product of morphisms is the horizontal composition product of PI .

In other words, the category cat.PI/ is a differential graded monoidal category
monoidally generated on objects by the set of colors of PI . This can be generalized in
any symmetric monoidal category, giving an alternative definition of a colored dg prop.

Definition 2.4 (1) A C –colored dg prop is a small symmetric monoidal dg category
monoidally generated by C .

(2) A PI –algebra is a symmetric monoidal dg functor cat.PI/! Ch.

Proposition 2.5 A PI –algebra corresponds to an I–diagram of P –algebras.

This result follows from the construction of PI in terms of generators and relations.
For more details we refer the reader to [17, Section 2], where such a construction is
carried out in the case of colored dg operads.

2.2 Categories of universal twisted sums and functorial diagrams
of algebras

Let PJ be a colored prop on a small category J . The category cat.PJ / reflects the
universal structures of the symmetric monoidal category defined by a P –algebra in the
category of chain complexes. But for some constructions of homotopy theory, we need
operations of the ambient category of chain complexes which lie outside the image of this
category cat.PJ /. Namely, we need to perform direct sums C ˚D , suspensions †C ,
and twisted complexes .C; d/ which we form by adding a twisting homomorphism
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d 2 Hom.C;C / to the internal differential of a chain complex ıW C ! C . These
operations can clearly not be formed within the image of cat.PJ / in the category
of chain complexes in general. Therefore, we define a universal enriched category
TwSum.PJ / generated by the formal image of the tensor products w.xj ; j 2 J / 2
ob.cat.PJ // under such direct sum, suspension and twisting operations. If we put
all these operations together, then we get the notion of a twisted direct sum which we
formalize in our definition. Let us simply mention that we use formal tensor products
Ke ˝ V , where Ke is the free K–module spanned by a homogeneous element of
degree d D deg.e/, to create a d –fold suspension operation †d W C 7!†dC . In the
sequel, our idea is to define universal models of the homotopical construction which
we need to work out our problems in this enriched category TwSum.PJ /.

2.2.1 Construction of the category of universal twisted sums Let J be a small
category and PJ the associated ob.J /–colored dg prop. Our goal is to build from
cat.PJ / a certain dg monoidal category TwSum.PJ / called its category of universal
twisted sums. The objects are pairs�M

˛2A

.Ke˛/˝ .x˛1
˝ � � �˝x˛n

/; tw
�
;

where

� the first term
L
˛2A is a formal sum over a finite set A of multi-indices ˛ D

.˛1; : : : ; ˛n/ of formal tensor products .Ke˛/˝.x˛1
˝� � �˝x˛n

/, where x˛1
˝

� � �˝x˛n
is an object of cat.PJ / and we consider the graded K–module Ke˛

generated by a homogeneous element e˛ of a certain degree d˛ D deg.e˛/;

� the second term represents a collection of homomorphisms

tw˛ ˇ 2 e˛˝ e_ˇ ˝Homcat.PJ /.xˇ1
˝ � � �˝xˇm

;x˛1
˝ � � �˝x˛n

/;

indexed by the couples .˛; ˇ/ 2 A2 , homogeneous of degree �1, that satisfy
the relation of twisting cochains

ı.tw˛ˇ/C
X
2A

tw˛ ı twˇ D 0

in the dg-module

e˛˝ e_ˇ ˝Homcat.PJ /.xˇ1
˝ � � �˝xˇm

;x˛1
˝ � � �˝x˛n

/;

for every couple .˛; ˇ/2A2 of sequences of colors. The notation e_
ˇ

represents
an element which is dual to eˇ , homogeneous of degree deg.e_

ˇ
/D� deg.eˇ/,

and we use the relation e_
ˇ
.eˇ/D 1 when we form the composites tw˛  ı tw ˇ .
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We define the dg-modules of homomorphisms of TwSum.PJ / as the twisted sums of
dg-modules; that is, for

LD

�M
ˇ2B

.Keˇ/˝ .xˇ1
˝ � � �˝xˇm

/; twL

�
;

K D

�M
˛2A

.Ke˛/˝ .x˛1
˝ � � �˝x˛n

/; twK

�
;

we define

HomTwSum.PJ /.L;K/ WD� M
.ˇ ˛/2B�A

Ke˛˝Ke_ˇ ˝Homcat.PJ /.xˇ1
˝ � � �˝xˇm

;x˛1
˝ � � �˝x˛n

/; @

�
;

with twisting homomorphism @W .fˇ ˛/ 7! .@.f /ˇ ˛/ such that

@.f /ˇ ˛ D
X
2B

twˇ  ıf ˛ �
X
2A

sign.f /fˇ  ı tw ˛

for every couple .˛; ˇ/ of sequences of colors, where sign.f / is a sign depending
on f .

Claim This endows TwSum.PJ / with a dg category structure.

Proof We equip this dg hom HomTwSum.PJ /.K;L/ with the total differential ıC @,
where ı is the internal differential induced by the differential of P and @ is the twisting
homomorphism. The fact that .ı C @/2 D 0 follows from the relation of twisting
cochains satisfied by the tw with respect to ı . Indeed, for each ˇ 2B; ˛ 2A, we have

.ıC @/2.f /ˇ;˛ D .ı.@/C @
2/.f /ˇ;˛;

where ı.@/ is the usual differential of a homomorphism defined by the commutator

ı.@/D ı ı @� .�1/deg.@/@ ı ı D ı ı @C @ ı ı:

We have

ı.@/.f /ˇ;˛ D ı.@.f /ˇ;˛/C @.ı.f //ˇ;˛ D ı.twˇ;˛/.f /;
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and

