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Bridge distance and plat projections

JESSE JOHNSON

YOAV MORIAH

Every knot or link K � S3 can be put in a bridge position with respect to a 2–sphere
for some bridge number m � m0 , where m0 is the bridge number for K . Such
m–bridge positions determine 2m–plat projections for the knot. We show that
if m � 3 and the underlying braid of the plat has n� 1 rows of twists and all the
twisting coefficients have absolute values greater than or equal to three then the
distance of the bridge sphere is exactly dn=.2.m� 2//e , where dxe is the smallest
integer greater than or equal to x . As a corollary, we conclude that if such a diagram
has n > 4m.m� 2/ rows then the bridge sphere defining the plat projection is the
unique, up to isotopy, minimal bridge sphere for the knot or link. This is a crucial
step towards proving a canonical (thus a classifying) form for knots that are “highly
twisted” in the sense we define.

57M27

1 Introduction

Let K � S3 be an m–bridge link (possibly with one component) in an m–bridge
position with respect to a bridge sphere †. Then K � S3 has a plat projection as
indicated in Figure 1 below. Each box is marked by ai;j 2Z denoting ai;j half twists,
where 1� i � n�1 and 1� j �m when i is even and 1� j �m�1 when i is odd.
The coefficients ai;j will be defined more precisely in Section 3. We refer to n as the
length of the plat and to m as the width of the plat.

Definition 1.1 A 2m–plat will be called highly twisted if jai;j j � 3 for all i and j .
Similarly, a link with a highly twisted plat projection will be called a highly twisted
link.

Associated with every bridge sphere † for a link (or knot) K�S3 is the bridge sphere
distance denoted by d†.K/, as defined in Bachman and Schleimer [1] and in Section 2.

Let dxe denote the value of the ceiling function of x , which is equal to the smallest
integer greater than or equal to x . We prove the following:
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Theorem 1.2 If K � S3 is an m0–bridge link with a highly twisted n–row 2m–plat
projection for m�m0 � 3 then the distance d.†/ of the induced bridge surface † is
exactly d.†/D dn=.2.m� 2//e.

3
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a3;1 a3;2

a4;1 a4;2 a4;3

n�1;1 n�1;2
n�1;1 n�1;2 n�1;3

Figure 1: A plat projection of a 3–bridge knot

The bridge sphere distance of a knot in S3 is a measure of the “complexity” of the
gluing map between the boundary spheres of the rational tangles above and below the
bridge sphere. One would expect intuitively that a braid with a more “complicated”
diagram would induce a more complicated gluing map. However, there were no
previously known ways to determine distance from a knot projection.

Results on distances of Heegaard splittings in the case of closed surfaces or bridge
surfaces for knot spaces typically split into two kinds. One presents either lower or
upper bounds, for example, results of Evans [4], Blair, Tomova and Yoshizawa [2],
Tao Li [7], Ichihara and Saito [5] and Lustig and Moriah [8]. The other kind presents
for given integers n a manifold or knot space with distance n, for example, results of
Ido, Jang and Kobayashi [6] and Qiu, Zou and Guo [9].

In contrast, to the above mentioned results note that Theorem 1.2 determines the precise
bridge surface distance directly from the plat projection. This is particularly interesting
in the context of the following theorem of Maggy Tomova:

Theorem (Tomova [12]) If K � S3 is an m–bridge knot with respect to a minimal
bridge sphere † such that d.†/ > 2m then † is the unique minimal bridge sphere.
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By Theorem 1.2, a highly twisted knot or link K � S3 with n> 4m.m� 2/ will have
distance d.†/> 2m, so this will define the unique minimal bridge sphere by Tomova’s
theorem. Having a unique minimal bridge sphere is a necessary condition to proving
the following conjecture:

Conjecture 1.3 If K � S3 has a highly twisted 2m–plat projection of length n such
that n> 4m.m� 2/ then K has a unique such highly twisted plat projection.

Remark 1.4 If Conjecture 1.3 is true then Theorem 1.2 gives a “normal” form for
highly twisted knots or links and hence is a classification theorem for such knots and
links. Clearly not all knots are highly twisted but Theorem 1.2 is a significant step
towards a classification.

Deciding when two projections correspond to the same knot is a difficult problem.
In 1926, K Reidemeister proved that any two regular projections are equivalent by a
sequence of Reidemeister moves; see [10]. However that is only a partial solution to
this problem.

A possible way around this problem would be to obtain “canonical” projections for
knots. A first attempt was to use the fact that all knots have 2m–plat projections
for some m 2 N . This was used successfully on the class of 4–plats or, as they
are more commonly known, 2–bridge knots and links: In 1956, H Schubert gave a
complete classification of 2–bridge knots and links. He showed in [11] that 2–bridge
knots K � S3 are classified by the number ˛=ˇ 2 Q corresponding to the four-
strand braid that defines them. Furthermore, any 4–plat projection corresponds to a
continued fraction expansion of ˛=ˇ and any two such projections are equivalent by
flype moves; see eg Bleiler and Moriah [3]. Note that flype moves generate twist boxes
with coefficients in f�1; 0; 1g, so these projections are not highly twisted. This was
the last result of this nature.

The train track argument in this paper is reminiscent of that of Lustig and Moriah in [8]
and is organized as follows: In Section 2, we define bridge distance in detail, then
in Section 3 we give a careful description of plats. We prove the upper bound on the
distance of a bridge surface defined by a plat presentation in Section 4.

