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Bordered Heegaard Floer homology and graph manifolds

JONATHAN HANSELMAN

We perform two explicit computations of bordered Heegaard Floer invariants. The
first is the type D trimodule associated to the trivial S1–bundle over the pair of
pants P . The second is a bimodule that is necessary for self-gluing when two torus
boundary components of a bordered manifold are glued to each other. Using the
results of these two computations, we describe an algorithm for computing cHF of
any graph manifold.

57M27, 57R58

1 Introduction

Heegaard Floer homology is a collection of invariants for closed 3–manifolds introduced
by Ozsváth and Szabó [27]. The package also contains invariants for 4–dimensional
cobordisms and for knots and links; see Ozsváth and Szabó [28; 26], and Rasmussen
[30]. It has proved to be a sensitive invariant, but in general, it is difficult to compute.
The definition involves a chain complex whose generators are combinatorial but whose
differential requires counting pseudoholomorphic curves.

There are a few existing algorithms for computing Heegaard Floer homology. Sarkar
and Wang [31] developed a method using nice diagrams, for which computing the
differential becomes combinatorial. This method has since been refined and extended;
see Hales, Karabash and Lock [3], and Ozsváth, Stipsicz and Szabó [20; 21]. Another
approach uses grid diagrams and surgery formulas; see Manolescu, Ozsváth and Sarkar
[14], Manolescu and Ozsváth [13], and Manolescu, Ozsváth and Thurston [15]. These
algorithms greatly increase the number of generators and, as a result, are not practical
for large manifolds. A third algorithm is based on computing the bordered Heegaard
Floer invariant for the surface diffeomorphism associated with a Heegaard splitting;
see Lipshitz, Ozsváth and Thurston [9]. This algorithm has a computer implementation
which is practical for splittings up to genus 3. However, efficiently computing Heegaard
Floer homology for general 3–manifolds remains a difficult problem.

If we restrict to particular classes of 3–manifolds, computing Heegaard Floer homology
becomes easier. For example, much is known about the Heegaard Floer homology
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of manifolds which are obtained by plumbing circle bundles according to a negative
definite tree � . Ozsváth and Szabó [25] gave a combinatorial description of HFC

of these manifolds when the tree � has at most one “bad” vertex. This class of
manifolds includes all Seifert fibered rational homology spheres. Their algorithm for
computing HFC has been useful, for instance, in determining the existence of tight
contact structures on Seifert fibered spaces; see Lisca and Stipsicz [12]. Némethi
[17] introduced an invariant for negative definite plumbings, lattice homology, which
is combinatorially computable and conjecturally equivalent to HFC. Recent work
has explored this conjectured equivalence; there is a spectral sequence from lattice
cohomology to HFC , and they are known to be isomorphic for plumbings with at most
two bad vertices; see Ozsváth, Stipsicz and Szabó [22; 23; 24].

There has been significant interest in understanding L–spaces (manifolds with minimal
Heegaard Floer homology) and the relationship between this condition and the existence
of taut foliations and left orderability of the fundamental group. The conjectured
relationship between these conditions is known to hold for particular classes of 3–
manifolds, including Seifert fibered manifolds; see Peters [29], and Boyer, Gordon
and Watson [2]. These geometric conditions can help us determine the L–space
condition of a manifold even if we cannot compute bHF directly. Mauricio [16] used
lattice homology and the existence of taut foliations to give sufficient conditions on the
weights of a negative definite tree � under which a plumbing is or is not an L–space.

The plumbings of negative definite trees mentioned above are special cases of graph
manifolds. A graph manifold is a 3–manifold whose JSJ decomposition contains
only Seifert fibered pieces. The non-Seifert fibered pieces in a JSJ decomposition are
hyperbolic, so with respect to geometrization, a graph manifold is a manifold with no
hyperbolic pieces in its geometric decomposition. Thus graph manifolds represent an
important subclass of 3–manifolds. For a brief overview of graph manifolds and their
place in 3–manifold topology, see Neumann [19]. In this paper, we present a method
for computing bHF for any graph manifold, which is based on computing bordered
Heegaard Floer invariants for certain fundamental building blocks from which graph
manifolds can be constructed.

This method finds a middle ground between the approaches mentioned above. It is
more general than results restricted to negative definite plumbing trees, since it works
for arbitrary graph manifolds. At the same time, it is more computationally practical
than current algorithms for general 3–manifolds. There is a computer implementation
of this algorithm that is capable of handling quite complicated manifolds; it can been
used, for instance, to show that the rank of bHF of the graph manifold represented by
the weighted tree in Figure 24 is 213;312.
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Let us recall some important facts and terminology concerning graph manifolds, fol-
lowing the notation found in Neumann [18]. A graph manifold can be encoded by a
decorated graph:

Definition 1.1 A connected closed plumbing graph is a finite connected graph �
decorated as follows:

� each vertex i carries two integer weights, gi and ei ;

� each edge carries a sign, C or �.

We allow � to have multiple edges connecting two vertices or edges connecting a
vertex to itself.

A connected closed plumbing graph � specifies a (prime) graph manifold M.�/ as
follows: For each vertex i of � , let di be the degree of the vertex. Let Fi be the
compact surface of genus gi with di boundary components, where if gi < 0 we mean
that Fi is nonorientable of genus jgi j. Let Ei be the circle bundle with orientable total
space over Fi with a chosen trivialization on the boundary and Euler number ei (the
Euler number is well defined once the trivialization on the boundary is chosen). The
edges of � dictate how the Ei are glued together. For each edge connecting vertices i

and j , a component S1 �S1 of @Ei is glued to a component S1 �S1 of @Ej . The
gluing always exchanges base and fiber directions; for .C/–edges the gluing map is�

0 1
1 0

�
, and for .�/–edges the gluing map is

�
0 �1
�1 0

�
. In either case, the gluing map is

orientation reversing, and so M.�/ inherits consistent orientations from all of the Ei .
For each edge connecting a vertex i to itself, two components of @Ei are glued with
the appropriate gluing map.

Every prime graph manifold can be represented by a connected closed plumbing graph
(for nonprime graph manifolds we allow disconnected graphs). The representation
is not unique, but [18, Section 4] gives a well developed calculus for manipulating
plumbing graphs. In particular, plumbing graphs can be reduced to a normal form, and
graphs of this form represent manifolds uniquely. A few additional facts are worth
mentioning here:

� Often changing the sign of an edge does not change the resulting 3–manifold.
In fact, all that matters is the total sign around each loop in � . In particular, for
acyclic graphs we may ignore the decoration on the edges.

� It is possible to represent any graph manifold with a plumbing graph such that
no vertex is assigned a negative genus.
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� We can describe graph manifolds with boundary by adding an additional weight
bi to each vertex i . In the construction, Fi is the genus gi surface with biCdi

boundary components. Ei is the appropriate circle bundle over Fi , and bi

components of @Ei are not glued to anything.

Bordered Heegaard Floer homology is an extension of Heegaard Floer homology to
manifolds with boundary; see Lipshitz, Ozsváth and Thurston [8]. Because graph
manifolds decompose so nicely, bordered Heegaard Floer homology provides a natural
approach for computing their bHF . The key ingredient is to compute the bordered
invariants for arbitrary S1–bundles over surfaces, the building blocks of graph manifolds.
Changing the Euler number of one of these bundles is equivalent to changing the
parametrization of the boundary, which can be accomplished by tensoring with a well
understood bimodule; see Lipshitz, Ozsváth and Thurston [10, Section 10.2]. As a result,
we only need to compute invariants for trivial bundles over surfaces. As noted above,
it is sufficient to consider bundles over orientable surfaces. Furthermore, any orientable
surface has a pants decomposition — it can be obtained by gluing together copies of
the pair of pants P D S3 n fthree open disksg. The trivial S1–bundle over the surface
can be obtained by gluing copies of the trivial S1–bundle over P . Thus we see that
the trivial bundle YP D P �S1 is the fundamental building block for graph manifolds.

In Section 2 we will review the relevant background from bordered Heegaard Floer
homology. The trimodule bCFD3.YP/ will be explicitly computed in Section 3, proving
the following:

Theorem 1.2 The summand of the type D trimodule bCFD3.YP/ in the middle spinc–
structure has five generators as a projective module: v;w;x;y and z . Up to quasi-
isomorphism, the differential is given by the following diagram:

yv w

x

z

�3

�1�123�3C

�123�123�123

�1�1�3C

�123�1�123C

�1�123�123

�2

�2�2 �3�1

�3�1 �2�2

�3

�2�12 �3�12

�2
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bCFD3.YP/ in the other spinc–structures will also be computed. For acyclic plumbing
graphs with only genus-0 vertices, bHF of the corresponding graph manifold can be
obtained from the trimodule in Theorem 1.2 and bimodules for mapping classes of the
torus. If the graph has a cycle or some vertex has genus gi > 0, then an additional
bimodule is needed. A bordered Heegaard diagram for this bimodule was described by
Lipshitz and Treumann in [11, Section 4.4], but the bimodule was not computed. In
Section 4 we explicitly compute this bimodule, using the bordered Heegaard diagram
HSG in Figure 15.

Theorem 1.3 The bimodule 1CFDD.HSG/ in the middle spinc–structure is given by
Figure 20. In the extremal spinc–structures, it is quasi-isomorphic to zero.

Finally, given an arbitrary plumbing graph, Section 5 will describe the procedure for
piecing together the relevant bordered invariants to obtain bHF of the corresponding
graph manifold.

Acknowledgments I would like to thank Robert Lipshitz for suggesting this problem
and for many helpful conversations about these computations. I am also grateful to
Adam Levine, Peter Ozsváth, Dylan Thurston and Liam Watson for helpful conver-
sations. I especially thank Adam Levine for suggesting a finger move isotopy which
simplified the computation in Section 3. This work partially supported by NSF Research
Training Groups grant number DMS-0739392.

2 Background on Heegaard Floer homology

We begin by recalling the essential definitions and properties concerning the bordered
Heegaard Floer invariants developed by Lipshitz, Ozsváth and Thurston. For a full
treatment of these invariants, see [8; 10]. We discuss only the details that will be needed
in the rest of the paper. In particular, we restrict to the case of manifolds with toroidal
boundary components, which simplifies many of the definitions.

2A Algebraic definitions

Let .A; d/ be a unital differential algebra over F2 , with a subring of idempotents I ,
and let f�ig be the indecomposable idempotents, with 1D

P
�i .

A (left) type D structure over A is a vector space N over F2 with a left action of I
and a map

ı1W N !A˝I N

satisfying the relation

(1) .�˝ idN / ı .idA˝ı1/ ı ı1C .d ˝ idN / ı ı1 D 0;
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where �W A˝A! A is multiplication on A. The tensor product A˝I N is a left
differential A module, with module structure a � .b˝ x/ D ab˝ x and differential
given by @.a˝x/D a � ı1.x/Cd.a/˝x . The relation (1) ensures that @2D 0. Given
the map ı1 , define

ık W N !A˝I � � � ˝I A„ ƒ‚ …
k times

˝IN

inductively by ı0 D idN and ık D .idA˝k�1 ˝ı1/ ı ık�1 for k > 0. We say that the
type D structure N is bounded if ık D 0 for all k sufficiently large.

We will need to work with modules with multiple left actions. Let A1; : : : ;Ak be
differential algebras, with rings of idempotents I1; : : : ; Ik . A k –fold type D structure
over A1; : : : ;Ak is a type D structure over A1˝ � � �˝Ak . We will call the module
.A1˝ � � �˝Ak/˝.I1˝���˝Ik/N a type D multimodule over A.

A (right) A1 module (or type A structure) over A is a vector space M over F2 with
a right action of I and maps

mkC1W M ˝I A˝I � � � ˝I A„ ƒ‚ …
k times

!M

satisfying the following A1 relation for any x 2M and any a1; : : : ; an 2A:

(2) 0D

nX
iD0

mn�iC1

�
miC1.x; a1; : : : ; ai/; aiC1; : : : ; an

�
C

n�1X
iD1

mn

�
x; a1; : : : ; ai�1; �.ai ; aiC1/; aiC2; : : : ; an

�
C

nX
iD1

mnC1

�
x; a1; : : : ; ai�1; d.ai/; aiC1; : : : ; an

�
:

An informal statement of the A1 relations may be easier to remember: for any ordered
set of inputs, the sum of all ways of combining those inputs using two steps (where
each step is �, d or some mi ) is zero. We also require that m2.x; 1/ D x and
mk.x; : : : ; 1; : : : / D 0 for all k > 2. If mk D 0 for all sufficiently large k , we say
that the A1 module M is bounded.

More generally, we can define an A1 multimodule M over A1; : : : ;Ak as follows:
M is a vector space over F2 with a right action of I1˝� � �˝Ik . Also, M is equipped
with maps

m1;i1;:::;ik
W M ˝I1˝���˝Ik

A˝i1

1
˝ � � �˝A˝ik

k
!M

satisfying an appropriate version of the A1 relation (we will generally suppress the
subscripts on m from the notation). To define the relation, we introduce the following
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functions. For Ea` D .a1
`
; : : : ; ak

`
/ 2A˝k

`
and 0� j � k , define

Tj .Ea`/ WD.a
1
` ; : : : ; a

j

`
/ 2A˝j

`
;

T j .Ea`/ WD.a
jC1

`
; : : : ; ak

` / 2A
˝k�j

`
;

x�.Ea`/ WD

k�1X
jD1

.a1
` ; : : : ; a

j�1

`
; a

j

`
a

jC1

`
; a

jC2

`
; : : : ; ak

` / 2A
˝k�1
`

;

xd.Ea`/ WD

kX
jD1

.a1
` ; : : : ; a

j�1

`
; d.a

j

`
/; a

jC1

`
; : : : ; ak

` / 2A
˝k
`
:

Now we can write down the A1 relation for multimodules. For any x 2M and any
Ea1; : : : ; Eak in A˝i1 ; : : : ;A˝ik , we have

(3) 0D
X

j1;:::;jk

m
�
m.x;Tj1

.Ea1/; : : : ;Tjk
.Eak//;T

j1.Ea1/; : : : ;T
jk .Eak/

�
C

kX
jD1

m.x; Ea1; : : : ; Eaj�1; x�.Eaj /; EajC1; : : : ; Eak/

C

kX
jD1

m.x; Ea1; : : : ; Eaj�1; xd.Eaj /; EajC1; : : : ; Eak/:

It is possible to define combination multimodules, with some type D actions and some
type A actions. Such a multimodule N is equipped with maps

ı
1;ikC1;:::;i`

1
W N ˝A˝ikC1

1
˝ � � �˝A˝i`

k
!AkC1˝ � � �˝AkC`˝N

satisfying the appropriate versions of (1) and (3). Type DD , AA and DA bimodules
are discussed in [10], and the generalization to more algebra actions is straightforward.

If M is an A1 module over A and N is a type D module over A, and if at least one
of them is bounded, we may define the box tensor product M � N to be the vector
space M ˝I N equipped with the differential

@�.x˝y/D

1X
kD0

.mkC1˝ idN /.x˝ ık.y//:

If M is a multimodule over A1; : : : ;Ak such that the action of Ak is type A, and
N is a multimodule over Ak ;AkC1; : : : ;AkC` such that the action of Ak is type D ,
and either M or N is bounded, then a box tensor product with respect to Ak can
be defined in a similar way (see [10, Section 2.3.2] for the case when N and M are
bimodules). M �Ak

N is a multimodule over A1; : : : ;Ak�1;AkC1; : : : ;AkCl , and
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the operations on M � N are determined by pairing operations on M with sequences
of operations in N such that the Ak outputs of the operations on N match the Ak

inputs of the operation on M .

Remark 2.1 We will often represent a k –fold type D multimodule M as a labeled,
directed graph, where vertices correspond to the generators of M , and there is an arrow
from xi to xj labeled by aij if aij ¤ 0 is the coefficient of xj in @.xi/. Here aij is
an element of A1˝ � � �˝Ak , the tensor product of k copies of the torus algebra. We
omit the edge label when aij D 1. We sometimes refer to an unlabeled arrow from xi

to xj as a differential from xi to xj . Graphs with unlabeled edges can be simplified by
a well known edge reduction algorithm [6, Section 2.6]: we eliminate the endpoints xi

and xj of the unlabeled edge and all edges attached to these two vertices, and for each
“zig-zag”

xk

akj

��! xj  � xi
ai`
��! x`

we add an edge
xk

akj ai`

����! x`;

or if there is already an edge from xk to x` we add akj ai` to the label of that edge.
The resulting graph represents a type D multimodule that is quasi-isomorphic to M .

