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The �–inverted R–motivic sphere

BERTRAND J GUILLOU

DANIEL C ISAKSEN

We use an Adams spectral sequence to calculate the R–motivic stable homotopy
groups after inverting � . The first step is to apply a Bockstein spectral sequence
in order to obtain h1–inverted R–motivic Ext groups, which serve as the input to
the �–inverted R–motivic Adams spectral sequence. The second step is to analyze
Adams differentials. The final answer is that the Milnor–Witt .4k�1/–stem has
order 2uC1 , where u is the 2–adic valuation of 4k . This answer is reminiscent of
the classical image of J . We also explore some of the Toda bracket structure of the
�–inverted R–motivic stable homotopy groups.

14F42; 55T15, 55Q45

1 Introduction

The first exotic property of motivic stable homotopy groups is that the Hopf map � is
not nilpotent. This means that inverting � can be useful for understanding the global
structure of motivic stable homotopy groups.

In Andrews and Miller [3] and Guillou and Isaksen [5], the �–inverted C–motivic
2–completed stable homotopy groups y�C

�;�Œ�
�1� were explicitly computed to be

F2Œ�
˙1�Œ�; "�="2:

This result naturally suggests that one should study the structure of �–inverted motivic
stable homotopy groups over other fields.

In the present article, we consider the �–inverted R–motivic 2–completed stable
homotopy groups y�R

�;�Œ�
�1�. Our main tool is the motivic Adams spectral sequence,

which takes the form

ExtAR.MR
2 ;M

R
2 /Œh

�1
1 � H) y�R

�;�Œ�
�1�:

Here AR is the R–motivic Steenrod algebra, and MR
2

is the motivic F2–cohomology
of R. We will exhaustively compute this spectral sequence.

Published: 7 November 2016 DOI: 10.2140/agt.2016.16.3005

http://msp.org
http://www.ams.org/mathscinet/search/mscdoc.html?code=14F42, 55T15, 55Q45
http://dx.doi.org/10.2140/agt.2016.16.3005


3006 Bertrand J Guillou and Daniel C Isaksen

We begin with computing the Adams E2–page ExtAR.MR
2
;MR

2
/Œh�1

1
� using the

�–Bockstein spectral sequence; see Hill [6] and Dugger and Isaksen [4]. This spectral
sequence takes the form

ExtAC .MC
2 ;M

C
2 /Œ��Œh

�1
1 � H) ExtAR.MR

2 ;M
R
2 /Œh

�1
1 �;

where AC is the C–motivic Steenrod algebra and MC
2

is the motivic F2–cohomology
of C .

The input to the �–Bockstein spectral sequence is completely known from Guillou
and Isaksen [5]. In order to deduce differentials, one first observes, as in Dugger and
Isaksen [4], that the groups

ExtAR.MR
2 ;M

R
2 /Œ�

�1; h�1
1 �

with � and h1 both inverted are easy to describe. Then there is only one pattern of
�–Bockstein differentials that is consistent with this �–inverted calculation.

Having obtained the Adams E2–page ExtAR.MR
2
;MR

2
/Œh�1

1
�, the next step is to com-

pute Adams differentials. The extension of scalars functor from R–motivic homotopy
theory to C–motivic homotopy theory induces a map

ExtAR.MR
2
;MR

2
/Œh�1

1
� +3

��

y�R
�;�Œ�

�1�

��

ExtAC .MC
2
;MC

2
/Œh�1

1
� +3 y�C

�;�Œ�
�1�

of Adams spectral sequences. The bottom Adams spectral sequence is completely
understood; see Andrews and Miller [3] and Guillou and Isaksen [5]. The Adams d2

differentials in the top spectral sequence can then be deduced by the comparison map.

This leads to a complete description of the h1–inverted R–motivic Adams E3–page.
Over C , it turns out that the h1–inverted Adams spectral sequence collapses at this point.
However, over R, there are higher differentials that we deduce from manipulations
with Massey products and Toda brackets.

In the end, we obtain an explicit description of the h1–inverted R–motivic Adams
E1–page, from which we can read off the �–inverted stable motivic homotopy groups
over R.

In order to state the result, we need a bit of terminology. Because � belongs to y�R
1;1

, it
makes sense to use a grading that is invariant under multiplication by �. The Milnor–
Witt n–stem is the direct sum …n D

L
p y�

R
pCn;p . Then multiplication by � is an

endomorphism of the Milnor–Witt n–stem.
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Theorem 1.1 (1) The �–inverted Milnor–Witt 0–stem …0Œ�
�1� is Z2Œ�

˙1�, where
Z2 is the ring of 2–adic integers.

(2) If k > 1, then the �–inverted Milnor–Witt .4k�1/–stem …4k�1Œ�
�1� is iso-

morphic to Z=2uC1Œ�˙1� as a module over Z2Œ�
˙1�, where u is the 2–adic

valuation of 4k .
(3) The �–inverted Milnor–Witt n–stem …nŒ�

�1� is zero otherwise.

For degree reasons, the product structure on y�R
�;�Œ�

�1� is very simple. However, there
are many interesting Toda brackets. We explore much of the 3–fold Toda bracket
structure in this article. In particular, we will show that all of y�R

�;�Œ�
�1� can be

constructed inductively via Toda brackets, starting from just 2 and the generator of the
Milnor–Witt 3–stem.

Theorem 1.1 gives a familiar answer. These groups have the same order as the classical
image of J . For example, …3 consists of elements of order 8, which is the same as
the order of the image of J in the classical 3–stem. Similarly, …7 consists of elements
of order 16, which is the same as the order of the image of J in the classical 7–stem.
One might expect a geometric proof that directly compares the classical image of J

spectrum with the �–inverted R–motivic sphere. However, higher structure in the form
of Toda brackets suggests that such a direct proof is not possible.