The majority of the paper is devoted to proving the lower bound. We begin in Section 5
by constructing a collection of ordered train tracks f�ig in the bridge surface †. In
a sequence of lemmas in Section 6, the relationships between successive train tracks
of this form are described. This determines the intersection pattern between loops
carried and almost carried by these train tracks. We then apply these ideas to study
pairs of disjoint loops in Section 7.
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In Section 8 we determine how curves bounding disks in B� and BC, the complements
of the bridge sphere in S3XN .K/, are carried by the train tracks. Finally, we combine
these results to prove Theorem 1.2.

Acknowledgements We thank the Technion, where most of the work was done, for
its hospitality. Johnson was supported by NSF grant DMS-1308767.

2 Bridge distance

In this section we present some basic definitions, lemmas and notions needed for the
rest of the paper.

Definition 2.1 Let †g;p be a surface of genus g with p punctures. A simple closed
curve 
 �†g;p is inessential in †g;p if it bounds either a disk or a once punctured
disk in †g;p . A simple close curve in †g;p is essential if it is not inessential. The
curve complex C.†/ is a simplicial complex defined as follows:

Let Œ
 � denote the isotopy class of an essential simple closed curve 
 �†.

(1) The set of vertices of C.†/ is V.†/D fŒ
 � j 
 �† is essentialg.

(2) An n simplex is an .nC1/–tuple fŒ
0�; : : : ; Œ
n�g of vertices that have pairwise
disjoint curve representatives.

Definition 2.2 Suppose K is a knot in a closed, orientable irreducible 3–manifold M .
Let † �M be a sphere decomposing M into balls V and W and assume that †
is transverse to K . We will say that † is a bridge surface for K if each of the
intersections K\V and K\W is a collection of boundary parallel arcs in V and W ,
respectively.

Given a bridge surface † for K , define †K , VK and WK by †K D † X K ,
VK D V XK and WK DW XK . Let D.VK / (resp. D.WK /) be the set of all essential
simple closed curves in †K that bound disks in VK (resp. WK ). Define the (bridge)
distance of † by d.†K /D d.D.VK /;D.WK // measured in C.†K /.

3 Plats

In this section, we give a precise definition of plats. While the definition is technical, it
will prove to be convenient for our purposes. The reader should note that the definition
is consistent with the intuitive notion of a plat as in Figure 2.
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a5;1 a5;2

a4;1 a4;2 a4;3

a3;1 a3;2

a2;1 a2;2 a2;3

a1;1 a1;2

Figure 2: A 6–plat projection of a 3–bridge knot

Consider a sweep-out f W S3! Œ�1;1� with one index-zero critical point c0 and
one index-three critical point c3 . Let ˛ be an arc with endpoints c0 and c3 such that
the restriction of f to ˛ is monotonic, and the complement S3 X˛ is an open ball B .
Identify B with R3 , with coordinates .x;y; z/ so that each level surface f �1.t/ is
the plane given by y D t .

We will picture the x–axis as pointing to the right, the y–axis as being vertical and
the z–axis as pointing towards the viewer. Then the level surfaces f �1.t/ appear as
horizontal planes.

For each value y and each integer k , define cy;k to be the circle in the plane Py with
radius 1

2
, centered at the point x D k C 1

2
, z D 0. The plat tube Ai;j is the union

of the circles in fcy;2j j y 2 Œi; i C 1�g when i is even and the union of the circles
in fcy;2jC1 j y 2 Œi; i C 1�g when i is odd. So, the plat tube Ai;j is a vertical annulus
whose projection onto the xy –plane is the square Œk; kC 1�� Œi; i C 1� where k D 2j

for even i and k D 2j C 1 for odd i .
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For a pair of integers fn;mg, the .n;m/–plat structure is the union of the plat tubes Ai;j

where i ranges from 1 to n� 1 and j ranges from 1 to either m, when i is even,
or m� 1, when i is odd. Note that the positions of the plat tubes along the x–axis
alternate for each row. Also note that the number of rows is n� 1, rather than n. This
convention will prove more convenient later on.

Definition 3.1 An .n;m/–plat braid is a union of 2m pairwise disjoint arcs in R3

with endpoints in the planes P1 and Pn , consisting of arcs contained in an .n;m/–plat
structure and vertical arcs outside the plat structure. We require that the intersection
of the arcs with each plat tube is exactly two properly embedded arcs with endpoints
in the plane z D 0, and whose projections to the y –axis are monotonic.

For each plat tube Ai;j , if we isotope the two arcs within Ai;j to intersect the
plane z D 0 in a minimal number of components, then they will have the same number
of components for each of the two arcs in a given plat tube. Note that each arc intersects
the plane z D 0 at its endpoints, so the number of components of intersection will be 1

if and only if the arc is entirely contained in this plane.

The twist number ai;j will be the absolute value of this number of components minus
one. (If each arc is vertical, ie contained in the plane z D 0, then ai;j D 0.) The
sign of the twist number will be determined as follows: The direction of the y–axis
defines an orientation on each arc. The projection of each arc into Pi thus defines an
orientation on the circle ci;j . If this orientation is counter-clockwise, then ai;j will be
positive. Otherwise, ai;j will be negative. This translates to the usual “right-hand rule”
for twist regions.

There is a canonical way to construct a link from an .n;m/–plat braid: Note that the
points .j ; 1; 0/ for 1� j � 2m are endpoints of the plat braid. For n even there is a
unique (up to isotopy) arc in the half of the plane zD 0 below the line defined by yD 1

connecting the point .2j � 1; 1; 0/ to .2j ; 1; 0/ for each 1� j �m. When n is even,
there are similar arcs for the endpoints in the half of the plane z D 0 above the line
defined by y D n, and we can choose these arcs to be pairwise disjoint.

