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Homotopy groups of diagonal complements

SADOK KALLEL

INES SAIHI

For X a connected finite simplicial complex we consider �d .X; n/ , the space of
configurations of n ordered points of X such that no d C 1 of them are equal, and
Bd .X; n/ , the analogous space of configurations of unordered points. These reduce
to the standard configuration spaces of distinct points when d D 1 . We describe
the homotopy groups of �d .X; n/ (resp. Bd .X; n/) in terms of the homotopy (resp.
homology) groups of X through a range which is generally sharp. It is noteworthy
that the fundamental group of the configuration space Bd .X; n/ abelianizes as soon
as we allow points to collide, ie d � 2 .

55Q52; 55P10

In memory of Abbas Bahri so greatly missed

1 Introduction

Let X be a topological space and �dC1.X; n/�X n the union of the .dC1/st diagonal
arrangement in X n , that is,

�dC1.X; n/D
˚
.x1; : : : ;xn/ 2X n

j xi0
D xi1

D � � � D xid

for some sequence 1� i0 < � � �< id � n
	
:

Its complement in X n is the configuration space of no dC1 equal points in X , which
is written

�d .X; n/DX n
��dC1.X; n/:

This is the space of ordered tuples of n points in X with the multiplicity of each entry
in the tuple at most d (hence the notation �d as opposed to �d for at least d ). It
is useful to think of these tuples as configurations of n ordered points in X with the
property that d of the points can collide but not d C 1. The symmetric group Sn acts
on �d .X; n/, and the quotient is denoted by Bd .X; n/.
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We have increasing filtrations

(1)
F.X; n/ WD�1.X; n/��2.X; n/� � � � ��n.X; n/DX n;

B.X; n/ WD B1.X; n/� B2.X; n/� � � � � Bn.X; n/D SPn X;

with SPn X WDX n=Sn being the nth symmetric product. Here we have written F.X; n/

and B.X; n/ for the standard configuration spaces of ordered (resp. unordered) pairwise
distinct points of cardinality n. Various other notations for F.X; n/ in the literature
include Cn.X /, Confn.X /, etc, while B.X; n/ is sometimes written Braid.X; n/ in
the geometric topology literature; reminiscent of the fact that its fundamental group is
the so-called nth braid group of X .

In some exceptional cases, the spaces �d .X; n/ and Bd .X; n/ can be empty (if, for
example, X is a point and d < n), but otherwise they have a rich and interesting
geometry; see Kallel and Taamallah [18]. An early appearance of �d .X; n/ is in
paper of Cohen and Lusk [8] in connection with Borsuk–Ulam type results while more
recent applications to the colored Tverberg theorem for manifolds appear in Blagojević,
Matschke and Ziegler [4]. In the case V is a vector space, the spaces �d .V; n/

are subspace complements dubbed non-.dC1/–equal arrangements in Björner and
Welker [3], and their homology is made explicit in Dobrinskaya and Turchin [9] as
an algebra over the little disks operad, with interesting applications to the spaces of
non-d –equal immersions. In the case X D C , the spaces Bd .C; n/ are intimately
related to spaces of based holomorphic maps from the Riemann sphere into complex
projective space Pd ; see Guest, Kozlowski and Yamaguchi [12] and Kallel [16]. In
all cases, these spaces seem to have been studied so far exclusively for when X is
a manifold. One of our objectives in this paper is to give some sharp results on the
homology and homotopy groups of the non-d –equal configurations of X when X is a
more general polyhedral space.

Throughout this paper, a space X is a finite simplicial complex, that is, the realization
of a finite abstract simplicial complex. Unless specified, all spaces are connected.

Theorem 1.1 Let X be a connected finite simplicial complex that is not a point, and
d; n� 2. Then

�i.B
d .X; n//Š �i.SPn.X // for 0� i � 2d � 2:

In particular �1.B
d .X; n//ŠH1.X IZ/ when d � 2, n� 2. Moreover, if X is simply

connected, 2� d � n, then

�i.B
d .X; n//Š zHi.X IZ/ for 0� i � 2d � 2;

where zH .� IZ/ is reduced integral homology.

Algebraic & Geometric Topology, Volume 16 (2016)



Homotopy groups of diagonal complements 2951

The bound 2d � 2 in the theorem is sharp as is illustrated by the case where X a
Euclidean space; see Section 4. Note that the special case of the fundamental group
says that allowing a single collision is enough to abelianize the fundamental group.
This can be expected since collisions kill the braiding; see Section 8.

The homotopy groups of �d .X; n/ turn out to depend on local connectivity properties
of the space. We say X has local homotopical dimension r if for any x 2X and any
neighborhood U of x , there is an open neighborhood V � U of x such that V �fxg

is r –connected; see Definition 7.1.

Theorem 1.2 Let X be a locally finite simplicial complex with local homotopical
dimension r � 0; d � 1. Then

�i.�
d .X; n//Š �i.X /

n for i � rd C 2d � 2:

Remark 1.3 If d is at least n, both spaces are equal �d .X; n/DX n and all homotopy
groups agree. When d < n this bound is in general optimal as can be seen in the case of
manifolds. For example, R2 has local homotopical dimension 0 and �d .R2; dC1/'

S2d�1 is precisely 2d�2–connected.

Remark 1.4 For a polyhedral pair .X;Y /, the homotopical depth of Y in X is set
to be n if the pair .X;X nY / is n–connected; see Eyral [10]. Theorem 1.2 is saying
that the homotopical depth of the diagonal arrangement �dC1.X; n/ in X n is at least
rd C 2d � 2. This appears to be the first complete such calculation for this kind of
arrangements of subspaces.

To prove both of these theorems, we use a localization principle for homotopy groups,
Theorem 4.2, relating the local connectivities of pairs .V;V n Y / to the global con-
nectivity of .X;X nY / for closed Y �X and V local neighborhoods in a cover. In
both cases the proof reduces to studying the case of V being the union of various
simplices joining along a simplex. For Theorem 1.2, the argument amounts to giving a
homotopical decomposition of �d .V; n/ when V is such a union. We recall that by a
homotopical decomposition of a space X we mean a diagram DW I!Top; ie a functor
from a small category I to the category of topological spaces and continuous maps, so
that the map hocolimI D! colimI DŠX is a weak equivalence; see Section 7. Our
decomposition extends similar results of Sun [25]. Since we are able to control the
connectivity of each space making up the diagram, we are able to derive our bound.

Theorem 1.1 on the other hand relies on a different argument. First we treat the case
of a manifold based on the idea of scanning maps. The general case appeals to a
theorem of Smale [24] relating the connectivity of a map to that of its preimages.
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Since Smale’s theorem works for proper maps, a technical issue we have to deal
with is the construction in Section 5 of a Sn –equivariant simplicial complex which
is a deformation retract of �d .X; n/ for X again a finite complex. As pointed out
by the referee, similar techniques are in Björner et al [2, chapter 4] and have been
applied to hyperplane arrangements by Blagojević and Ziegler [5], for example (see
references therein). Section 5 is of independent interest and has relevance to more
recent constructions of CW-retracts for configuration spaces; see Tamaki [26].

The first section of the paper discusses motivational examples and general connectivity
results. The second section discusses the special case of graphs. Proposition 3.1 gives
a simplified and then expanded version of a useful theorem of Morton, which is used
to give an amusing description of the homotopy type of the configuration space of two
points on a wedge of circles in Proposition 3.4.

Acknowledgment The first part of this work was conducted at the University of Lille 1
under a BQR grant. The Mediterranean Institute for the Mathematical Sciences (MIMS)
has made resources available during the completion of this work. We are grateful to
Faten Labassi for pointing us to Munkres’ book and Proposition 5.1. Finally we thank
Paolo Salvatore for his insight on Lemma 7.4.

2 Preliminaries

We start with some classical examples of diagonal arrangements and their complements.
The extreme cases d D 1 and d D n� 1 are most encountered in the literature. The
case �1.X; n/D F.X; n/ corresponds to the configuration space of pairwise distinct
points

F.X; n/D f.x1; : : : ;xn/ 2X n
j xi ¤ xj for i ¤ j g:

The action of Sn on F.X; n/ is free and we have a regular covering F.X; n/ !

B.X; n/. If X is a manifold of dimension greater than 2, then �1.F.X; n//Š�1.X
n/

by a codimension argument (see Proposition 2.5), while �1.B.X; n// is a wreath
product �1.X / oSn ; this is standard, but a leisurely exposition can be found in [15].

Example 2.1 When d D n� 1, Bn�1.X; n/ is the complement in SPn.X / of the
diagonal embedding �W X ,! SPn X , x 7! Œx; : : : ;x�. When X DC , the elementary
symmetric functions give a diffeomorphism SPn.C/ Š Cn and the image of �.C/
corresponds under this diffeomorphism to the rational normal curve V diffeomorphic
to the Veronese embedding x 7! .x;x2; : : : ;xn/. One can check that

Bn�1.C; n/Š SPn.C/�V ' S2n�3:

Algebraic & Geometric Topology, Volume 16 (2016)
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A short proof of this equivalence is given in [12, Lemma 2.7], while another quick
argument would be to use simple connectivity of Bn�1.C; n/ and Alexander duality.

In general, for Rk , k � 2, �n�1.Rk ; n/ D .Rk/n � � is the complement of the
thin diagonal, and this deforms onto the orthogonal complement of the diagonal
�D f.x; : : : ;x/g minus the origin, so that �n�1.Rk ; n/ is, up to homotopy, the unit
sphere Snk�k�1 in f.x1; : : : ;xn/2 .Rk/n j

P
xiD0gD�? . This deformation can be

made equivariant with respect to the permutation action of Sn so that the Sn –quotient
is Bn�1.Rk ; n/. We show below that this space is simply connected as soon as n is at
least 3 (in fact it is 2n�4–connected; Lemma 4.12).