We also observe that our calculations are reminiscent of the classical Adams spectral
sequence for v1–periodic homotopy at odd primes, as carried out in Andrews [2]. We
are not aware of a structural reason why the calculations are so similar.

The calculation of the �–inverted R–motivic homotopy groups leads to questions about
�–inverted motivic homotopy groups over other fields. We leave it to the reader to
speculate on the behavior of these �–inverted groups over other fields.

Acknowledgements Guillou was supported by Simons Collaboration Grant 282316.
Isaksen was supported by NSF grant DMS-1202213.

2 Preliminaries

2.1 Notation

We continue with notation from [4] as follows:
(1) MC

2
D F2Œ� � is the motivic cohomology of C with F2 coefficients, where � has

bidegree .0; 1/.
(2) MR

2
D F2Œ�; �� is the motivic cohomology of R with F2 coefficients, where �

and � have bidegrees .0; 1/ and .1; 1/, respectively.
(3) Acl is the classical mod 2 Steenrod algebra.

Algebraic & Geometric Topology, Volume 16 (2016)
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(4) AC is the mod 2 motivic Steenrod algebra over C .

(5) AR is the mod 2 motivic Steenrod algebra over R.

(6) Extcl is the trigraded ring ExtAcl.F2;F2/.

(7) ExtC is the trigraded ring ExtAC .MC
2
;MC

2
/.

(8) ExtR is the trigraded ring ExtAR.MR
2
;MR

2
/.

(9) y�C
�;� is the motivic stable homotopy ring of the 2–completed motivic sphere

spectrum over C .

(10) y�R
�;� is the motivic stable homotopy ring of the 2–completed motivic sphere

spectrum over R.

(11) …n is the Milnor–Witt n–stem
L

p y�
R
pCn;p .

(12) RD F2Œ�; h
˙1
1
�.

(13) The symbols v4
1

and P are used interchangeably for the Adams periodicity
operator.

2.2 Grading conventions

We follow [7] in grading Ext according to .s; f; w/, where:

(1) f is the Adams filtration, ie the homological degree.

(2) sCf is the internal degree, ie that corresponding to the first coordinate in the
bidegree of the Steenrod algebra.

(3) s is the stem, ie the internal degree minus the Adams filtration.

(4) w is the weight.

Following this grading convention, the elements � and � , as elements of ExtR , have
degrees .0; 0;�1/ and .�1; 0;�1/ respectively.

We will consider the groups ExtRŒh�1
1
� in which h1 has been inverted. The degree

of h1 is .1; 1; 1/. As in [5], for this purpose it is convenient to introduce the following
gradings whose values are zero for h1 :

(5) mw D s�w is the Milnor–Witt degree.

(6) c D sCf � 2w is the Chow degree.
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In order to avoid notational clutter, we will often drop h1 from the notation. Since h1

is a unit, no information is lost by doing this. The correct powers of h1 can always be
recovered by checking degrees.

For example, in Lemma 3.1 below, we claim that there is a differential d
�
3
.v4

1
/D �3v2

in the �–Bockstein spectral sequence. Strictly speaking, this formula is nonsensical
because d

�
3
.v4

1
/ has Adams filtration 5 while v2 has Adams filtration 1. The correct

full formula is d
�
3
.v4

1
/D �3h4

1
v2 .

If we are to ignore multiples of h1 , we must rely on gradings that take value 0 on h1 .
This explains our preference for Milnor–Witt degree mw and Chow degree c .

3 The �–Bockstein spectral sequence

Recall [6; 4] that the �–Bockstein spectral sequence takes the form

ExtC Œ�� H) ExtR :

After inverting h1 , by [5, Theorem 1.1] this takes the form

RŒv4
1 ; v2; v3; : : : � H) ExtRŒh�1

1 �;

where RD F2Œ�; h
˙1
1
�. Table 1 lists the generators of the Bockstein E1–page.

.mw; c/ generator

.0; 1/ �

.4; 4/ v4
1

.3; 1/ v2

.7; 1/ v3

.15; 1/ v4

.2n� 1; 1/ vn

Table 1: Bockstein E1–page generators

Lemma 3.1 In the �–Bockstein spectral sequence, there are differentials

d
�
2n�1

.v2n

1 /D �2n�1vn for n� 2:

All other nonzero differentials follow from the Leibniz rule.

The first few examples of these differentials are d3.v
4
1
/D �3v2 , d7.v

8
1
/D �7v3 and

d15.v
16
1
/D �15v4 .
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Proof Inverting � induces a map

ExtC Œh�1
1
�Œ��

�–Bss +3

�–inv
��

ExtRŒh�1
1
�

�–inv
��

ExtC Œh�1
1
�Œ�˙1�

�–Bss +3 ExtRŒh�1
1
; ��1�

of �–Bockstein spectral sequences. We will establish differentials in the �–inverted
spectral sequence. The map of spectral sequences then implies that the same differentials
occur when � is not inverted.

Recall [4, Theorem 4.1] there is an isomorphism ExtclŒ�
˙1�Š ExtRŒ��1� sending the

classical element h0 to the motivic element h1 . Using also that ExtclŒh
�1
0
�D F2Œh

˙1
0
�,

it follows ExtRŒh�1
1
; ��1� is isomorphic to RŒ��1�. Then the �–inverted �–Bockstein

spectral sequence takes the form

RŒ��1�Œv4
1
; v2; v3; : : : �

�–Bss
+3 RŒ��1�:

Because the target of the �–inverted spectral sequence is very small, essentially every-
thing must either support a differential or be hit by a differential.