When n is odd, we will define the upper arcs by a slightly different construction. In this
case, we will attach an arc in the plane z D 0 from the endpoint .1; n; 0/ to .2m; n; 0/,
then for each 2� j �m� 1, we’ll add an arc from .2j � 2; n; 0/ to .2j � 1; n; 0/. In
either case, the union of the plat braid with these upper arcs and the same lower arcs
will be called a link in a plat projection or a plat link.

The closure in S3 of each plane Py is a sphere in S3 whose complement is a pair of
open balls. By construction, for 1 � y � n, the plat link L intersects each of these
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balls in a collection of boundary parallel arcs. Therefore, each Py for these values
of y defines a bridge surface for L.

For each integer i 2 Œ1; n� there is a Euclidean projection map �i W R3! Pi that sends
each point .x;y; z/ to .x; i; z/. This map sends the plat braid to a union of overlapping
circles. For integers i and j , the map �i sends the points of K \Pj to the points
of K\Pi , but otherwise the map �i will not be well behaved relative to the braid.

In addition to � , we will define a second type of projection � that will take the braid
into account:

Note that a plat braid intersects each Py in the same number of points and these points
vary continuously as y varies from 1 to n. This can be thought of as an isotopy of
these 2m points in P1 which extends to an ambient isotopy of P1 . Intuitively speaking,
the points twist round each other in a manner determined by the braid, as in the standard
analogy between a braid and a path in a configuration space of points. To be precise,
there is a projection map �y W R� Œ0; n��R! Py for each y 2 Œ1; n� that sends each
arc component of the plat braid to a point .j ;y; 0/ and defines a homeomorphism
Py0 ! Py for each y0 2 Œ0; n�. These homeomorphisms are canonical up to isotopy
fixing the points K\Py , and the induced homeomorphism Py! Py is the identity.

Remark 3.2 The bridge sphere defined as the closure of P1 will serve as the canonical
bridge sphere for the plat link L and will be denoted by †. Any loop ` in a bridge
sphere defined by a different plane Py0 can be thought of as a loop in † by considering
its image �1.`/.

4 Upper bound

In this section, we prove the following lemma, which gives an upper bound on the
bridge distance of a tightly twisted knot or link.

Lemma 4.1 Let K � S3 be knot or link with a highly twisted n–row, 2m–plat
projection and † the induced bridge surface. Then the distance satisfies

d.†/� dn=.2.m� 2//e:

Given a plat link L as above, we will construct a set of “canonical” loops and show
that this set contains a path of the desired length.

For each odd value of i such that 1� i � n, and each value 1� j �m�1, let `i;j be
the circle in the plane Pi with radius 3

4
, centered at

�
2j C 3

2
; i; 0

�
. Note that this circle
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bounds a disk Ei;j in Pi containing the circle ci;j defined above, as well as the two
points of L\Pi that are in ci;j . These loops are shown in the odd rows of Figure 3 (left).

Similarly, for each even value of i such that 1� i � n�1, and each value 1� j �m,
let `i;j be the circle in the plane Pi with radius 3

4
, centered at

�
2j C 1

2
; i; 0

�
. Again,

this circle bounds a disk Ei;j in Pi containing the circle ci;j and the two points
of L\Pi that are in ci;j . These loops are shown in the even rows of Figure 3 (left).

For 1� j �m, define `0;j to be the circle in P1 of radius 3
4

centered at
�
2j � 1

2
; 1; 0

�
.

Note that these loops intersect the loops `1;j , while the rest of the loops defined so
far are pairwise disjoint. (We could modify the construction to make them disjoint,
but as the reader will find below, this wouldn’t be worth the trouble.) Regardless, by
construction, loop `0;j is the boundary of a disk D�

1
in R3 disjoint from L whose

interior is contained in the half-space below P1 , ie a compressing disk for the bridge
surface defined by P1 , as in Figure 3 (left).

Similarly, for the final row i D n, the loops `n;j will bound compressing disks with
interiors above Pn .

`1;1 `1;2

`2;1 `2;2 `2;3

`3;1 `3;2

`4;1 `4;2 `4;3

D�
1

D�
2

D�
3

Figure 3: The loops `i;j and train track diagrams �i

Lemma 4.2 For every even value i < n and for every integer k � 2.m� 2/ such
that i C k � n, the loop �1.`i;m/ is disjoint from the left-most loop �1.`iCk;1/ and
�1.`i;1/ is disjoint from the right-most loop �1.`iCk;a/ in row i C k , where aDm

when i C k is even and aDm� 1 when i C k is odd.

Proof The proof is an immediate consequence of the definitions of the functions �i .
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Proof of Lemma 4.1 Let r be the largest integer such that r.2.m � 2// � n. By
repeatedly applying Lemma 4.2, we see that `0;1 is distance at most r from either
`2r.m�2/;m (when r is odd) or `2r.m�2/;1 (when r is even). If r.2.m� 2//D n then
both loops `2r.m�2/;m and `2r.m�2/;;1 bound disks above †, so

d.†/� r D n=.2.m� 2//D dn=.2.m� 2//e:

Otherwise, since n�2r.m�2/<2.m�2/, Lemma 4.2 implies that �1.`2r.m�2/;1/ and
�1.`2r.m�2/;m/ are each disjoint from some loop �1.`n;a/ in row n. By construction,
each of these loops bounds a disk above Pn . Thus d.†/� r C 1. Since

r.2.m� 2// < n< .r C 1/.2.m� 2//;

we have
dn=.2.m� 2//e D r C 1� d.†/;

completing the proof.

Remark 4.3 In particular, this implies that when n< 2.m� 2/, the bridge distance
of † is at most one. Thus from now on, unless specifically noted otherwise we will
assume that n� 2.m� 2/.

5 Taos and train tracks

In this section, we define train tracks. For reasons that will become clear below, our
definition is slightly different from the usual one.