@2.f /ˇ;˛ D @.@.f //ˇ;˛ D
X
2B

twˇ  ı @.f / ˛ �
X
2A

sign.@.f //@.f /ˇ  ı tw ˛

D

X
2B

twˇ  ı @.f / ˛C
X
2A

sign.f /@.f /ˇ  ı tw ˛

D

�X
2B

twˇ  ı tw ˛

�
.f /

because sign.@.f //D sign.f /� 1 (the homomorphism @ is of degree �1), so

.ıC @/2.f /ˇ;˛ D

�
ı.twˇ;˛/C

X
2B

twˇ  ı tw ˛

�
.f /D 0:

For each object

K D

�M
˛

Ke˛˝ .x˛1
˝ � � �˝x˛n

/; twK

�
of TwSum.PJ /, the associated identity element in the dg hom HomTwSum.PJ /.K;K/ is
the 0–cycle defined by M

˛

.Ke˛/˝Ke_˛ ˝ idx˛1
˝���˝x˛n

;

where idx˛1
˝���˝x˛n

is the identity on the object x˛1
˝ � � � ˝ x˛n

of cat.PJ /. The
composition law

HomTwSum.PJ /.K;L/˝HomTwSum.PJ /.L;M /! HomTwSum.PJ /.K;M /

on such dg homs is then defined by the composition of dg homs in cat.PJ / and the
relation e_˛ .e˛/D 1 on matching colors. The compatibility of this composition with
the twisted differentials of the dg homs is automatic.

2.2.2 The tensor structure on a category of universal twisted sums The category
TwSum.PJ / is equipped with a dg enriched symmetric monoidal structure, defined by
the natural distribution formula at the level of objects; that is, for

K D

�M
˛

.Ke˛/˝ .x˛1
˝ � � �˝x˛m

/; twK

�
;

LD

�M
ˇ

.Keˇ/˝ .xˇ1
˝ � � �˝xˇn

/; twL

�
;
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we define

K˝L WD

�M
˛;ˇ

.Ke˛˝eˇ/˝.x˛1
˝� � �˝x˛m

˝xˇ1
˝� � �˝xˇn

/; twK˝idCid˝twL

�
;

where we use the horizontal compositions�
Ke ˝Ke_˛ ˝Homcat.PJ /.x˛1

˝ � � �˝x˛m
;x1
˝ � � �˝xp

/
�

˝
�
Keı˝Ke_ˇ ˝Homcat.PJ /.xˇ1

˝ � � �˝xˇn
;xı1
˝ � � �˝xıq

/
�

˝
�! .Ke ˝Keı/˝ .Ke˛˝Keˇ/

_
˝Homcat.PJ /.x˛1

˝� � �˝x˛m
˝xˇ1

˝� � �˝xˇn
;

x1
˝ � � �˝xp

˝xı1
˝ � � �˝xıq

/

to define the formal twisted cochain twK ˝ idC id˝ twL of this object K˝L. An
analogous construction holds at the level of homomorphisms.

Each object x˛1
˝ � � �˝x˛n

2 cat.PJ / is naturally identified with the trivial twisted
sum KD .Ke0˝.x˛1

˝� � �˝x˛n
/; 0/ in TwSum.PJ /, where deg.e0/D0)Ke0DK.

In particular, to each x˛i
corresponds a trivial twisted sum K˛i

D .Ke0 ˝ x˛i
; 0/.

This defines a functor

cat.PJ /! TwSum.PJ /:

The category of universal twisted sums satisfies the following universal property with
respect to this functor.

Lemma 2.6 For every symmetric monoidal dg functor RW cat.PJ /! Ch (that is,
every PJ –algebra), there exists a canonical factorization:

cat.PJ /

��

R
// Ch

TwSum.PJ /

zR

::

Proof We construct zR by first setting zR.K˛i
/DR.x˛i

/ so that the diagram commutes.
Then, for any object �M

˛

.Ke˛/˝ .x˛1
˝ � � �˝x˛n

/; tw
�
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of TwSum.PJ /, we define

zR

�M
˛

.Ke˛/˝ .x˛1
˝ � � �˝x˛n

/; tw
�

D

�M
˛

.Ke˛/˝ .R.x˛1
/˝ � � �˝R.x˛n

//;R.tw/
�
;

where the left-hand term is built with the direct sum and tensor product of Ch. The
differential of zR

�L
˛.Ke˛/˝.x˛1

˝� � �˝x˛n
/; tw

�
is then defined on each component

of this direct sum by the sum of the differential of R.x˛1
/˝ � � � ˝R.x˛n

/ with a
twisting cochain R.tw/ defined as follows. Since R is a symmetric monoidal dg
functor, it induces a morphism of chain complexes

Rxˇ1
˝���˝xˇm ;x˛1

˝���˝x˛n
W Homcat.PJ /.xˇ1

˝ � � �˝xˇm
;x˛1

˝ � � �˝x˛n
/

! HomCh.R.xˇ1
/˝ � � �˝R.xˇm

/;R.x˛1
/˝ � � �˝R.x˛n

//;

so that the collection R.tw/D fR.tw˛ ˇ/g˛ ˇ is well defined by

R.tw˛ ˇ/DRxˇ1
˝���˝xˇm ;x˛1

˝���˝x˛n
.tw˛ ˇ/

2 e˛˝ e_ˇ ˝HomCh.R.xˇ1
/˝ � � �˝R.xˇm

/;R.x˛1
/˝ � � �˝R.x˛n

//:

This collection satisfies the relation of twisting cochains because R is a symmetric
monoidal dg functor and the collection ftw˛ ˇg˛ ˇ satisfies the relation of twisting
cochains in TwSum.PJ /.