The �–Bockstein differentials have degree .�1; 0/ with respect to the grading .mw; c/
used in Table 1. The elements �kv2 cannot support differentials because there are no
elements in the Milnor–Witt 2–stem. The only possibility is that after inverting � ,
there is a �–Bockstein differential d3.v

4
1
/D �3v2 .

Then the �–inverted E4–page is RŒv8
1
; v3; v4; : : : �. The elements �kv3 cannot support

differentials because the �–inverted E4–page has no elements in the Milnor–Witt
6–stem. The only possibility is that after inverting � , there is a �–Bockstein differential
d7.v

8
1
/D �7v3 .

In general, the �–inverted E2n�1 –page is RŒv2n

1
; vn; vnC1; : : : �. The elements �kvn

cannot support differentials because the �–inverted E2n�1 –page has no elements in
the Milnor–Witt .2n�2/–stem. The only possibility is that after inverting � , there is a
�–Bockstein differential d2n�1.v

2n

1
/D �2n�1vn .

The �–Bockstein E1–page can be directly computed from the Leibniz rule and the
differentials in Lemma 3.1. For example, d3.v

4
1
/D �3v2 , so d3.v

4C8k
1

/D �3v8k
1
v2 .

This establishes the relation �3v8k
1
v2 D 0.

To ease the notation in Proposition 3.2, we write P rather than v4
1

.
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Proposition 3.2 The �–Bockstein E1–page is the R–algebra on the generators
P2n�1kvn for n� 2 and k � 0 (see Table 2), subject to the relations

�2n�1P2n�1kvn D 0

for n� 2 and k � 0, and

P2n�1kvn �P
2m�1jvmCP2n�1.kC2m�nj/vn � vm D 0

for m� n� 2, k � 0 and j � 0.

.mw; c/ generator �–torsion

.0; 1/ � 1

.0; 0/ h1 1

.3; 1/C k.8; 8/ P2kv2 3

.7; 1/C k.16; 16/ P4kv3 7

.15; 1/C k.32; 32/ P8kv4 15

.2n� 1; 1/C k.2nC1; 2nC1/ P2n�1kvn 2n� 1

Table 2: Bockstein E1–page generators

Remark 3.3 In practice, the relations mean that every P can be shifted onto the vn

with minimal n in any monomial. Thus an R–module basis is given by monomials of
the form P2n�1kvn � vm1

� � � vma
, where n�m1 � � � � �ma . For example,

P2v2 �P
4v2DP6v2 �v2; P4v2 �P

8v3DP12v2 �v3; P4v3 �P
48v5DP52v3 �v5:

4 The Adams E2–page

Having obtained the �–Bockstein E1–page in Section 3, our next task is to consider
hidden extensions in ExtRŒh�1

1
�. We will show that there are no hidden relations. This

will require some careful analysis of degrees, as well as some manipulations with
Massey products.

The �–Bockstein E1–page is an associated graded object of ExtRŒh�1
1
�. Elements of

the E1–page only determine elements of ExtRŒh�1
1
� up to higher filtration. Therefore,

we must be careful about choosing specific generators of ExtRŒh�1
1
�.

We will show in Lemma 4.1 that P2n�1kvn detects a unique element of ExtRŒh�1
1
�.

Therefore, we may unambiguously use the same notation P2n�1kvn for an element
of ExtRŒh�1

1
�.
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In general, the �–Bockstein spectral sequence does not allow for hidden extensions by � .
More precisely, if x is an element of the �–Bockstein E1–page such that �kx D 0,
then x detects an element of ExtRŒh�1

1
� that is also annihilated by �k . Beware that x

might detect more than one element of ExtRŒh�1
1
�, and some such elements might

not be annihilated by �k . Nevertheless, there is always at least one element that is
annihilated by �k .

For example, the relation �2n�1

P2n�1kvn D 0 in the �–Bockstein E1–page lifts to
give the same relation in ExtRŒh�1

1
�.

Lemma 4.1 For each n � 2 and k � 0, the element P2n�1kvn of the Bockstein
E1–page detects a unique element of ExtRŒh�1

1
�.

Proof We need to show that in the �–Bockstein E1–page, P2n�1kvn does not share
bidegree with an element of higher filtration.

First suppose that P2n�1kvn has the same bidegree as �bP2m�1jvm . Then

.2n
� 1; 1/C k.2nC1; 2nC1/D .2m

� 1; 1/C j .2mC1; 2mC1/C b.0; 1/:

Considering only the Milnor–Witt degree, we have

2n.2kC 1/D 2m.2j C 1/:

Therefore, nDm and k D j , so b D 0.

Suppose that P2n�1kvn shares bidegree with some element x . By Remark 3.3, we may
assume that x is of the form �bP2m1�1jvm1

�vm2
� � � vma

, where m1�m2� � � � �ma .
Since �2m1�1P2m�1jvm1

D 0, we may also assume that b � 2m1 � 2. Because of the
previous paragraph, we may assume that a� 2. We wish to show that b D 0.

We first show that n � ma . Let u.x/ be the difference mw � c . We have that
u.P2m1�1jvm1

/ D 2m1 � 2 and u.�/ D �1. Since b � 2m1 � 2, it follows that
u.�bP2m1�1jvm1

/� 0. Thus

2n
� 2D u.P2n�1kvn/D u.�bP2m1�1jvm1

/Cu.vm2
� � � vma

/� u.vma
/D 2ma � 2;

so that n�ma .

Now consider the Milnor–Witt and Chow degrees modulo 4. We have

.�1; 1/� .�a; aC b/ .mod 4/;

so a� 1 .mod 4/ and b � 0 .mod 4/. Thus either b D 0, which was what we wanted
to show, or b � 4.
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We may now assume that b � 4. Since �4P2jv2 D 0, we must have m1 � 3, so that
all mi , and also n, are at least 3.