Lemma 2.2 If S is the unit sphere in H D f.v1; : : : ; vn/ 2 .Rk/n j
P
vi D 0g, and

if Sn acts on H , and hence on S , by permutation of coordinates, then the quotient
Qn;k WD S=Sn is simply connected whenever nk � k � 1� 2.

Proof We use the following useful main result of Armstrong [1]: let G be a discon-
tinuous group of homeomorphisms of a path connected, simply connected, locally
compact metric space X , and let H be the normal subgroup of G generated by those
elements that have fixed points; then the fundamental group of the orbit space X=G is
isomorphic to the factor group G=H . We apply this result to G D Sn and X D S ,
which is simply connected. The point is that when n � 3, the fixed points of the
permutation action are of the form .v1; : : : ; vn/ with vi D vj for some i < j , which
means that all transpositions are in H and hence G DH .

The argument of Armstong used in the proof of Lemma 2.2 implies that if �d .X; n/ is
simply connected, then �1.B

d .X; n// is the quotient of Sn by the normal subgroup
generated by elements having fixed points, and this subgroup is the entire group if
d � 2. This establishes a useful conclusion.

Corollary 2.3 If �d .X; n/ is simply connected, then so is Bd .X; n/ if d � 2.

The following result, valid for smooth manifolds, is a special case of Theorem 1.1.

Proposition 2.4 When X DM is a closed smooth, ie C1 , manifold, dim M � 2,
and n� 3, then �1.B

n�1.M; n// is isomorphic to H1.M IZ/.

Proof A tubular neighborhood of the diagonal copy of M in SPnM can be identified
with the total space of the following subbundle. Let TM˚n be the n–fold Whitney sum
of the tangent bundle TM of M , dim M Dm, and let � be the subbundle with fiber
H D f.v1; : : : ; vn/ j

P
vi D 0g. The total space of this subbundle is homeomorphic

to a neighborhood of diagonal M in M�n . Now Sn acts on this bundle fiberwise
(linearly on each fiber) and the fiberwise quotient � has fiber H=Sn which can be
identified with the cone c.S .n�1/m�1=Sn/, where dim M Dm and S .n�1/m�1 is the
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unit sphere in H . According to [18, Proposition 4.1], for a smooth closed manifold M ,
a neighborhood deformation retract V of the diagonal M in SPnM is homeomorphic
to the total space of � . The fiberwise apexes of the fiberwise cone give the zero section
of this bundle. The complement of this section is S.M / which is, up to fiberwise
equivalence, a bundle over M with fiber S .n�1/m�1=Sn . By construction we have
the homotopy pushout

S.M /
�

//

��

M

�
��

Bn�1.M; n/
�
// SPnM

If nD 2, m � 2, S.M / is the projectivized tangent bundle with fiber Sm�1=Z2 D

RPm�1 . When n � 3 and m � 2, S.M / has simply connected fiber (Lemma 2.2)
so that � induces an isomorphism on fundamental groups, and by the van Kampen
theorem, � induces an isomorphism on �1 as well; ie �1.B

n�1.M; n//Š�1.SPnM /Š

H1.M IZ/ for n� 3.

To complete this section, we state a well-known result which will be seen in Section 4
as a special manifestation of the localization principle.

Proposition 2.5 If S D
S

Sj is a finite union of submanifolds of a smooth mani-
fold M , closed with real codimension d � 2, then the inclusion M �S ,!M induces
an isomorphism on homotopy groups �i for 0 � i � d � 2, and an epimorphism
on �d�1 .

A proof of the above proposition, using standard transversality arguments, can be
found, for example, in [14, Lemma 5.3]. This proposition is not true if the ambient
space is not a manifold. For example, B.Rm; 2/ is the complement of the diagonal
in SP2.Rm/ and we have the homotopy equivalence B.Rm; 2/ ' RPm�1 so that
�1.B.R

m; 2//Š Z2 no matter the codimension of the diagonal m� 3.

As a consequence we have the following precursor of Theorem 1.1.

Corollary 2.6 If X is a topological surface and d�2, then �1.B
d.X; n//ŠH1.X;Z/.

Proof The real plane R2 has the special property that SPn.R2/ is diffeomorphic
to R2n . This implies right away that when S is a topological surface, SPn.S/ is
a manifold of dimension 2n, and that BdC1.X; n/ is the union of submanifolds of
dimension at most 2.n � d/ D 2n � 2d . This means that Bd .S; n/ D SPn.S/ �

BdC1.S; n/ is the complement of a finite union of submanifolds of codimension
at least 2d > 2. By Proposition 2.5, �1.B

d .S; n// Š �1.SPnS/ and this is again
H1.S;Z/ for n> 1.

Algebraic & Geometric Topology, Volume 16 (2016)



Homotopy groups of diagonal complements 2955

3 The case of the circle

Write S1 D fz 2C j jzj D 1g, ie the unit circle in the complex plane. There is a map
Bd .S1; n/! S1 which multiplies the points of a configuration in S1 . This map is
well defined since S1 is abelian. This map turns out to have contractible fibers so that
in particular Bd .S1; n/' S1 ; see Proposition 3.2.

Let �n�1Df.s1; : : : ; sn/ j 0� si � 1;
P

si D 1g be the n�1–dimensional simplex and
write �n�1.d/ the partial compactification of the open simplex V�n�1 , where we allow
at most d consecutive si to be zero (using cyclic ordering, ie sn and s1 are consecutive
to each other). In particular �n.1/D V�n�1 . We will write Zn for the cyclic group of
order n. Using a similar action as in [6, page 407], we have the following.

Proposition 3.1 Let Zn with multiplicative generator � act on S1 ��n�1.d/ via

�.ei� ; s1; : : : ; sn/D .e
i�Ci2�s1 ; s2; : : : ; sn; s1/:

Then the quotient by the action, written S1 ËZn
�n�1.d/, is homeomorphic to

Bd .S1; n/. When d D 1, there is a Sn –equivariant homeomorphism

F.S1; n/Š .S1
� V�n�1/�Zn

Sn:

Proof The cyclic group appears for a simple reason: any configuration .x1; : : : ;xn/

can be brought into a unique counterclockwise configuration up to cyclic permutation.
More precisely let .x1; : : : ;xn/ 2 �

d .S1; n/. Then there is a permutation � 2 Sn

bringing this configuration to a counterclockwise ordering .x�.1/; : : : ;x�.n//. Let si be
the arc distance (divided by 2� ) measured counterclockwise between x�.i/ and x�.iC1/ .
When xi ¤ xj for i ¤ j , the choice of � is unique up to cyclic permutation and there
is a well-defined map

F.S1; n/! .S1
� V�n�1/�Zn

Sn;

.x1; : : : ;xn/ 7! Œ.x�.1/; .s1; : : : ; sn//I ��;

which is a homeomorphism. Here .s1; : : : ; sn/ is in the open simplex V�n�1 if and only
if none of the si are zero. When there is collision, ie d > 1, then the choice of � , up to
cyclic permutation, is not unique anymore, but there is a map at the level of unordered
configuration spaces

Bd .S1; n/! S1 ËZn
�n�1.d/;

Œx1; : : : ;xn� 7! Œx�.1/I .s1; : : : ; sn/�;

where � again is any permutation bringing .x1; : : : ;xn/ into cyclic ordering.
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This map is independent of the choice of � and it is a homeomorphism with inverse

Œx�.1/I.s1; : : : ;sn/� 7! Œx�.1/;x�.1/e
i2�s1 ;x�.1/e

i2�.s1Cs2/; : : : ;x�.1/e
i2�.s1C���Csn�1/�:

Note that when xi D xiC1 in the cyclic ordering, si D 0, so the faces of �n�1 where
the si vanish (consecutively) correspond to when points come together.

Proposition 3.2 Identify S1 D Œ0; 1�=0�1. Then addition

mW Bd .S1; n/! S1; m.Œx1; : : : ;xn�/D x1Cx2C � � �Cxn

is a bundle map with fiber �n�1.d/. In particular m is a homotopy equivalence.

Proof The composite

�W S1
�Zn

�n�1.d/! Bd .S1; n/
m
�! S1

sends .x; .s1; : : : ; sn// to nx C .n � 1/s1 C .n � 2/s2 C � � � C sn�1 . This map is
well defined on orbits since �.x C s1; .s2; : : : ; sn; s1// D �.x; .s1; : : : ; sn//. The
preimage of a point y 2 S1 under m are all unordered tuples Œx1; : : : ;xn� such that
x1Cx2C� � �CxnD y mod Z. All preimages are homeomorphic and we can choose
y D 0. The preimage ��1.0/ consists of all classes Œx; .s1; : : : ; sn/� such that

.n� 1/s1C .n� 2/s2C � � �C sn�1C nx mod Z:

We wish to show this is a copy of �n�1.d/. Consider the map �W �n�1.0/! ��1.0/

defined as follows. Given .s1; : : : ; sn/,
P

si D 1, let

ms D
�1

n
..n� 1/s1C .n� 2/s2C � � �C sn�1/

brought modulo Z to the interval Œ0; 1� and define

�W .s1; : : : ; sn/ 7! Œms; .s1; : : : ; sn/� 2 S1
�Zn

�n�1.d/:

This map is well defined and continuous. It is surjective by construction. It is also
injective for the following reason. If s D .s1; : : : ; sn/ and s0 D .s0

1
; : : : ; s0n/ map to the

same point under � , they must be the same up to cyclic permutation. Let’s assume
s0 D .skC1; : : : ; sn; s1; s2; : : : ; sk/, 0< k < n (s0 D sn ). A quick computation shows
that

ms0 DmsC s1C � � �C sk � k=n:

But in S1 �Zn
�n�1.d/, Œms0 ; .s

0
1
; : : : ; s0n/�D Œms � k=n; .s1; : : : ; sn/� so that �.s0/

can never be �.s/ unless k D 0 or si D s0i D 1=n. In both cases s D s0 . This proves
the injectivity and hence that � is a homeomorphism. It remains to check that � is a
bundle map and this is left as an exercise.