2.2.3 Functorial diagrams of algebras Our purpose is to use categories of universal
twisted sums to construct diagrams of dg P –algebras “functorial in their variables” in
a suitable sense.

Recall that the colored dg prop PJ parametrizing J –diagrams of P –algebras is
equivalent to the datum of a symmetric monoidal dg category cat.PJ /. Algebras
over PJ are then strict symmetric monoidal dg functors cat.PJ /!Ch, and morphisms
of PJ –algebras are natural transformations preserving the strict symmetric monoidal
dg structures. Such a natural transformation corresponds to a natural transformation of
J –diagrams of P –algebras.

Now let A;BW cat.PJ / ! Ch be two such algebras, and �W A ) B be a strict
symmetric monoidal dg natural transformation. Recall that, according to Lemma 2.6,
such functors lift to strict symmetric monoidal dg functors zA; zBW TwSum.PJ /! Ch.
We want to prove that such a lift works similarly for symmetric monoidal dg natural
transformations between such functors.
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Lemma 2.7 The natural transformation � lifts to a strict symmetric monoidal dg
natural transformation z�W zA) zB .

Proof To see this, let us first recall from [15] the notion of enriched natural transfor-
mation in the case where the categories are enriched over Ch. Let F;GW C!D be two
dg functors and HomC.�;�/, HomD.�;�/ be respectively the dg homs of C and D .
A dg natural transformation � W F )G is a collection of chain morphisms

f�.x/W K! HomD.F.x/;G.x//gx2ob.C/;

that is, of 0–cycles in the complexes HomD.F.x/;G.x// indexed by the objects x

of C . For every x;y 2 ob.C/, this collection makes the following diagram commutative:

HomC.x;y/

Š

��

Š
// HomC.x;y/˝K

Gx;y˝�.x/

��

K˝HomD.x;y/

�.y/˝Fx;y

��

HomD.G.x/;G.y//

˝HomD.F.x/;G.x//

ıD

��
HomD.F.y/;G.y//

˝HomD.F.x/;F.y//
ıD

// HomD.F.x/;G.y//

For any object

K D

�M
˛

.Ke˛/˝ .x˛1
˝ � � �˝x˛n

/; twK

�
of TwSum.PJ /, we define the associated 0–cycle z� in

HomCh

��M
˛

.Ke˛/˝ .A.x˛1
/˝ � � �˝A.x˛n

//;A.twK /

�
;�M

˛

.Ke˛/˝ .B.x˛1
/˝ � � �˝B.x˛n

//;B.twK /

��
by

z�.K/D
M
˛

.Ke˛/˝ .�.x˛1
/˝ � � �˝�.x˛n

//:

We have to prove that this form a 0–cycle, thus that

.ıCB.twK // ı z�.K/D z�.K/ ı .ıCA.twK //:

The equality
ı ı z�.K/D z�.K/ ı ı
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follows from the fact that each �.x˛i
/W A.x˛i

/! B.x˛i
/ is a morphism of chain

complexes and the differential ı is the differential of B.x˛1
/˝ � � �˝B.x˛n

/ on the
left-hand side of the equality and of A.x˛1

/˝ � � � ˝A.x˛n
/ on the right-hand side.

The equality

B.twK / ı z�.K/D z�.K/ ıA.twK /

follows from the definition of A.twK / as

A.twK /D fAxˇ1
˝���˝xˇm ;x˛1

˝���˝x˛n
..twK /˛ ˇ/g˛ ˇ

(and the same for B.twK /), the fact that � is a dg natural transformation between A

and B , and the definition of z�.K/ in terms of the �.x˛i
/.

Concerning the monoidality of our collection fz�.K/gK2ob.TwSum.PJ // of 0–cycles,
recall from Section 2.2.2 that the tensor product of two objects of TwSum.PJ / is
defined by�M

˛

.Ke˛/˝ .x˛1
˝ � � �˝x˛m

/; twK

�
„ ƒ‚ …

K

˝

�M
ˇ

.Keˇ/˝ .xˇ1
˝ � � �˝xˇn

/; twL

�
„ ƒ‚ …

L

WD

�M
˛;ˇ

.Ke˛˝ eˇ/˝ .x˛1
˝ � � �˝x˛m

˝xˇ1
˝ � � �˝xˇn

/; twK ˝ idC id˝ twL

�
„ ƒ‚ …

DK˝L

and that the functors zA; zBW TwSum.PJ /! Ch associated to A;BW cat.PJ /! Ch are
defined by

zA

�M
˛

.Ke˛/˝ .x˛1
˝ � � �˝x˛n

/; tw
�

D

�M
˛

.Ke˛/˝ .A.x˛1
/˝ � � �˝A.x˛n

//;A.tw/
�
:

We have natural isomorphisms

aK˝LW
zA.K˝L/!

Š
zA.K/˝ zA.L/; bK˝LW

zB.K˝L/!
Š
zB.K/˝ zB.L/;

induced by natural isomorphisms

A. � ˝ � /!
Š

A. � /˝A. � /; B. � ˝ � /!
Š

B. � /˝B. � /;
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since A and B are symmetric monoidal functors. We have to check the commutativity
of the square below:

zA.K˝L/

aK˝L

��

z�.K˝L/
// zB.K˝L/

bK˝L

��

zA.K/˝ zA.L/
z�.K /˝z�.L/

// zB.K/˝ zB.L/

By construction of zA, zB and z� , which are defined by applying A, B and � to each
variable of the tensor powers defining the objects of TwSum.PJ /, this boils down to
the commutativity of such a monoidality square for A, B and � , which holds because
� is a monoidal natural transformation.

The naturality of fz�.K/gK2ob.TwSum.PJ // follows directly from the naturality of � .