Next, consider degrees modulo 8. Comparing degrees gives

.�1; 1/� .�a; aC b/ .mod 8/:

Thus b � 0 .mod 8/, so that b � 8. Since �8P4jv3 D 0, we must have j1 � 4, and
therefore n and all other ji are also at least 4. This argument can be continued to
establish that b and n must be arbitrarily large under the assumption that b > 0.

Lemma 4.2 For each n� 2 and k � 0, the element P2n�1kvn � vn of the Bockstein
E1–page detects a unique element of ExtRŒh�1

1
�.

Proof The Milnor–Witt degree of P2n�1kvn �vn is even, while the Milnor–Witt degree
of �bP2m�1jvm is odd. Therefore, these elements cannot share bidegree.

Now suppose that the element P2n�1kvn � vn has the same bidegree as the element
�bP2m1�1jvm1

� vm2
� � � vma

, with m1 � m2 � � � � � ma , b � 2m1 � 2 and a � 2.
The rest of the proof is essentially the same as the proof of Lemma 4.1. Consider
uDmw � c to get that n �ma . Then consider congruences .�2; 2/� .�a; aC b/

modulo higher and higher powers of 2 to obtain that b D 0.

Remark 4.3 The obvious generalization of Lemma 4.2 to elements of the form
P2n�1kvn � vm is false. For example, P2v2 � v5 has the same degree as �4v6

3
.

Remark 4.4 Lemmas 4.1 and 4.2 are equivalent to the claim that there are no �

multiples in the �–Bockstein E1–page in the same bidegrees as either P2n�1kvn

or P2n�1kvn � vn . This implies that there are also no � multiples in ExtRŒh�1
1
� that

share bidegree with these elements; we will need this fact later.

Lemma 4.5 ExtRŒh�1
1
� is zero when the Milnor–Witt stem mw and the Chow degree c

are both equal to 2i with i � 1.

Proof Under the condition mwD cD2i , inspection of Table 1 shows the �–Bockstein
E1–page consists of products of elements of the form v4

1
or �2nC2m�4vnvm . In the

E1–page, �2nC2m�4vnvm D 0 since �2n�1vn D 0. Also, v4k
1

supports a differential
for all k � 0.

Lemma 4.6 For each n� 2, k � 0 and m> n, we have a Massey product

P2n�1kC2m�2

vn D h�
2m�2n

vm; �
2n�1; P2n�1kvni

in ExtRŒh�1
1
� with no indeterminacy.
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Proof The Bockstein differential d
�
2m�1

.P2m�2

/D�2m�1vm and May’s convergence
theorem [8, Theorem 4.1] imply that the Massey product is detected by P2n�1kC2m�2

vn

in the �–Bockstein E1–page. There are no crossing Bockstein differentials as
all classes are in nonnegative �–filtration. Lemma 4.1 says that this �–Bockstein
E1–page element detects a unique element of ExtRŒh�1

1
�.

The indeterminacy of the bracket is generated by products of the form �2m�2n

vm �x

and y �P2n�1kvn , where x and y have appropriate bidegrees. We showed in Lemma 4.5
that 0 is the only possibility for x or y .

Remark 4.7 Lemma 4.6 gives many different Massey products for the same element.
For example,

P8v2 D h�
4v3; �

3; P6v2i D h�
12v4; �

3; P4v2i D h�
28v5; �

3; v2i:

Lemma 4.8 For m> n� 2, there is a Massey product

P2n�1kC2m�2

vn D hP
2n�1kvn; �

2m�2vm; �i

in ExtRŒh�1
1
� with no indeterminacy.

Proof The Massey product formula follows from the Bockstein differential

d
�
2m�1

.P2m�2

/D �2m�1vm

and May’s convergence theorem [8, Theorem 4.1]. There are no crossing Bockstein
differentials as all classes are in nonnegative �–filtration. As in the proof of Lemma 4.6,
we need Lemma 4.1 to tell us that the element P2n�1kC2m�2

vn of the �–Bockstein
E1–page detects a unique element of ExtRŒh�1

1
�.

The indeterminacy of the bracket is generated by products of the form P2n�1kvn �x

and y � � . We showed in Lemma 4.5 that 0 is the only possibility for x . We observed
in Remark 4.4 that y � � must be zero because there are no multiples of � in the
appropriate bidegree.

The relations in the Bockstein E1–page given in Proposition 3.2 may lift to ExtRŒh�1
1
�

with additional terms that are multiples of � . In other words, there may be hidden
relations in the Bockstein spectral sequence. For example, for degree reasons it is
possible that P2v2 �P

16v5CP18v2 � v5 equals �4P16v3 � v
5
3

. Proposition 4.9 shows
that there are no such hidden terms in the relations in ExtRŒh�1

1
�.

Proposition 4.9 There are no hidden relations in the Bockstein spectral sequence.
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Proof The relation �2n�1

P2n�1kvn D 0 in the �–Bockstein E1–page lifts to give
the same relation in ExtRŒh�1

1
�, as we observed in the discussion preceding Lemma 4.1.

Therefore, we need only compute the products P2n�1kvn �P
2m�1jvm in ExtRŒh�1

1
�

for m� n.

Lemma 4.6 implies that P2n�1kvn �P
2m�1jvm equals

P2n�1kvnh�
2m

vmC1; �
2m�1; P2m�1.j�1/vmi:

Shuffle to obtain

hP2n�1kvn; �
2m

vmC1; �
2m�1

iP2m�1.j�1/vm:

This expression is contained in

hP2n�1kvn; �
2mC1�2vmC1; �iP

2m�1.j�1/vm;

which equals P2n�1kC2m�1

vn �P
2m�1.j�1/vm by Lemma 4.8.