Algebraic & Geometric Topology, Volume 16 (2016)



Homotopy groups of diagonal complements 2957

Remark 3.3 (Morton) When d D 1, mW SPn.S1/! S1 is an n�1–disk bundle
that is trivial if and only if n is odd. The open disk bundle is B.S1; n/ and its sphere
bundle is B2.S

1; n/.

3A Wedges of circles

As discussed, Bd .S1; n/' S1 . The situation gets more complicated quickly for other
graphs. The following is a neat little application of our constructions for the case
d D 1.

Proposition 3.4 B.
Wk

S1; 2/ is homotopy equivalent to
W 3

2
k.k�1/C1

S1 .

Proof Let’s first understand the k D 2 case.

We will write B.S1 _S1; 2/ as the union of three subspaces:

X1 D fŒ.x;�/; .y;�/� j x ¤ yg; X2 D fŒ.�;x/; .�;y/� j x ¤ yg;

X3 D fŒ.x;�/; .�;y/� j .x;y/¤ .�;�/g:

We have that

X1 Š B.S1; 2/; X2 Š B.S1; 2/; X3 Š .S
1
�S1/�;

where .S1 �S1/� means the punctured torus S1 �S1�f.�;�/g. Notice that X1\

X2 D ∅ while X1 \ X3 D f.x;�/; .�;�/;x ¤ �g Š .S1/� are punctured circles
hence contractible intervals. The punctured torus X3 deformation retracts onto a
wedge S1 _ S1 . During this deformation both punctured circles corresponding to
the intersection with X1 and X2 retract onto the wedgepoint. After the retraction we
obtain a wedge S1 _S1 _Y1 _Y2 where each Yi DXi=� is the open Möbius band
Xi D S1� �0; 1Œ with an interval �� �0; 1Œ retracted to a point. Therefore Yi ' S1 and
the claim follows in this case.

For the general case of a bouquet of k –circles, k > 2, we write an element from the
i th leaf as xi . Then B.

Wk
S1; 2/ becomes the union of subspaces

Xi;j WD fŒ.x
i ;�/; .yj ;�/� j xi

¤ yj if i D j g;

X
j
i WD fŒ.x

i ;�/; .�;yj /� j .xi ;yj /¤ .�;�/ if i D j g;

X i;j
WD fŒ.�;xi/; .�;yj /� j xi

¤ yj if i D j g;

over all k � i � j � 1. As before Xi;i D B.S1; 2/ is the open Möbius band. For
i > j , Xi;i and Xj ;j are disjoint. Also and as is clear, X

j
i \X s

r D∅ if fi; j g ¤ fr; sg.
Each union Bi;j WDXi;j [Xi;i [X

j
i is the subconfiguration space of 2 points on the

i th and j th leaves and hence is, up to homotopy, a wedge of 4 circles. The homotopy

Algebraic & Geometric Topology, Volume 16 (2016)
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Figure 1: An intermediate homotopy type of B.
Wk

S1; 2/ for k D 2 , 3

and 4 , respectively. These are strings of circles making up a necklace in the
shape of a k�1–dimensional simplex.

deforming each Xi;i to S1 is the same if performed in Bi;j or Bi;k . This is to say
that the homotopies deforming the Bi;j to a wedge of 4 circles are compatible and
we obtain a deformation retract of B.

Wk
S1; 2/ which looks like a necklace of circles

tied in the shape of the k�1–dimensional simplex. This is depicted in Figure 1 for
k D 2; 3 and 4.

The homotopy type of this space is not hard to work out: it is a wedge of all those
circles appearing in the necklace with another wedge of circles describing the homotopy
type of the 1–skeleton of �k�1 . In the necklace there is one circle for each vertex of
the k�1–simplex and two circles for each edge, this gives a total of k2 circles. On
the other hand the one-skeleton of the k�1–simplex, denoted by �.1/

k�1
, is homotopy

equivalent to
WN

S1 where N D 1
2
k.k�3/C1 circles. Indeed the Euler characteristic

�.�
.1/

k�1
/D #edges� #verticesD 1

2
k.k � 1/� k D 1

2
k.k � 3/;

and this must be �.
WN

S1/DN � 1. Putting this together yields

B

� k_
S1; 2

�
'

k2_
S1
_

1
2

k.k�3/C1_
S1
'

3
2

k.k�1/C1_
S1;

and the proof is complete.

Remark 3.5 The first homology group of B.�; n/ for graphs has been worked out
in [21]. Their method uses discrete Morse theory. In particular one can deduce
from [21, Theorem 3.16] that H1.B.

Wk
S1; 2// D Z1C3k.k�1/=2 in full agreement

with our Proposition 3.4 (in their theorem one uses that the braid index is 2, N1 D

2k.k � 1/� 1
2
k.k � 1/� .k � 1/ and the first Betti number of the graph is of course k ).

In the case of trees T , the homology groups of the unordered configuration space
B.T; n/ are torsion free and their ranks computed by Farley; references and details are
in [21].
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4 The localization principle and the case of manifolds

Our main approach is to find conditions on X so that the inclusion Bd .X; n/ ,!SPn.X /

induces an isomorphism on some homotopy groups through a range. We start with
a preliminary lemma. We say a space X is locally punctured connected if for every
x 2X and neighborhood U of x , there is an open V , x 2 V � U such that V �fxg

is connected.

Lemma 4.1 Let X be path-connected, locally contractible, and not a point. If d � 2,
then both �d .X; n/ and Bd .X; n/ are connected. If, furthermore, X is locally punc-
tured connected, then both �d .X; n/ and Bd .X; n/ are connected for all d � 1.

Proof For both claims, it suffices to show that �d .X; n/ is connected. We need to
join .x1; : : : ;xn/ to .y1; : : : ;yn/ by a path, for any two choices of tuples in �d .X; n/.
By deforming locally, we can arrange that the xi and the yj are all pairwise distinct.
Now X is path-connected so there is a path i from xi to yi . Via 1 we construct
a path in �d .X; n/ from .x1;x2; : : : ;xn/ to .y1;x2; : : : ;xn/ by putting 1.t/ in the
first coordinate. At any given time t 2 Œ0; 1�, 1.t/ can only coincide with one xi

at a time, and hence this path is well defined in �d .X; n/ if d � 2. Construct next
the path from .y1;x2; : : : ;xn/ to .y1;y2;x3; : : : ;xn/ by putting 2.t/ in the second
coordinate. This is again a well-defined path in �d .X; n/. We can continue this
process. The composition n ı � � � ı 1 is a path in �d .X; n/ from .x1; : : : ;xn/ to
.y1; : : : ;yn/.

To establish the second claim, we proceed by induction on n � d . For n D d ,
�d .X; d/DX d and there is nothing to prove. For n> d , consider the projection

�d .X; n/!�d .X; n� 1/

that omits the last coordinate. The preimage of a tuple .x1; : : : ;xn�1/ is X �

fxi1
; : : : ;xij g if xir

repeats d –times in the tuple. Since X is locally punctured
connected, this preimage is connected. Since the base space of this projection is also
connected by inductive hypothesis, it follows that the total space is connected, as
desired.

For the higher homotopy groups, the starting point is the following principle, which
relates the local connectivity properties of a space to its global properties. All spaces
appearing below are connected. The following result is in [20, Theorem 1.4].

Theorem 4.2 (localization) Let X be a Hausdorff topological space and Y be a
closed subset of X . If for every point y 2 Y , and every neighborhood U � X of y ,
there is an open V � U containing y such that the pair .V;V n Y / is k –connected,
k � 0, then the pair .X;X nY / is k –connected.
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We recall what it means for the pair .X;A/ to be k –connected or that �i.X;A/D 0 for
all i �k [13, Chapter 4]. If k � 1, this means that every map .I r ; @I r /! .X;A/ from
the closed cube I r , 1� r � k , is homotopic (relative its boundary) to a map I r !A.
For any x 2X , .X; fxg/ is 1–connected if and only if X is simply connected. Being
0–connected, or equivalently writing �0.X;A/D 0, means in our terms that X and A

are connected and that any point in X is connected by a path to a point in A. Note
that in the theorem, if either V nY or XnY is not connected, then the theorem fails.

Example 4.3 X DR3 and L a line in R3 . The pair .X;X nL/ is 1–connected but
not 2–connected. Indeed take a square which is intersected transversally through its
interior by L. That square cannot be deformed away from L with the boundary being
kept fixed.

The following is a consequence of Theorem 4.2. We say that a closed subset Y in X

is tame if there is a neighborhood N of Y such that N deformation retracts onto Y

and X n Y deformation retracts onto X n N . Submanifolds are tame and so are
subcomplexes of simplicial complexes; see Proposition 5.1.

Corollary 4.4 Let Y be a tame subspace of X and suppose for every y 2 Y and
neighborhood U of y in X , there is a contractible neighborhood V � U , such that
Y \V is tame in V and V nY is k –connected, k � 0. Then �i.X /Š �i.X nY / for
i � k .