We consequently get two functors

zA�; zB�W TwSum.PJ /
P
! ChP ;

that carry any P –algebra in TwSum.PJ /, represented by a symmetric monoidal functor
zC W cat.P / ! TwSum.PJ /, to the P –algebra in Ch represented by the composite
functors zA zC ; zB zC W cat.P /!Ch. We also have a natural transformation z��W zA�) zB�
between these functors on P –algebras.

For any small category I , we get strict symmetric monoidal dg functors

zA�; zB�W .TwSum.PJ /
P /I ! .ChP /I

and a strict symmetric monoidal dg natural transformation z��W zA�) zB� . This trans-
formation consists in a collection of natural transformations of I–diagrams of dg
P –algebras

z��.Y /W zA�.Y /) zB�.Y /

for every Y 2 .TwSum.PJ /
P /I .

Thus, whenever we have an I–diagram of P –algebras in TwSum.PJ /, say Y , we can as-
sociate an I–diagram of dg P –algebras zA�.Y / to any J –diagram of dg P –algebras A,
and a natural transformation of I–diagrams of dg P –algebras z��.Y /W zA�.Y /) zB�.Y /
to any natural transformation of J –diagrams of dg P –algebras �W A)B . This result
is equivalent to the following statement.

Proposition 2.8 Given an I–diagram Y of P –algebras in TwSum.PJ /, the above
construction determines a functor

.ChP /J ! .ChP /I :
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The main example to which we want to apply this construction is the following. Let
f W X!Y be a morphism of chain complexes. Then it admits a functorial factorization
by an acyclic cofibration (ie acyclic injection) followed by a fibration (ie a surjection).
This factorization is explicitly given by

„.f W X ! Y / W

X

X //

i

�
//

idX

33

f ++

Z

s
>> >>

p
    

Y

where

Z D .Ke0˝X ˚Ke01˝Y ˚Ke1˝Y; dZ /;

with deg.e0/D deg.e1/D 0 and deg.e01/D�1. The differential dZ can be expressed
in this direct sum by the matrix0@dX 0 0

f �dY �id
0 0 dY

1AD
0@dX 0 0

0 �dY 0

0 0 dY

1AC
0@0 0 0

f 0 �id
0 0 0

1A ;
where the first matrix of the sum is the differential of the direct sum

Ke0˝X ˚Ke01˝Y ˚Ke1˝Y

and the second is a twisting twZ , a map of degree �1 satisfying tw2
Z
D 0. The map

i sends x 2X to x˚ 0˚f .x/ and s and p are respectively projections on the first
and the third factor; that is, we have

i D
�
id 0 f

�
; s D

0@id
0

0

1A and p D

0@0

0

id

1A :
There is a diagram of chain complexes

„W Mor.Ch/! Fun.Y; Ch/;

functorial in its variables, where Mor.Ch/ is the category whose objects are morphisms
of chain complexes and morphisms are commutative squares, and Y is the small
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category whose objects and arrows are given by

Y WD

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

�

� //

33

++

�

??

��
�

9>>>>>>>=>>>>>>>;
:

Our goal is to prove that for any cofibrant dg prop P , this functor induces a functor

„W Mor.ChP /! Fun.Y; ChP /;

that is, a functor
„W .ChP /�!�! .ChP /Y :

This means the following.

Theorem 2.9 Let P be a cofibrant dg prop. The functorial factorization of morphisms
of chain complexes described above lifts to a functorial factorization of P –algebra
morphisms into an acyclic injection followed by a surjection.

Proof The general strategy is to prove that the diagram in TwSum.Px!y/ associ-
ated to „.f W X ! Y / is actually a diagram in TwSum.Px!y/

P , and then apply
Proposition 2.8.

Let f W X ! Y be a morphism of chain complexes and Px!y the 2–colored dg prop
of P –algebra morphisms. In this proof, we will use the short notation

Tw WD TwSum.Px!y/:

We can associate to the diagram of chain complexes „.f W X ! Y / a diagram
„.f W x ! y/ in Tw so that Proposition 2.8 applies. For this, recall that the colors
x and y are embedded into Tw as the objects .Ke0˝ x; 0/ and .Ke1˝ y; 0/. We
will denote by f both the operation of Px!y corresponding to f and the morphism
.Ke0˝x; 0/! .Ke1˝y; 0/ in Tw. The object z of Tw corresponding to Z is defined
to be

.Ke0˝x˚Ke01˝y˚Ke1˝y; twz/;

with

twz D

0@ tw0;0 tw01;0 tw1;0

tw0;01 tw01;01 tw1;01

tw0;1 tw01;1 tw1;1

1AD
0@ 0 0 0

e01˝ e_
0
˝f 0 e01˝ e_

1
˝�id

0 0 0

1A
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representing the twisting part twZ of Z . The maps i and p of „.f W x ! y/ are
then defined similarly to those of „.f W X ! Y /.