Definition 5.1 A train track � is a compact subsurface of † with a singular fibration
by intervals: The interior of � is fibered by open intervals and the fibration extends to a
fibration of the surface with boundary by properly embedded closed intervals except for
finitely many intervals called singular fibers. Each singular fiber ˛ has a neighborhood
in � homeomorphic to .Œ0; 1�� Œ0; 1�/X

��
1
4
; 3

4

�
�
�

1
2
; 1
��

such that ˛ is the horizontal
interval Œ0; 1��

˚
1
2

	
and the adjacent fibers are also horizontal, as in Figure 4.

Given a train track � , the projection of every fiber to a point results in a graph T called
the train track diagram for � . This graph has a natural embedding in the surface †,
though not in the train track � . Each singular fiber in the train track determines a
trivalent vertex of T , called a switch. The interval bundle structure on the original train
track determines a vector at each switch to which each adjacent edge is tangent. Thus
a train track diagram is a graph such that the three edges adjacent to each given vertex
are tangent to the same vector, though they will approach the vertex from both sides
along that vector, as on the right in Figure 4.
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Figure 4: Converting between a train track and a train track diagram

Conversely, given a graph T in † that satisfies this property concerning tangent vectors
at vertices, one can construct a train track � with train track diagram T . Note that we
are restricting our attention to train tracks whose diagrams have three-valent vertices,
though this is not necessary in general.

In Section 4, we constructed a collection of “canonical” loops that contained a path
giving an upper bound on the distance of †. To find the lower bound, we will show
that, roughly speaking, any other path must follow very close to one of these canonical
paths. To do this, we will extend the canonical loops to a sequence of train tracks �i

defined by train track graphs Ti that encode the structure of the plat link K .

In each disk Ei;j � Pi bounded by the loop `i;j , there is a unique (up to isotopy)
properly embedded arc ˛ that separates the two punctures. We can isotope this arc
to intersect the plane z D 0 in a single point. We can further isotope this arc in a
neighborhood of its boundary so that it is tangent to `i;j , and there will be two choices
for how to do this.

To differentiate the two, recall that each Py is oriented, which defines an orientation
on each loop `i;j . For the figures below, we will draw each `i;j so that the induced
orientation is counter-clockwise.

Consider a tangent vector at one of the endpoints of ˛ , pointing out of the arc. When
we make ˛ tangent to `i;j , this tangent vector will point in a direction that will either
agree with the orientation on `i;j or disagree. If we isotope ` so that both tangent
vectors agree with the orientation on `i;j then we will say that the image of this isotopy
is a right handed tao arc. Otherwise, if both tangent vectors disagree, we will call it a
left handed tao arc.

Definition 5.2 The union of each loop `i;j and a (left handed/right handed) tao arc
will be called a (left handed/right handed) tao diagram, as in Figure 5. (The name
alludes to the Taoist “yin-yang” symbol, which the figure resembles.)

For each `i;j , let Yi;j be a tao diagram, such that Yi;j is right handed when ai;j is
positive and left handed otherwise. (In Theorem 1.2, we assume that jai;j j � 3, so it
won’t matter which handedness we pick in the case when ai;j D 0.)
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left handed right handed

Figure 5: Left handed and right handed tao diagrams

For each i and the appropriate values of j , there will be an arc of the line f.x; i; 0/g
connecting Yi;j to Yi;jC1 . As with the tao arcs, we can isotope the ends of this arc,
within Pi , to make it tangent to `i;j and `i;jC1 . We will say that the resulting arc
is compatible with the adjacent taos if the direction of a tangent vector pointing into
the arc agrees with orientation defined by the tao arc on each loop. Moreover, we will
isotope each endpoint of the connecting arc in the direction of an out-pointing tangent
vector along `i;j past exactly one endpoint of the tao arc.

For each even value of i , we will define Ti to be the union of the tao diagrams in fYi;j g

and a collection of compatible arcs. Some of the possible diagrams for mD 3 (depend-
ing on the signs of the coefficients ai;j ) are shown on the left-hand side of Figure 6.
The way these train tracks sit with respect to the plat is shown in Figure 3 (right).

Figure 6: The train track diagrams for the �i , as in Definition 5.2,
for i even (left) and i odd (right)

For odd values of i , there are two points of `\Pi that are not contained within any
of the tao diagrams, and we will need to make an extra consideration for these. For
each such value of i , there is an arc in Pi with endpoints in Yi;1 that intersects the
line z D 0 in a single point and bounds a disk containing the point .1; i; 0/ (but not
the point .2m; i; 0/). Isotope the endpoints of this arc to the same point in Yi;1 , then
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make them tangent to `i;1 so that each of the two vectors pointing into the arc agree
with the orientation of `i;1 . Finally, pinch the ends of the two arcs together, so that
there is a single arc from Yi;1 to a switch that splits the two ends of the original arc, as
on the right part of Figure 6. The resulting switch and two arcs will be called an eyelet,
and we will include a second eyelet around the point .2m; i; 0/.

For each i , define �i to be the train track defined by the train track diagram Ti . Note
that �i is connected and is made up of train tracks induced by the tao diagrams, as
in Figure 7, connected in pairs by bands. We will call each train track constructed in
this way a plat track. These are shown relative to the entire plat in Figure 3.

Figure 7: Left handed and right handed taos

6 Carrying and covering

A train track � is said to carry a simple closed curve ` if ` is contained in (the
subsurface) � and ` is transverse to each fiber in � that it meets. Moreover, � carries
a given isotopy class of loops if it carries at least one loop in the isotopy class.

In this paper, we will need a slightly more general version of the notion of carrying. We
will say that a properly embedded arc 
 � � is carried by � if its interior is transverse
to the interval fibers of � and each endpoint is in the intersection of the interior of a
singular fiber with the boundary of � .