2B The torus algebra

To define bordered Heegaard Floer invariants, we associate a differential algebra to
each boundary component of a 3–manifold with boundary. The algebra associated to
the torus splits into a direct sum

A.T 2/DA.T 2;�1/˚A.T 2; 0/˚A.T 2; 1/:

A.T 2;�1/ is F2 , and A.T 2; 1/ is quasi-isomorphic to F2 , so we need only discuss
A.T 2; 0/.

The algebra A.T 2; 0/ is generated as a vector space over F2 by eight elements: two
idempotents, �0 and �1 , and six Reeb elements �1 , �2 , �3 , �12 , �23 and �123 . The
idempotents satisfy �i�j D ıij �i , and the identity element is 1 D �0C �1 . The Reeb
elements interact with idempotents on either side as follows:

�0�1 D �1�1 D �1; �1�2 D �2�0 D �2; �0�3 D �3�1 D �3;

�0�12 D �12�0 D �12; �1�23 D �23�1 D �23; �0�123 D �123�1 D �123:

The only nonzero products of Reeb elements are �1�2 D �12 , �2�3 D �23 and
�1�23 D �12�3 D �123 . Although A.T 2/ is a differential algebra, the differential on
A.T 2; 0/ is zero. For more on the torus algebra and how it arises in bordered Heegaard
Floer homology, see [8, Section 11.1].
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2C Bordered manifolds and bordered diagrams

A bordered 3–manifold with k torus boundary components is an oriented 3–manifold Y ,
where @Y is a disjoint union of k tori F1; : : : ;Fk , along with diffeomorphisms
�i W T

2! Fi . If �i is orientation reversing, then the corresponding boundary compo-
nent is said to be type D ; otherwise it is said to be type A. In this paper, we will deal
almost exclusively with type D boundaries.

A bordered 3–manifold can be represented by an arced bordered Heegaard diagram.

Definition 2.2 An arced bordered Heegaard diagram with k (torus) boundary compo-
nents is a quadruple .†;˛;ˇ; z/, where

� † is a compact surface of genus g with k boundary components;

� ˛D f˛1
1
; ˛1

2
; ˛2

1
; ˛2

2
; : : : ; ˛k

1
; ˛k

2
; ˛1; ˛2; : : : ; ˛g�kg, where ˛i

1
and ˛i

2
are arcs

embedded in † with boundary on the i th component of @†, j̨ is an embedded
circle in †, and the ˛ circles/arcs are pairwise disjoint;

� ˇ is g–tuple of disjoint circles in †;

� z is a basepoint z in † n .˛[ˇ/ together with arcs in † n .˛[ˇ/ connecting
z to each boundary component of †.

We also require that ˛ and ˇ intersect transversely and †n˛ and †nˇ are connected.

An arced bordered Heegaard diagram gives rise to a bordered 3–manifold by attaching
2–handles to a thickened version of the Heegaard surface †. The one and two boundary
cases are described in Constructions 5.3 and 5.6 of [10], and the construction for more
boundary components is completely analogous.

To define bordered invariants, we will also need to equip a bordered Heegaard diagram
with labels on the boundary, as in Figure 1. Each component of @† is divided into four
segments by the arcs ˛i

1
and ˛i

2
, with one containing a basepoint, an endpoint of an arc

in z . Progressing from the basepointed segment in the direction which agrees with the
boundary orientation on @†, we label the three remaining segments on the i th boundary
component by �i

1 , �i
2 and �i

3 for type A boundaries, or by �i
3 , �i

2 and �i
1 for type D

boundaries. In each case, �i
12 , �i

23 and �i
123 refer to the relevant concatenations. We

call these oriented arcs Reeb chords. The assumption that † n˛ is connected implies
that the endpoints of ˛i

1
and ˛i

2
alternate. We assume that the first endpoint after the

basepoint (following the boundary orientation) is ˛i
1

for type A boundaries and ˛i
2

for
type D boundaries.
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z

˛1

˛2
�1

�2

�3

z

˛2

˛1
�3

�2

�1

Figure 1: Boundary markings for type A (left) and D (right) boundaries on
a bordered Heegaard diagram

We can associate a copy of the torus algebra to each boundary component, so that
the Reeb chords on @† correspond directly to the Reeb elements of the algebra. By
abuse of notation, we often use �i

I to refer both to the Reeb chord on @† and the
corresponding algebra element in the corresponding copy of the torus algebra.

2D Type D invariants

Let Y be a bordered 3–manifold with k boundary components, and let H be an arced
bordered Heegaard diagram representing Y which is provincially admissible in the
sense of [8, Definition 4.23]. Choose a complex structure J on †� Œ0; 1��R. To
ensure transversality, the choice of J must be generic; however, for the computations
in this paper we may assume that J splits as J†�JD , where J† is a generic complex
structure on † and JD is a generic complex structure on Œ0; 1��R. Split complex
structures provide enough flexibility for transversality when the projections to † of
all curves being considered are somewhere injective [7, Proposition 3.9]. Given these
choices, we will associate to H a type D multimodule bCFDk.H;J / over k copies of
the torus algebra A.T 2/. We will often suppress J from the notation.

Let S.H/ be the set of unordered g–tuples x D .x1; : : : ;xg/ which contain exactly
one point on each ˇ curve, exactly one point on each ˛ curve, and at most one point
on each ˛ arc. Elements of S.H/ fall into different spinc–structures according to
how many ˛ arcs are occupied on each boundary. bCFDk.H/ is generated by S.H/
as a vector space over F2 , and it splits as a direct sum over spinc–structures on Y [8,
Lemma 4.21]. Each generator x 2S.H/ comes equipped with an idempotent in the
algebra associated to each boundary component; if x has exactly one ˛i arc occupied,
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then the corresponding idempotent in Ai DA.T 2/ is �i
1

if x contains a point on ˛i
1

and �i
0

if x contains a point on ˛i
2

.

The differential on bCFDk.H/ counts J –holomorphic curves in †� Œ0; 1��R with
appropriate boundary conditions (for precise statements of these conditions, see [8,
Section 5.2]). These curves can be sorted into relative homology classes. For any
x;y 2S.H/, let �2.x;y/ denote the set of homology classes of curves in †�Œ0; 1��R
with boundary conditions consistent with a differential connecting x to y . Computing
the differential involves counting the holomorphic representatives for each homol-
ogy class.

Under the projection †� Œ0; 1��R!†, a homology class B 2�2.x;y/ projects to an
element of H2.†;˛[ˇ[@†/, called the domain of B . The class B is determined by
its domain. A domain is a linear combination of components of †n .˛[ˇ/, which we
call regions. Furthermore, the domain of any B 2 �2.x;y/ must satisfy the following
conditions:

� The multiplicity of the region containing the basepoint z is 0.

� At each p 2˛\ˇ , let n1.p/; : : : ; n4.p/ be the multiplicities of the four regions
with corners at p , counting counterclockwise starting from an ˛ . Then

(4) n1.p/� n2.p/C n3.p/� n4.p/D

8<:
1 if p 2 x ny ;

�1 if p 2 y nx;

0 otherwise.

A domain is called positive if every region has nonnegative multiplicity. Only positive
domains can support holomorphic representatives. Because the Heegaard diagram H is
provincially admissible, there are a finite number of positive domains with multiplicity
at most 1 in the regions adjacent to @† (we will see that only these are relevant for
computing bCFDk ). Finding them is a simple matter of linear algebra.

In addition to its domain B , a holomorphic curve that contributes to the differential of x

also specifies a sequence of Reeb chords E� D . E�1; : : : ; E�k/, where E� i D .�i
I1
; : : : ; �i

In
/

are sequences corresponding to each boundary component of †. For each boundary
component with one ˛i arc occupied by x , the pair .B; E� i/ will satisfy the following
conditions:

� the initial point (with respect to the boundary orientation) of �i
I1

lies on the
same ˛i arc as x ;

� for each m> 1, the initial point of �i
Im

lies on the same ˛i arc as the terminal
point of �i

Im�1
.
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A pair .B; E� i/ satisfying the above conditions is called strongly boundary monotonic.
For each boundary component with zero or two ˛i arcs occupied by x , we may assume
that E� i D ./. The pair .B; E�/ coming from a holomorphic curve will also satisfy the
following property:

� the intersection of B with the i th component of @† is equal to the sum of the
Reeb chords in E� i as elements of H1.@†;˛\ @†/.

We say that the pair .B; E�/ is compatible if it satisfies this condition and each .B; E� i/

is strongly boundary monotonic (compare [8, Definition 5.68]).

Given generators x;y 2S.H/, a homology class B 2 �2.x;y/, and a sequence of
Reeb chords E� such that .B; E�/ is compatible, we can define MB.x;y ; E�/ to be the
moduli space of J –holomorphic curves in †� Œ0; 1��R with domain B and whose
asymptotics specify the initial generator x , the final generator y , and the sequence of
Reeb chords E� (for the full definition, see [8, Section 5]).

The dimension of the moduli space MB.x;y ; E�/ is one less than the index ind.B; E�/,
defined in [8, Definition 5.68]. In the special case of toroidal boundary, the index is
given by

(5) ind.B; E�/D e.B/C nx.B/C ny.B/C
X

1�i�k

�
1
2
j E� i
jC

X
j<l

L.�i
Ij
; �i

Il
/

�
;

where
e.B/D �.B/� 1

4
# acute cornersC 1

4
# obtuse corners

is the Euler measure of B , nx.B/ (respectively ny.B/) is the sum over xi 2 x

(respectively yi 2 y ) of the average multiplicity in B of the four regions incident to xi

(respectively yi ), j E� i j is the number of Reeb chords in the part of E� associated to the i th

component of @†, and L.�Ij
; �Il

/ is a linking term for Reeb chords defined as follows:

1
2
DL.�1; �2/DL.�2; �3/DL.�12; �3/DL.�1; �23/;

�
1
2
DL.�2; �1/DL.�3; �2/DL.�3; �12/DL.�23; �1/;

1DL.�12; �23/;

�1DL.�23; �12/;

0DL.�Ij
; �Il

/ for all other pairs of Ij and Il .

The differential counts J –holomorphic curves in moduli spaces with dimension 0, so
we only need to consider domains and Reeb chords with ind.B; E�/D 1.

To define the differential we need one more piece of notation. If �i
I represents a

Reeb chord on the i th boundary component of †, let a.�i
I / denote the corresponding

Algebraic & Geometric Topology, Volume 16 (2016)



Bordered Heegaard Floer homology and graph manifolds 3115

element of Ai , the copy of the torus algebra associated to the i th boundary component.
If E� i D .�i

I1
; : : : ; �i

In
/ is a sequence of Reeb chords on the i th boundary, let a. E� i/

denote the element �i
I1
�i

I2
� � � �i

In
2 Ai , and if E� D . E�1; : : : ; E�k/, let a. E�/ denote

the element a. E�1/˝ � � �˝ a. E�k/ 2A1˝ � � �˝Ak . We now define the differential on
bCFDk as follows: For any x 2S.H/,

@.x/D
X

y2S.H/

X
B2�2.x;y/

X
fE� jind.B;E�/D1;
.B;E�/ is compatibleg

�
#MB.x;y ; E�/

�
a. E�/˝y ;

where the count of a moduli space is taken mod 2.

Given a domain B and a sequence of Reeb chords E� , we will say that the pair .B; E�/
contributes to the differential from x to y if the mod 2 count of the relevant moduli
space is nonzero; note, however, that the contribution may be zero if a. E�/˝y is zero.
Thus a pair may either contribute a nonzero term to the differential, contribute zero to
the differential, or not contribute to the differential (while the effect on the differential
is the same in the last two cases, we find it helpful to distinguish them). Similarly, we
will say that a sequence of Reeb chords E� contributes a. E�/˝ y to the differential
from x to y if the sum of the counts of the relevant moduli space for all compatible B

in �2.x;y/ is nonzero.

Note that the multimodule bCFDk.H;J / depends on the choices of H and J . However,
its quasi-isomorphism type is an invariant of the bordered manifold Y . We denote
this quasi-isomorphism class by bCFDk.Y /. We will deviate slightly from the notation
introduced here when k � 2 in order to agree with existing notation. That is, we will
omit the superscript in bCFD1 , and we will write 1CFDD instead of bCFD2 .

2E Type A invariants

Let Y be a bordered 3–manifold with k boundary components and let H be a provin-
cially admissible arced bordered Heegaard diagram representing Y and J a chosen
complex structure, as before. We can define a type A multimodule over k copies of
the torus algebra, denoted bCFAk.H/. In this paper, we will never need to compute
bCFAk.H/. However, as a computational trick we will make use of the relationship
between bCFAk.H/ and bCFDk.H/, so it will be helpful to state the definition.

bCFAk.H/ is generated by the same set S.H/ that generates bCFDk.H/. In the torus
boundary case, the definition of the differential and higher multiplications involves
the same moduli spaces of J –holomorphic curves that are considered for bCFDk.H/.
We will assume for the sake of comparison that the Reeb chords on the boundary
are labeled the same as if we were computing bCFDk.H/, so that for a given domain
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the compatible sequences of Reeb chords E� and the moduli spaces MB.x;y ; E�/ are
exactly the same. However, with this convention we must change the algebra elements
in the A1 operation, since normally the Reeb chords are labeled in the opposite order
for type A Heegaard diagrams. Let the function xa be the same as a except that it also
interchanges �i

1 with �i
3 and �i

12 with �i
23 . Then given a generator x 2S.H/ and

sequence of Reeb chords E� D . E�1; : : : ; E�k/,

m
�
x; xa. E�1/; : : : ; xa. E�k/

�
D

X
y2S.H/

X
fB2�2.x;y/j
ind.B;E�/D1;

.B;E�/ compatibleg

.#MB.x;y ; E�//y ;

where we think of xa. E� i/ as an element of A˝jE�
i j

i , and where the moduli space counts
are taken mod 2.

2F Tensor products and the pairing theorem

For a bordered manifold with many boundary components, we can define bordered
invariants which are type D with respect to some boundaries and type A with respect to
others. These invariants can be obtained from bCFDk by taking the box tensor product
with the bimodule 1CFAA.I/, which can be found in [10, Figure 21]. An alternative
shorthand algorithm for converting to type D boundaries to type A is described in [4,
Section 2.3].

Bordered invariants satisfy a pairing theorem [10, Theorem 11]. Given a bordered
invariant for Y1 which is type A with respect to the i th boundary component and a
bordered invariant for Y2 which is type D with respect to the j th boundary component,
we can compute the box tensor product of the two multimodules with respect to the
corresponding copies of the torus algebra, assuming the modules are appropriately
bounded. The pairing theorem states that up to A1–homotopy equivalence, the result
is the bordered invariant for the manifold obtained by gluing the i th boundary of Y1 to
the j th boundary of Y2 .

In this paper, we will work primarily with type D modules, and convert only one
boundary component at a time to type A in order to tensor with another type D module.

2G Useful results for computation

This section collects a handful of results that are useful when explicitly computing a
type D bordered invariant.

The first is a slight rephrasing of [6, Proposition 2.1]:
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Proposition 2.3 (a) For a given boundary component, the only nonempty sequences
of Reeb chords which can contribute nonzero terms to the differential in bCFDk

are .�i
1/, .�

i
2/, .�

i
3/, .�

i
1; �

i
2/, .�

i
2; �

i
3/, .�

i
1; �

i
2; �

i
3/ and .�i

123/.

(b) Furthermore, if B 2 �2.x;y/ contributes with E� i D .�i
2/ or E� i D .�i

1; �
i
2/, then

y contains a point on ˛i
2

. If B contributes and E� i is .�i
1/, .�

i
3/, .�

i
123/ or

.�i
2; �

i
3/, then y contains a point on ˛i

1
.

In particular, this proposition implies that only domains with multiplicity 0 or 1 in
every region that intersects @† can contribute nontrivially to the differential in bCFDk .
For provincially admissible Heegaard diagrams this ensures that there is a finite number
of positive domains to consider.

Proposition 2.3 also implies that (5) can be simplified for type D computations.

Lemma 2.4 If the pair .B; E�/ contributes a nonzero term to the differential of bCFDk ,
then the index of the pair is given by

(6) ind.B; E�/D ind.B/D e.B/Cnx.B/Cny.B/C
1
2

#fZ 2�0.@†/ jZ\B¤∅g:

In particular, the index depends only on B .