The endomorphism dg prop End.„.f Wx!y/;Tw/ projects to the endomorphism dg prop
End.f;Tw/ of the subdiagram f W x! y , hence we have a fibration of dg props

End.„.f Wx!y/;Tw/ � End.f;Tw/ :

We will denote these dg props by End„.f Wx!y/ and Endf for short. We have to prove
that this fibration is acyclic. For this, we consider the following commutative diagram
of S–biobjects:

Endz D Homzz

.i�;p�/

))

p�

))

i�

))

Homxz �Homxy
Homzy

��

// Homzy

i�

��

Homxz p�
// Homxy

where Homzz.m; n/DHomTw.z
˝m; z˝n/. Limits of S–biobjects are created pointwise,

so for every .m; n/ 2N2 we have a commutative diagram as follows:

HomTw.z
˝m; z˝n/

..i˝m/�;.p˝n/�/

''

.p˝n/�

((

.i˝m/�

%%

pullback

��

// HomTw.z
˝m;y˝n/

.i˝m/�

��

HomTw.x
˝m; z˝n/

.p˝n/�

// HomTw.x
˝m;y˝n/

We have to check that ..i˝m/�; .p˝n/�/ is an acyclic fibration. Since acyclic fibrations
of S–biobjects are determined pointwise, we deduce that

.i�;p�/W Endz
�� Homxz �Homxy

Homyz

is an acyclic fibration of †–objects. Let us consider now the base extensions

Endx �Homxz
Endz �Homzy

Endy D End„.f Wx!y/;

Endx �Homxz
.Homxz �Homxy

Homzy/�Homzy
Endy D Endf :

Algebraic & Geometric Topology, Volume 16 (2016)



2738 Sinan Yalin

Acyclic fibrations are stable under base extensions, and acyclic fibrations of dg props
are determined in the category of S–biobjects under the forgetful functor, so we finally
get the desired acyclic fibration of dg props

Endx �Homxz
.i�;p�/�Homzy

Endy W End„.f Wx!y/

�� Endf :

Now let us denote Xb D Ke0 , Yb D Ke1 and fbW Xb ! Yb the morphism sending
e0 to e1 . This morphism admits a factorization

Xb
//

ib

�
// Zb pb

// // Yb:

Our goal is to prove that for all natural integers m and n, we have isomorphisms of
chain complexes

HomTw.z
˝m; z˝n/Š HomCh.Z

˝m
b

;Z˝n
b
/˝P .m; n/;

HomTw.z
˝m;y˝n/Š HomCh.Z

˝m
b

;Y ˝n
b
/˝P .m; n/;

HomTw.x
˝m; z˝n/Š HomCh.X

˝m
b

;Z˝n
b
/˝P .m; n/:

The method is exactly the same for the three cases, so we just write the argument for
the third isomorphism. We need to determine the tensor powers of z . For every natural
integer n, the object z˝n is given by the direct sum of shufflesM

1�j�i�n
�2Sh.i;m�i/
�2Sh.j ;m�j/

��
�
.Ke0˝x/˝n�i ; ��..Ke01˝y/˝j ; .Ke1˝y/˝i�j /

�
;

where the action ��.A
˝k ;B˝l/ of a .k; l/–shuffle � on a pair of tensor powers

.A˝k ;B˝l/ permutes the variables of the tensor product A˝k ˝B˝l . The twisting
of z˝n is determined by

tw˝n
0;01
D e˝n

01
˝ .e_0 /

˝n
˝f ıhn and tw˝n

1;01
D e˝n

01
˝ .e_1 /

˝n
˝ .�id/ıhn;

where ıh is the horizontal composition product of the dg prop Px!y . We get:

HomTw.x
˝m; z˝n/

D

M
1�j�i�n
�2Sh.i;m�i/
�2Sh.j ;m�j/

HomTw
�
x˝m; ��..Ke0˝x/˝n�i ; ��..Ke01˝y/˝j ; .Ke1˝y/˝i�j //

�

Š

M
1�j�i�n
�2Sh.i;m�i/
�2Sh.j ;m�j/

Ke˝n�i
0
˝Ke˝j

01
˝Ke˝i�j

1
˝HomTw

�
x˝m; ��.x

˝n�i; ��.y
˝j;y˝i�j //

�
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Moreover, we have

HomTw
�
x˝m; ��.x

˝n�i ; ��.y
˝j ;y˝i�j //

�
D Px!y.x; : : : ;xI ��.x; : : : ;x; ��.y; : : : ;y///;

where Px!y.x; : : : ;xI ��.x; : : : ;x; ��.y; : : : ;y/// has m copies of the color x as
input, and as output n� i copies of color x and i copies of color y permuted by the
shuffles � and � . We want to build an isomorphismM

1�j�i�n
�2Sh.i;m�i/
�2Sh.j ;m�j/

Ke˝n�i
0
˝Ke˝j

01
˝Ke˝i�j

1
˝Px!y.x; : : : ;xI ��.x; : : : ;x; ��.y; : : : ;y///

Š

M
1�j�i�n
�2Sh.i;m�i/
�2Sh.j ;m�j/

HomCh
�
X˝m

b
; ��.X

˝n�i
b

; ��.Yb Œ�1�˝j ;Y
˝i�j

b
//
�
˝P .m; n/;

where Œ�1� is the degree shift applied to the chain complex Yb . For this, we define in
each component .i; j ; �; �/ of the direct sum an isomorphism

Ke˝n�i
0

˝Ke˝j
01
˝Ke˝i�j

1
˝Px!y.x; : : : ;xI ��.x; : : : ;x; ��.y; : : : ;y///

! HomCh
�
X˝m

b
; ��.X

˝n�i
b

; ��.Yb Œ�1�˝j ;Y
˝i�j

b
//
�
˝P .m; n/;

which sends any

� 2 Px!y.x; : : : ;xI ��.x; : : : ;x; ��.y; : : : ;y///

to

����˝ ��.f
ıhn�i ; idıhi/ ıv �;

where ���� is the unique homomorphism sending e˝m
0

to ��.e˝n�i
0

; ��.e
˝j
01
; e˝i�j

1
//

and ��.f ıhn�i ; idıhi/ is the permutation of the variables in the iterated horizontal
product f ıh � � � ıh f ıh id ıh � � � ıh id by � .