Remark 6.1 Note that the boundary of a train track � is a union of the endpoints of
the interval fibers and arcs in the interiors of the singular fibers that define the switches.
Thus a loop that is almost carried by � can only enter and leave the train track �
through the switches, as indicated by the arcs in Figure 4.

Definition 6.2 A train track � almost carries a loop ` if

(1) ` is disjoint from the endpoints of the interval fibers in � ,

(2) the intersection of ` with � is carried by � ,
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(3) no arc of ` in the complement of � is parallel into the interior of a singular fiber,

(4) no arc of ` in the complement of � is parallel into an arc of fiber endpoints.

For the plat tracks �i;j with i odd, we need to amend this definition slightly: We will
also say that a loop ` is almost carried by a plat track �i if it is almost carried by the
train track defined by the track diagram that results from removing exactly one of the
two eyelets from Ti .

The types of arcs ruled out by conditions (3) and (4) are shown in Figure 8.

Figure 8: Trivial arcs that cannot appear in almost carried loops

Definition 6.3 A loop ` that is carried or almost carried by a train track � is said to
cover � if ` meets every fiber of � .

We will also need a slightly more general version of this definition that is specific to the
plat tracks defined above. As noted above, there is a canonical map from a train track �
to its diagram T that collapses each interval fiber to a point. Given a subgraph G

of a train track diagram T and a loop ` that is almost carried by � , we will say that
` covers G if the set of carried arcs is sent onto G by the map �! T . In other words,
the set of carried arcs must intersect every arc that defines a point in the subgraph.

Given a positive integer k , we will say that a loop ` that is almost carried by a train
track �i covers k taos if ` covers a subgraph of Ti containing k distinct tao diagrams.
Similarly, we will say that ` covers k taos and an eyelet if it covers a subgraph of Ti

containing k tao diagrams and an eyelet subgraph.

The following lemmas only need to assume that the coefficients in a single row are
sufficiently large. In order to prove the most general statement, we will introduce one
more definition: We will say that row i of a plat is highly twisted if jai;j j � 3 for each
appropriate j . So a plat will be highly twisted if every one of its rows is highly twisted.

Lemma 6.4 If row i of the plat defining K is highly twisted then �i.`iC1;j / is carried
by �i and covers either two taos or one tao and one eyelet.
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Proof Let `0
iC1;j

be the Euclidean projection �i.`iC1;j / in the horizontal plane Pi .
When i is odd and j D 0 or j D m, this loop will intersect one of the taos in �i

transversely. Otherwise, it will intersect two taos transversely. In particular, for each of
these one or two tao diagrams Yi;k in �i , there is an arc ˛ of `0

iC1;j
that intersects Yi;k

in three points, passing between the two points of the knot K inside the disk Ei;k ,
as on the left side of Figure 9. To get �i.`iC1;j / from `0

iC1;j
one needs to apply

three or more half twists along the loop `i;k for the relevant values of k . Because
jai;k j � 3 and each tao diagram has the correct handedness, the image of ˛ under this
twist consists of a subarc carried by �i and two subarcs disjoint from �i , as on the
right in Figure 9. Since the rest of `0i is disjoint from �i , the loop �i.`iC1;j / is carried
by �i , after perhaps pushing the endpoints of the connecting arcs into �i .

G

G

G

G

G

G

G

G

G

G

R

R

R

R

R

R

R

R

R

R

Figure 9: The arc ˛ and its image after twisting around `i by three half twists

Lemma 6.5 Let � �† be a train track and `�† a loop that is almost carried by �
and covers � . If `0 �† is a simple closed curve disjoint from ` then there is an isotopy
after which `0 is almost carried by � .

Proof Let N DN .`/�† be a regular neighborhood of ` disjoint from `0 . Because
` covers � , every interval fiber intersects N in one or more subintervals. There is thus
an isotopy of � that takes each fiber endpoint into N , so that the complement � XN
is a union of intervals in the interiors of the interval fibers. These intervals are properly
embedded in †XN and make up parallel families that form bands.

Assume we have isotoped `0 so as to minimize its intersection with each of these bands.
Then each arc of `0\ .� XN ) will be essential in a band and can be made transverse
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to each interval fiber. If any arc of `0 X � is isotopic into the interior of a singular fiber
then it can be pulled into one of the bands, then across to reduce the number of arcs of
intersection.

Thus `0 can be isotoped so that it satisfies the first three conditions in the definition
of almost carried. For the fourth condition, note that if an arc of `0 X � is parallel to
an arc composed of interval endpoints then this arc can be isotoped into � to an arc
in � transverse to all the fibers. If we do this for each such arc, then `0 will be almost
carried by � .

Definition 6.6 We will say the a train track � 0 is carried by a train track � if � 0 � �
and each interval fiber of � 0 is contained in an interval fiber of � . This is equivalent (up
to isotopy) to the statement that each edge in the train track diagram for � 0 is transverse
to the interval fibers of � .

We will say that, a train track � 0 is almost carried by a train track � if the train track
diagram T 0 for � 0 is transverse to the interval fibers, disjoint from their endpoints, and
no arc of T 0 in the complement of � is parallel into the interior of a singular interval
or an arc of endpoints.

Being almost carried is equivalent to the condition that each interval fiber of � 0 is either
disjoint from � or contained in an interval fiber of � , plus a condition on the bands
of � 0 outside of � .

Lemma 6.7 If row i of the plat defining K is highly twisted then �i.�iC1/ is almost
carried by �i and the union of the loops �i.`iC1;j / covers �i .