By induction, P2n�1kvn �P
2m�1jvm equals P2n�1.kC2m�nj/vn � vm .

Theorem 4.10 ExtRŒh�1
1
� is the R–algebra on the generators P2n�1kvn for n � 2

and k � 0 (see Table 2), subject to the relations

�2n�1P2n�1kvn D 0

for n� 2 and k � 0, and

P2n�1kvn �P
2m�1jvmCP2n�1.kC2m�nj/vn � vm D 0

for m� n� 2, k � 0 and j � 0.

Proof This follows immediately from Propositions 3.2 and 4.9.

Remark 4.11 Analogously to Remark 3.3, an R–module basis for ExtRŒh�1
1
� is given

by monomials of the form P2n�1kvn � vm1
� � � vma

, where n�m1 � � � � �ma .

5 Adams differentials

Before computing with the h1–inverted R–motivic Adams spectral sequence, we will
consider convergence. A priori, there could be an infinite family of homotopy classes
linked together by infinitely many hidden � multiplications. These classes would not
be detected in ExtRŒh�1

1
�. Lemma 5.1 implies that this cannot occur for degree reasons.
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Lemma 5.1 Let m> 0 be a fixed Milnor–Witt stem. There exists a constant A such
that Ext.s;f;w/R vanishes when s�w Dm, s is nonzero, f >A and f > sC 1.

Lemma 5.1 can be restated in the following more casual form: within a fixed Milnor–
Witt stem, there exists a horizontal line and a line of slope 1 such that ExtR vanishes
in the region above both lines, except in the 0–stem. Figure 1 depicts the shape of the
vanishing region.

f

s

vanishing region

Figure 1: The vanishing region in a Milnor–Witt stem

Proof This argument occurs in ExtR , where h1 has not been inverted.

As explained in [4, Theorem 4.1], the elements in the m–stem of the classical Ext
groups Extcl correspond to elements of ExtR in the Milnor–Witt m–stem that remain
nonzero after � is inverted, ie that support infinitely many multiplications by � . Each
stem of Extcl is finite except for the 0–stem. For m> 0, choose A to be larger than
the Adams filtrations of all of the elements in the m–stem of Extcl . Then A is larger
than the Adams filtrations of every element of ExtR in the Milnor–Witt m–stem that
remain nonzero after � is inverted.

Let x be a nonzero element of Ext.s;f;w/R such that s�wDm, f >A and f > sC1.
We will show that s must equal zero.

The choice of A guarantees that x is annihilated by some positive power of � . Suppose
that �kxD 0 but �k�1x is nonzero, for some k > 0. Then there must be a differential
in the �–Bockstein spectral sequence of the form dk.y/D �

kx , where y is an element
of ExtC in degree .s� kC 1; f � 1; w� k/.

The argument from [1] establishes a vanishing line of slope 1 in the nonzero stems
of ExtC . The conditions f >sC1 and k>0 imply that the element y lies strictly above
this vanishing line, so it must be of the form �ahb

0
with b � 1. The only �–Bockstein

differentials on such classes are d1.�
2cC1hb

0
/D ��2chbC1

0
, which implies that x must

be of the form �2chb
0

. This shows that s D 0.
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The h1–inverted motivic Adams spectral sequence over C was studied in [5; 3]. It
takes the form

F2Œh
˙1
1 ;P; v2; v3; : : : � H) y�C

�;�Œ�
�1�;

where y�C
�;�Œ�

�1� is the �–inverted motivic stable homotopy ring of the 2–completed
motivic sphere spectrum over C . This spectral sequence has differentials

d2.P
kvn/D Pkv2

n�1

for all k � 0 and all n� 3. As usual, we omit any powers of h1 .

Lemma 5.2 In the h1–inverted R–motivic Adams spectral sequence, there are differ-
entials

d2.P
2n�1kvn/D P2n�1kv2

n�1

for all k � 0 and all n� 3.

Proof There is an extension of scalars functor from R–motivic homotopy theory
to C–motivic homotopy theory. This functor induces a map

ExtAR.MR
2
;MR

2
/Œh�1

1
� +3

��

y�R
�;�Œ�

�1�

��

ExtAC .MC
2
;MC

2
/Œh�1

1
� +3 y�C

�;�Œ�
�1�

from the R–motivic Adams spectral sequence to the C–motivic Adams spectral se-
quence. This map takes � to zero.

The above map of spectral sequences implies that the R–motivic Adams differential
d2.P

2n�1kvn/ equals P2n�1kv2
n�1

plus terms that are divisible by � . Lemma 4.2
implies that there are no possible additional terms in the relevant bidegree.

Our next task is to completely describe the Adams E3–page. First, we explore some
elements that survive to the E3–page. We will consider these elements more carefully
in Proposition 5.4.

Despite the differential d2.P
4kv3/DP4kv2

2
, the element �3P4kv3 survives to the E3–

page because �3P4kv2
2

is zero. Similarly, �2n�1�1P2n�1kvn survives to the E3–page.

The element P2v2
2

looks like it should be hit by an Adams d2 differential on P2v3 .
However, P2v3 did not survive the �–Bockstein spectral sequence. Therefore, there
is nothing to hit P2v2

2
and it survives to the Adams E3–page. The same observation

applies to the elements P2n�1.2jC1/v2
n .

We record the following simple computation, as we will employ it several times.
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Lemma 5.3 Let S be an F2–algebra. Let B D S Œw1; w2; : : : � be a polynomial ring
in infinitely many variables, and define a differential on B by @.wn/Dw

2
n�1

for n� 2.
Then H�.B; @/Š S Œw1�=w

2
1

.