Finally, since ..i˝m/�; .p˝n/�/ is the tensor product of ..i˝m
b

/�; .p˝n
b
/�/ by P .m; n/,

it remains to apply the methods of [12, Lemma 8.3] in the category of chain complexes,
for Xb and Yb , to prove that ..i˝m

b
/�; .p˝n

b
/�/ is an acyclic fibration. We write the
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arguments here for the sake of clarity. We have the following commutative diagram:

HomCh.Z
˝m
b

;Z˝n
b
/

..i
˝m

b
/�;.p

˝n

b
/�/

''

.p
˝n

b
/�

))

.i
˝m

b
/�

%%

pullback

��

// HomCh.Z
˝m
b

;Y ˝n
b
/

.i
˝m

b
/�

��

HomCh.X
˝m
b

;Z˝n
b
/
.p
˝n

b
/�

// HomCh.X
˝m
b

;Y ˝n
b
/

Recall that chain complexes over a field are all cofibrant and fibrant in the model
structure of Ch. The map ib is a cofibration and Xb is cofibrant, so by the pushout-
product axiom, for every integer n the map i˝n

b
W X˝n!Z˝n is a cofibration. The

category Ch satisfies the limit monoid axioms [12, Section 6] and Yb is fibrant, so
for every integer n the map p˝n

b
W Z˝n

b
! Y ˝n

b
is a fibration [12, Proposition 6.7].

Moreover, by the pushout-product axiom, the tensor product preserves acyclic cofibra-
tions between cofibrant objects, so by Brown’s lemma it preserves weak equivalences
between cofibrant objects. Given that Zb and Yb are cofibrant, it implies that p˝n

b
is

an acyclic fibration. According to the dual pushout-product axiom, the fact that i˝m
b

is a cofibration and p˝n
b

is an acyclic fibration implies that ..i˝m
b

/�; .p˝n
b
/�/ is an

acyclic fibration.

3 The subcategory of acyclic fibrations

The goal of this section is to prove that the classifying space of weak equivalences
of P –algebras is weakly equivalent to the classifying space of acyclic fibrations of
P –algebras.

Theorem 3.1 Let P be a cofibrant dg prop. The inclusion i W f wChP ,! wChP of
categories gives rise to a weak equivalence of simplicial sets, N f wChP

!
� N wChP .

Remark 3.2 Actually, the methods of [26] can be transposed in our setting to prove
the following much stronger statement. We refer the reader to the seminal papers [10;
8; 9] for the notions of simplicial localization, hammock localization and Dwyer–Kan
equivalences of simplicial categories. The inclusion of categories i W f wChP ,! wChP

induces a Dwyer–Kan equivalence of hammock localizations

LH .ChP; f wChP /!
�

LH .ChP;wChP /:
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We refer the reader to [26] for more details about this proof, which relies on the
properties of several models of .1; 1/–categories (simplicial categories [2], relative
categories [1] and complete Segal spaces [22]).

To prove this theorem, we use Quillen’s Theorem A [20]: we have to check that for
every chain complex X , the nerve of the comma category .X # i/ is contractible. For
this aim, we prove the following more general result.

Proposition 3.3 Let I be a small category. Every simplicial map NI!N .X # i/ is
null up to homotopy.

As a consequence we get:

Proposition 3.4 The simplicial set N .X # i/ is contractible.

To prove Proposition 3.4, we apply Proposition 3.3, for every n 2N , to the subdivision
category of a simplicial model of the n–sphere Sn . We take @�nC1 as simplicial
model of Sn and denote by sd @�nC1 its subdivision category. We then use general
arguments of homotopical algebra.

Proposition 3.5 Let F W C � D WG be a Quillen adjunction. It induces natural isomor-
phisms

MapD.F.X /;Y /ŠMapC.X;G.Y //;

where X is a cofibrant object of C and Y a fibrant object of D .

Proof We will use the definition of mapping spaces via cosimplicial frames. The proof
works as well with simplicial frames. The adjunction .F;G/ induces an adjunction at
the level of diagram categories

F W C� � D� WG:

Now let �W A� � B� be a Reedy cofibration between Reedy cofibrant objects of C� .
This is equivalent, by definition, to saying that for every integer r , the maps

.�; �/r W L
r B

a
Lr A

Ar � Br

induced by � and the latching object construction L�A are cofibrations in C . Let us
consider the following pushout:

Lr A //

Lr�
��

Ar

��

Lr B // Lr B
`

Lr A Ar
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The fact that � is a Reedy cofibration implies that for every r , the map Lr� is a
cofibration. Since cofibrations are stable under pushouts, the map Ar!Lr B

`
Lr A Ar

is also a cofibration. By assumption, the cosimplicial object A� is Reedy cofibrant,
so it is, in particular, pointwise cofibrant. We deduce that Lr B

`
Lr A Ar is cofibrant.

Similarly, each Br is cofibrant since B� is Reedy cofibrant. The map .�; �/r is a
cofibration between cofibrant objects and F is a left Quillen functor, so F..�; �/r /

is a cofibration of D between cofibrant objects. Recall that the r th latching object
construction is defined by a colimit. As a left adjoint, the functor F commutes with
colimits so we get a cofibration

Lr F.B�/
a

Lr F.A�/

F.Ar /� F.Br /:

This means that F.�/ is a Reedy cofibration in D� . Now, given that Reedy weak
equivalences are the pointwise equivalences, if � is a Reedy weak equivalence between
Reedy cofibrant objects then it is, in particular, a pointwise weak equivalence between
pointwise cofibrant objects, hence F.�/ is a Reedy weak equivalence in D� . We
conclude that F induces a left Quillen functor between cosimplicial objects for the
Reedy model structures. In particular, it sends any cosimplicial frame of a cofibrant
object X of C to a cosimplicial frame of F.X /.