Proof It follows from Lemma 6.4 that the loops �i.`iC1;j / cover �i . The rest of the
train track �iC1 is disjoint from these loops, so it might be expected that the result will
follow from Lemma 6.5. In fact, in order to use an argument very similar to the proof
of Lemma 6.5, it must first be checked that the switches in �i.�iC1/ are compatible
with the train track �i .

The arcs of TiC1 near two of the loops `iC1;j are shown on the left in Figure 9, in
either red or green. The green arcs are for a left handed tao and the red arcs are for a
right handed tao. For anyone reading this in grayscale, each red or green arc has been
labeled with an “R” or “G”, respectively. The image of each tao arc under �i is a short
arc connecting the tracks between the adjacent taos in �i . (The images of the tao arcs
are not shown in the lower half of Figure 9 because they would be too small to see on
this scale.)
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The images of the connecting arcs, unfortunately, will intersect the endpoints of the
interval fibers in �i . However, note that for a right handed YiC1;j , one can isotope the
endpoints of the connecting arcs in a clockwise direction along a right handed `iC1;j ,
without crossing the endpoints of the tao arc. Similarly, we can slide the endpoints of the
connecting arcs for a left handed `iC1;j in a counter-clockwise direction. Therefore, the
endpoints can be pushed along j̀ to an arc that exits �i at the interior of a switch, as on
the right side in Figure 9. Now apply the same argument as in the proof of Lemma 6.5,
using the fact that �i.`iC1/ covers �i , to isotope the interiors of the connecting arcs to
be almost carried by �i .

The main objective of the above lemmas is the following corollary, which is immediate:

Corollary 6.8 If ` is almost carried by �iC1 then �i.`/ is almost carried by �i .

7 Stepping through the plat

Definition 7.1 We will say that a loop ` that is almost carried by one of the train
tracks �i bisects a tao if it either covers one of the loops `i;j or covers one of the tao
arcs in �i . We will say that `i bisects t taos if it covers at least t of the tao arcs in �i .
We will say that ` bisects t taos and an eyelet if it covers at least t tao arcs and one of
the eyelets in �i .

Lemma 7.2 If ` is an essential loop that is almost carried by �i then ` bisects a tao.

Proof Consider the bridge sphere †i defined by the plane Pi . The complement in †i

of �i is a collection of disks, each of which has at most one puncture, every essential
loop in Pi must intersect �i . If ` is almost carried by �i then `\ �i is either a loop or
a collection of arcs that are carried by �i . A connecting arc between the taos cannot
fully carry an arc on its own, so every carried arc or loop must cover one of the edges
of a tao. Moreover, the reader can check that any arc or loop that covers one edge of a
tao must either cover the tao arc or be a loop that follows the outer loop. Thus, since `
covers an arc of some Yi;j , it must bisect a tao.

Lemma 7.3 Suppose that K is defined by a plat in which row i is highly twisted and
` is a loop that is almost carried by �iC1 . If ` bisects t taos in �iC1 then �i.`/ either
bisects t C 1 taos in �i or bisects t taos and an eyelet.

Proof By Corollary 6.8, �i.`/ will be almost carried by �i since ` is almost carried
by �iC1 . If ` is isotopic to the loop defining a tao then k D 1 and by Lemma 6.4, `
covers two taos or one tao and one eyelet in �i .
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Otherwise, ` must cover t tao arcs in �iC1 . Any arc ˛ carried by a tao arc must also
cover the two arcs of the outer circle into which the tangent vectors, coming out of the
tao arc, point. Such arcs are shown on the left in Figure 10, superimposed on �i .

Figure 10: The arc ˛ and its image after twisting around `i by three half twists

The arc ˛ intersects either two taos or one tao and one eyelet. The reader can check
that, as indicated in Figure 10, the image �i.˛/ will cover these two taos or one tao
and one eyelet. If ` covers k adjacent tao arcs in �iC1 then, after taking into account
the overlaps between them, we find that their images will cover either t C 1 taos in �i

or t taos and one eyelet.

8 Transverse loops

Lemma 7.3 gives us a good idea of how later loops in a path in C.†/ behave with
respect to the train tracks, as long as we know that the initial loop is almost carried.
When we consider paths between any two loops in the disk sets in C.†/ of a bridge
surface †, we can’t assume that our initial loop is carried by a train track. However,
we can still gain a reasonable amount of control over the first loop if we broaden our
ideas of how a loop should be allowed to intersect a train track.

Definition 8.1 A loop `�† is said to be transverse to a train track � if

(1) every component of `\ � is either carried by � (ie transverse to the interval
fibers and disjoint from their endpoints) or an arc contained in an interval fiber,

(2) no arc of ` in the complement of � is parallel into the interior of a singular arc
defining an open switch or into an arc of fiber endpoints,
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(3) no component of `X � is an arc that is parallel into an arc of @� that intersects
at most one singular fiber.

Note that almost carried loops are by definition transverse. However, there are two
important additions in the definition of transverse loops: First, a transverse loop ` is
allowed to cut across the train track parallel to the fibers. Such a loop is thus allowed
to intersect the endpoints of the interval fibers, allowing for a wider variety of behavior
in the complement of � . As a result, we have to rule out the types of arcs labeled (1),
(2) and (3) in Figure 11. As we will see (and as suggested by Figure 11), if any of
these types of arcs occur, we can isotope ` to reduce its intersection with � .

.1/

.2/ .3/

Figure 11: Arcs that are ruled out by the third condition on transverse loops
and isotopies that remove them

Lemma 8.2 Given a train track � �†, every loop ` in † is isotopic to a loop that is
transverse to � .