Proof We examine the term in brackets in (5). For the i th component of @†, there is
a contribution to the index of

1
2
j E� i
jC

X
j<l

L.�i
Ij
; �i

Il
/:

We can evaluate this term for each of the sequences of Reeb chords allowed by
Proposition 2.3. If E� i is .�i

1/, .�
i
2/, .�

i
3/ or .�i

123/, then j E� i j D 1 and there are
no linking terms. If E� i is .�i

1; �
i
2/ or .�i

2; �
i
3/, then j E� i j D 2, and there is one linking

term, with a value of �1
2

. If E� i is .�i
1; �

i
2; �

i
3/, then j E� i j D 3, and the two nonzero

linking terms L.�i
1; �

i
2/ and L.�i

2; �
i
3/ evaluate to �1

2
. In any of these cases, the

total contribution to the index is 1
2

. The only other possibility is that E� i D ./, which
happens when B does not contain any regions adjacent to the i th boundary component
of †. In this case, the contribution of E� i to the index is 0. Summing over all boundary
components yieldsX

1�i�k

�
1
2
j E� i
jC

X
j<l

L.�i
Ij
; �i

Il
/

�
D

1
2

#fZ 2 �0.@†/ jZ \B ¤∅g:

Lemma 2.4 allows us to exclude a domain B from consideration in computing bCFDk

if ind.B/¤ 1, without needing to consider all sequences of Reeb chords compatible
with B .
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In practice, computing bCFDk from a Heegaard diagram begins by writing down
all positive domains B 2 �2.x;y/ for each pair of generators x and y , and then
eliminating as many domains as possible using Proposition 2.3 and Lemma 2.4. At
some point, however, it is necessary to prove that a given domain/Reeb chord pair does
contribute to the differential. The following proposition asserts that a domain which
can be realized as an immersed polygon always contributes.

Proposition 2.5 Let P be a 2n–gon with edges numbered consecutively, and suppose
that there is map P

u
�!† satisfying the following conditions:

� uj@P takes even edges of P to ˇ , odd edges of P to ˛[ @†, and corners to
acute corners;

� u is an immersion, except at the preimages of ˛\ @†;
� for each boundary component of †, at most one edge of P maps to ˛i

1
[ ˛i

2
,

and for each ˇ 2 ˇ , at most one edge of P maps to ˇ .

The image of u covers each region in † with a certain multiplicity; let B.u/ be the
corresponding positive domain. The image of @P determines a sequence of Reeb
chords E�.u/, with the chords in the image of a single edge ordered according to the
boundary orientation on @P . If B.u/ 2 �2.x;y/ for some generators x and y in
the middle spinc–structure, then .B.u/; E�.u// is compatible, and #MB.x;y ; E�/ �

1 .mod 2/.

Proof A holomorphic curve in †� Œ0; 1��R is equivalent to a holomorphic map
of a Riemann surface with boundary into † along with a branched covering map of
that surface over the unit disk D2 �C ; see [27, Lemma 3.6]. For a specific domain,
we look at Riemann surfaces which map onto the given domain in †, such that the
preimages of the ˛ arcs (together with boundary Reeb chords) and ˇ arcs map to the
right and left boundaries, respectively, in the projection to D2 , and the preimages of
the x and y corners map to �i and i , respectively.

In this case, we already have a map from the polygon P to †. There is a unique choice
of complex structure on P that makes u holomorphic (induced by pulling back the
complex structure on †). So we need to show that with this fixed complex structure,
there is a unique n–fold branched covering map to D2 up to an R action.

First choose a biholomorphic map from P to the upper half plane H , which takes one
of the y corners to 1, and the other corners to points x1;x2; : : : ;x2n�1 along the
real axis. We now want to find a degree n map H!H which takes xi to 0 for i odd
and to 1 for i even, and takes 1 to 1. Such a map is given by

z 7!
.z�x1/.z�x3/ � � � .z�x2n�1/

.z�x2/.z�x4/ � � � .z�x2n�2/
:
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p0

q0

p1 p2

q1 q2

y

x
˛1 ˛0 ˇ0 ˇ1

A

B1 B2

B3 B4

Figure 2: The annuli in Proposition 2.6 have the form of the annulus A above
combined with one of the bigons Bi , where the ˛ arcs in the boundary of the
annulus may contain segments of @† .

This map is unique up to scaling. Finally we can find a biholomorphic map from H
to D2 which takes 0 to �i and 1 to Ci . Composing these three maps gives the
desired k –fold branched cover P !D2 .

Another common situation in which the moduli space of holomorphic curves can be
understood is pictured in Figure 2. The following appears in [6], but we recall the proof
here in order to introduce notation and reasoning that will be useful later.

Proposition 2.6 Suppose a Heegaard diagram contains (an immersed copy of) an
annulus A, as in Figure 2, and one or more of the bigons B1; : : : ;B4 , where ˛ arcs
may contain segments of @†, and where the ends of ˛1 leave A by crossing ˇ0 and
the ends of ˇ1 leave A by crossing ˛0 . Let Di denote the domain corresponding to
the union of A and Bi . Then either D1 and D3 count toward the differential and D2

and D4 do not, or vice versa, depending on the choice of complex structure J on †.

Proof Let Ar denote the standard annulus, S1� Œ0; r � with a fixed complex structure.
For a unique positive number r there is a holomorphic map uW Ar!A taking S1�f0g

to the inner boundary of D , namely D\ .˛0[ˇ0/, and taking S1 � frg to the outer
boundary D\ .˛1[ˇ1/. This map is unique up to rotation in the S1 factor. Let a0

and b0 denote the inverse images in S1 � f0g of ˛0 and ˇ0 , respectively. Let a1

and b1 denote the respective inverse images of ˛1 and ˇ1 in S1 � frg. Define ‚x;y
A

to be l.a0/= l.b0/, the ratio of the lengths of the preimages of the ˛ and ˇ arcs
on the boundary of A which contains x and y . Similarly, define ‚p0;q0

A
to be
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l.a1/= l.b1/. The domain A will have a holomorphic representative if ‚x;y
A
D‚p0;q0

A

[27, Lemma 9.3], but for a generic choice of complex structure this will not be the case.

Now consider the domain D1 . It is an annulus with one obtuse corner at p1 . There is
a one parameter family of conformal structures depending on how much we cut into
the annulus along the ˛ or ˇ arc at the obtuse corner. We specify the length of this cut
by a parameter c , where c < 0 corresponds to cutting along ˛1 and c > 0 corresponds
to cutting along ˇ1 . The cut approaches p0 as c ! �1 and it approaches ˛0 as
c!1. For any value of c there is a holomorphic map U c W Ar !D1 , unique up to
rotation in the S1 factor of Ar . We can define �x;y

D1
.c/ and �p1;q0

D1
.c/ analogously

to ‚x;y
A

and ‚p0;q0
A

, as the ratio of the lengths of the ˛ and ˇ components on the
corresponding boundary of D1 .

As the cutting parameter varies, D1 will have a holomorphic representative each time
�x;y

D1
.c/D �p1;q0

D1
.c/, and thus the number of holomorphic representatives is determined

by the number of zeros of �x;y
D1
��p1;q0

D1
. The end behavior of �x;y

D1
��p1;q0

D1
determines

the mod 2 count of these zeros. As c approaches 1, the cut along ˇ1 from p1

approaches ˛0 . In this limit �x;y
D1

becomes very large and �p1;q0

D1
becomes very small,

so �x;y
D1
� �p1;q0

D1
!C1. In the other extreme, we cut along ˛1 from p1 to p0 . The

limit is a broken flow where the bigon B1 is pinched off from the annulus A. In this
limit �x;y

D1
D‚x;y

A
and �p1;q0

D1
D‚p0;q0

A
. Therefore, the domain D1 will contribute to

the differential in bCFDk if and only if ‚p0;q0
A

>‚x;y
A

.

The domains D2 , D3 and D4 can be analyzed in the same way. For D3 the results
are the same: cutting along ˇ1 from q1 to ˛0 makes �x;y

D3
� �p0;q1

D3
approach C1,

and cutting along ˛1 from q1 to q0 yields ‚x;y
D3
� �p0;q1

D3
D ‚x;y

A
�‚p0;q0

A
, so D3

contributes if and only if ‚p0;q0
A

>‚x;y
A

. The domains D2 and D4 , on the other hand,
contribute if and only if ‚x;y

A
>‚p0;q0

A
.

Note that since annulus in Figure 2 is only required to be immersed, some points or
segments of arcs may be identified. For instance, it may be that x and y map to the
same point on the Heegaard diagram; see Figure 3.

We will often encounter annular domains that fit the form of the annuli in Proposition 2.6
except that one boundary component has more than one ˛ segment and more than
one ˇ segment. For instance, the bigon B1 might be replaced with a quadrilateral. In
practice, quadrilaterals behave like bigons in this context, but it is not immediately
apparent how to extend the proof of Proposition 2.6 for more general annuli. Instead,
we will use the following proposition to simplify a domain by pinching off an extra ˛
or ˇ arc.
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p0

q0

˛0
ˇ0

˛1 ˛00 x ˇ1 �!

p0

q0

˛0

˛0

x

x

˛1 ˛00 ˇ0 ˇ1

Figure 3: The partial Heegaard diagram pictured on the left contains an
annulus A in the sense of Proposition 2.6. The straight black lines represent
segments of @† . The annulus is immersed (except at the preimages of
˛ \ @†), but not embedded; in particular, x and y in Figure 2 map to the
same point, x . To realize this domain in the form of Figure 2, cut along the
arc ˛0 from x to @† , producing the picture on the right.

Proposition 2.7 Let  be an arc in a domain D which is a small push off of one of
the ˇ segments or one of the ˛ segments (possibly containing Reeb chords) in @D , as
pictured here:

ˇ

˛1

˛2

˛

ˇ1

ˇ2

Assume that  only passes through regions with multiplicity 1 in D . Let D0 be the
domain which results from collapsing  to a point and removing the bigon on the
left. Let E� be a sequence of Reeb chords compatible with D , and let E� 0 be obtained
from E� by removing any Reeb chords on the bigon on the left. Then for an appropriate
choice of complex structure, namely one in which the arc  is sufficiently short, .D; E�/
contributes to bCFDk if and only if .D0; E� 0/ would contribute.

Proof Fix a neighborhood U of  in D . Given any complex structure J on D ,
there is some (unique) � > 0 such that U maps holomorphically to Œ0; 1�� .��; �/
with U j@D mapping to f0; 1g � .��; �/. On U , we have that J is equivalent to the
pullback of the standard complex structure on this rectangle.
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Consider the one parameter family of complex structures Jt , for t > 0, such that Jt

agrees with J outside of U , and Jt is scaled on U so that U is identified with
the rectangle Œ0; 1�� .�t; t/. As t goes to infinity, U is pinched in the direction of 
and stretched in the direction transverse to  — effectively the arc  becomes shorter.
The limiting complex structure J1 corresponds to  being pinched to a single point,
resulting in a bigon B and the domain D0 joined at a point. A J1–holomorphic curve
with domain D splits as a holomorphic map to the bigon and a holomorphic curve with
domain D0 . By the Riemann mapping theorem, there is an R family of holomorphic
maps from the standard bigon to B , and precisely one once the point of contact with the
preimage of D0 is determined. Therefore the existence of J1–holomorphic curves with
domain D is equivalent to the existence of J1–holomorphic curves with domain D0 .

J1 is not a valid complex structure to choose when computing bCFDk , but we can
choose Jt for arbitrarily large t and standard compactness and gluing arguments imply
that for t sufficiently large, D has a Jt –holomorphic representative if and only if it has
a J1–holomorphic representative (this follows from the same argument used in the
proof of [8, Proposition 9.6], making use of [1, Theorem 10.3] and [7, Propsition A.2]).
Thus for a complex structure with the arc  sufficiently pinched, the statement of the
proposition holds.

Finally, we discuss how A1 relations can be used to deduce which domains count
toward the differential, even if we are computing bCFDk . The key is the following ob-
servation, which was implicitly used in the proof of [10, Proposition 10.5] to determine
the contribution of �123 .

Lemma 2.8 A sequence of Reeb chords E� D . E�1; : : : ; E�k/ contributes a. E�/˝y to
the differential of x in bCFDk if and only if m.x; xa. E�1/; : : : ; xa. E�k//D y in bCFAk .

Proof This follows directly from the definitions of bCFDk and bCFAk , since both
involve counts of the same moduli spaces. For a given domain B 2 �2.x;y/ that is
compatible with E� , the pair .B; E�/ may contribute a. E�/˝y to @x in bCFDk , and it may
contribute the operation m.x; xa. E�1/; : : : ; xa. E�k//D y to bCFAk . In both cases, the pair
contributes if and only if #.MB.x;y ; E�//� 1 .mod 2/. Summing over all domains B

compatible with E� gives the total contribution of E� and completes the proof.

Recall that we say E� contributes a. E�/˝y to the differential of bCFDk if the relevant
counts of moduli spaces are nonzero, even if the contribution is zero. It is possible that
E� contributes nontrivially to bCFAk while the contribution to bCFDk is zero.

Lemma 2.8 is most useful for checking if domains contribute to bCFDk when E� contains
the long chord �i

123 for some boundary component. For example, suppose in the one
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boundary case that E� D .�123/ is compatible with a domain B from x to y . If the
domain is too complicated to understand the moduli space MB.x;y ; E�/ directly, we
can instead ask whether .B; E�/ contributes the operation m.x; �123/D y to bCFA. To
answer this, we consider the A1 relation (3) corresponding to x and E�0 D .�12; �3/.
The relation says that

0Dm.x; �.�12; �3//Cm.m.x; �12/; �3/:

The first term is just m.x; �123/, the operation we are interested in, and the second
term might be easier to analyze. If m.x; �12/D 0, for instance, then the second term
in the relation is 0, and thus .B; E�/ does not contribute to bCFA or to bCFD .

2H Gradings

Bordered Heegaard Floer invariants can be equipped with a relative grading on each
spinc–structure as described in [8, Chapter 10] and [10, Section 6.5]. We recall here
the construction of these gradings for manifolds with only torus boundary components.
We will only discuss the refined grading.

Let Y be a bordered manifold represented by a bordered Heegaard diagram H . LetcCF.H/ denote the relevant bordered Heegaard Floer invariant. The gradings for cCF.H/
lie in a noncommutative group which depends on the number and type of boundary
components. We will denote this group Gn;m where n is the number of type D

boundary components of Y and m is the number of type A boundary components.
Gn;m is generated by tuples .j I a1; b1I a2; b2I : : : I anCm; bnCm/, where every entry is
in 1

2
Z, and ai C bi 2 Z for each i . We refer to j as the Maslov component of the

grading. Multiplication on this group is defined as follows:

.j I a1; b1I a2; b2I : : : I anCm; bnCm/ �.j
0
I a01; b

0
1I a
0
2; b
0
2I : : : I a

0
nCm; b

0
nCm/D

.j Cj 0CC I a1Ca01; b1Cb01I a2Ca02; b2Cb02I : : : I anCmCa0nCm; bnCmCb0nCm/;

where the correction term C is given by

C D
a1 a0

1

b1 b0
1

C � � �C
an a0n
bn b0n

C
a0

nC1
anC1

b0
nC1

bnC1
C � � �C

a0nCm anCm

b0nCm bnCm
:

Given generators x and y , a domain in B 2 �2.x;y/ can be given a grading in Gn;m

[8, Definition 10.1]. The Maslov component of gr.B/ is given by

�e.B/� nx.B/� ny.B/;

where e.B/, nx.B/ and ny.B/ are the same quantities that appear in the index
formula (5). For each 1� i � nCm, let i denote the intersection of @B with the i th
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boundary component of H , which can be thought of as a linear combination of the Reeb
chords �i

1 , �i
2 and �i

3 . If i D c1�
i
1C c2�

i
2C c3�

i
3 , then the i th pair of coefficients in

gr.B/ is given by

ai D
1
2
.c1C c2� c3/; bi D

1
2
.�c1C c2C c3/:

To define the gradings on a bordered multimodule in a given spinc–structure, we
choose a base generator x in that spinc–structure. Let P.x/ be the subgroup of Gn;m

generated by fgr.B/ j B 2 �2.x;x/g. Then cCF.H/ has a well defined grading by
the set Gn;m=P.x/. Up to canonical isomorphism, this grading set does not depend
on the choice of x . We define the relative grading by the following rule: if y is
generator in the same spinc–structure as x and B is a domain connecting x to y , then
gr.y/D gr.x/ gr.B/.