Proof The point is that when Y is tame in X , Theorem 4.2 implies that the induced
map �k.XnY /! �k.X / is surjective, and �i.XnY /! �i.X / is an isomorphism
for i � k � 1. Let’s show that for .V;y/ as in the statement of the theorem, the pair
.V;V nY / is kC1–connected. Since V \Y is tame in V , choose a neighborhood N

of Y in V that deformation retracts onto Y and such that V nN deformation retracts
onto V n Y . We can replace, up to homotopy, the pair .V;V n Y / by .V;V nN /,
where now V nN is closed in V . We can apply the long exact sequence in homotopy
of the pair .V;V nN /

! �kC1V ! �kC1.V;V nN /
@
�! �k.V nN /! � � �

! �1.V;V nN /
@
�!�0.V nN /! �0.V /:

Since for i�k , �i.V nN /D0D�iC1.V /, we see that �i.V;V nY /Š�i.V;V nN /D0

for i � kC 1. From Theorem 4.2 it follows that .X;X nY / is kC1–connected. The
same argument as above with the long exact sequence of the pair .X;Y / with Y tame
in X shows that �i.X /Š �i.X nY / for i � k .

Algebraic & Geometric Topology, Volume 16 (2016)



Homotopy groups of diagonal complements 2961

Remark 4.5 In the case of a submanifold S in M of codimension d , a neighborhood
of a point deformation retracts onto a sphere Sd�1 , which is d�2–connected. By the
previous corollary this gives that M is weakly equivalent to M �S up to dimension
d � 2 (Proposition 2.5). A similar argument applies when S D

S
Sj is the union of

submanifolds intersecting transversally.

The following key lemma shows how we can apply the above results to diagonal
arrangements.

Lemma 4.6 Let X be a finite simplicial complex such that for every x 2 X and
neighborhood U of x , there is a subneighborhood V containing x such that �d .V; k/

(resp. Bd .V; k/) is r –connected for any k � 1. Then �i.�
d .X; n//Š �i.X

n/ (resp.
�i.SPn X /Š �i.B

d .X; n//) for i � r .

Proof We have to estimate the connectivity of the pair .X n; �d .X; n//D .X n;X n�

�dC1.X; n// (resp. that of .SPnM;SPn.M /�BdC1.M; n//. Note that �dC1.M; n/

(resp. BdC1.M; n/) is tame in M n (resp. SPnM ) according to Section 5. One can
check they verify the hypothesis of Corollary 4.4. In the ordered case, choose a point
in �dC1.X; n/ which, after permutation, can be brought to the form

(2) .x1; : : : ;x1„ ƒ‚ …
i1

;x2; : : : ;x2„ ƒ‚ …
i2

; : : : ;xr ; : : : ;xr„ ƒ‚ …
ir

/;

with xi ¤ xj if i ¤ j ,
P

i˛ D n and i1 > d . A neighborhood W of this point in X n

is homeomorphic to V i1
1 � � � � �V ir

r , where Vi is a contractible neighborhood of xi

in X , and the Vi are pairwise disjoint. Clearly

W ��dC1.X; n/Š�
d .V1; i1/� � � � ��

d .Vr ; ir /:

By hypothesis we can assume all the �d .Vi ; ij / to be r –connected so that W �

�dC1.X; n/ is also r –connected and hence, by Corollary 4.4, �i.�
d .X; n// D

�i.X
n��dC1.X; n//Š �i.X

n/ for i � r .

A similar proof holds in the unordered case. Given a point in BdC1.M; n/� SPn.M /

as in (2), a small contractible neighborhood of it in SPnM is

U Š SPi1.V1/�SPi2.V2/� � � � �SPir .Vr /;

the Vi are pairwise distinct, and

(3) Bd .U; n/D U �BdC1.X; n/Š Bd .V1; i1/�Bd .V2; i2/� � � � �Bd .Vr ; ir /:

If we choose each Vj so that Bd .Vj ; ij / is r –connected (hypothesis), the complement
Bd .U; n/ will also be r –connected and the claim follows again from Corollary 4.4.
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In the case of a manifold, we can already make the following easy conclusions.

Corollary 4.7 Let M be a manifold of dimension m� 1.
(i) If md � 3, then �i.�

d .M; n//Š �i.M /n for i �md � 2.

(ii) If m� 2 and d � 2, then �1.B
d .M; n//ŠH1.M;Z/.

Proof Every point of M has a neighborhood homeomorphic to Rm . The fat diagonal
�dC1.R

m; n/ in .Rm/n has codimension mn�m.n�d/Dmd �3, so its complement
�d .Rm; n/ is md�2–connected (Proposition 2.5). Now apply Lemma 4.6 to get (i).
On the other hand �d .Rm; k/ is simply connected if d � 2 and m � 2, so by
Armstrong’s result (Corollary 2.3), �1.B

d .Rm; k// is also trivial and (ii) follows.

Remark 4.8 As we pointed out, Corollary 4.7(i) is not true for md D 2 as illustrated
by F.R2; 2/'S1 . This corollary is a special case of Theorem 1.1. Also let’s point out
that �d .Rm; n/ has torsion free homology starting with spherical classes in dm�1 as
already indicated, and all homology classes are represented by products of spheres [9].

We now derive Theorem 1.1 when X is a manifold. Again X is r –connected if
�i.X /D 0 for 0� i � r .

Lemma 4.9 Let �m
� .�/ denote a connected component of the loop space �m.�/,

m� 1 and d � 1. Then �m
� SPdSm is 2d�2–connected.

Proof Let’s review the simplest cases. The case d D 1 is obvious since �mSm

breaks down into components indexed by the integers, and each component is 0–
connected but not 1–connected since �1.�

m
� Sm/Š�mC1.S

m/ is Z if mD 2 and Z2

if m� 3. When mD 1, SPdS1'S1 so that ��S1 is contractible and hence certainly
2d�2–connected for any d . When mD 2, SPdS2 Š Pd is complex projective space
and

�2 SPdS2
D�2Pd

Š Z��2S2dC1:

Each component is a copy of �2S2dC1 , which is 2d�2–connected, and the bound is
sharp.

In general we invoke [18, Theorem 5.9] which states that for r –connected X , r � 1,

(4) �i.SPn X /Š zHi.X IZ/; 0� i � r C 2n� 1:

This gives that for i � 1 and m� 2,

�i.�
m
� SPdSm/Š �iCm.SPdSm/ŠHiCm.S

m/D 0;

i Cm� .m� 1/C 2d � 1DmC 2d � 2:

This gives i � 2d � 2 and a lower bound for the connectivity is 2d � 2.
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Proposition 4.10 Assume m� 2; n� d � 1. Then Bd .Rm; n/ is 2d�2–connected.
Moreover if X is a 1–connected manifold and n� 2, then �i.B

d .X; n//Š zHi.X IZ/
for 0� i � 2d � 2.

Proof This relies on results from [16; 18]. The case d D 1 being trivial, we assume
d � 2. Consider the sequence of embeddings

(5) �nW B
d .Rm; n/ ,! Bd .Rm; nC 1/;

Œx1; : : : ;xn� 7! Œx1; : : : ;xn; jx1jC � � �C jxnjC 1�:

The direct limit is Bd .Rm;1/, and it is shown in [16] that there is a scanning map

� W Bd .Rm;1/!�m
� SPdSm

that induces a homology isomorphism. Since both spaces are simply connected when
d � 2 (Corollary 2.3 and Lemma 4.9) and have the homotopy type of CW complexes,
the map � is a homotopy equivalence. Moreover, the maps �n in (5) induce homology
embeddings according to [27, Chapitre 3]. Iterating, we get homology embeddings

H�.B
d .Rm; d C 1// ,!H�.B

d .Rm; n/ ,!H�.B
d .Rm;1//ŠH�.�

m
� SPdSm/:

By Lemma 4.9 the groups on the extreme right are trivial for � � 2d � 2. This
gives that H�.B

d .Rm; n// D 0 for n � d and � � 2d � 2. Since the space is
simply connected, it is 2d�2–connected as well. It then follows by Lemma 4.6 that
�i.B

d .X; n// Š �i.SPn.X // for i � 2d � 2. This proves the main statement. In
the case X is r –connected with r � 1, it follows by the inequality in (4), since
2d � 2 � r C 2n� 1, that �i.B

d .X; n//Š �i.SPn.X //Š zHi.X IZ/ in the range of
dimensions 0� i � 2d � 2.

Example 4.11 Consider the case Bn�1.S2; n/, n � 3. Since SPn.S2/ Š Pn is a
2n–dimensional manifold, by Proposition 2.5, �i.B

n�1.S2; n//Š�i.Pn/ for 1� i �

2.n�1/�2D 2n�4. On the other hand, from the Hopf fibration, �i.Pn/Š�i.S
2nC1/

for i > 2 and �2.P
n/D Z. This shows precisely that �i.B

n�1.S2; n//ŠHi.S
2;Z/

for 1� i � 2n� 4, as expected.

The claim that Bd .Rk ; n/ is 2d�2–connected has an nice alternative proof in the case
d D n� 1.

Lemma 4.12 Bn�1.Rk ; n/ is 2n�4–connected, n� 2; k � 1.