Proof Let T be a diagram for the train track � . Isotope ` to be transverse to T , ie
so that ` is disjoint from the vertices of T and intersects each edge in a finite number
of transverse points. Because T is a trivalent graph, if any arc ˛ in `XT is parallel
to an arc ˇ in T that intersects one or zero vertices of T then we can isotope ˛ onto
and across ˇ , reducing the number of points in `\T by one. Thus if we isotope ` so
that `\T is minimal then there will be no such arcs ˛ and ˇ .

Isotope � onto a small regular neighborhood of T so that the intersection `\ � will
be a finite number of arcs, each corresponding to a point of `\T and each parallel
to some interval fiber of � . We can isotope ` further so that each intersection arcs
is in fact an interval fiber. This loop ` satisfies the first condition of Definition 8.1.
Because the arcs of `X � do not have endpoints in the interiors of singular fibers of � ,
the second condition is vacuously satisfied. Finally, if any arc ˛0 of `X � were parallel
to an arc of @� that intersects one or fewer singular fibers, then we could extend ˛0 to
an arc ˛ of `XT of the form that was ruled out by the minimality of `\T . Thus we
conclude that ` is transverse to � .
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Note that the construction in the proof of Lemma 8.2 always produces a loop in which
none of the arcs of intersection are carried by � . In some cases there will be a further
isotopy, as indicated in Figure 12, that replaces a portion of ` with an arc that is carried
by � . The initial position of ` is allowed by Definition 8.1 because the arc of @� that is
parallel to the arc of ` intersects the endpoints of multiple (in this case, four) singular
fibers.

Figure 12: Isotoping a transverse arc to a carried arc

Definition 8.3 We will say that a transverse loop ` covers a subgraph G of a train
track graph � if the set of carried arcs covers G .

Lemma 8.4 Let D be a properly embedded, essential disk above the bridge surface Pn .
Then �n�1.@D/ is isotopic to a loop that is transverse to �n�1 and covers at least one
tao of �n�1 .

Proof By construction, the link L intersects the half-plane f.x;y; z/ j z D 0; y � ng

in m arcs, each of which has its endpoints in the boundary of the half-plane and separates
a disk from the half-plane. We will consider the case when n is even and these disks are
pairwise disjoint. For n odd, one of the disks will contain the others and the argument
is more complicated, but very similar. Let D1; : : : ;Dm be these disks and note that
each Di intersects the plane Pn in an arc ˛iDf.x;y; z/ jzD0; yDn; 2i�1�x�2ig.

Let D be a compressing disk above Pn and assume D is transverse to D1; : : : ;Dm .
Any loops of intersection between D and a disk Di will determine 2–spheres contained
in the handlebody BC XK bounded by Pn . Since handlebodies are irreducible, such
loops of intersection can be removed. Hence D\Di is a collection of arcs for each i .
Let A�D be the intersection of D with the entire collection of disks

˚S
i Di

	
and

let ˇ � A be an outermost arc in D bounding a disk E � D . Let 
 � @D \ Pn

be the arc of @D that shares its endpoints with ˇ and let ı � ˛i be the arc in the
appropriate @Di that shares its endpoints with ˇ .

The arcs 
 and ı form a loop in Pn . If this loop bounds a disk with interior disjoint from
the arcs ˛i then this disk defines an isotopy that removes the arc ˇ from D\

˚S
i Di

	
.

Thus, if this intersection has been minimized, the interior of the disk E bounded
by 
 [ ı must intersect one or more of the arcs ˛i . By construction, the arc 
 is
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disjoint from the arcs ˛i away from its endpoints and the arc ı is contained in one of
the arcs ˛i . So this implies that E contains one or more of the arcs ˛i in its interior.

Since each arc ˛i is in the line z D 0 in Pn and 
 � Pn is on the same side of this
line near both its endpoints, this implies that the arc 
 must cross the line z D 0 at
least twice. Moreover, if all the points of intersection are at values of x greater than 2n

or less than 1 then 
 will be a trivial arc (possibly after passing it across the point at
infinity, which corresponds to an isotopy in †). This again contradicts the minimal
intersection assumption. Therefore, a subarc of 
 must cut across one of the taos, as
indicated in Figure 13.

Figure 13: Isotoping a transverse arc to a carried arc

As suggested by Figure 13, since 
 is disjoint from all the ˛i , it can intersect the tao
arc of this tao at most twice. Since @D is a simple loop, we conclude that every arc
of intersection between @D and the tao disk Ei intersects that tao arc at most twice.
The reader can check that, as indicated in Figure 14, the image of any such arc under
three or more half twists will be carried by this tao and cover it. Thus we can make the
image �i.@D/ transverse to �n�1 so that it covers at least one tao.

Lemma 8.5 Let D � BC XK be a properly embedded, essential disk above the
bridge surface Pn and assume n � 2.m � 2/. Then for each k � 2.m � 2/, the
loop �n�k.@D/ is isotopic to a loop that is transverse to �n�k and covers t taos
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Figure 14: Isotoping a transverse arc to a carried arc

of �n�k for some t � 1
2
.kC 1/. When n� k is even and k > 1, ` covers t taos and

one eyelet.

Proof By the assumption above (as in Remark 4.3), n� 2.m� 2/ so the terms �n�k

and �n�k are well defined. By Lemma 8.4, �n�1.@D/ covers at least one tao Yn�1;j

of �n�1 . By Lemma 6.7, �n�2.Yn�1;j / covers either two taos of �n�2 or one tao and
one eyelet. (The latter occurs only when n� 2 is even.) Therefore, for each arc 

of @D such that �n�1.
 / covers Yn�1;j , we conclude that �n�2.
 / covers either two
taos of �n�2 or one tao and one eyelet. If we repeat this argument, noting that the
latter case can happen at most half of the time, we conclude that �n�k.@D/ covers at
least 1

2
k taos of �n�k or 1

2
k � 1 taos and one eyelet.