In many cases, gradings can be computed directly from the labeled graph representingcCF.H/, without reference to the Heegaard diagram. To do this, we use the fact that
elements of the torus algebra have gradings in Gn;m . Recall that cCF.H/ is a module
over nCm copies of the torus algebra, one for each boundary of Y , and �i

I denotes an
element of the torus algebra associated to the i th boundary. The Maslov component of
gr.�i

I / is �1
2

and the coefficients aj and bj are zero for all j ¤ i . The coefficients ai

and bi are determined by I as follows:

I ai bi

1 1=2 �1=2

2 1=2 1=2

3 �1=2 1=2

12 1 0

23 0 1

123 1=2 1=2

This grading respects the algebra product in the sense that gr.�I1
�I2
/D gr.�I1

/ gr.�I2
/.

The grading on cCF.H/ also respects the module structure in the sense that gr.�I x/D

gr.�I / gr.x/, where the product on the right refers to the left action of the group Gn;m

on the set Gn;m=P.x/. Finally, the grading on cCF.H/ satisfies the following relation
[10, Definition 2.5.2]:

(7) gr.mkC1.x; �I1
; : : : ; �Ik

//D �k�1 gr.�Ik
/ � � � gr.�I1

/ gr.x/:

Here �D .1I 0; 0I : : : I 0; 0/ is the preferred central element of Gn;m . The same relation
applies for both type D and type A modules if we think of the differential @ as an m1

map. Thus gr.@x/D ��1 gr.x/.
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To compute the relative grading from the graph representing cCF.H/, we choose a
base generator x and assign it an arbitrary grading. The gradings of the remaining
generators can be determined using (7), as long as each generator is connected by x

by a path of arrows (that is, as long as the graph is connected). A loop in the graph
representing cCF.H/, along with (7), gives rise to a value for gr.x/ which may not
be equal to the value initially chosen for gr.x/. The difference is gr.B/ for some
periodic domain B 2 �2.x;x/. If there are enough loops in the graph (there must be
one independent periodic domain for each boundary component of Y ), then we can
determine P.x/.

3 Direct computation of 1CFDk.YP/

In this section we explicitly compute the type D trimodule associated to YP , the trivial
S1–bundle over the pair of paints P .

3A Choosing a bordered Heegaard diagram for YP

We obtain the Heegaard surface † from the boundary of YP by drilling tubes through
YP to connect one boundary component to the other two. This surface is pictured in
Figure 4, where the front and back faces are identified by the identity map. To obtain
the 3–manifold YP from this surface, we attach three 2–handles to the inside along the
ˇ curves, and fill in the drilling tubes by attaching disks along the thick gray dashed
lines. Filling in the interior with a 3–ball yields YP .

We decorate each boundary component of YP with a pair of intersecting ˛ curves to
specify a parametrization of the boundary. There are many choices of parametrization,
but it is natural and convenient to choose one ˛ curve to lie in the base surface P and
the other to be an S1 fiber.

To finish the construction of H we must also remove a disk around each ˛ � ˛

intersection point, turning the ˛ curves into arcs and giving the surface † three
boundary components, and we must chose a basepoint z connected by arcs to each
component of @†. These features are not shown until after the surface has been
simplified by isotopy in Figures 5 and 6. Notice the placement of the ˛ curves relative
to the drilling tunnels in Figure 4. This was to ensure that there is one component of
† n .˛[ˇ/ that meets all three components of @†.

The bordered Heegaard diagram H in Figure 6 can be represented in the plane (except
for the handles) by cutting † open along the arcs in z . The result is shown in Figure 7,
and some relevant labels have been added. The Reeb chords along the three boundary
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Figure 4: Constructing the Heegaard diagram for YP . The front and back
faces are identified. Attaching 2–handles to the ˇ curves (blue), capping
off the drilling tubes along the dashed gray lines, and adding a 3–handle
yields YP . Intersecting pairs of ˛ curves (red) specify a parametrization of
each boundary component of YP .

Figure 5: The diagram is easier to read and manipulate if we redraw the outer torus.
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A C

A C

B B

z

Figure 6: An isotopy simplifies the diagram. Pairs of circles labeled by letters
signify 1–handle attachment. We remove a small disk (shaded) around each
intersection of ˛ curves, resulting in the genus-3 Heegaard surface † with
three boundary components. There is a basepoint z connected by arcs (green)
to each boundary component.

�3

�2

�1

�1

�2

�3

�3 �2 �1

˛
�
2

˛
�
1

˛�
1

˛�
2

˛�2 ˛�1

ˇ1 ˇ3

ˇ2

A A B B

C C

Figure 7: A bordered Heegaard diagram H for YP , with type D boundaries

components are labeled in the order consistent with type D boundaries, and they are
denoted by � , � and � instead of �1 , �2 and �3 . The ˛ arcs are also labeled to
correspond to type D boundaries. Tracing through the sequence in Figures 4 through 7
with ˛ labels in mind, note that the arcs ˛�

1
, ˛�

2
and ˛�

1
represent curves in the base

surface P of the S1–bundle YP , and the arcs ˛�
2

, ˛�
1

and ˛�
2

represent S1 fibers.

Before computing bCFD3.YP/, we make one final adjustment to the Heegaard dia-
gram H . Computing directly from H would involve a few large and complicated
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�3

�2

�1

�1

�2

�3

�3 �2 �1

R1 R7

R2

R3

R6

R8

R7 R6

R4 R5 R3

R2 R6

R9

R8
a b c d h i

e f j k g

˛
�
2

˛�1

˛
�
1 ˛�2

˛�
2

˛�
1

ˇ1

ˇ2

ˇ3
A A B B

C C

Figure 8: A slightly modified arced Heegaard diagram for YP , H0

domains which are difficult to analyze. It will be convenient to perform an isotopy to
produce the new Heegaard diagram H0 shown in Figure 8. This change introduces
a few extra generators, but it eliminates the trickiest domains and overall makes the
computation easier.

3B Complex structure

To compute bCFD3 , we also must fix a generically chosen complex structure J on †.
We collect here some relevant choices about J that will be used in the computation.
Note that if J were chosen with different properties we would get a different, but
quasi-isomorphic, trimodule.

As in the proof of Proposition 2.6, if the annulus A has one ˛ and one ˇ segment
on each boundary component, let ‚p;q

A
denote the ratio of the lengths of the ˛ and ˇ

segments on the boundary component which contains p and q . As shorthand we will
use, for example, the subscript “67” for the annulus R6R7 . We will assume that J

satisfies:

� ‚i;i
67
>‚d;b

67
;

� ‚i;i
1267

>‚a;a
1267

.

We will also assume that the following arcs are sufficiently short, in the sense of
Proposition 2.7:
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�3

�2

�1

�1

�2

�3

�3 �2 �1

R1 R7

R2

R3

R6

R8

R7 R6

R4 R5 R3

R2 R6

R9

R8
a b c d h i

e f j k g

˛
�
2

˛�
1

˛
�
1

˛�
2

˛�
2

1

2

3 4

ˇ1 ˇ3
A A B B

C C

Figure 9: We choose a complex structure J for which the four  arcs are
very short and the bold ˛ and ˇ segments are very long relative to the thin,
solid ˛ and ˇ segments.

� an arc 1 in R3 from ˛
�
1

to ˛�
1

;

� an arc 2 in R8 from ˛�
1

to ˛�
1

;

� an arc 3 in R1[R2 parallel to ˛�
2

, from ˇ1 to itself.

These arcs are pictured in Figure 9.

We need to check that there exist suitable complex structures J consistent with these
assumptions. Starting with an arbitrary complex structure, we can modify it in re-
gions R6 and R7 so that ‚i;i

67
> ‚d;b

67
and ‚i;i

1267
> ‚a;a

1267
. This can be done, for

instance, by pinching an arc parallel to the � boundary, transverse to ˛�
1

and ˛�
2

(4

in Figure 9). Modifying the complex structure in a neighborhood of this arc as in the
proof of Proposition 2.7 makes curves transverse to 4 very long and ensures that ‚i;i

67

and ‚i;i
1267

are large. Once 4 is sufficiently pinched, we pinch the arcs 1 , 2 and 3

in the same way. Note that as a side effect of pinching these arcs, ˇ1 and ˛�
1

get longer,
but this only increases ‚i;i

67
and ‚i;i

1267
and decreases ‚a;a

1267
.

Note that each assumption we make on J can be satisfied, individually, by pinching an
arc in the Heegaard diagram. All the assumptions can be satisfied consistently as long
as all the arcs that need to be pinched are disjoint and none of them is transverse to
an ˛ or ˇ segment that is supposed to be short relative to other segments; see Figure 9.
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3C Generators

The chain complex bCFD3.H0/ is generated by the set S.H0/ consisting of triples of
intersection points with one point on each ˇ circle and at most one point on each ˛
arc. In total, there are 23 generators. These generators fall into seven different
spinc–structures, corresponding to how many ˛ arcs are occupied on each boundary
component.

We begin by computing the summand of bCFD3.H0/ corresponding to the middle spinc–
structure, with exactly one ˛ arc occupied on each boundary (the other spinc–structures
are much easier and will be addressed at the end of this section). There are seven
generators in the middle spinc–structure: x D .a; e; i/, y D .a;g; h/, z D .c; f; i/,
v D .b; f; i/, w D .d; f; i/, s D .a; j ; i/ and t D .a; k; i/.

3D Possible domains

We begin by listing domains in �2.x;y/ for any pair of generators x and y . Recall
that a domain connecting x and y is a linear combination of the regions R1; : : : ;R9

in Figure 8 with the correct multiplicity at each corner (that is, satisfying (4)). We
do not need to list every domain in �2.x;y/, since only positive domains can have
holomorphic representatives, and by Proposition 2.3 we can assume that regions which
intersect @† have multiplicity 0 or 1. The only region which does not intersect the
boundary is R9 . The multiplicity of R9 is also limited; in fact, R9 can not combine
with any other regions because domains with holomorphic representatives must be
connected in † n .˛\ˇ/. Thus we can restrict to linear combinations of R1; : : : ;R8

with multiplicity 0 or 1 for each region, and the single domain R9 . All such domains
which connect two generators are listed in Table 1.

3E Compatibility and idempotents

Several domains in Table 1 can be ruled out using Proposition 2.3. Consider for example
the domain R2R3 , which potentially contributes to the differential from x to s . By
Proposition 2.3, this domain can only contribute with the Reeb chords .�1; �2/, and
then the contribution a.�12/˝ s is zero unless s contains a point on ˛�

2
. Since s does

not contain a point on ˛�
2

, the domain R2R3 has zero contribution to the differential.

In general, for a differential ending in s to be nontrivial, the algebra element for
the � boundary can not be �2 or �12 . This means that the domain associated with
such a differential can not contain R2 without containing R1 . In addition to R2R3 ,
this line of reasoning eliminates the domains R2R3R4R5R6R7 , R2R3R5R6 and
R2R3R5R6R8 . A similar analysis on the other boundaries shows that domains

Algebraic & Geometric Topology, Volume 16 (2016)



Bordered Heegaard Floer homology and graph manifolds 3131

to # from! x y z w v s t

x
1267

56 1567 167
1

� 568
4567 14567

y 47
1267

17 � 147 �
8 12678

4567 45678

z 2467 26
1267

467
4

� 268
4567 12467

w
2

256
5 1267 12 45

� 2568
24567 12567 4567 124567

v 267 � 567 67
1267

� �
4567

s
23

2356
35 3 12367 123 345 1267 23568

234567 123567 34567 1234567 4567 9

t � � � � � �
1267
4567

Table 1: Domains which potentially contribute to the differential. All subsets
of the regions fR1; : : : ;R8g with the proper corner multiplicities, and the
single domain R9 . We omit the R for the purposes of this table. Thus 56

refers to the domain R5R6 , which connects y to x .

contributing nontrivial differentials ending in s cannot contain R5 without R4 , R7

without R6 , or R8 . This further rules out the domains R3R5 and R1R2R3R5R6R7 .
Finally, applying the same technique to differentials ending in other generators rules
out the following domains:

domains to x : 4567, 14567, 568;
domains to y : 1267, 4567;
domains to z : 1267, 12467, 268;
domains to w: 24567, 12567, 1267, 4567, 12, 45, 124567, 2568;
domains to v : 1267, 4567.

3F Polygons

Of the remaining domains from Table 1, many are immersed polygons and therefore
contribute to the differential by Proposition 2.5. The proposition depends on the
sequence of Reeb chords E� , but each of the following domains has only one compatible
sequence of Reeb chords, so Proposition 2.5 tells us the entire contribution of the
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domain to the differential:

R1 contributes v
�3
��! x R2 contributes x

�2
��! w

R3 contributes w
�1�1
���! s R4 contributes v

�3
��! z

R5 contributes z
�2
��! w R8 contributes t

�3
��! y

R9 contributes t
1
��! s R1R7 contributes z

�3�1
���! y

R2R6 contributes y
�2�2
���! z R4R7 contributes x

�3�1
���! y

R5R6 contributes y
�2�2
���! x

Here the notation x
a
�! y means that there is an a˝y term in @x .

3G Index

At this point there are 22 domains in Table 1 whose contribution to bCFDk remain
unknown. Of these, 11 can be ruled out by showing that ind.B/ ¤ 1. In general
computing the index is a good task for a computer, but because we have narrowed the
list of domains down so much we can work out the index computations by hand.

The quantities e.B/ and nx.B/ for any generator x are additive, so it is helpful
to record their values for individual regions; see Table 2. For instance, region R1

has Euler measure e.R1/D �
1
2

, because it has Euler characteristic �.R1/D 1 and
six acute corners. R1 has a corner at the point a, which means that the average
multiplicity of R1 near a is 1

4
. Also, R1 has corners at b , e and f . For the generator

x D .a; e; i/ we find that nx.R1/ D
1
4
C

1
4
C 0 D 1

2
, and for y D .a;g; h/ we get

ny.R1/D
1
4
C 0C 0D 1

4
. It is straightforward to fill in the rest of Table 2.

e nx ny nz nv nw ns nt

R1 �1=2 1=2 1=4 1=4 1=2 1=4 1=4 1=4

R2 �1=2 1=2 1=4 1=4 1=4 1=2 1=4 1=4

R3 �1 1=4 1=4 1=4 1=4 1=2 1=2 1=4

R4 0 0 0 1=4 1=4 0 0 0

R5 0 0 0 1=4 0 1=4 0 0

R6 �1 1=2 1=2 1=2 1=4 1=2 1=4 1=4

R7 �1 1=2 1=2 1=2 1=2 1=4 1=4 1=4

R8 �1=2 1=4 1=2 1=4 1=4 1=4 1=4 1=2

Table 2

Algebraic & Geometric Topology, Volume 16 (2016)



Bordered Heegaard Floer homology and graph manifolds 3133

Domain x! y e.B/ nx ny bdys hit/2 ind.B/

1267 x! x �3 2 2 1 2

2467 x! z �5=2 3=2 3=2 3=2 2

256 y! w �3=2 3=4 5=4 3=2 2

1567 z! x �5=2 3=2 3=2 3=2 2

4567 z! z �2 3=2 3=2 1 2

147 v! y �3=2 5=4 3=4 3=2 2

67 w! v �2 3=4 3=4 1=2 0

1267 s! s �3 1 1 1 0

4567 s! s �2 1=2 1=2 1 0

1267 t ! t �3 1 1 1 0

4567 t ! t �2 1=2 1=2 1 0

Table 3

From this information, it is easy to compute the index as in Table 3. We add the Euler
measures of all of the regions in a given domain B to find e.B/. Similarly, we add
the values of nx and ny for each region for the relevant generators x and y to find
nx.B/ and ny.B/. Finally, we count how many of the three components of @† are
touched by B (that is, we find #fZ 2 �0.@†/ j Z \B ¤ ∅g), and add half of this
number to e.B/Cnx.B/Cny.B/. By (6), the result is ind.B/. Table 3 only shows the
computation for regions that are ruled out by this method. The index can be computed
in the same way for the remaining 11 domains, but they all have ind.B/D 1, so more
work is needed to determine if they contribute to bCFDk .