Proof The case k D 1 is trivial. We let k � 2 and invoke some main results from [17;
18]. Let S be the unit sphere as in Lemma 2.2 and let Qn;k be its quotient under the
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Sn –action. We have already indicated that Qn;k ' Bn�1.Rk ; n/. On the other hand,
according to [17, Theorems 1.1, 1.3 and 1.5],

(6) †kC1Qn;k ' SPn.Sk/;

where † means suspension and SPn.Y / means the symmetric smash Y ^.n/=Sn , which
is also the cofiber of the embedding of SPn�1 Y into SPn Y induced by adjoining a
basepoint to an unordered tuple Œx1; : : : ;xn�1�. It is shown [17, Theorems 1.2 and 1.3]
that if X is r –connected, then SPn.†X / is 2nCr�1–connected. This gives that
SPn.Sk/D SPn.†Sk�1/ is 2nCk�3–connected, and hence so is †kC1Qn;k by (6).
Since in this range Qn;k is already simply connected, it must therefore be 2n�4–
connected.

Remark 4.13 That the connectivity bound in the above theorem doesn’t depend
on k is not surprising. Indeed when n D 2, B.Rk ; 2/ ' RPk�1 and this is never
1–connected no matter what k is.

5 An equivariant deformation retract
of diagonal complements

Let X� be an abstract simplicial complex and jX�j its geometric realization. Let A�
be a subcomplex of X� . We say a subcomplex A� of X� is full if every simplex of X�
whose vertices are in A� is itself in A� . The following fundamental result (called the
retraction lemma in [5]) can be found in Munkres’ book [22, Lemma 70.1].

Proposition 5.1 Let A� be a full subcomplex of the finite simplicial complex X� .
Let C� consist of all simplices of X� that are disjoint from A� . Then jA�j is a
deformation retract of jX�j � jC�j, and jC�j is a deformation retract of jX�j � jA�j.

The argument of proof is short but instrumental to extract useful properties of this
compactification. We review this argument. The fact that A� is full says that C� is
also full, and that simplices of X� consist of simplices in C� , simplices in A� and
simplices of the form

� � �; � 2A�; � 2 C�;

where � � � is the join of both simplices. Figure 2 illustrates the situation when X� is
the full simplex �3 on 4 vertices v0; v1; v2; v3 , A� D Œv0v1� and C� D Œv2v3�.

The deformation of jX�j � jA�j onto jC�j is as in the figure. It starts at a point
txC

P
i2I sivi , with vi vertices in C� , i 2 I , t C

P
si D 1, t ¤ 1, and ends at the

point
P
.tj=

P
si/vj ; j 2 I .
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x

v0

v1

v2

v3

x

v2

v3

Figure 2: Munkres’ deformation along the join (right) after deleting the apex x

Two important consequences are in order:
� If A� is full, jX�j � jA�j deformation retracts onto the largest subcomplex

that does not meet jA�j. Note that if A� is not full, then its first barycentric
subdivision Sd A� is always full in Sd X� . The barycentric subdivision comes
with a natural ordering on vertices.

� The deformation retraction illustrated in Figure 2 has the property that if it starts
in a simplex of X� it will stay in that simplex (and deforms onto a face of it).

For ease we will write X for either X� or its realization. The context will be clear.

Munkres’ observation nicely applies to the diagonal arrangements. Given X an ordered
simplicial complex, X n can be given naturally a structure of a simplicial complex
such that the various diagonals are subcomplexes; see [23, Section 1], and also the
proof of Lemma 5.2 below. We can then apply Proposition 5.1 to the configuration
space X n ��dC1.X; n/. Among all diagonal arrangements, only the thin diagonal
�n.X; n/ is full. We therefore have to pass to a barycentric subdivision. Let Sd.X n/

be the barycentric subdivision of X n
� . This restricts to Sd.�dC1.X; n//.

Lemma 5.2 There is an Sn –equivariant deformation retraction of �d .X; n/ onto the
largest subcomplex W d .X; n/ not intersecting jSd.X n/j � jSd.�dC1.X; n//j.

Proof That the complement deformation retracts onto W d .X; n/ is a direct con-
sequence of Proposition 5.1 as applied to the pair .Sd.X n/;Sd.�dC1.X; n/// with
Sd.�dC1.X; n// being full. We need check this deformation is equivariant under the
symmetric group action. Recall that the simplicial decomposition of X n is made out
as follows, where X of course is an ordered simplicial complex [23]. A vertex of X n

is of the form .v1; : : : ; vn/ where vi is a vertex of X . Different .qC1/–vertices

w0 D .v01; : : : ; v0n/; w1 D .v11; : : : ; v1n/; : : : ; wq D .vq1; : : : ; vqn/;

form a q–dimensional simplex if and only if for each k D 1; 2; : : : ; n, .qC1/–vertices
v0k , v1k , : : :, vqk are contained in a simplex of X and v0k � v1k � � � � � vqk ; see
Figure 3 for the decomposition of X 3 in the case X D Œ0; 1� with vertices Œ0�� Œ1�.
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Œ0; 0; 0�

Œ0; 0; 1�

Œ0; 1; 1�

Œ1; 1; 1�

Œ1; 1; 0�

Œ1; 0; 0�

Œ0; 0; 0�

Œ1; 1; 1�

Œ1; 1; 0�

Œ1; 0; 0�

Figure 3: Left: simplicial decomposition for Œ0; 1�3 with 8 vertices, 19 edges,
18 triangular faces and 6 tetrahedral faces. Note that �2.Œ0; 1�; 3/ is not full
and we need to pass to a barycentric subdivision. Right: the configuration
space jSd.X 3/j � jSd.�2.X; 3/j deformation retracts onto the subcomplex
W 2.Œ0; 1�; 3/ made out of 6 contractible connected components. The figure
shows one such component in one tetrahedral face.

Note that, as asserted, �2.Œ0; 1�; 3/ is not full, as the 2–simplex (bottom) .Œ0; 0; 0�,
Œ1;0;0�, Œ1;1;0�/ has all three vertices in �2.X;3/ but is not itself a simplex of �2.X;3/.

Generally a vertex is in �dC1.X; n/ if and only if it is of the form .v1; : : : ; vn/ for
some vertices v1; : : : ; vn of X with vi0

D � � � D vid
for some choice of sequence

i0 < i1 < � � � < id . Obviously every permutation acting on X n permutes vertices
of X n

� and the order between them so it must take simplices to simplices. The action is
simplicial and the quotient space SPn.X / inherits a cellular decomposition. Moreover,
the action remains simplicial after passing to a barycentric subdivision. Indeed since
any new introduced vertex is of the form 1

k

P
vi , it is sent by � 2Sn to 1

k

P
�.vi/,

which is the barycenter of .�.v1/; : : : ; �.vk//.

After one subdivision, a simplicial neighborhood of Sd.�dC1.X; n// consists of all
simplices of Sd.X n/ having at least one vertex of the form .v1; : : : ; vn/ with vi0

D

� � � D vid
for some sequence i0 < i1 < � � � < id . This simplicial neighborhood is

therefore Sn –invariant and its complement W d .X; n/ is invariant, as well. Clearly
the permutation action on X n commutes with Munkres’ deformation since it takes
combinations

P
tivi to

P
ti�.vi/ (see Figure 2). It therefore descends to a deformation

retraction of Bd .X; n/ onto W d .X; n/=Sn DWWd .X; n/.

Corollary 5.3 For a finite simplicial complex X , the Sn –quotient Wd .X; n/ of
W d .X; n/ is a compact deformation retract of Bd .X; n/.

We need one more observation.

Lemma 5.4 Let A be a subcomplex of X . The deformation retraction of jSd.X n/j �

jSd.�dC1.X; n//j onto its compactified space W d .X; n/ restricts to a deformation
retraction of jSd.An/j � jSd.�dC1.A; n//j onto W d .A; n/.
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.

..

Figure 4: Contractible neighborhoods of the dotted point in simplicial X

Proof Since A is a subcomplex of X , �dC1.A; n/ is a subcomplex of �dC1.X; n/

and Sd.An/ is a subcomplex of Sd.X n/. Both Sd.�dC1.X; n// and Sd.�dC1.A; n//

are full subcomplexes. The assertion now follows from the fact that if the deformation
retraction starts in a simplex of Sd.X n/; in particular in Sd.An/, it will stay in that
simplex.

6 Proof Theorem 1.1

We appeal to the following useful theorem of Steve Smale which is a generalization of
classical results of Begle and Vietoris. A similar statement for maps between simplicial
complexes can be deduced from work of Farjoun [11, Corollary 9.B.3, page 163].

Theorem 6.1 [24] Let X and Y be connected, locally compact, separable metric
spaces, and let X be locally contractible. Let f be a mapping of X into Y for which
f �1 carries compact sets into compact sets. If, for each y 2 Y , f �1.y/ is locally
contractible and r –connected, r�0, then the induced homomorphism �k.X /!�k.Y /

is an isomorphism for 0� k � r , and is onto for k D r C 1.

Theorem 6.1 uses maps that are proper and preimages that are at least connected. Maps
between configuration spaces obtained by projections are seldom proper. Combining
the above theorem with Section 5 yields, however, the following main result.

Theorem 6.2 Let X be a connected finite simplicial complex with at least two vertices,
d � 2; n� 2. Then

�i.B
d .X; n//Š �i.SPn.X //; 0� i � 2d � 2:

Proof The starting point is Lemma 4.6 where it suffices to show that �i.B
d .V; n//D0

for i � 2d � 2 for V a small contractible neighborhood of a point in X . A neighbor-
hood V of x 2 X is one of three types; either (i) Euclidean space, (ii) halfspace or
(iii) it is a union of such halfspaces along a shared boundary. See Figure 4.

We claim that in all cases, Bd .V; n/ is 2d�2–connected.
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In the case that x is an interior point of a simplex that is not a face of a larger simplex,
it has a neighborhood V ŠRm with m� 1. When mD 1, Bd .R1; n/ is contractible.
When m� 2, Bd .Rm; n/ is 2d�2–connected according to Proposition 4.10.