Corollary 8.6 Let D be a properly embedded, essential disk above the bridge sur-
face Pn and let r be a positive integer so that t D n� 2r.m� 2/ � 1 for n odd and
t Dn�2r.m�2/C1� 1 for n even. Then for every loop `�† such that d.@D; `/< r ,
�t .`/ is almost carried by �t .

Proof Since t � 1 the restrictions on r are necessary. We will prove this by induction
on r . Consider the base case r D 1: Since d.@D; `/D 0 the loop ` is isotopic to @D .
In this case t D n� 2.m� 2/ when n is odd and t D n� 2.m� 2/C 1 when n is
even. In either case, t is odd, so the train track �n�2.m�2/ has exactly m� 1 taos.
By Lemma 8.5 applied to the case k D 2.m� 2/, we have that t � m� 1 so �t .`/
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covers all the m� 1 taos and one eyelet of �t . Since �t .@D/ is transverse to �t , by
Lemma 8.5 all the noncarried arcs of �t .@D/\ �t must be along interval fibers. But
since �t .@D/ is simple, this implies that �t .@D/ is almost carried by �t , completing
the proof of the base case.

For the inductive step, assume d.@D; `/ < r , ie that there is a path in † from @D to `
of length strictly less than r . Then the vertex right before ` in this path will represent
a loop `0 such that d.@D; `0/ < r � 1. By the inductive hypothesis, this means that for
t 0 D n� 2.r � 1/.m� 2/ for n odd and t 0 D n� 2.r � 1/.m� 2/C 1 for n even, the
loop �t 0.`0/ is almost carried by �t 0 . Note that regardless of the parity of n, both t

and t 0 are odd and t 0� t D 2.m� 2/.

Because �t 0.`0/ is almost carried by �t 0 , it must bisect at least one tao arc by Lemma 7.2.
By repeatedly applying Lemma 7.3, we find that �t .`

0/ covers one eyelet of �t and
1C 1

2
.t 0 � t/ D 1Cm� 2 D m� 1 taos of �t . Since �t .`/ is disjoint from �t .`

0/,
Lemma 6.5 implies that �t .`/ is also almost carried by �t . This completes the inductive
step and thus the proof.

The final step in the proof that the constant given by Theorem 1.2 is in fact a lower
bound is the following lemma:

Lemma 8.7 If D � B� is a properly embedded, essential disk below P1 then @D is
not almost carried by �1 .

Proof The proof is similar to the first part of the proof of Lemma 8.4. We include it
here for the sake of completeness. By construction, the link K intersects the half-plane
f.x;y; z/ jzD0; y�1g in m arcs, each of which has its endpoints in the boundary of the
half-plane and separates a disk from the half-plane. Denote these disks by D1; : : : ;Dm

and note that Di\Pn is an arc ˛iDf.x;y; z/ jzD0; yD1; 2i�1�x�2ig, for each i .

Let D be a compressing disk below P1 and assume D is transverse to D1; : : : ;Dm

and minimizes the intersections with them. Any loops of intersection between D and
each Di will determine 2–spheres contained in the handlebody B� XK bounded
by P1 . Since handlebodies are irreducible, such loops of intersection can be removed.
Hence D\Di is a collection of arcs for each i .

Set ADD\
˚S

i Di

	
and let ˇ�A be an outermost arc in D bounding a disk E�D

so that @E D ˇ[ 
 where 
 � P1 . Let ı � ˛i be the arc in the appropriate @Di that
shares its endpoints with ˇ .

The arcs 
 and ı form a loop in P1 . This loop cannot bound a disk with interior
disjoint from the arcs ˛i as this would define an isotopy that removes the arc ˇ
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from D \
˚S

i Di

	
contradicting the choice of D . Thus, the interior of the disk E

bounded by 
 [ı must intersect one or more of the arcs ˛i . By construction, the arc 

is disjoint from the arcs ˛i away from its endpoints and the arc ı is contained in one of
the arcs ˛i . So this implies that E contains one or more of the arcs ˛i in its interior.

Since each arc ˛i is in the line zD 0 in P1 and 
 �P1 is on the same side o f this line
near both its endpoints, this implies that the arc 
 must cross the line zD0 at least twice.
Moreover, if all the points of intersection are at values of x greater than 2n or less than 1

then 
 will be a trivial arc (possibly after passing it across the point at infinity, which
corresponds to an isotopy in †). This again contradicts the minimal intersection assump-
tion. Therefore, a subarc of 
 must cut across one of the taos transversely, as indicated in
Figure 13. However note that the ˛i “block” the access to each switch. More precisely
they contain subarcs which together with arcs emanating from the switch bound either
a triangle or a quadrilateral with the switch pointing into its interior. This implies that 

cannot enter or leave �1 at a switch and therefore cannot be almost carried by it.

Corollary 8.8 Given a link K � S3 defined by a highly twisted n–row, 2m–plat
presentation and the induced bridge surface †, the distance satisfies

d.†/� dn=.2.m� 2//e:

Proof Assume for contradiction d.†/< dn=.2.m�2//e. Then there is a loop `�Pn

bounding a disk above Pn and a loop `0 � P1 bounding a disk below P1 such that
d.�1.`/; `

0/ < dn=.2.m� 2//e. By Corollary 8.6, the distance bound implies that `0

is almost carried by �1 . However, Lemma 8.7 implies that `0 cannot be carried by �1 .
This contradiction implies that d.†/� dn=.2.m� 2//e.

Proof of Theorem 1.2 Combining the upper bound in Lemma 4.1 with the lower
bound in Corollary 8.8 gives us the equality d.†/D dn=.2.m� 2//e.
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