3H Index-zero annulus

R6R7 is an index-0 annulus of the same form as A in Proposition 2.6; see Figure 10.
The domains R2R6R7 , R5R6R7 , R1R6R7 and R4R6R7 in H0 correspond to the
domains D1 , D2 , D3 and D4 , respectively, in Figure 2. By Proposition 2.6, the
contribution of these four domains is determined by the choice of complex structure J

on †, and in particular on the resulting ratios of lengths ‚i;i
67

and ‚d;b
67

. Recall that
we chose the complex structure on † so that ‚i;i

67
>‚d;b

67
.

It follows directly from the proof of Proposition 2.6 that R4R6R7 and R5R6R7

contribute to the differential for our choice of J . Specifically, R4R6R7 contributes
�3�12 ˝ z to @w and R5R6R7 contributes �2�12 ˝ v to @z . It is also true that
R1R6R7 and R2R6R7 do not contribute to the differential, but for these domains the
outer boundary of the annulus has too many ˛ and ˇ segments to apply Proposition 2.6
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Figure 10: The index-0 annulus R6R7 , with four surrounding regions

�3 �2 �1

a a
f j

d

�1
�1

i

�2

i�3g
k

h

R1 R2 R3

R7 R6

R8

Figure 11: The annulus R1R2R6R7R8 contributes to the differential, while
R1R2R3R6R7 does not.

directly. First we apply Proposition 2.7 and pinch along the arc 3 in R1 and R2 ;
recall that the complex structure was chosen to be consistent with pinching this arc.
The annuli obtained from R1R6R7 and R2R6R7 by pinching this arc completely do
not have representatives by Proposition 2.6, and so R1R6R7 and R2R6R7 do not
contribute to the differential.

We need to perform a similar analysis on two more domains, which are obtained
from adding regions to the index-0 annulus R1R2R6R7 ; see Figure 11. If we let the
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inner boundary in Figure 11 correspond to the outer boundary in Figure 2, then R8 is
analogous to B4 . However, R8 is not a bigon, so we must first use Proposition 2.7 to
obtain that the contribution of R1R2R6R7R8 is the same as the contribution of the
annulus which would result from collapsing the arc 2 in R8 . This pinched annulus
would not contribute with the Reeb chords .�2; �3; �1; �2; �3/ by Proposition 2.6,
using the fact that ‚i;i

1267
>‚a;a

1267
. Thus the pair .R1R2R6R7R8; .�2; �3; �1; �2; �3//

does not contribute to bCFDk . We emphasize however that this domain has a second
compatible sequence of Reeb chords, about which Proposition 2.6 says nothing. The
contribution of this domain with E� D .�2; �3; �123/ will be discussed in Section 3I.

The domain R1R2R3R6R7 , with Reeb chords .�1; �2; �3; �1; �2; �1/, can be ana-
lyzed in a similar way. By Proposition 2.7 we will treat R3 as a bigon attached to
R1R2R6R7 , since the extra ˇ segment can be removed by pinching along 1 . In this
case Proposition 2.6 does not apply, because the arc ˛�

2
cutting into the annulus from

the obtuse corner does not leave the annulus on the opposite boundary component, but
the reasoning is similar. There is a one parameter family of cuts starting at d . We
can define the ratios � i;i

12367
and �d;a

12367
, which depend on the cutting parameter, as

in the proof of Proposition 2.6. There is a holomorphic representative for each zero
of � i;i

12367
� �d;a

12367
. Cutting along ˛�

2
from d to b pinches off the annulus R6R7 .

In this extreme, � i;i
12367

� �d;a
12367

approaches ‚i;i
67
�‚d;b

67
, which is positive for our

choice of complex structure. In the other extreme, cutting along ˇ1 from d to a pinches
off the annulus R1R2R6R7 , and � i;i

12367
��d;a

12367
becomes ‚i;i

1267
�‚a;a

1267
> 0. Since

� i;i
12367

��d;a
12367

has the same sign at both extremes, the number of zeros is even and the
pair (R1R2R3R6R7; .�1; �2; �3; �1; �2; �1// does not contribute to the differential.

3I Decomposable boundaries

We have determined the contribution of all domains in Table 1 except for the follow-
ing seven:

R1R2R3 from v to s

R3R4R5 from v to s

R1R2R3R6R7 from w to s

R3R4R5R6R7 from w to s

R1R2R6R7R8 from t to y

R4R5R6R7R8 from t to y

R1R2R3R4R5R6R7 from v to s

Each of these domains is compatible with multiple Reeb chord sequences. The contri-
bution of each domain/Reeb chord pair must be considered separately.
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R1

R2
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Figure 12: Two versions of the domain R1R2R3 . The left represents the
sequence of Reeb chords E�1 D .�3; �2; �1; �1/ . This domain/Reeb chord
pair is a polygon and contributes to the differential. The right represents
the sequence of Reeb chords E�2 D .�123; �1/ . This genus-one domain also
contributes to the differential.

R1R2R3 The domain R1R2R3 is compatible with both E�1 D .�1; �2; �3; �1/ and
E�2 D .�123; �1/. By cutting along ˛ arcs, the domain can be represented differently
for each Reeb chord sequence; see Figure 12. On the left is an immersed polygon; it is
clear that the conditions of Proposition 2.5 are satisfied, and so the pair .R1R2R3; E�1/

contributes to the differential.

For E�2 , we use Lemma 2.8 and consider the A1 relation for .v; �1; �23; �3/:

0Dm
�
v; �.�1; �23/; �3

�
Cm

�
m.v; �1/; �23; �3

�
:

There are no other nonzero terms in the relation. Note that it is impossible to have
an A1 operation involving �3 and not �3 , since both Reeb chords are on the same
region R3 . Thus the term m.m.v; �1; �3/; �23/ does not appear in the A1 relation.
Since we use F2 coefficients, the relation above can be rewritten as

m.v; �123; �3/Dm
�
m.v; �1/; �23; �3

�
:

The inner operation on the right, m.v; �1/, records the contribution of the domain R1

with E� D .�1/. We showed that this pair contributes in bCFD3 , and so by Lemma 2.8
it also contributes to bCFA3 . Thus m.v; �1/D x . The outer operation is determined by
the contribution of the domain R2R3 . This domain was eliminated from consideration
for bCFD3 , but it may still contribute to bCFA3 . To find out if it does we use another A1
relation, this time for .x; �2; �3; �3/. The relation implies that

m.x; �23; �3/Dm
�
m.x; �2/; �3; �3

�
:

Since R2 and R3 are known to contribute in bCFDk (and thus in bCFAk ), we find that
m.x; �23; �3/ D m.w; �3; �3/ D s and m.v; �123; �3/ D s . By Lemma 2.8 the pair
.R1R2R3; E�2/ contributes to bCFDk .
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.R1R2R3; E�1/ and .R1R2R3; E�2/ both contribute the term �123�1s to @.v/ in bCFDk .
Over F2 , these contributions cancel, so the total contribution of R1R2R3 to the
differential is zero.

R3R4R5 The two compatible Reeb chord sequences are E�1 D .�1; �1; �2; �3/ and
E�2 D .�1; �123/. The first does not contribute, because a holomorphic representative
consistent with E�1 would project to R3R4R5 with cuts along ˛�

1
and ˛�

2
, making the

domain disconnected. If we do not cut the domain along ˛�
1

and ˛�
2

, we see that it is an
immersed polygon compatible with E�2 , and Proposition 2.5 tells us that .R3R4R5; E�2/

contributes to the differential. Overall, the domain R3R4R5 contributes �1�123s

to @.v/.

R1R2R3R6R7 This domain is compatible with E�1 D .�1; �2; �3; �1; �1; �2/ and
E�2D .�123; �1; �1; �2/. It was shown in the previous section that there is no contribution
from E�1 . For the other case consider the A1 relation for .w; �1; �23; �3; �3; �2/. To
find all terms of the relation, we use Table 1 to split the domain R1R2R3R6R7 into
two pieces such that one is a domain connecting w to some generator x and the other
is a domain connecting x to s . There are two possibilities: the domain from w can be
R1R6R7 or R6R7 . This gives the A1 relation

m
�
w;�.�1; �23/; �3; �3; �2

�
Dm

�
m.w; �1; �3; �2/; �23; �3

�
Cm

�
m.w; �3; �2/; �1; �23; �3

�
:

The outer operation in the second term on the right is trivial for boundary monotonicity
reasons. The inner operation on the of the first term is trivial because it records the
contribution of the domain R1R6R7 . We have shown that this domain does not
contribute to bCFD3 , and thus it also does not contribute to bCFA3 by Lemma 2.8. Thus
m.w; �123; �3; �2; �1/ D 0 and .R1R2R3R6R7; E�2/ does not contribute to bCFD3 .
The total contribution of R1R2R3R6R7 is zero.

R3R4R5R6R7 This domain is compatible with E�1 D .�1; �1; �2; �3; �1; �2/ and
E�2 D .�1; �123; �1; �2/. There is no contribution from E�1 because realizing the do-
main with boundary Reeb chords E�1 would involve cutting along ˛�

2
, which leaves

the domain disconnected. For the contribution of E�2 , consider the A1 relation for
.w; �3; �12; �3; �3; �2/. To find all terms of the relation, first note that any type A

operation that involves m.x; : : : ; �12; �3; : : : / will be trivial for boundary monotonicity
reasons. As a result, any term in the A1 relation splits as an operation involving �12

and an operation involving �3 . We look in Table 1 for domains that connect w to
another generator and involve R4 and R5 , but not R3 , and some subset of fR6;R7g.
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The only option is the domain R4R5R6R7 connecting w to itself. The relation can
be written as

m.w; �3; �123; �3; �2/Dm
�
m.w; �12; �3; �2/; �3; �3

�
:

To compute the inner operation on the right, we can use another A1 relation to show that

m.w; �12; �3; �2/Dm
�
m.w; �1; �3; �2/; �2

�
Dm.z; �2/D w;

where m.w; �1; �3; �2/ is nontrivial because the domain R4R6R7 was shown to
contribute to bCFD3 based on the choice of complex structure J . We now have

m.w; �3; �123; �3; �2/Dm.w; �3; �3/D s:

Thus we have that .R3R4R5R6R7; E�2/ contributes to bCFA3 or bCFD3 . Overall the
domain R3R4R5R6R7 contributes �1�123�12s to @.w/.

R1R2R6R7R8 This domain is compatible with E�1 D .�2; �3; �1; �1; �2; �3/ and
E�2D .�2; �3; �1; �123/. It has already been shown that there is no contribution with E�1 .
For the contribution of E�2 , use the A1 relation for .t; �2; �1; �12; �3/. We look in
Table 1 for domains starting at t which involve R6 and R8 but not R7 , and some
subset of fR1;R2g; there is only one option. The A1 relation becomes

m
�
t; �2; �1; �.�12; �3/

�
Dm

�
m.t; �2; �12/; �1; �3

�
:

The A1 relation for .t; �2; �1; �2/ implies that m.t; �2; �12/D z , so

m.t; �2; �1; �123/Dm.z; �1; �3/D y:

Thus by Lemma 2.8, the domain R1R2R6R7R8 contributes �23�123y to @.t/.

R4R5R6R7R8 This domain is compatible with E�1 D .�2; �3; �1; �2; �3/ and E�2 D

.�2; �3; �123/. With E�1 , the R4R5R6R7R8 is realized as an immersed polygon, so
the pair contributes to the differential. With E�2 , the contribution of this domain is
determined by the A1 relation

m
�
t; �2; �1; �.�12; �3/

�
Dm

�
m.t; �2; �12/; �1; �3

�
Dm.x; �1; �3/D y

and Lemma 2.8. The domain contributes with E�2 , and the total mod 2 contribution of
the domain is zero.
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R1R2R3R4R5R6R7 This domain has four compatible sequences of Reeb chords:

E�1 D .�1; �2; �3; �1; �2; �3; �1; �2/; E�2 D .�1; �2; �3; �123; �1; �2/;

E�3 D .�123; �1; �2; �3; �1; �2/; E�4 D .�123; �123; �1; �2/:

To obtain a boundary with Reeb chords E�1 , we must cut along all ˛ arcs. This produces
an immersed polygon, but there are too many edges and corners for Proposition 2.5 to
apply. For instance, cutting along ˛�

1
produces corners at h, but the generators v and s

do not contain the point h. Therefore the domain does not contribute with E�1 . For the
other sequences of Reeb chords, we can use Lemma 2.8 and appropriate A1 relations.
We find that the domain contributes with E�2 and E�4 , and not with E�3 . Overall with F2

coefficients the contribution of this domain is zero.

3J Canceling differentials

Putting everything together, the differential on bCFDk.YP/ is recorded in Figure 13.
The unlabeled arrow from t to s is the differential corresponding to the bigon R9 .
This unlabeled edge can be canceled using the edge reduction algorithm for type D

structures described in Remark 2.1. We eliminate the arrow and the generators t and s ,
and for every “zig-zag”

x
a1
�! s � t

a2
�! y ;

we introduce the new arrow x
a1�a2
���! y . The resulting simplified form of bCFDk.YP/

(which is quasi-isomorphic to the first diagram) is given in Figure 14.

3K Extremal spinc–structures

To complete the computation of bCFD3.YP/, we must compute bCFD3.YP ; s/ for other
spinc–structures s.

.1; 2 ; 0/ Consider first the spinc–structure s that has 1, 2 and 0 ˛–arcs occupied
on the � , � and � boundaries, respectively. The only generator in this spinc–structure
is agi , so bCFD3.YP ; s/ has one generator and no differentials.

.2 ; 1; 0/ and .2 ; 0; 1/ The spinc–structures with two arcs occupied on the � bound-
ary each have only one generator and no differentials. The generator with one ˛� arc
is occupied is af i , and the generator with one ˛� arc occupied is af h.
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yv w

x

z

t s

�1�123

�3

�3C

�23�123

�3

�2�12

�1�1C

�1�123�12

�3�12

�2

�2�2 �3�1

�3�1 �2�2

�2

Figure 13: bCFD k.H0/ in the middle spinc–structure, for the given choice of
complex structure J

.1; 0; 2/ The spinc–structure s that has one ˛ arc occupied on the � boundary, zero
on the � boundary and two on the � boundary has 3 generators: aeh, bf h and df h.
Recall that domains connecting these generators may not touch the � or � boundaries,
so we only need to consider the regions R1 , R2 and R9 . It is easy to see that R1

contributes a differential from bf h to aeh and R2 contributes a differential from aeh

to df h (they are both polygons). None of the generators include the points i or j ,
so R9 is not involved in any differentials. Finally, R1R2 does not contribute by
Proposition 2.3; the corners make R1R2 a domain connecting bf h to df h, but neither
of these generators contain a point on ˛�

1
, which is required for a domain with Reeb

chords .�2; �3/ to contribute nontrivially. For this spinc–structure, bCFD3.YP ; s/ is
given by

bf h
�3
�! aeh

�2
�! df h:
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yv w

x

z

�3

�1�123�3C

�123�123�123

�1�1�3C

�123�1�123C

�1�123�123

�2

�2�2 �3�1

�3�1 �2�2

�3

�2�12 �3�12

�2

Figure 14: bCFD3.YP/ in the middle spinc–structure after canceling the
differential from t to s in bCFD3.H0/

.0; 2 ; 1/ This spinc–structure has 3 generators: bgi , cgi and dgi . Domains that
contribute to the differential do not touch the � or � boundaries. The only domains
which connect two generators are R4 , R5 and R4R5 . It is clear that the polygons R4

and R5 contribute, but the contribution of R4R5 is zero. Thus bCFD3.YP ; s/ for this
spinc–structure is given by

bgi
�3
�! cgi

�2
�! dgi:

.0; 1; 2/ This spinc–structure has 7 generators: bgh, dgh, cei , bj i , bki , dj k

and dki . So R9 contributes differentials from bki to bj i and from dki to dj i . There
can be no other differentials ending at bj i or dj i , so the edge reduction algorithm lets
us cancel these differentials and remove the generators bki , bj i , dki and dj i without
adding new differentials (it is worth noting that we could also compute bCFD3.YP ; s/

using the Heegaard diagram H in Figure 7 instead of H0 , and we would not have to
deal with these four generators at all). The only domains connecting the remaining
three generators are R6 , R7 and R6R7 . Once again, the individual regions contribute
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while R6R7 has zero contribution for idempotent reasons, and bCFD3.YP ; s/ is

dgh
�2
�! cei

�1
�! bgh:

3L Gradings

As described in Section 2H, bCFD3.YP/ is graded by a set which is a quotient of the
noncommutative group G3;0 . We will compute this (relative) grading for the middle
spinc–structure, using the form of bCFD3.YP/ depicted in Figure 14.