If x belongs to a boundary face, then V is homeomorphic to halfspace H (with
boundary). This halfspace can be isotoped into its interior VH so we have a map
Bd .H; n/! Bd . VH ; n/ obtained from a deformation retraction (setting t D 1). Since
Bd . VH ; n/ is 2d�2–connected, as seen earlier, it follows immediately that Bd .H; n/

has the same connectivity (at least).

In the third and final case, x lies in the intersection of two or more simplices of X as
in Figure 4. Let V be a contractible neighborhood made out of simplices which meet
along a simplex A. Let � be a simplex in V of dimension m. Of course A is in the
boundary of � . Let

Bd .�;A; n/D
a

0�k�n

Bd
A.�; k/=�;

where B0
A
.�; k/ D � is a given point in A and Bd

A
.�; k/ D Bd .�; k/ [ SPk.A/,

ie the only points that can repeat more than d times in � are those that are in A.
The equivalence relation � is such that x � � if x 2 A and Œx1; : : : ;xi ; : : : ;xk � �

Œx1; : : : ; Oxi ; : : : ;xk � if xi 2A. Here, as customary, Oxi means the i th entry is suppressed.
We have a projection

(7) �W Bd .V; n/! Bd .�;A; n/;

which sends a tuple Œx1; : : : ;xn� to the new tuple obtained by replacing all xi 62 �

by �. One can view � as a projection of Œx1; : : : ;xn� to the subtuple made up of
those entries xi 2 � . This map is continuous by the very nature of the construction
Bd .�;A; n/, ie any entry xi that exits or enters into � must pass through A. The base
space Bd .�;A; n/ is contractible since there is a deformation retraction of � onto A

which extends to Bd .�;A; n/.

Next write an element in Bd .�;A; n/ as an equivalence class ŒŒx1; : : : ;xk �� with
xi 2 � �A and some k � n. The preimage ��1ŒŒx1; : : : ;xk �� consists of all possible
unordered n–tuples containing x1;x2; : : : ;xk with remaining entries y1; : : : ;yn�k

such that Œy1; : : : ;yn�k � 2 Bd ..V � �/ [ A; n � k/. This preimage is a copy of
Bd ..V � �/ [A; n � k/. By induction on the number of simplices of V , we can
assume that Bd ..V ��/[A; n�k/ is 2d�2–connected (the case of a single simplex
has been discussed at the beginning of the proof). The map �W Bd .V; n/!Bd .�;A; n/

has then a contractible base and preimages that are 2d�2–connected. We wish to
show that the total space is 2d�2–connected. We cannot use the Smale–Vietoris
theorem (Theorem 6.1) directly since � is not proper. To get around this, we pass
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to the compactified versions and show that � can be deformed to a proper map. Let
Wd .V; n/ be the compact deformation retract of Bd .X; n/ discussed in Corollary 5.3.
The restriction Q� of � to Wd .V; n/ maps onto Wd .�;A; n/ � Bd .�;A; n/ and we
have the diagram

Wd .V; n/

Q�
��

// Bd .V; n/

�

��

Wd .�;A; n/ // Bd .�;A; n/

where the horizontal maps are inclusions and deformation retractions. This last state-
ment follows from the fact that the deformation retraction of Bd .V; n/ onto Wd .V; n/

descends to a deformation retraction of Bd .�;A; n/ onto Wd .�;A; n/ as a conse-
quence of Lemma 5.4. Thus given a configuration � D ŒŒx1; : : : ;xk �� 2Wd .�;A; n/,
k � n, xi 62 A, we can consider its preimage Q��1.�/ in Wd .V; n/ and its preim-
age ��1.�/ in Bd .V; n/. Then ��1.�/ deformation retracts onto Q��1.�/. Here
Q��1.�/ � ��1.�/ D Bd ..V � �/ [ A; n � k/. Since ��1.�/ is 2d�2–connected,
this shows that Q��1.�/ is also 2d�2–connected. The map Q� is now proper, being a
map between compact spaces. Moreover, both total and base spaces are connected by
Lemma 4.1. We can invoke Theorem 6.1 to conclude that the total space Wd .V; n/

and hence Bd .V; n/ are 2d�2–connected as desired.

7 Proof of Theorem 1.2

Our objective is to find conditions on X so that the inclusion �d .X; n/ ,!X n induces
an isomorphism on some homotopy groups through a range (the homotopical depth).
The proof given in the unordered case Bd .X; n/ in Section 6 fails here because the
analogue of (7) is now a map �d .V; n/!�d .�;A; n/ which has disconnected fibers,
so Smale’s theorem doesn’t automatically apply. In fact we need an entirely new
approach.

First some definitions.

Definition 7.1 � If x 2 X and U is a neighborhood of x , then we call V a
subneighborhood (of x in U ) if V is open and x 2 V � U .

� A space X is locally contractible if for any x 2 X and any neighborhood U

of x , there is a subneighborhood V which deformation retracts onto x .
� A space X has local homotopical dimension k if, for x;U as above, there is

a subneighborhood V such that V �fxg is k –connected. For instance, being
locally punctured connected means having 0 local homotopical dimension. A
manifold of dimension m has local homotopical dimension m�2 but not m�1.
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If X is a simplicial complex, we call a chamber of X any simplex that is not contained
in another simplex as a face. Obviously if X has local homotopical dimension r , then
chambers must have dimensions at least r C 2. We call a simplex a shared face if it is
shared by two chambers or more. This shared face doesn’t need to be of codimension 1.
In Figure 4, the complex on the far right is made out of three chambers (of dimension 2)
joining along a shared edge. A shared face A D �1 \ � � � \�k is called essential if
X D �1[ � � � [�k is not a cell, ie homeomorphic to a ball or to a halfball. This rules
out cases like X being a regular polygon triangulated so that the origin AD o is the
common vertex of all triangles. A neighborhood V n fog is, up to homotopy, a circle
in this case, so that o behaves like an interior point of a chamber (and is inessential).

Lemma 7.2 A finite simplicial complex X has local homotopical dimension r if and
only if all chambers are of dimension at least r C 2 and all essential shared faces are of
dimension at least r C 1.

Proof It suffices to consider points x 2X that are either in the interior of a chamber
or in the interior of a shared face. In the case that x is in the interior of a chamber,
V ŠRm so m (the dimension of the chamber) must be at least rC2 (Proposition 4.10).
On the other hand, if x lies in the interior of a shared face A, a small neighborhood V

of x is the union of chambers �1 [ � � � [ �q joining along A, with q � 2. If A is
inessential, then a neighborhood V of x 2A is either a ball or a halfball of dimension
at least r C2. Suppose x to be essential and let s D dim A. Then V �fxg '

W
S s is

a bouquet (this holds even if s D 0 and A is vertex). Since this neighborhood must be
r –connected, s must be at least r C 1.

The following is our main statement. Here we assume d <n; otherwise �d.X; n/DX n

and there is nothing to prove.

Theorem 7.3 Let X be a locally finite polyhedral space with local homotopical
dimension r , r � 0, and let 1� d < n. Then

�i.�
d .X; n//Š �i.X /

n for i � rd C 2d � 2:

Proof The starting point is Lemma 4.6. As in the proof of Lemma 7.2, a contractible
neighborhood V of x 2 X is one of three types: (i) V Š Rm with m � r C 2,
(ii) halfspace H of dimension m� r C 2 or (iii) it is a union of such halfspaces along
a shared face of dimension at least rC1. We must show that �d .V; n/ is drC2d �2

connected.

In the case V ŠRm , we know by Corollary 4.7 that �d .Rm; n/ is dm�2–connected,
and that dm� 2D d.r C 2/� 2D dr C 2d � 2 as claimed. If V is homeomorphic to
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halfspace H (with boundary L), V is the inverse limit of a nested sequence of spaces
Hi�H such that HiŠRm for all i , it follows that �d .H; n/ is the inverse limit of the
spaces �d .Hi ; n/, which are drC2d�2–connected, and it has this same connectivity.
We are left with the case that V is the union of simplices (chambers) �1 [ � � � [�q

joining along an essential face A. We can assume without loss of generality that any
two faces join along A, ie �i \�j DA. Luckily the structure of this neighborhood V

is sufficiently nice to allow us to give a decomposition of �d .V; n/ as the colimit of
an explicit diagram.

We start by observing that each configuration of n points of V gives rise to a tuple of
integers .k1; : : : ; kq/, k1C � � � C kq � n, where ki denotes the number of points of
the configuration inside the face �i . Obviously these ki –configurations can overlap
when points of the configuration fall in A. Keeping track of the various overlaps can
be expressed in terms of a poset of intersections. More precisely, set the index set

I D f1; 2; : : : ; qgn D f.i1; : : : ; in/ j ij 2 f1; 2; : : : ; qgg:

We can cover �d .V; n/ by the closed sets U.i1;:::;iq/ , .i1; : : : ; iq/ 2 I , where

U.i1;:::;iq/ D f.x1; : : : ;xn/ 2�
d .V; n/ j xj 2 �ij ; ij 2 f1; 2; : : : ; qgg:

Let D be the intersection poset PU associated to the cover UI of �d .V; n/, also
referred to as subspace diagram. It is clear by construction that colimD is precisely
�d .V; n/. Here’s how this poset diagram looks for k D 2 and d D 1, ie for the
configuration space F.X [A Y; 2/; see [25, Theorem 2.0.17]:

(8)

X �Y ��A F.Y; 2/ Y �X ��A F.X; 2/

X �A��A

??