In fact, we will use a slight generalization of Lemma 5.3 in which @.wn/ is equal
to unw

2
n�1

, where un is a unit in S . This generalization implies, for example, that
the h1–inverted C–motivic Adams E3–page is F2Œh

˙1
1
;P; v2�=v

2
2

.

Proposition 5.4 The h1–inverted R–motivic Adams E3–page is free as an R–module
on the generators listed in Table 3 for n� 2, k � 0 and j � 0. Almost all products of
these generators are zero, except that

P4kv2 �P
4jC2v2 D P4kC4jC2v2

2

and for n� 3,

�2n�1�1P2n�1�2kvn � �
2n�1�1P2n�1.2jC1/vn D �

2n�2P2n�1.2kC2jC1/v2
n:

.mw; c/ generator �–torsion

.0; 0/ 1 1

.3; 1/C k.8; 8/ P2kv2 3

.7; 4/C k.16; 16/ �3P4kv3 4

.15; 8/C k.32; 32/ �7P8kv4 8

.2n� 1; 2n�1/C k.2nC1; 2nC1/ �2n�1�1P2n�1kvn 2n�1

.6; 2/C .2j C 1/.8; 8/ P2.2jC1/v2
2

3

.14; 2/C .2j C 1/.16; 16/ P4.2jC1/v2
3

7

.30; 2/C .2j C 1/.32; 32/ P8.2jC1/v2
4

15

.2nC1� 2; 2/C .2j C 1/.2nC1; 2nC1/ P2n�1.2jC1/v2
n 2n� 1

Table 3: R–module generators for the Adams E3–page

Remark 5.5 The relations in Proposition 5.4 are just the ones that are obvious from
the notation. For example,

v2 �P
2v2 D P2v2

2 ; �3P4v3 � �
3P8v3 D �

6P12v2
3 :

Proof of Proposition 5.4 Let Exthk; bi be the F2Œh
˙1
1
�–submodule of the h1–inverted

R–motivic Adams E2–page on generators of the form �bPkvm1
vm2
� � � vma

such that
m1�m2� � � � �ma . Note that b� 2m1�2 in this situation, since �2m1�1Pkvm1

D 0.
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Also, k must be a multiple of 2m1�1 . By Lemma 5.2 and the fact that � is a permanent
cycle, each Exthk; bi is a differential graded submodule. Thus it suffices to compute
the cohomology of each Exthk; bi.

We start with Exth0; bi, which is equal to �b �F2Œh
˙1
1
; vm; vmC1; : : : � as a differential

graded F2Œh
˙1
1
�–module, where m is the smallest integer such that b � 2m � 2.

Now Lemma 5.3 implies that H�.Exth0; bi; d2/ is a free F2Œh
˙1
1
�–module on two

generators �b and �bvm .

So far, we have demonstrated that the powers of � and the elements

v2; �v2; �2v2; �3v3; : : : ; �
6v3; �7v4; : : :

are present in the h1–inverted R–motivic Adams E3–page.

The module Exthk; bi is zero when k is odd.

Now assume that k is equal to 2 modulo 4. If b � 2, then Exthk; bi is equal
to �bPkv2 �F2Œh

˙1
1
; v2; v3; : : : � as a differential graded F2Œh

˙1
1
�–module. Lemma 5.3

implies that H�.Exthk; bi; d2/ is a free F2Œh
˙1
1
�–module on two generators �bPkv2

and �bPkv2
2

. If b � 3, then Exthk; bi is zero because �3Pkv2 D 0.

We have now shown that the elements

Pkv2; �Pkv2; �2Pkv2; Pkv2
2 ; �Pkv2

2 ; �2Pkv2
2

are present in the h1–inverted R–motivic Adams E3–page for all k congruent to 2

modulo 4.

Next assume that k is equal to 4 modulo 8. If b � 2, then Exthk; bi is the free
F2Œh

˙1
1
�–module on generators �bPkvm1

� � � vma
such that m1 equals 2 or 3, and

m1 � � � � �ma . There is a short exact sequence

0! Exthk; bi ! �bPk
�F2Œh

˙1
1 ; v2; v3; : : : �! �bPk

�F2Œh
˙1
1 ; v4; v5; : : : �! 0;

where the differential is defined on the second and third terms in the obvious way.
By Lemma 5.3, the homology of the middle term has two generators �bPk and
�bPkv2 , while the homology of the right term has two generators �bPk and �bPkv4 .
Analysis of the long exact sequence in homology shows that H�.Exthk; bi; d2/ has
two generators �bPkv2 and �bPkv2

3
.

Now assume that 3 � b � 6. Since �bPkv2 D 0, we get that Exthk; bi is equal
to �bPkv3 � F2Œh

˙1
1
; v3; v4; : : : �. Lemma 5.3 implies that H�.Exthk; bi; d2/ is a

free F2Œh
˙1
1
�–module on two generators �bPkv3 and �bPkv2

3
.
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Finally, if b � 7, then Exthk; bi is zero because �7Pkv2 D 0 and �7Pkv3 D 0.
This finishes the argument when k is equal to 4 modulo 8, and we have shown that
ExtRŒh˙1

1
� contains the elements

Pkv2; �P
kv2; �

2Pkv2;

�3Pkv3; : : : ; �
6Pkv3;

Pkv2
3 ; �P

kv2
3 ; : : : ; �

6Pkv2
3 :

Analysis of the other cases is the same as the argument for k� 4 modulo 8. The details
depend on the value of k modulo 2i and inequalities of the form 2j�1� b� 2jC1�2.
In each case there is a short exact sequence of differential graded modules whose
first term is Exthk; bi and whose other two terms have homology that is computed
by Lemma 5.3.