Remark 3.6 The isomorphism above holds if the cosimplicial frame for the left-hand
mapping space is chosen to be the image under F of the cosimplicial frame of the
right-hand mapping space. But recall that cosimplicial frames on a given object are all
weakly equivalent, so that for any choice of cosimplicial frame we get at least weakly
equivalent mapping spaces.

Now, recall that the geometric realization functor and the singular complex functor
induce a Quillen equivalence

j�jW sSet � Top WSing
�
.�/

between topological spaces and simplicial sets. We have

MapsSet.N sd @�nC1;N .X # i//'MapsSet.N sd @�nC1;Sing
�
.jN .X # i/j//

'MapTop.jN sd @�nC1
j; jN .X # i/j/

'MapTop.S
n; jN .X # i/j/;

hence ˇ̌
MapsSet.N sd @�nC1;N .X # i//

ˇ̌
'
ˇ̌
MapTop.S

n; jN .X # i/j/
ˇ̌
I
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in particular

�0

ˇ̌
MapsSet.N sd @�nC1;N .X # i//

ˇ̌
Š ŒSn; jN .X # i/j �Ho.Top/:

Proposition 3.3 means that for every integer n, the spaceˇ̌
MapsSet.N sd @�nC1;N .X # i//

ˇ̌
has only one connected component (the component of the zero map); that is, the
homotopy groups of jN .X # i/j are trivial.

Proof of Proposition 3.3 The category .X # i/ has weak equivalences X !
�

Y as
objects and acyclic fibrations as morphisms. It contains the initial object X !

D
X of

.X # Ch/.

Every simplicial map NI!N .X # i/ comes from a functor I! .X # i/, ie an I–
diagram in .X # i/. Let F be such a functor. Let X be the initial I–diagram, that is the
constant diagram on X!

D
X . In order to simplify notation, we write Y for a morphism

X ! Y (an object of .X # Ch/) and Y ! Y 0 for a commutative triangle relating
X ! Y to X ! Y 0 (a morphism of .X # Ch/). The diagram F �X W I! .X # Ch/ is
defined on objects by F�X .k/DF.k/�X and on arrows by F�X .�/DF.�/�idX .
Applying the functorial factorization of Theorem 2.9 to the unique initial morphism
X ! F �X , we get a decomposition in .X # Ch/P into a diagram Y given by

X

X

D
//

//

//

i

�
// G

p1

== ==

p2

!! !!

F

where the functor G is defined pointwise by the functorial factorization of Theorem 2.9.
The map .p1;p2/W G � F �X is a pointwise fibration and i is a pointwise acyclic
cofibration of chain complexes. Since the map .p1;p2/W G � F �X is a pointwise
fibration and F and X are pointwise fibrant, the maps p1 and p2 are pointwise acyclic
fibrations: the product F �X is given by the pullback

F �X
p1

//

p2
��

X

��

F // �

and pointwise fibrations are stable under pullbacks so p1 and p2 are pointwise fibra-
tions. Since idX D p1 ı i and X ! F D p2 ı i are weak equivalences, the maps p1

and p2 are acyclic by the two-out-of-three property.
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The functors X and F take their values in .X # i/ by definition. This implies
that the functor G sends morphisms of I to acyclic fibrations by definition of the
functorial factorization in chain complexes. We consequently obtain a zigzag of natural
transformations X  G! F of functors I! .X # i/. This zigzag implies that NF

is homotopic to NX , which is itself null up to homotopy. This concludes the proof of
Proposition 3.3.

4 Moduli spaces of algebraic structures as homotopy fibers

4.1 Moduli spaces of algebra structures on fibrations

The results of this subsection holds for algebras in E over a prop in C , where the
category C is a cofibrantly generated symmetric monoidal model category and the
category E is a cofibrantly generated symmetric monoidal model category over C .
However, for the sake of simplicity we explain only the case E D C D Ch.

We start by recalling [12, Lemma 7.2]. Let f W A!B be a morphism of Ch. Then we
have a pullback

End
fA

f
!Bg

d0
//

d1

��

EndB

f �

��

EndA
f�

// HomAB

where HomAB is defined by HomAB.m; n/D HomCh.A
˝m;B˝n/.

Lemma 4.1 [12, Lemma 7.2] (1) If f is a (acyclic) fibration then so is d0 .

(2) If f is a cofibration, then d1 is a fibration. If f is also acyclic then d1 is an
acyclic fibration and d0 a weak equivalence.

Remark 4.2 Lemma 4.1 is a generalization in the prop context of [21, Proposi-
tions 4.1.7 and 4.1.8].

Lemma 4.3 Let Xn � � � �� X1 � X0 be a chain of fibrations of chain complexes.
For every 0� k � n� 1, the map d0 in the pullback

EndfXn�����X0g

d0
//

d1

��

EndfXk�����X0g

��

EndfXn�����XkC1g
// HomXkC1Xk
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is a fibration. Moreover, if the fibrations in the chain Xn � � � �� X1 � X0 are
acyclic then so is d0 .

Proof We prove this lemma by induction. The case nD 1 is Lemma 4.1. Now suppose
that our lemma is true for a given integer n� 1. Let XnC1 � � � �� X1 � X0 be a
chain of fibrations of complexes. We distinguish two cases:

Case kD n We have the pullback

EndfXnC1�����X0g

d0
//

d1

��

EndfXn�����X0g

��

EndXnC1 f�

// HomXnC1Xn

where f W XnC1 � Xn . The fact that f is a fibration implies that f� is a fibration, so
d0 is a fibration because of the stability of fibrations under pullback, and the acyclicity
of f implies the acyclicity of d0 . The detailed proof of these statements is done in the
proof of [12, Lemma 7.2].