A�Y ��A

CC__

Y �A��A

??[[

A�X ��A

CC__

X �A��A

[[

F.A; 2/

3377OOddjj

(the spaces on the extreme right and left are being identified).

Going back to the general diagram D , since all inclusions are closed cofibrations (this
is standard to check [25]), we have

�d .V; n/D colim.D/' hocolim.D/:

In fact the canonical map from the homotopy colimit of a sequence of inclusions of T1
topological spaces to the actual colimit is a weak equivalence; see [7]. The connectivity
of this (sequential) homotopy colimit �d .V; n/ is at least the least connectivity of
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the spaces making up the diagram. If we set �0 D A, these spaces are of the form
�i1
� � � ���in

\�d .V; n/ (we refer to these subspaces as the constituent subspaces of
the diagram). Each of these constituent subspaces is quite manageable and we can apply
the localization principle to it. Indeed �i1

� � � � ��in
\�d .V; n/ is the complement

in �i1
� � � � � �in

of subspaces of certain codimensions. The smallest codimension
is attained by �dC1.A; n/ in An , that is, for �d .A; n/. If s D dim A, then this
codimension is ds . It follows that the smallest connectivity among the constituent
subspaces is ds � 2 � d.r C 1/� 2 D dr C d � 2. As pointed out, the connectivity
of �d .V; n/ (as a homotopy colimit) must be at least the connectivity of �d .A; n/,
which is dr C d � 2. This is not quite the connectivity we seek and we must improve
it by d .

To do so observe that there is associated to the poset PU of the cover a natural filtration
whose j th space is Fj D colim Pj , where Pj is the poset consisting of

�i1
� � � � ��in

\�d .V; n/; ik1
D � � � D iks

D 0 for s � n� j ;

and some subset fk1; : : : ; ksg � f1; : : : ; ng

with is 2 f0; 1; : : : ; qg and �0DA, as pointed out. In other words, Fj is the subspace
where at most j of the entries can be outside of A. We have the series of inclusions

F0 D�
d .A; n/� F1 � � � � � Fn D�

d .V; n/:

If we organize our poset vertically as in (8), then Fj is the pushout of the first j C 1

rows from the bottom.

For example, F.�1[A�2; 2/ (the case depicted in diagram (8) with X D�1;Y D�2 ),
there are three filtration terms starting with F0 D F.A; 2/, the colimit F1 of the first
two rows and F2 being the whole colimit. The special case of F.R2; 2/D�1.R2; 2/

is enlightening (d D 1, nD 2), where here we write R2D�1[A�2 with the �i being
two halfplanes joining along AŠR. The first filtration term is F0 D F.R; 2/' S0 .
The next filtration term is

F1 D .�1 �A[A��1[�2 �A[A��2/\�
1.R2; 2/:

Each term .�i �A[A��j /\�
1.R2; 2/D �i �A[A��i � diag.A/ deformation

retracts onto a circle so F1 is the union of two circles along an S0 , ie F1'S1_S1_S1 .
Finally F2 ' F.R2; 2/' S1 . The connectivity changes going from F0 to F1 , and
remains stable afterwards.

Let’s organize into a row Rk the constituent subspaces �i1
� � � � � �in

\�d .V; n/

where precisely k of the �ij are not equal to AD �0 . One point we will capitalize
on is that in the range 0 � k � d , �i1

� � � � � �in
\�d .V; n/ is the complement in
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�i1
� � � � � �in

of tuples with dC1–diagonal elements lying only in A. At the first
stage, all components of R1 intersect along F0 D�

d .A; n/.

If nDdC1, the situation is very clear. Here �d .A; dC1/DAdC1�diag.A/'Sds�1 ,
and all constituent subspaces for 1� k � d are of the form

�i1
� � � � ��idC1

\�d .V; d C 1/D �i1
� � � � ��idC1

� diag.A/;

thus they are contractible since they are the complement of a closed subspace in the
boundary of a cube. This means that going up the filtration, we are suspending in various
ways the spherical class, as in the example discussed earlier, and the connectivity in
homology is going up by one at every step.

For more general n, the constituent subspaces are not, in general, contractible but we
have the following useful lemma.

Lemma 7.4 The inclusion Fk�1 ,! Fk is null-homotopic for k � d C 1.

Proof We need some notation. We introduce Fk.n/ for the filtration terms of �d .V; n/

(we added the index n to the previous notation). We also introduce Fk;j .n/ for the
subspace of all configurations .x1; : : : ;xn/ 2 Fk.n/ where xj can be in all of H . We
have that Fk.n/D

S
1�j�n Fk;j .n/. There is an inclusion

Fk�1.n/ ,! Fk;n.n/� Fk.n/:

On the other hand there are various embeddings of Fj .n/ into Fj .nC1/ one of which
is given by

(9) .x1; : : : ;xn/ 7! .�1.x1/; : : : ; �1.xn/;pn/;

where �t is any isotopy of the halfspace H extending an isotopy of A onto its halfspace
.a1; : : : ; as/, a1 < 0, and pn D .n; 0; : : : ; 0/ 2 AŠ Rs . The first observation is that
the inclusion Fk�1.n/ ,! Fk;n.n/ is homotopic to the composite

Fk�1.n/! Fk�1.n� 1/ ,! Fk�1.n/ ,! Fk;n.n/;

where the first map is projection discarding the last configuration, and the middle map
is the inclusion (9). The idea here is that the last coordinate xn 2H can be moved in H

away from A, all configurations are then mapped by �t , and after that the last coordinate
is brought down to pn . Note that the last configuration can move in H without
constraint since k � d . Next we factor the composite above Fk�1.n� 1/ ,! Fk.n/

through Fk�1.n�1/ ,!Fk;n�1.n/ and reiterate this construction to factor the map up to
homotopy, this time through Fk�1.n�2/, etc. At the end, the map Fk�1.n/ ,!Fk.n/

factors through Fk�1.k � 1/ which is contractible.
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Going back to our colimit diagram, the constituent subspaces for the k th row Rk are
VI WD �i1

� � � � ��in
\�d .V; n/, where I D .i1; i2; : : : ; in/ is an ordered tuple with

n � k entry 0. In the range k < n � d , the smallest connectivity of a constituent
subspace is ds� 2; this is because the smallest codimension strata we are removing
from �i1

� � � � ��in
to obtain VI have the codimension of the thin diagonal in AdC1

and this is ds . In the range n� d � k < n, this minimal codimension starts jumping
by one unit going from row to row. More precisely the connectivity of the constituent
subspaces of Rk in the indicated range is at least ds � 2C k � .n� d � 1/. This
minimal connectivity remains the same from Rn�1 to Rn (no jump there). There
are therefore precisely d jumps. At the level of filtrations now, Fk D Rk [ Fk�1

and we have a pushout diagram where we are gluing ds�2Ck�.n�d�1/–connected
spaces intersecting along ds�2Ck�.n�d�1/�1–connected spaces. Using the Mayer–
Vietoris sequence, and inducting on the sequences I , we see immediately that the
homological connectivity (in short H�–connectivity) of the pushout Fk must be at
least ds � 2C k � .n� d � 1/, for n� d � k < n. The H�–connectivity of Fn is,
as we pointed out, that of Fn�1 , which is thus at least ds � 2C d . Since s � r C 1

(Lemma 7.2), this H�–connectivity is at least drC2d�2–connected.

Finally to get the connectivity, we need argue that Fn is simply connected. In fact Fk

becomes 1–connected as soon as k � 1. To see this, we go back to the colimit diagram
(8) where the smallest connectivity of the constituent subspaces VI is d.r C 1/� 2.
When this is larger than 1, each VI is simply connected, and so is the colimit, and the
theorem holds. Now some VI fail to be simply connected when d.r C 1/ � 2, that
is, when (i) r D 0; d D 1, or (ii) r D 1D d , or (iii) r D 0; d D 2. In the first case, the
theorem is equivalent to saying that F.X; n/ is connected if X is locally punctured
connected. This is precisely Lemma 4.1 so this case is settled. In case (ii), we are
looking at �d .A; n/ D �1.R2; n/ D F.R2; n/ as the bottom space of our colimit
diagram. This is of course not simply connected, but the map �1.F0/! �1.F1/ is
the trivial map since it is induced from a null homotopic map (Lemma 7.4), so that F1 ,
and inductively Fk , are simply connected by the van Kampen theorem. The remaining
case (iii) occurs when �d .A; n/D�2.R; n/. The fundamental group of this space is
discussed in Example 8.1. Here too the fundamental group trivializes from F1 onwards
so that Fn D�

d .V; n/ is simply connected.