We choose x as the preferred generator and assign it the grading E0D .0I 0; 0I 0; 0I 0; 0/.
The arrow from x to w indicates that @x contains the term �2w , and thus gr.@x/D
gr.�2w/. By the relation (7), we have

��1 gr.x/D gr.@x/D gr.�2/ gr.w/;

and so
gr.w/D ��1 gr.�2/

�1 gr.x/D ��1
�

1
2
I �

1
2
;�1

2
I 0; 0I 0; 0

�
E0

D
�
�

1
2
I �

1
2
;�1

2
I 0; 0I 0; 0

�
:

Similarly, the arrow from z to w implies that ��1 gr.z/D gr.@z/D gr.�2/ gr.w/, so

gr.z/D �
�
�

1
2
I 0; 0I 0; 0I 1

2
; 1

2

��
�

1
2
I �

1
2
;�1

2
I 0; 0I 0; 0

�
D
�
0I �1

2
;�1

2
I 0; 0I 1

2
; 1

2

�
:

The arrow from v to z implies that

gr.v/D � gr.�3/ gr.z/

D �
�
�

1
2
I 0; 0I 0; 0I �1

2
; 1

2

��
0I �1

2
;�1

2
I 0; 0I 1

2
; 1

2

�
D
�
0I �1

2
;�1

2
I 0; 0I 0; 1

�
:

Finally, the arrow from y to x implies that

gr.y/D � gr.�2/ gr.�2/ gr.x/

D �
�
�

1
2
I 0; 0I 1

2
; 1

2
I 0; 0

��
�

1
2
I 0; 0I 0; 0I 1

2
; 1

2

�
E0

D
�
0I 0; 0I 1

2
; 1

2
I

1
2
; 1

2

�
:

We have now computed the gradings of each generator as elements of the group G3;0 .
However, these gradings are only well defined modulo the action of P.x/, the group
generated by the gradings of periodic domains connecting x to itself. To finish the
computation, we need to find P.x/.
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Consider the arrow from v to x , which implies that ��1 gr.v/ D gr.�3/ gr.x/. It
follows that

gr.x/D ��1 gr.�3/
�1 gr.v/

D ��1
�

1
2
I

1
2
;�1

2
I 0; 0I 0; 0

��
0I �1

2
;�1

2
I 0; 0I 0; 1

�
D .�1I 0;�1I 0; 1I 0; 0/:

We have that gr.x/ D .�1I 0;�1I 0; 1I 0; 0/, but also that gr.x/ D E0. It follows
that .�1I 0;�1I 0; 1I 0; 0/ and E0 are equivalent modulo P.x/, and thus we have
.�1I 0;�1I 0; 1I 0; 0/ 2 P.x/. In fact, since this nonzero value of gr.x/ was obtained
from E0 by following a loop of edges with oriented labels .�2;��2;��3; �3/, the
difference .�1I 0;�1I 0; 1I 0; 0/ corresponds to the grading of a periodic domain with
boundary �23� �23 .

Another value for gr.x/, and thus another element of P.x/, can be found by considering
the arrow from x to y . We have that

gr.x/D � gr.�1/ gr.�3/ gr.y/

D �
�
�

1
2
I 0; 0I 1

2
;�1

2
I 0; 0

��
�

1
2
I 0; 0I 0; 0I �1

2
; 1

2

��
0I 0; 0I 1

2
; 1

2
I

1
2
; 1

2

�
D .0I 0; 0I 1; 0I 0; 1/:

So .0I 0; 0I 1; 0I 0; 1/ is an element of P.x/, corresponding to a periodic domain with
boundary �12C �23 .

Consider the loop formed by the arrow from y to x , the �1�3�123 arrow from w to x

and the arrow from x to w . This loop corresponds to a periodic domain with boundary
�12C �23C �12 . As before, starting with gr.x/D E0 the arrow from y to x implies
that gr.y/D

�
0I 0; 0I 1

2
; 1

2
I

1
2
; 1

2

�
. The arrow from w to y then implies that

gr.w/D � gr.�1/ gr.�3/ gr.�1/ gr.y/

D �
�
�

1
2
I

1
2
;�1

2
I 0; 0I 0; 0

��
�

1
2
I 0; 0I �1

2
; 1

2
I 0; 0

��
�

1
2
I 0; 0I 0; 0I 1

2
;�1

2

�
gr.y/

D
�
�

1
2
I

1
2
;�1

2
I �

1
2
; 1

2
I

1
2
;�1

2

��
0I 0; 0I 1

2
; 1

2
I

1
2
; 1

2

�
D
�
�

1
2
I

1
2
;�1

2
I 0; 1I 1; 0

�
:

The arrow from x to w then implies that

gr.x/D � gr.�2/ gr.w/

D �
�
�

1
2
I

1
2
; 1

2
I 0; 0I 0; 0

��
�

1
2
I

1
2
;�1

2
I 0; 1I 1; 0

�
D
�
�

1
2
I 1; 0I 0; 1I 1; 0

�
is an element of P.x/.
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Since YP has 3 boundary components, the space of periodic domains has dimension 3.
Since the three elements of P.x/ we have found are independent, they are enough to
determine P.x/:

P.x/D
˝
.�1I 0;�1I 0; 1I 0; 0/; .0I 0; 0I 1; 0I 0; 1/;

�
�

1
2
I 1; 0I 0; 1I 1; 0

�˛
:

4 Self gluing

Any graph manifold which is represented by a tree with only genus zero vertices can
be obtained by gluing together copies of YP , solid tori, and mapping cylinders of
appropriate Dehn twists. Each time a new piece is glued on, the new bordered Heegaard
Floer invariants can be obtained as a box tensor product by the pairing theorem.

To build up an arbitrary graph manifold from these building blocks, however, it is often
necessary to glue two boundaries of a 3–manifold together. The resulting bordered
invariants are obtained by taking Hochschild homology, but we must first tensor with
an additional bimodule which corresponds to the bordered Heegaard diagram HSG in
Figure 15.

The process of self-gluing is discussed in [11, Section 4.4], and a Heegaard diagram
isotopic to HSG is given there. We recall here the topological interpretation of HSG .
Adding 2–handles along the curves ˇ1 and ˇ2 produces the manifold F � Œ0; 1�,
where F is the twice punctured torus, that is, T 2 � Œ0; 1� with two tubes drilled out.
The curves ˛0 and ˇ0 correspond to meridians of these tubes, so adding 2–handles
along ˛0 and ˇ0 has the effect of filling in these tubes with meridional disks (for this
reason, HSG is referred to as the tube-cutting piece in [11]).

The following lemma captures the importance of HSG to self-gluing (the two boundary
case of this lemma is implicit in the proof of Theorem 12 in [11]):

Lemma 4.1 Let H be a bordered Heegaard diagram for a bordered 3–manifold Y

with at least two (toroidal) boundary components. Let H0 be obtained from H by
gluing the first and second boundary components of H to each other with a copy of
HSG in between, and let Y 0 be obtained from Y by gluing the first and second boundary
components together. Then H0 is a (bordered) Heegaard diagram for Y 0 .

Proof Recall that a 3–manifold is obtained from a (bordered) Heegaard diagram by
attaching 2–handles to the thickened Heegaard surface along ˛ curves on one side and
along ˇ curves on the other side. In the closed case, the result has an S2 boundary
component on each side, which we cap off with 3–balls. In the bordered case, we also
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Figure 15: A Heegaard diagram HSG for the self gluing bimodule

complete the manifold by adding a 3–ball on each side, but each 3–ball intersects each
boundary component of the resulting bordered 3–manifold in a disk.

Let H be the 3–manifold obtained by adding 2–handles to H as above, so that
Y D H [B1 [B2 , where B1 and B2 are 3–balls. Note that Y 0 D H 0 [B0

1
[B0

2
,

where H 0 is obtained from H by gluing the appropriate two boundary components
and adding 2–handles as before, and B0i is obtained from Bi by identifying two disks
on the boundary. Thus Y 0 is obtained from H 0 by filling in two tubes with solid tori.
This can be accomplished by adding a meridional disk followed by a 3–ball for each
solid torus. Inserting HSG between the two boundaries of H has exactly the effect
of adding these meridional disks. That is, attaching 2–handles to H0 is the same as
attaching 2–handles to H with the relevant boundaries glued (which produces H 0 )
and then attaching a 2–handle to a meridional curve on each “tube”. Adding a 3–ball
to each side then produces Y 0 , and so H0 is a Heegaard diagram for Y 0 .

Note that HSG is not a valid bordered Heegaard diagram because it has too many ˛
and ˇ curves; nevertheless we can associate a bimodule to it. Strictly speaking, HSG

is a bordered-sutured Heegaard diagram, as defined in [32], and the bimodule is the
bordered-sutured Floer bimodule 1BSDD.HSG/. However, since it does not affect the
computation of the invariant we will not emphasize this distinction, and by abuse of
notation we refer to this bimodule as 1CFDD.HSG/.
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The type A version of this bimodule lets us compute invariants of self-glued manifolds:

Proposition 4.2 Let Y be the bordered 3–manifold Y with k � 2 toroidal boundary
components. Then

HH�
�bCFDk.Y /� 1CFAA.HSG/

�
Š bCFDk�2.Y 0/;

where Y 0 is the manifold obtained from Y by gluing the two appropriate boundary
components.

Proof This is a straightforward generalization of Theorem 12 in [11], which considers
the case that Y has only two boundary components. We will not repeat the proof, but
the essential observation is contained in Lemma 4.1.

The focus of the present section is to compute the invariant 1CFDD.HSG/. We first
restrict our attention to the middle spinc–structure, where exactly one ˛ arc is occupied
at each boundary component. In fact, this computation gives all of 1CFDD.HSG/; it will
be shown at the end of this section that the other summands for 1CFDD.HSG/ are trivial.

Complex structure As always, the computation of 1CFDD.HSG/ depends on the
complex structure J chosen for the Heegaard surface †. We will make the following
assumptions:

� ‚d;b
8;9

<‚i;k
8;9

;

� ‚h;f
9;10

<‚j;l
9;10

;

� ‚a;a
2;3;8;9

<‚i;k
2;3;8;9

;

� ‚e;e
1;2;9;10

<‚j;l
1;2;9;10

.

We also assume that the following arcs are sufficiently pinched to apply Proposition 2.7
when necessary:

� an arc 1 through R1 , R2 and R3 parallel to ˛0 , connecting ˇ2 in R1 to ˇ1

in R3 ;

� an arc 2 in R7 parallel to ˛0 , connecting ˇ0 to ˇ2 ;

� an arc 3 in R11 parallel to ˛0 , connecting ˇ0 to ˇ1 .

Finally, we will also assume that ‚h;b
2;5;8;9;9;10

<‚i;`
2;5;8;9;9;10

, where here ‚2;5;8;9;9;10

refers to the appropriate ratio of ˛ and ˇ lengths for the annulus obtained from
R2R5R8R9R9R10 by pinching along the arc through R2 mentioned above; see
Figure 16.
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Figure 16: The domain R2R4R5R8R9R9R10 . It is just like the annulus
ACB2 in Figure 2, except that the inner boundary has too many ˛ and ˇ
segments. To fix this, we pinch along the green dotted arc in R2 .

To check that these assumptions can be made consistently, note that for all five of the
annuli in question, the boundary component for which the ratio ‚ of ˛ length to ˇ
length is assumed to be large lies on ˇ0 between i and ` and ˛�

1
[˛�

2
. In each case,

the boundary component for which ‚ is assumed to be small lies on ˛0 [ ˛
�
1
[ ˛

�
2

and ˇ1[ˇ2 . The assumptions concerning these annuli can be satisfied by assuming
that ˛0; ˛

�
1
; ˛
�
2

and ˇ0 between i and ` are all very short (say by pinching along arcs
parallel to these curves) and other ˛ and ˇ curves are relatively long. Finally, note
that the three arcs 1 , 2 and 3 do not intersect any of the segments that are assumed
to be short, so these arcs can be pinched without affecting the annuli.

Generators 1CFDD.HSG/ has 20 generators in the middle spinc–structure:

af i afj af k af l ahi ahj ahk ahl ang amg

ebi ebj ebk ebl edi edj edk edl enc emc

Domains To list the domains that might contribute to 1CFDD.HSG/, note that the
multiplicities of the regions on the boundary (R1; : : : ;R6 ) are at most 1, and the
region R12 cannot be combined with any other regions. Checking all positive connected
domains which satisfy these conditions for appropriate corner multiplicity, we find 292
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Regions x y

1 edi ahi

1 edj ahj

1 edk ahk

1 edl ahl

2 af i edi

2 afj edj

2 af k edk

2 af l edl

3 ebi af i

3 ebj afj

3 ebk af k

3 ebl af l

4 afj af i

4 ahj ahi

4 ebj ebi

4 edj edi

5 af k afj

5 ahk ahj

5 ebk ebj

5 edk edj

6 af l af k

6 ahl ahk

6 ebl ebk

6 edl edk

7 amg ahi

11 ebl enc

12 amg ang

12 emc enc

1,2,3 ebi ahi

1,2,3 ebj ahj

1,2,3 ebk ahk

Regions x y

1; 2; 3 ebl ahl

1,6,10 enc ang

1,6,10 emc amg

1,9,10 edj af l

1,10,11 ebk ang

2,5,9 ang enc

2,5,9 amg emc

2,8,9 af i ebk

2,9,10 ahj edl

3,4,8 enc ang

3,4,8 emc amg

3,7,8 emc ahj

3,8,9 edi af k

4,5,6 af l af i

4,5,6 ahl ahi

4,5,6 ebl ebi

4,5,6 edl edi

4,8,9 edj ebk

4,8,11 af l ang

5,8,9 edi ebj

5,9,10 ahk af l

6,7,10 emc edi

6,9,10 ahj af k

1,2,3,8,9 edi ahk

1,2,3,9,10 ebj af l

1,2,5,9,10 ebk ebl

1,2,6,9,10 ebj ebk

1,2,9,10,11 ebj enc

1,5,6,9,10 edi af i

1,8,9,10,11 edi ang

2,3,4,8,9 ahj ahk

Regions x y

2,3,5,8,9 ahi ahj

2,3,7,8,9 amg ahk

2,4,5,8,9 af l ebl

2,5,6,9,10 ahi edi

3,4,5,8,9 edl af l

3,7,8,9,10 emc af l

4,5,6,8,9 edl ebk

4,5,6,9,10 ahj af i

4,5,8,9,11 edl enc

4,8,9,10,11 ahj ang

5,6,7,9,10 amg af i

6,7,8,9,10 emc ebk

7,8,9,10,11 amg ang

7,8,9,10,11 emc enc

1,2,3,4,5,8,9 edl ahl

1,2,3,5,6,9,10 ebi af i

1,2,3,7,8,9,10 emc ahl

1,2,3,8,9,10,11 ebi ang

1,2,4,5,6,9,10 ebj ebi

1,2,5,8,9,9,10 edi ebl

2,3,4,5,6,8,9 ahl ahk

2,3,5,8,9,9,10 ahi af l

2,4,5,8,9,9,10 ahj ebl

2,5,6,8,9,9,10 ahi ebk

2,5,7,8,9,9,10 amg ebl

2,5,8,9,9,10,11 ahi enc

4,5,6,7,8,9,10 emc ebi

4,5,6,8,9,10,11 ahl ang

1,2,3,4,5,6,8,9,10 enc ang

1,2,3,4,5,6,8,9,10 emc amg

Table 4: List of 92 domains that might contribute to 1CFDD.HSG/ , with the
corresponding initial generators x and final generators y

domains to consider. Of these, 200 can be eliminated by Lemma 2.4 or Proposition 2.3
(though we should make note of these domains, in case they come up when checking A1
relations). All of these steps are easy to perform with a computer program. The
remaining 92 domains are listed in Table 4.
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Figure 17: Regions R4R5R8R9R11 and R5R6R7R9R10 are both realized
as immersed polygons when cut along ˛�2 and ˛�1 , respectively.

Polygons All of the single region domains are easily seen to be polygons, and thus
contribute to the differential by Proposition 2.5. In addition, it is easy to check that
the following domains are polygons: R1R6R10 , R1R10R11 , R2R5R9 , R3R4R8 ,
R3R7R8 , R4R8R11 and R6R7R10 . Each domain has only one sequence of Reeb
chords to consider. Thus by Proposition 2.5 each of these domains contributes, and we
have quickly dispatched 38 of the entries in Table 4.