We have now calculated the h1–inverted R–motivic E3–page. This E3–page is dis-
played in Figure 2. Beware that the grading on this chart is not the same as in a standard
Adams chart. The Milnor–Witt stem mw D s �w is plotted on the horizontal axis,
while the Chow degree c D sC f � 2w is plotted on the vertical axis. As a result,
an Adams dr differential has slope �r C 1, rather than slope �r . Vertical lines in
Figure 2 represent multiplications by � .

Our next goal is to establish the Adams d3 differentials. Inspection of Figure 2 reveals
that the only possible nonzero d3 differentials might be supported on elements of the
form �bP2n�1kvn for n � 4. In fact, these differentials all occur, as indicated in
Figure 2 by lines that go left one unit and up two units. We will establish these
d3 differentials by first proving a homotopy relation in Lemma 5.6.

Lemma 5.6 For each n � 2 and j � 0, the element P2n�1.2jC1/v2
n is a permanent

cycle that detects a �–divisible element of the �–inverted R–motivic homotopy groups.

Proof Inspection of Figure 2 shows that P2n�1.2jC1/v2
n cannot support a differential.

Lemma 4.8 implies that

P2n�1.2jC1/v2
n 2 h�; �

2nC1�2vnC1; P2njv2
ni in ExtRŒh�1

1 �:

In fact, the Massey product has no indeterminacy because of Remark 4.4 and Lemma 4.5.

We will now apply Moss’s convergence theorem [10, Theorem 1.2] to this Massey
product. There is an Adams differential d2.P

2njvnC1/DP2njv2
n , so P2njv2

n detects
the homotopy element 0. By inspection of Figure 2, �2nC1�2vnC1 is a permanent

Algebraic & Geometric Topology, Volume 16 (2016)



The �–inverted R–motivic sphere 3021

0 4 8 12 16 20 24 28 32
0

4

8

12

16

20

24

28

32

ρ v2

ρ3v3

P 2v2
P 2v2

2

ρ7v4

P 4v2

ρ3P 4v3

P 6v2

P 4v2
3

P 6v2
2

ρ15v5

Milnor-Witt

Chow

32 36 40 44 48 52 56 60 64
32

36

40

44

48

52

56

60

64

P 8v2

ρ3P 8v3

P 10v2

P 10v2
2

ρ7P 8v4

P 12v2

ρ3P 12v3

P 14v2

P 8v2
4

P 12v2
3

P 14v2
2

ρ31v6

Milnor-Witt

Chow

Figure 2: The �–inverted R–motivic Adams E3–page
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cycle; let ˛ be a homotopy element detected by it. Moreover, �˛ is zero in homotopy
because there are no classes in higher filtration that could detect it.

Moss’s convergence theorem says that the Toda bracket h�; ˛; 0i contains an element
that is detected by P2n�1.2jC1/v2

n . This Toda bracket consists entirely of multiples
of � .

Lemma 5.7 d3.�
2n�1�1P2n�1kvn/D P2n�3C2n�1kv2

n�2
for n� 4.

Proof Lemma 5.6 shows that P2n�3C2n�1kv2
n�2

detects a class that is divisible
by � . By inspection of Figure 2, there are no classes in lower filtration. Therefore,
P2n�3C2n�1kv2

n�2
must detect zero, ie must be hit by a differential. It is apparent from

Figure 2 that there is only one possible differential.

Lemma 5.8 describes the higher Adams differentials.

Lemma 5.8 For n� r C 1 and r � 3,

dr .�
2n�2n�rC2�rC2P2n�1kvn/D P2n�1kC2n�2�2n�r

v2
n�rC1:

Proof The proof is essentially the same as the proof of Lemma 5.7. In the Milnor–Witt
stem congruent to 2 modulo 4, Lemma 5.6 implies that every homotopy element is
divisible by � . This implies that they must all be hit by differentials. Figure 2 indicates
that there is just one possible pattern of differentials.

From Lemma 5.8, it is straightforward to derive the h1–inverted Adams E1–page, as
shown in Figure 3.

Proposition 5.9 The h1–inverted Adams E1–page is the R–module on generators
given in Table 4 for n� 2.

.mw; c/ generator �–torsion

.0; 0/ 1 1

.3; 1/C k.8; 8/ P2kv2 3

.7; 4/C k.16; 16/ �3P4kv3 4

.15; 11/C k.32; 32/ �10P8kv4 5

.2n� 1; 2n� n� 1/C k.2nC1; 2nC1/ �2n�n�2P2n�1kvn nC 1

Table 4: R–module generators for the Adams E1–page
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Figure 3: The �–inverted R–motivic Adams E1–page
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6 �–inverted homotopy groups

From the h1–inverted Adams E1–page, it is a short step to the �–inverted stable
homotopy ring. First we must choose generators. Recall that …n is the Milnor–Witt
n–stem

L
p y�

R
pCn;p .

Definition 6.1 For k nonnegative and n at least 2, let P2n�1k�n be an element
of …2nC1kC2n�1Œ�

�1� that is detected by �2n�n�2P2n�1kvn .

There are choices in these definitions, which are measured by Adams E1–page
elements in higher filtration. For example, there are four possible choices for �2

because of the presence of �v2 and �2v2 in higher filtration.

Theorem 6.2 The �–inverted R–motivic stable homotopy ring, as a Z2Œ�
˙1�–module,

is generated by 1 and P2n�1k�n for n� 2 and k � 0. The generator P2n�1k�n lies
in …2nC1kC2n�1Œ�

�1� and is annihilated by 2nC1. All products are zero, except for
those involving 2 or �.