7A The homology of the filtration terms

This subsection is of independent interest and gives a description of the homology of
the filtration terms. This is sketchy but details can be filled in. First of all, there is a nice
way to see that the inclusion F0! F1 induces the trivial map in homology without
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resorting to Lemma 7.4. Here F0 D�
d .A; n/ has torsion free homology admitting a

basis realized by products of spheres [9]. We need to understand how these homology
classes occur. There is a spherical class in

�d .A; d C 1/DAdC1
� diag.A/' Sds�1;

where sD dim A. Now �d .A; dC1/ embeds in �d .A; n/ in many ways as in (9) (re-
call that d <n). This embedding has a retract so induces a monomorphism in homology.
The image of the spherical class in this case is denoted fx1; : : : ;xdC1g. The various
other embeddings, obtained by choosing another subset of indices fi1; : : : ; idC1g �

f1; 2; : : : ; ng, give rise to spherical homology classes fxi1
; : : : ;xidC1

g. These classes
generate the homology of �d .A; n/ in a very precise sense. There is an action of the
operad fDs.k/gk�0 of little s–dimensional disks on

S
n�1�

d .A; n/, where sDdim A

and Ds.k/ is the space of k pairwise disjoint open disks in the unit disk of dimension
s (to keep with the terminology the word “disk” is used instead of “ball”). The action
of Ds.2/' S s�1 is given as follows:

Ds.2/��d .A; n1/��
d .A; n2/!�d .A; n1C n2/;

and yields a bracket operation in homology:

Œ�;��W Hp.�
d .A; n1//˝Hq.�

d .A; n2//!HpCqCs�1.�
d .A; n1C n2//:

The product map in homology is given by the action of H0.D
s.2// and is the induced

map in homology of the concatenation of two configurations after placing the first one
in a disk of radius 1

2
centered at

�
�

1
2
; 0; : : : ; 0

�
and the other in another disk of the

same radius centered at
�

1
2
; 0; : : : ; 0

�
. One main theorem of [9] reads as follows. The

bracket of two cycles is important to understand and can be described as follows. Given
a cycle (or chain) c in �d .A; n/, we say we localize it in a disk Ds if we choose a
homeomorphism (which can be made canonical) between AŠRs and D , and take
the image of c in �d .D; n/ via this homeomorphism. We obtain the bracket Œ˛1; ˛2�

by localizing the cycles respectively in two disjoints disks D1 and D2 and taking the
new cycle obtained by rotating D1 around D2 (or D2 around D1 , up to sign) in Rs .

Theorem 7.5 [9, Proposition 3.9] The homology of �d .A; n/ is torsion free, gen-
erated additively by products of iterated brackets where each factor is either xi or an
iterated bracket of the form

Œ � � � ŒŒB1;B2�;B3�; : : : ;B`�; `� 1;

where each Bs is of the form

Bs D Œ � � � ŒŒfxj1;s
;xj2;s

; : : : ;xjdC1;s
g;xi1;s

�;xi2;s
�; : : : ;xi`s ;s

�

(further conditions are stated on indices to get a basis).
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Let’s argue, for example, that fx1; : : : ;xdC1g maps to zero in the homology of the
next filtration term. Consider the following diagram of inclusions:

�d .A; d C 1/ //

�
��

�d .A; n/D F0

��

.�1 �Ad /\�d .V; n/ // F1

The bottom space .�1 �Ad /\�d .V; n/D �1 �Ad � diag.A/ is contractible since
we are removing a subspace from the boundary of �1 �Ad . The map � is trivial and
the commutativity of the diagram shows that fx1; : : : ;xdC1g maps trivially in F1 . A
class of the form Œfx1; : : : ;xdC1g;xdC2� dies in F1 , for example, since this class can
be represented by the composite

(10) Sds�1
�Sd�1

!AdC2
� sing ,!AdC1

�H � sing ,! F1:

The first map is obtained from the operadic action. Here the factor Sd�1 is the
locus of xdC2 rotating in some sphere in Rd , so when xdC2 is allowed to be in H ,
this sphere is coned off and the composite of the first two maps in (10) is trivial
on the top homology class which by definition is Œfx1; : : : ;xdC1g;xdC2�. A similar
argument applies to show that the image of Bs as in the notation of Theorem 7.5 is
trivial in F1 . For the image of the bracket ŒBs;Bt �, one can argue similarly. One
constructs this class by localizing Bs and Bt in distinct disks D1 and D2 , and
rotating one disk around the other. But the class Bs is the boundary of a chain in
H 0 �Dn�1

1
[D1 �H 0 �Dn�2[ � � � [Dn�1 �H 0 � F1 , where H 0 is the part of H

with boundary D1 . This means that ŒBs;Bt � must map to zero in H�.F1/. It remains
to be shown that the image of a product is trivial, but this is immediate.

Note that there are many ways a given class Œ � � � ŒŒB1;B2�;B3�; : : : ;B`� can die in F1 ,
and so in F1 we obtain suspension classes one degree higher. This describes the
homology of F1 and clearly it is one degree more connected than F0 .

8 Fundamental groups

In this final section we take a more pedestrian look at the isomorphism �1.B
d .X; n//Š

H1.X;Z/ for d � 2. This is expressed in terms of braids. As before X is a simplicial
complex. Note that loops in SPn X , based at a basepoint of the form Œ�; : : : ;��, say,
lift to X n under the quotient projection; see [18, Section 5] for example:

X n

��

S1 //

;;

SPn X
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Figure 5: The left braid cannot be trivialized in �2.I; 3/

This says that a homotopy class of a loop  W S1! SPn X based at Œ�; : : : ;�� can be
represented by a tuple Œ1; : : : ; n�, where i W S

1!X is a loop in X . Moreover and
by the simplicial approximation theorem, any loop in X n deforms into an n–tuple of
simplicial loops in X so that  can be represented by an unordered tuple of simplicial
loops in SPn.X / for some simplicial decomposition.

We can try to describe loops in �d .X; n/ and Bd .X; n/ in the same way but both
spaces are not simplicial complexes in general, only of the homotopy type of one.
However, after passing to a barycentric subdivision, Bd .X; n/D SPn X �BdC1.X; n/

deformation retracts onto a cellular complex Wd .X; n/ (Lemma 5.2). A loop S1!

Bd .X; n/ deforms into a loop into Wd .X; n/ which is cellular. Therefore and without
loss of generality, we can represent a loop  W S1! Bd .X; n/ within its homotopy
class by a tuple of paths t 7! Œ1.t/; : : : ; n.t/�, with i a simplicial path in X (not
necessarily a closed loop) and t 2 Œ0; 1�. This is a braid with n–strands. These paths or
strands at any time t do not intersect in more than d points, and Œ1.0/; : : : ; n.0/�D

Œ1.1/; : : : ; n.1/�. This is similar for loops into �d .X; n/.

As a first example, consider X D I : the unit interval. By codimension argument,
�d .I; n/ is simply connected if d�3, so the only interesting case is when dD2 and we
are removing from In codimension 2 subspaces corresponding to when xi D xj D xk .
According to Example 2.1, �2.I; 3/' S1 and �1.�

2.I; 3//Š Z. An element in the
fundamental group can be represented by a braid with 3–strands embedded in I � I ,
not all of which can pass by the same point at the same time. A nontrivial element is
depicted in the left-hand side of Figure 5. This braid cannot be trivialized in �2.I; 3/,
but it is amusing to try. By moving the strands around while keeping their endpoints
fixed, there is no way we can separate them without going through a triple point.

Example 8.1 For n � 3, the fundamental group of �2.I; n/ has been analyzed by
Khovanov [19]. There he shows that �2.I; n/ is a K.�; 1/ and then gives a presentation
for � . This presentation is given as follows. Define the right-angled Coxeter group
T Wn to be the group generated by the simple transpositions si D .i; iC1/; i 2 Œn�1�,
subject to the relations

s2
i D 1; sisj D sj si if ji � j j> 1:

Define �W T Wn!Sn by �.si/D si for all i 2 Œn�1�. Then �1.�
2.I; n//Š ker� .
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Figure 6: Resolving the intersection points

In the unordered case it is possible to kill the braiding by interchanging strands.
Represent an element of �1.B

d .X; n// by a braid with n–strands embedded in X �I .
Suppose we have two intersecting strands. There is a way to resolve the intersection
points, illustrated in Figure 6. The figure depicts a loop f .t/D Œf1.t/; f2.t/� with two
strands crossing for some s 2 Œ0; 1�. Define Qf D Œ Qf1; Qf2� to be such that Qfi.t/Dfi.t/ if
t � s , and Qf1.t/D f2.t/, Qf2.t/D f1.t/ if t � s . These give two representations of the
same loop in �Bd .X; n/ for d � 2. The difference, however, is that after changing f
by Qf , by a small homotopy we can now separate the strands of Qf so that no intersection
occurs. This also explains why the fundamental group must be abelian [18].

For example, using this resolution of intersections, we can immediately trivialize the
braid in �B2.R; 3/ depicted in Figure 5 (left). This is no surprise since B2.R; 3/'
B2.I; 3/ is contractible and is identified with the 3–simplex with one edge removed.

The resolution of intersections when applied to loops in �V , with V a tree, implies
that we have a surjection �1.B.V; n//! �1.B

d .V; n//. Since Bd .V; n/ is connected
for d � 2 (Lemma 4.1), pick the basepoint in this fundamental group to be Œx1; : : : ;xn�

with xi ¤ xj ; i ¤ j , and write a braid  .t/D Œ1.t/; : : : ; n.t/�. As discussed, we can
assume the i to be nonintersecting strands. Since V is one dimensional, necessarily
i.0/D i.1/D xi , so all strands must start and finish at the same point. Each i can
be homotoped to the constant strand at xi , without further intersections, and the loop
we started out with is trivial up to homotopy. The above discussion allows us to give a
streamlined proof of the following proposition which we have already obtained as a
corollary to Theorem 1.1.

Proposition 8.2 If X is a connected simplicial complex which is not reduced to a
point, n� 2; d � 2, then there is an isomorphism �1.B

d .X; n//ŠH1.X IZ/.

Proof We need show that the inclusion Bd .X; n/ ,! SPn X induces an isomorphism
on fundamental group if d > 1. If we invoke Lemma 4.6 as before, this boils down to
showing that for V a contractible neighborhood in X , Bd .V; n/ is simply connected
whenever d � 2 and for any n� 1. If V is a contractible neighborhood in simplicial X

(as in the proof of Theorem 6.2), any element in �1.B
d .V; n// can be represented by

a braid and by resolving the intersection points. This braid can be homotoped to the
trivial braid.
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