Volume 16, issue 5 (2016)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 16
Issue 5, 2459–3071
Issue 4, 1827–2458
Issue 3, 1253–1825
Issue 2, 621–1251
Issue 1, 1–620

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Editorial Interests
Editorial Procedure
Submission Guidelines
Submission Page
Subscriptions
Author Index
To Appear
Contacts
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
$E_n$–cohomology with coefficients as functor cohomology

Stephanie Ziegenhagen

Algebraic & Geometric Topology 16 (2016) 2981–3004
Abstract

Building on work of Livernet and Richter, we prove that En–homology and En–cohomology of a commutative algebra with coefficients in a symmetric bimodule can be interpreted as functor homology and cohomology. Furthermore, we show that the associated Yoneda algebra is trivial.

Keywords
functor homology, $E_n$-homology, iterated bar construction, Hochschild homology, operads
Mathematical Subject Classification 2010
Primary: 13D03, 18G15, 55P48
References
Publication
Received: 14 October 2015
Revised: 1 February 2016
Accepted: 23 March 2016
Published: 7 November 2016
Authors
Stephanie Ziegenhagen
Department of Mathematics
KTH Royal Institute of Technology
SE-100 44 Stockholm
Sweden