Case 0� k� n� 1 We have that

d0 D EndfXnC1�����X0g
! EndfXn�����X0g

! EndfXk�����X0g

is the composite of an map satisfying the induction hypothesis with the map of the case
k D n, so the conclusion follows.

Remark 4.4 This lemma is the generalization of [21, Proposition 4.1.9] in the prop
context.

We deduce from Lemmata 4.1 and 4.3 the following properties of our moduli spaces.

Proposition 4.5 Let f W X ! Y be a chain complex morphism and P be a cofibrant
dg prop. The pullback of Lemma 4.1 gives rise to the following diagram of simplicial
sets:

PfX g
.d1/�
 � Pff g

.d0/�
�! PfY g

(1) If f is a cofibration then .d1/� is a fibration. Moreover, if f is acyclic then
.d0/� and .d1/� are weak equivalences.

(2) If f is a fibration then .d0/� is a fibration. Moreover, if f is acyclic then .d0/�
and .d1/� are weak equivalences.
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Proof (1) If f is a cofibration then d1 is a fibration. So .d1/� is a fibration of
simplicial sets according to Proposition 1.11. If f is acyclic, then d0 and d1 are weak
equivalences. Every chain complex is fibrant and cofibrant, and fibrations of props are
determined componentwise, so EndX and EndY are fibrant props. This implies that
Endff g is also fibrant. We deduce from this and Proposition 1.11 that .d0/� and .d1/�
are weak equivalences.

(2) The proof is the same as in the previous case.

By induction we can also prove the following proposition.

Proposition 4.6 Let Xn
�� � � �

�� X1
�� X0 be a chain of acyclic fibrations and P

be a cofibrant dg prop. For every 0� k � n� 1, the map .d0/� is an acyclic fibration
and .d1/� a weak equivalence in the diagram below:

PfXn
�� � � �

�� XkC1g
.d1/�
 � PfXn

�� � � �
�� X0g

.d0/�
�! PfXk

�� � � �
�� X1g

Remark 4.7 Propositions 4.5 and 4.6 are generalizations in the prop context of [21,
Propositions 4.1.11, 4.1.12 and 4.1.13].

4.2 Proof of Theorem 0.1

We have now all the key results to generalize Rezk’s theorem to algebras over dg props.
The remaining arguments are the same as those of Rezk, so we will not repeat them
with all details but essentially show how our Theorem 3.1, as well as the main theorem
of [25], fit in the proof.

Let P be a cofibrant dg prop, and N wChP˝�� the bisimplicial set defined by�
N wChP˝��

�
m;n
D
�
.N wChcf /P˝�

n�
m
:

The dg prop P is cofibrant, thus so is P ˝ �n for every n � 0. According to
Theorem 3.1, we have a weak equivalence induced by an inclusion of categories

N f wChP˝�n

!
� N wChP˝�n

:

Moreover, for every n; n0 � 0, the map �n ! �n0 induces a weak equivalence of
cofibrant dg props P ˝�n! P ˝�n0 and thereby a weak equivalence of simplicial
sets

N wChP˝�n0

!
� N wChP˝�n

according to [25, Theorem 0.1]. We obtain a zigzag of weak equivalences

diagN f wChP˝��
!
� diagN wChP˝��

 
� N wChP :
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We use an adaptation of a slightly modified version of Quillen’s Theorem B (see [20]),
namely [21, Lemma 4.2.2], in order to determine the homotopy fiber of the map
diagN f wChP˝��

!N f wCh. To prove that our map verifies the hypotheses of this
lemma we use the propositions of Section 4.1 exactly in the same way as Rezk in the
operadic case. Then we check that diag.U #X /' PfX g, where U W f wChP˝��

!

f wCh is the forgetful functor (by using again the propositions of Section 4.1) and finally
we get the following diagram:

PfX g //

��

diagN f wChP˝��

��

�
// diagN wChP˝�� N wChP�

oo

��

pt // N f wCh �
// N wCh

The proof of Theorem 0.1 is complete.

Remark 4.8 Note that we can recover the transfer theorem of bialgebra structures
of [12, Theorem A] as a consequence of Theorem 0.1. Indeed, let P be a cofibrant
dg prop in Ch. Let X !

�
Y be a morphism of Ch such that Y is endowed with a

P –algebra structure. We have a homotopy pullback of simplicial sets

PfX g

��

p
// N wChP

NU

��

fX g // N wCh

which induces an exact sequence of pointed sets

�0PfX g ! �0N wChP
! �0N wCh :

The base point of the set �0N wCh is the weak equivalence class of X , denoted by ŒX �.
The weak equivalence X !

�
Y in Ch implies that we have the equality ŒY �D ŒX � and

thus �0NU.ŒY �P / D ŒX �, where ŒY �P is the weak equivalence class of Y in ChP .
The exactness of the above sequence implies that �0p.PfX g/D .�0NU /�1.ŒX �/ so
ŒY �P 2 �0p.PfX g/. This means that there exists a P –algebra structure on X such
that we have a zigzag of P –algebra morphisms

X  
�
� � � !
�

Y;

which are weak equivalences of Ch.

Remark 4.9 We do not address the case of simplicial sets. However, [14, Theorem 1.4]
endows the algebras over a colored prop in simplicial sets with a model category
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structure. Moreover, the free algebra functor exists in this case. Therefore one can
transpose the methods used in the operadic setting to obtain a simplicial version of
[25, Theorem 0.1]. Theorem 0.1 in simplicial sets can be proved by following Rezk’s
original proof step by step. We also conjecture that our results have a version in
simplicial modules which would follow from arguments similar to ours.
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