The domain R4R5R8R9R11 is a polygon, though it may not be obvious at first glance.
The only compatible sequence of Reeb chords is .�1; �2/. To realize the domain as an
immersed surface with boundary Reeb chords .�1; �2/, we must cut along ˛�

2
, which

produces a polygon; see Figure 17. Similarly, the domain R5R6R7R9R10 corresponds
to a polygon with boundary .�2; �3/ after cutting along ˛�

1
. By Proposition 2.5, both

of these domains contribute to the differential.

R1R2R3 and R4R5R6 can also be realized as polygons, and thus contribute with
Reeb chords .�1; �2; �3/ and .�123/, respectively. Furthermore, R4R5R6 can not
contribute with its other sequence of compatible Reeb chords, .�1; �2; �3/, since
cutting along the ˛� arcs from the boundary would produce a disconnected domain.
Overall the domain R4R5R6 contributes to the differential for each pair of generators
it connects. The contribution of R1R2R3 with .�123/ can be understood by examining
the A1 relations for .eb�; �1; �23/ and .af �; �2; �3/, where � can be i; j ; k or l .
The relations imply that

m.eb�; �123/Dm
�
m
�
m.eb�; �1/; �2

�
; �3

�
D ah�:

Since the operation is nontrivial in 1CFAA , we have that .R1R2R3; .�123// contributes
to the differential from eb� to ah� in 1CFDD.HSG/ by Lemma 2.8, and the total mod 2

contribution of R1R2R3 is zero.
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Simple annuli R8R9 is an index-zero annulus analogous to A in Proposition 2.6.
The four domains obtained by adding R2 , R3 , R4 or R5 to this annulus may or
may not contribute to 1CFDD.HSG/, depending on the choice of complex structure
on R8R9 . Since we have chosen J such that ‚d;b

8;9
<‚i;k

8;9
, Proposition 2.6 asserts that

none of these four domains contributes. Notice that since R2 and R3 are not bigons,
we must first use Proposition 2.7 to pinch off the extra ˛ portion of the boundary, and
then we can apply Proposition 2.6. We specifically chose the complex structure J to
be consistent with pinching the appropriate arcs in R2 and R3 .

Similarly, R9R10 is an index-zero annulus to which the regions R1 , R2 , R5 or R6

may be added. Given the choice that ‚h;f
9;10

<‚j;l
9;10

, none of the four corresponding
domains contribute.

Two more direct applications of Proposition 2.6 involve the annuli R2R3R8R9 and
R1R2R9R10 . Given that ‚a;a

2;3;8;9
< ‚i;k

2;3;8;9
, we have that R2R3R7R8R9 con-

tributes to 1CFDD.HSG/, but R2R3R4R8R9 and R2R3R5R8R9 do not. The fact
that ‚e;e

1;2;9;10
<‚j;l

1;2;9;10
implies that R1R2R9R10R11 contributes to 1CFDD.HSG/,

but R1R2R5R9R10 and R1R2R6R9R10 do not. Note that for R2R3R7R8R9 and
R1R2R9R10R11 we make use of Proposition 2.7 and the relevant assumptions about
the complex structure on R7 and R11 .

Finally, we will use Proposition 2.6 to account for the domain R2R4R5R8R9R9R10 ,
which connects ahj to ebl . There is only one way to piece together these regions so
that there are no unwanted corners, which is shown in Figure 16. If we pinch R2 along
the arc connecting the two ˇ curves, then this domain has exactly the form of D2 in
Proposition 2.6. Since we chose J such that ‚h;b

2;5;8;9;9;10
< ‚i;`

2;5;8;9;9;10
, it follows

that this domain does not count.

More annuli The domain R1R2R3R8R9 , with the Reeb chords .�1; �2; �3/, is an
annulus with one obtuse corner. If we pinch along the arc through R1 , R2 and R3

parallel to ˛0 , the modified annulus has one ˛ and one ˇ segment on each bound-
ary component. In this situation, we can apply the same reasoning as the proof of
Proposition 2.6 (the only difference is that the cuts from the obtuse corner do not
leave the annulus through to the opposite boundary component). Cutting along ˇ1

from d makes the length of ˇ on the boundary component containing d grow, so that
�d;a

1;2;3;8;9
.c/ approaches �1 as c approaches C1, and �d;a

1;2;3;8;9
.c/� � i;k

1;2;3;8;9
.c/

is negative. On the other hand, cutting along ˛0 from d pinches off R1R2R3

from the annulus R8R9 . In this extreme, �d;a
1;2;3;8;9

.c/ � � i;k
1;2;3;8;9

.c/ approaches
‚d;b

8;9
�‚i;k

8;9
< 0. Since the extremes are both negative, the mod 2 count of zeros,

and thus the contribution of R1R2R3R8R9 to 1CFDD.HSG/, is zero. An analogous
argument shows that R1R2R3R9R10 does not contribute with .�1; �2; �3/.
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R1R2R3R8R9 may also contribute with the Reeb chord sequence .�123/. This
contribution can be checked with the A1 trick, using the relation for .edi; �1; �23/.
This relation implies that m.edi; �123/Dm.m.edi; �1/; �23/. The only domain that
could contribute a nontrivial operation m.edi; �1/ is R3R8R9 . As discussed above,
R3R8R9 does not contribute for our choice of complex structure J , and therefore
R1R2R3R8R9 does not contribute with E� D .�123/. An analogous argument also
shows that R1R2R3R9R10 does not contribute with .�123/.

The domain R4R5R6R8R9 follows the same pattern. With Reeb chords .�1; �2; �3/

it is an annulus, and cuts in either direction split off the annulus R8R9 or the annulus
R4R5R8R9 . As we cut along ˇ0 , we have that � l;k

4;5;6;8;9
.c/� �d;b

4;5;6;8;9
approaches

‚i;k
8;9
� ‚d;b

8;9
> 0. As we cut along ˛�

1
toward the � boundary, � l;k

4;5;6;8;9
.c/ ap-

proaches 1, and so � l;k
4;5;6;8;9

.c/� �d;b
4;5;6;8;9

becomes positive. As a result, there is
no contribution to the differential. The A1 relation for .edl; �12; �3/ reveals that
R4R5R6R8R9 also does not contribute with .�123/. A similar argument shows that
the domain R4R5R6R9R10 does not contribute with either compatible sequence of
Reeb chords.

Corners Consider the domain R1R2R3R4R5R8R9 , which connects edl to ahl .
Any compatible sequence of Reeb chords must contain .�1; �2/, since .�12/ would
not be strongly boundary monotonic with respect to the � boundary. For the domain to
have the chords .�1; �2/ along the � boundary, there must be a cut along ˛�

1
. However,

such a cut would leave corners at the point c . Since neither the initial generator edl

nor the final generator ahl contain c , it is impossible to have a corner at c . As a
result, the domain R1R2R3R4R5R8R9 can not contribute to 1CFDD.HSG/. The
same reasoning applies to the domains R2R4R5R8R9 and R3R4R5R8R9 .

Similarly, R1R2R3R5R6R9R10 is only compatible with Reeb chord sequences con-
taining .�2; �3/. This Reeb chord sequence requires a cut along ˛�

1
, which leaves

corners at the point g . Since the initial generator ebi and the final generator af i do
not contain g , this domain can not contribute to the differential. The same is true for
the domains R1R5R6R9R10 and R2R5R6R9R10 , so these also do not contribute.

The domain R2R5R8R9R9R10R11 connects the generators ahi and enc . However,
there is no way to piece together these seven regions without having corners at points
other than a, h, i , e , n and c . Therefore, this domain can not contribute to the
differential.

R1R2R3R4R5R6R8R9R10 This domain has four compatible sequences of Reeb
chords. It is possible to use A1 relations and analyze the contribution of each one.
However, it is easier to notice that this domain contributes if an only if the shaded
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Figure 18: A bordered Heegaard diagram for the identity bimodule, 1CFDD.I/ .
R1R2R3R4R5R6R8R9R10 contributes to 1CFDD.HSG/ if and only if the
shaded region contributes to the differential from ec to ag in 1CFDD.I/ .

domain contributes in the Heegaard diagram for the mapping cylinder of the identity
map shown in Figure 18. The computation of 1CFDD.I/ in [10, Proposition 10.1]
reveals that this domain must contribute.

Using @2 D 0 We can deduce the contribution of other domains using the fact that
1CFDD.HSG/ must satisfy @2D 0. We now have enough information to deduce the con-

tribution of all domains but one using @2 . Table 5 gives the differential on 1CFDD.HSG/

as computed so far, with coefficients �i1;:::;ik
representing unknown contributions;

�i1;:::;ik
is 1 if the domain Ri1

� � �Rik
contributes to the differential and 0 otherwise.

Consider the generator ahj . We have @.ahj /D�1.ahi/C�4;8;9;10;11�1.ang/, and so

0D @2.ahj /

D �1

�
�2;3;5;8;9;9;10�23�2.af l/C�2;5;6;8;9;9;10�2�23.ebk/

�
C�4;8;9;10;11�1.�2�2.enc//:

It follows that �2;3;5;8;9;9;10 D �2;5;6;8;9;9;10 D �4;8;9;10;11 D 0. Thus we find that

0D @2.edi/

D �1.0/C�1;8;9;10;11�1.�2�2.enc//

C�1;2;5;8;9;9;10�12�2.�3.af l/C �123.ebi/C �3.ebk/C .enc//

D .�1;8;9;10;11C�1;2;5;8;9;9;10/�12�2.enc/

C�1;2;5;8;9;9;10�123�2.af l/C�1;2;5;8;9;9;10�12�23.ebk/:

The coefficient of af l implies that �1;2;5;8;9;9;10 D 0, and the coefficient of enc

implies that �1;8;9;10;11 D 0.
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@.af i/D �2.edi/

@.afj /D �1.af i/C �2.edj /

@.af k/D �2.afj /C �2.edk/

@.af l/D �123.af i/C �3.af k/C �1angC �2edl

@.ahi/D �2;3;5;8;9;9;10�23�2.af l/C�2;5;6;8;9;9;10�2�23.ebk/

@.ahj /D �1.ahi/C�4;8;9;10;11�1.ang/

@.ahk/D �2.ahj /

@.ahl/D �123.ahi/C �3.ahk/C�2;3;4;5;6;8;9�23�123.ahk/

C�4;5;6;8;9;10;11�123.ang/

@.ang/D �2�2.enc/

@.amg/D �23.af i/C .ahi/C �23.ahk/C�7;8;9;10;11.ang/C .ang/

C�2;5;7;8;9;9;10�2�2.ebl/C �2�2.emc/

@.ebi/D �3.af i/C�1;2;3;8;9;10;11�123.ang/

@.ebj /D �3.afj /C �1.ebi/C�1;2;4;5;6;9;10�12�123.ebi/C �12.enc/

@.ebk/D �3.af k/C �1.ang/C �2.ebj /

@.ebl/D �3.af l/C �123.ebi/C �3.ebk/C .enc/

@.edi/D �1.ahi/C�1;8;9;10;11�1.ang/C�1;2;5;8;9;9;10�12�2.ebl/

@.edj /D �1.ahj /C �1.edi/

@.edk/D �1.ahk/C �2.edj /

@.edl/D �1.ahl/C �123.edi/C �3.edk/C �12.enc/

@.enc/D �3�1.ang/C �1�3.ang/C �123�123.ang/

@.emc/D �3;7;8;9;10�3.af l/C �3.ahj /C�1;2;3;7;8;9;10�123.ahl/C �3�1.amg/

C �1�3.amg/C �123�123.amg/C�4;5;6;7;8;9;10�123.ebi/

C�6;7;8;9;10�3.ebk/C �3.edi/C�7;8;9;10;11.enc/C .enc/

Table 5: The differential on 1CFDD.HSG/ . Here � is used for coefficients
that have yet to be determined; they are 0 or 1 depending on the contribution
of the corresponding domain.

The coefficient of the enc term of @2.amg/ is �2;5;7;8;9;9;10�2�2 , which implies that
�2;5;7;8;9;9;10 D 0. Then the af l term of @2.amg/ becomes �3;7;8;9;10�23�2.af l/,
and the ebk term becomes �6;7;8;9;10�2�23.ebk/; thus �3;7;8;9;10 D �6;7;8;9;10 D 0.
Similarly the ang term of @2.edl/ reveals that �4;5;6;8;9;10;11 D 1 and the ahk
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�!

Figure 19: The manifold obtained from the self-gluer by capping off both
ends with identical 0–framed solid tori

term of @2.edl/ implies that �2;3;4;5;6;8;9 D 0. The af i term of @2.ebj / implies
that �1;2;4;5;6;9;10 D 0, and the ang term implies that �1;2;3;8;9;10;11 D 1. Finally,
the ang term of @2.emc/ implies that �4;5;6;7;8;9;10 D 1, and the ahi term implies
that �1;2;3;7;8;9;10 D 1. The only coefficient in Table 5 that remains undetermined
is �7;8;9;10;11 .

R7R8R9R10R11 We have determined that 1CFDD.HSG/ is one of two possibilities,
depending on the value of �7;8;9;10;11 . We will deduce the right choice by showing
that one of these possible bimodules does not behave correctly under tensoring with
type A modules for the solid torus.

Consider the closed, doubly basepointed Heegaard diagram in Figure 19 (left), which
is obtained from the bordered Heegaard diagram HSG by gluing bordered Heegaard
diagrams for solid tori to each boundary component. A sequence of isotopies and
destabilizations leads to the diagram in Figure 19 (right), so it is easy to check that bHF
of the manifold represented by this diagram has rank 2. Also, bHF can be obtained by
taking the box tensor product of 1CFDD.HSG/ with two copies of the type A module
for the solid torus. A bounded version of the solid torus module has three generators
x , y and z and the following operations:

m1.x/D z; m2.x; �1/D y; m2.x; �2/D z; m2.x; �12/D z:

It is routine to perform the tensor products, and we find that the homology of the
resulting chain complex is rank 2 if �7;8;9;10;11 D 1, and rank 4 if �7;8;9;10;11 D 0.
Thus, the domain R7R8R9R10R11 must contribute, and we have completed the
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Figure 20: 1CFDD.HSG/ in the middle spinc–structure

computation of 1CFDD.HSG/ in the middle spinc–structure. The result is pictured in
Figure 20.

Extremal spinc–structures First consider the spinc–structure in which both ˛� arcs
are occupied and neither ˛� arc is occupied. There are only two generators with those
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conditions: aem and aen. There are two domains which have the right corner count
to connect aem and aen. The bigon R12 contributes a differential from aem to aen.
The domain R7R8R9R10R11 , as an element of �2.aem; aen/, has index �1 and
thus does not contribute. Canceling the differential and two generators, we find that
1CFDD.HSG/ in this extremal spinc –structure has no generators.

The other extremal spinc–structure has more generators (given the choice of Heegaard
diagram HSG ), but the corresponding summand of 1CFDD.HSG/ is still trivial. Indeed,
we could handleslide ˇ0 across the handles in Figure 15 to produce a new Heegaard
diagram with only two generators in this spinc –structure. This diagram is a mirror
image of HSG , so the reasoning above applies and shows that the two generators are
canceled by the single differential between them.

4A Gradings

As described in Section 2H, 1CFDD.HSG/ is graded by a set which is a quotient of the
noncommutative group G2;0 . We will compute this (relative) grading using Figure 20.