Proof In the �–inverted stable homotopy ring, � and 2 differ by a unit because
��2 D �2�; see [9]. Therefore, the �–torsion information given in Proposition 5.9
translates to 2–torsion information in homotopy.

Except for 1, all Z2Œ�
˙1�–module generators lie in Milnor–Witt stems that are congru-

ent to 3 modulo 4. Therefore, such generators must multiply to zero.

Table 5 lists all generators through the Milnor–Witt 63–stem. The table also iden-
tifies Toda brackets that contain each generator. These Toda brackets are computed
in Section 7.

Table 5 also reveals a pattern that matches the classical image of J .

Corollary 6.3 If k > 1, then …4k�1Œ�
�1� is isomorphic to Z=2uC1Œ�˙1� as a module

over Z2Œ�
˙1�, where u is the 2–adic valuation of 4k .

7 Toda brackets

Even though its primary multiplicative structure is uninteresting, the �–inverted
R–motivic stable homotopy ring has rich higher structure in the form of Toda brackets.
We will explore some of the 3–fold Toda bracket structure. In particular, we will show
that all of the generators can be inductively constructed via Toda brackets, starting
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mw E1 y�R
�;�Œ�

�1� 2k–torsion bracket indeterminacy

0 1 1 1

3 v2 �2 3

7 �3v3 �3 4 h23; �2; �2i 23�3

11 P2v2 P2�2 3 h24; �3; �2i

15 �10v4 �4 5 h23; �2;P
2�2i 23�4

19 P4v2 P4�2 3 h25; �4; �2i

23 �3P4v3 P4�3 4 h25; �4; �3i

27 P6v2 P6�2 3 h25; �4;P
2�2i

31 �25v5 �5 6 h23; �2;P
6�2i 23�5

35 P8v2 P8�2 3 h26; �5; �2i

39 �3P8v3 P8�3 4 h26; �5; �3i

43 P10v2 P10�2 3 h26; �5;P
2�2i

47 �10P8v4 P8�4 5 h26; �5; �4i

51 P12v2 P12�2 3 h26; �5;P
4�2i

55 �3P12v3 P12�3 4 h26; �5;P
4�3i

59 P14v2 P14�2 3 h26; �5;P
6�2i

63 �56v6 �6 7 h23; �2;P
14�2i 23�6

Table 5: Z2Œ�
˙1�–module generators for y�R

�;�Œ�
�1�

from just 2 and �2 . Table 5 lists one possible Toda bracket decomposition for each
generator of …n for all n less than or equal to 63.

We observed in the proof of Theorem 6.2 that the element � of the Adams E1–page
detects the element 2 of the �–inverted stable homotopy ring. We will use this fact
frequently in the following results.

Lemma 7.1 The Toda bracket h23; �2; �2i contains an element detected by �3v3

in …7 , and its indeterminacy is detected by �6v3 .

Proof Moss’s convergence theorem [10, Theorem 1.2] and the differential d2.v3/Dv
2
2

show that h23; �2; �2i is detected by �3v3 .

The indeterminacy follows from the facts that there are no multiples of �2 and that
there is a unique multiple of 23 in …7 .
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Remark 7.2 The proof of Lemma 7.1 applies just as well to show that h24; �3; �3i is
detected by �10v4 in …15 . In higher stems, the analogous brackets do not produce
generators. For example, the Massey product h�5; �10v4; �

10v4i is already defined
in Ext, which implies that the corresponding Toda bracket must be detected in filtration
least 27. However, �25v5 detects the generator of …31 , and it lies in filtration 26.

Lemma 7.3 For n at least 2, the Toda bracket h23; �2;P
2n�1�2�2i is detected by the

class �2nC1�n�3vnC1 . The indeterminacy in this Toda bracket is generated by 23�nC1 .

Proof This follows from Moss’s convergence theorem [10, Theorem 1.2], together
with the Adams differential dn.�

2nC1�n�6vnC1/D P2n�1�2v2
2

.

Lemma 7.4 For n at least 2, the Toda bracket h2nC2; �nC1;P
2n�1�2�2i is detected

by P2n�2v2 . The Toda bracket has no indeterminacy.

Proof Lemma 4.8 implies that there is a Massey product

P2n�2v2 D h�
nC2; �2nC1�n�3vnC1; P2n�1�2v2i;

with no indeterminacy. Moss’s convergence theorem [10, Theorem 1.2] establishes the
desired result.

Lemma 7.5 If m> n� 2, then the Toda bracket h2mC1; �m;P
2n�1k�ni is detected

by �2n�n�2P2m�2C2n�1kvn . The Toda bracket has no indeterminacy.

Proof Lemma 4.8 implies that there is a Massey product

�2n�n�2P2m�2C2n�1kvn D h�
mC1; �2m�m�2vm; �

2n�n�2P2n�1kvni:

Moss’s convergence theorem [10, Theorem 1.2] establishes the desired result.

Proposition 7.6 Every generator P2n�1k�n of the �–inverted R–motivic stable homo-
topy ring can be constructed via iterated 3–fold Toda brackets starting from 2 and �2 .

Proof Lemmas 7.3 and 7.4 alternately show that the generators �n and the genera-
tors P2n�2�2 can be constructed via iterated 3–fold Toda brackets starting from 2

and �2 . Then Lemma 7.5 shows that any P2n�1k�n can be constructed.

Example 7.7 Suppose we wish to find a Toda bracket decomposition for P40�3 .
Since 40D 27�2C 23�1 � 4, we can apply Lemma 7.5 with mD 7, nD 3 and k D 4

to conclude that P40�3 is detected by the Toda bracket h28; �7;P
8�3i.
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