We choose ebl to be the preferred generator and set gr.ebl/D E0D .0I 0; 0I 0; 0/. The
arrow labeled �3 from ebl to af l determines the grading of af l :

gr.af l/D ��1 gr.�3/
�1 gr.ebl/D ��1

�
1
2
I

1
2
;�1

2
I 0; 0

�
E0D

�
�

1
2
I

1
2
;�1

2
I 0; 0

�
:

Similarly, the successive arrows labeled �2 and �1 (moving right from af l in Figure 20)
determine the gradings of edl and ahl :

gr.edl/D ��1 gr.�2/
�1 gr.af l/D ��1

�
1
2
I �

1
2
;�1

2
I 0; 0

��
�

1
2
I

1
2
;�1

2
I 0; 0

�
D
�
�

1
2
I 0;�1I 0; 0

�
;

gr.ahl/D ��1 gr.�1/
�1 gr.edl/D ��1

�
1
2
I �

1
2
; 1

2
I 0; 0

��
�

3
2
I 0;�1I 0; 0

�
D
�
�

1
2
I �

1
2
;�1

2
I 0; 0

�
:

Working down the chain of � labeled arrows starting from ebl determines the gradings
of ebk , ebj and ebi :

gr.ebk/D ��1 gr.�3/
�1 gr.ebl/D

�
�

1
2
I 0; 0I 1

2
;�1

2

�
;

gr.ebj /D ��1 gr.�2/
�1 gr.ebk/D

�
�

1
2
I 0; 0I 0;�1

�
;

gr.ebi/D ��1 gr.�1/
�1 gr.ebj /D

�
�

1
2
I 0; 0I �1

2
;�1

2

�
:
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The vertical chains of � labeled arrows from af l , edl and ahl determine the gradings

gr.af k/D ��1 gr.�3/
�1 gr.af l/D

�
�1I 1

2
;�1

2
I

1
2
;�1

2

�
;

gr.afj /D ��1 gr.�2/
�1 gr.af k/D

�
�1I 1

2
;�1

2
I 0;�1

�
;

gr.af i/D ��1 gr.�1/
�1 gr.afj /D

�
�1I 1

2
;�1

2
I �

1
2
;�1

2

�
;

gr.edk/D ��1 gr.�3/
�1 gr.edl/D

�
�1I 0;�1I 1

2
;�1

2

�
;

gr.edj /D ��1 gr.�2/
�1 gr.edk/D .�1I 0;�1I 0;�1/;

gr.edi/D ��1 gr.�1/
�1 gr.edj /D

�
�1I 0;�1I �1

2
;�1

2

�
;

gr.ahk/D ��1 gr.�3/
�1 gr.ahl/D

�
�1I �1

2
;�1

2
I

1
2
;�1

2

�
;

gr.ahj /D ��1 gr.�2/
�1 gr.ahk/D

�
�1I �1

2
;�1

2
I 0;�1

�
;

gr.ahi/D ��1 gr.�1/
�1 gr.ahj /D

�
�1I �1

2
;�1

2
I �

1
2
;�1

2

�
:

The two unlabeled arrows in the diagram determine the gradings of enc and amg :

gr.enc/D ��1 gr.ebl/D .�1I 0; 0I 0; 0/;

gr.amg/D � gr.ahi/D
�
0I �1

2
;�1

2
I �

1
2
;�1

2

�
:

Finally, the two arrows labeled �2�2 determine the gradings of ang and emc :

gr.ang/D � gr.�2/ gr.�2/ gr.enc/D
�
�1I 1

2
; 1

2
I

1
2
; 1

2

�
;

gr.emc/D � gr.�2/ gr.�2/ gr.amg/D .0I 0; 0I 0; 0/:

It remains to compute the indeterminacy P.ebl/. We compute equivalent values for the
grading of ebl by using the loop ebl to af l to edl to enc to ebl and the loop ebl to
ebk to ebj to enc to ebl . The first loop gives the element of P.ebl/ corresponding
to a periodic domain with boundary �23C �12 :

gr.af l/D ��1 gr.�3/
�1 gr.ebl/D

�
�

1
2
I

1
2
;�1

2
I 0; 0

�
;

gr.edl/D ��1 gr.�2/
�1 gr.af l/D

�
�

1
2
I 0;�1I 0; 0

�
;

gr.enc/D ��1 gr.�12/
�1 gr.af l/D .�1I 0;�1I �1; 0/;

gr.edl/D � gr.enc/D .0I 0;�1I �1; 0/:

The second loop gives the element of P.ebl/ corresponding to a periodic domain with
boundary �12C �23 :

gr.ebk/D ��1 gr.�3/
�1 gr.ebl/D

�
�

1
2
I 0; 0I 1

2
;�1

2

�
;

gr.ebj /D ��1 gr.�2/
�1 gr.ebk/D

�
�

1
2
I 0; 0I 0;�1

�
;

gr.enc/D ��1 gr.�12/
�1 gr.ebj /D .�1I �1; 0I 0;�1/;

gr.edl/D � gr.enc/D .0I �1; 0I 0;�1/:

Thus P.ebl/ is the subgroup of G2;0 generated by .0I0;�1I�1;0/ and .0I�1;0I0;�1/.
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5 Computing bHF of graph manifolds

This section describes the procedure for computing bHF of an arbitrary graph manifold
given a connected plumbing graph � . For simplicity, we will assume that every vertex
of � has nonnegative genus. The manifold can be constructed from simpler bordered
pieces using two types of gluing: extension glues fibers to fibers and base surface to
base surface, and plumbing glues a fiber of one bundle to a curve in the base of the
other bundle. Gluing two S1–bundles by extension produces an S1–bundle over the
surface obtained by gluing the two bases.

In the Heegaard diagram for YP , recall that ˛�
1

, ˛�
2

and ˛�
1

parametrize curves in
the base surface P , while ˛�

2
, ˛�

1
and ˛�

2
parametrize fibers. If we glue two type D

boundaries together, ˛1 glues to ˛2 and vice versa (to combine the relevant modules we
would first change one of the boundaries to type A, which switches ˛1 and ˛2 ). Thus
gluing the � boundary of one copy of YP to the � boundary of another is extension.
Gluing the � boundary to the � boundary is plumbing.

It will be convenient to introduce the bordered manifold YP , the mirror image of YP .
The trimodule bCFD3.YP/ can be obtained from bCFD3.YP/ by interchanging ones
with threes for all algebra elements and reversing the direction of the arrows. Also, ˛1

and ˛2 are interchanged on each boundary component.

5A Trivial bundles over surfaces

Recall that each vertex of � represents a particular S1–bundle over a surface Sg;b with
genus g and b boundary components. We first construct the trivial bundle over Sg;b .

If g D 0 and b � 3, then we simply glue copies of YP by extension until we have the
right number of boundary components. The multimodule bCFDb is obtained by taking
box tensor products, inserting copies of 1CFAA.I/ when two type D boundaries are
glued. For instance, bCFD4.S1 �S0;4/ is given by� 1CFAA.I/� bCFD3.YP/

�
� bCFD3.YP/;

where the tensor products are with respect to the � and � boundaries on the two
copies of bCFD3.YP/. The trivial bundle over S0;1 is just the solid torus, which has
bordered invariant

�12 �23or
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�

H.YP/

�

� � H.YP/

�

�

HSG

Figure 21: A Heegaard diagram for S1;2�S1 can be obtained by gluing HSG

and Heegaard diagrams for YP and YP . Solid red lines indicate ˛ arcs in
the base of each bundle, while dotted red lines correspond to fibers.

depending on whether ˛1 parametrizes a curve in the base (left) or a fiber (right) [8,
Section 11.2]. The trivial bundle over S0;2 is the same as the mapping cylinder of the
identity map on the torus. The corresponding bimodule 1CFDD.I/ is computed in [10,
Proposition 10.1]. Here either ˛ arc can be the fiber, but ˛1 on one boundary is the
same as ˛2 on the other boundary.

We construct a Heegaard diagram for the trivial bundle over S1;2 as indicated in
Figure 21. Notice that we must insert a copy of HSG when we glue two components
of @YP to each other. The bimodule 1CFDD.S1 �S1;2/ can be computed as follows:

� Change bCFD3.YP/ to a type DDA trimodule by tensoring with 1CFAA.I/
along the � boundary.

� Tensor the type A boundary of the resulting trimodule with 1CFDD.HSG/.

� Change the � boundary to type A by tensoring with 1CFAA.I/, and then take
the Hochschild homology with respect to the appropriate boundary components,
resulting in a type D module.

� Change this module to type A by tensoring with 1CFAA.I/ and tensor with the
� boundary of bCFD3.YP/.

� The result is a type DD bimodule with 16 generators. Note that it is still the
case that ˛�

2
and ˛�

1
represent fibers.
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For b > 0, the trivial bundle over Sg;b can now be obtained easily by extending S0;b

with g copies of S1;2 . For the case of b D 0, we simply extend the trivial bundle
over Sg;1 by capping off the boundary with the trivial bundle over S0;1 .

5B Nontrivial bundles

In general the bundle associated to a vertex of � is nontrivial, with a specified Euler
number e . The Euler number of a circle bundle over a surface with boundary is well
defined only once a trivialization is chosen on the boundary circles. A trivialization of
an S1–bundle over a circle is simply a map � from the standard torus S1 �S1 to the
bundle. Choosing a trivialization amounts to specifying two curves, f D �.f�g�S1/

and b D �.S
1 � f�g/. We say that f is a fiber and b is a curve in the base surface.

The Euler number for S1–bundles over surfaces with boundary is additive under gluing
(when the gluing identifies fibers with fibers and base curves with base curves). Thus
to understand bundles with arbitrary Euler number it is sufficient to find Euler number
˙1 bundles over the annulus. Gluing these to a given S1–bundle over a surface adds
˙1 to the Euler number without changing the topology of the base surface.

Given a torus T 2 D S1 �S1 , let a denote the curve f�g �S1 and let b denote the
curve S1 � f�g. Let ��1

a W T
2 ! T 2 denote the negative Dehn twist about a and

consider the mapping cylinder M��1
a

. Now M��1
a

is a T 2 bundle over Œ0; 1�, but there
is also a projection of each fiber to S1 (namely, projection to the first S1 factor). As a
result, we can also view M��1

a
as an S1 bundle over Œ0; 1��S1 . We fix a trivialization

of this bundle by letting .f ; b/ be .a; b/ on the f0g �S1 end and .��1
a .a/; ��1

a .b//

on the f1g �S1 end.

To compute the Euler number of this bundle, we will think of it as the boundary of
D2 –bundle over Œ0; 1��S1 . The Euler number is an obstruction to the existence of a
nonzero section of this bundle; more precisely, it is the signed intersection number of the
zero section of this D2 –bundle and any section transverse to the zero section. Figure 22
depicts a section of a D2 –bundle over Œ0; 1��S1 . Over each point in the cylinder (the
rectangle, with the top and bottom edges identified) we choose a point in the corre-
sponding D2 fiber (represented in the figure by a vector). The signed number of zeros
of this section is one. It remains to check that the boundary of this D2 –bundle is M��1

a
.

Over each x 2 Œ0; 1�, restricting the S1–bundle to fxg �S1 (that is, to a vertical line
in Figure 22) gives a torus; we will identify this with T 2 so that fxg �S1 identifies
with b and a fiber over a point identifies with a. The section of the bundle specifies
a trivialization over the boundary by taking f to be a fiber and b to be the image
of the section. We see that on the left boundary f D a and b D b , and on the right
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b

f

b

f

Figure 22: A section of a D2 –bundle over the cylinder (center), where the
top and bottom edges are identified. The signed number of zeros indicates that
the Euler number is C1 . Over each end of the cylinder, the section is nonzero
and gives a section of the boundary S1–bundle. This specifies a trivialization
of the S1–bundle over each end of the cylinder, which is pictured on the tori
on the left and right.

boundary f D ��1
a .a/ D a and b D �

�1
a .b/, so this bundle corresponds with the

mapping cylinder M��1
a

.

Thus, to increase the Euler number of a given S1–bundle over a surface, we attach a
mapping cylinder of a negative Dehn twist about a curve which is identified with the
fiber. In the same way, applying a positive Dehn twist about the fiber has the effect of
decreasing the Euler number by 1. The Euler number zero bundles constructed above
always have fiber ˛1 or ˛2 , and the bimodules for Dehn twists about ˛1 and ˛2 are
known [10, Section 10.2]. By tensoring with enough of these bimodules we can obtain
the bordered invariants for arbitrary S1–bundles over arbitrary (oriented) surfaces with
boundary.

5C Combining vertices

Once multimodules have been determined for each vertex of � , they can be combined
according to the edges of � . If vertices v1 and v2 are connected by an edge, choose
a boundary component of each circle bundle such that both boundaries have fiber ˛1

or both have fiber ˛2 . Take the box tensor product (after changing one boundary
component to type A) to compute the new multimodule. If there is no way to choose a
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�

H.YP/

�

�

� H.YP/ �

�

Figure 23: The fiber direction can be changed by extending at a boundary
with YP or YP and an appropriate solid torus. Dotted lines indicate ˛ arcs
which are fibers. The arrangement on the left changes the fiber from ˛1 to ˛2 ,
while the arrangement on the right does the opposite.

boundary component with the desired ˛ arc as fiber, the fiber direction can be changed
as follows:

� To change the fiber from ˛1 to ˛2 , extend the bundle by YP , attached along the �
boundary, with the � boundary capped off by a solid torus as in Figure 23 (left).

� To change the fiber from ˛2 to ˛1 , extend the bundle by YP , attached along the �
boundary, with the � boundary capped off by a solid torus as in Figure 23 (right).

For acyclic graphs any plumbing will work when combining vertices along an edge. In
general, however, there is an additional consideration: edges are decorated by a sign,
which distinguishes between two plumbing options. In terms of bordered Heegaard
diagrams, the difference is between gluing two type D boundaries with fiber ˛1 or
gluing two boundaries with fiber ˛2 . Suppose we orient each boundary component
so that the positive fiber direction is to the left of the positive base direction at a fiber-
base intersection. Then a type D boundary with fiber ˛1 has oriented fiber �˛1 and
oriented base C˛2 . Since gluing type D boundaries glues ˛1 to �˛2 , this corresponds
to the map

�
0 1
1 0

�
in the standard fbase, fiberg basis. That is, gluing two boundaries

with ˛1 fibers corresponds to a C edge. A type D boundary with fiber ˛2 has oriented
fiber C˛2 and oriented base C˛1 , so gluing two of these boundaries corresponds to
the map

�
0 �1
�1 0

�
.

Once the bundles of two adjacent vertices have been plumbed, the result is no longer
an S1–bundle. However, continue to keep track of which ˛ arc is the “fiber” at each
boundary component. Repeat the process above to add on successive vertices. If at
any point an edge connects to a vertex that has already been incorporated, insert the
bimodule 1CFDD.HSG/ and take the appropriate Hochschild homology instead of a
tensor product.

Algebraic & Geometric Topology, Volume 16 (2016)



Bordered Heegaard Floer homology and graph manifolds 3163

�2 �8

�2

�2

�8

�4 �3

�5

�4

�4

Figure 24: Plumbing graph for a graph manifold with rk.cHF/ D 213;312 .
The weights on the vertices correspond to Euler numbers; the genus is zero
for every vertex and we omit it from the notation.

5D Example computations

The author has implemented a program1 using the techniques described above to
compute the total rank of bHF of a closed graph manifold, or the bordered invariant of a
graph manifold with boundary, from a plumbing graph. It can be used, for example, to
see that the rank of bHF of the manifold represented by the negative definite plumbing
tree in Figure 24 is 213;312. It is easy to compute jH1j from the plumbing graph and
see that this manifold is an L–space. This is as expected; the fact that this plumbing
graph corresponds to an L–space follows from [16, Theorem C]. With such large
homology, this example is near the limit of the current implementation’s reach; the
computation took roughly 12 hours to run on a personal computer. For small examples,
such as the E8 plumbing for the Poincaré homology sphere or small Brieskorn spheres,
computations take fractions of a second.

With this algorithm, we can quickly run computations for large sets of graph manifolds
and check, for instance, which are L–spaces. Consider as an example the plumbing
graph � below, with weights in the range �5� a; b � 5 and �5� c; d; e; f ��2 (the
bound of �2 on the weights of the outer vertices is so that we only consider graphs in
normal form, in the notation of [18]).

a b

c

d

f

e

There are 6106 distinct graphs of this form. Of the corresponding 3–manifolds,
5643 are L–spaces. Some of these trees are negative definite, but most are not. To

1Available at https://github.com/hanselman/HFhat_graph_manifolds.
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5 5

�5

�5

�5

�5

0 0

�5

�4

�5

�3

�4 �1

�5

�5

�5

�2

rk.cHF/D 17;600

jH1j D 17;600

rk.cHF/D 230

jH1j D 228

rk.cHF/D 72

jH1j D 20

Figure 25: The manifold corresponding to the graph on the left has the largestcHF of the 6106 examples tested, and it is an L–space. The graph in the
middle gives the smallest difference between rk.cHF/ and jH1j possible for
a non-L–space, and the third gives the largest difference among this set of
examples.

the author’s knowledge, there is currently no other way to compute bHF for these
nondefinite examples. Results for a few examples are in Figure 25.

Our final example is the manifold †�S1 , where † is the surface of genus two. This
manifold can be represented by a plumbing graph with just one vertex and no edges.
The vertex carries the weights 2 and 0 for the genus and Euler number, respectively.
Evaluating the rank of bHF from this graph gives 24, which agrees with the result in [5].
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