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Lone axes in outer space

LEE MOSHER

CATHERINE PFAFF

Handel and Mosher define the axis bundle for a fully irreducible outer automorphism
in [Mem. Amer. Math. Soc. 1004 (2011)]. We give a necessary and sufficient condition
for the axis bundle to consist of a unique periodic fold line. As a consequence, we
give a setting, and means for identifying in this setting, when two elements of an
outer automorphism group Out.Fr / have conjugate powers.

20F65; 05E18, 57M07

1 Introduction

We let Out.Fr / denote the outer automorphism group for a rank-r free group Fr . Culler
and Vogtmann [7] defined a topological space CVr , outer space, on which Out.Fr /

acts properly with finite stabilizers, in analogy with the action of each mapping class
group on its Teichmüller space (see Fathi, Laudenbach and Poenaru [8]). In fact, the
action of each Out.Fr / on its outer space CVr has indeed proved to possess many
of the same characteristics as the action of a mapping class group on its Teichmüller
space. For example, Levitt and Lustig [18] proved that, as with a pseudo-Anosov
acting on Teichmüller space, each “fully irreducible” ' 2 Out.Fr / acts with north-
south dynamics on the natural compactification CVr of CVr . A fully irreducible outer
automorphism is the most commonly used analogue to a pseudo-Anosov. An element
' 2 Out.Fr / is fully irreducible if no positive power 'k fixes the conjugacy class of a
proper free factor of Fr .

Recall that points of outer space can be described as marked metric graphs up to
isometry, by which we mean graphs whose fundamental group has been identified
with the free group in a basepoint-free manner and who have lengths assigned to their
edges (generally assumed to sum to one). As in Handel and Mosher [14], one can
call a point � in outer space a train track for ' when there exists an affine train
track representative gW � ! � . An affine train track representative is a train track
representative, in the sense of Bestvina and Handel [4], such that each open interval
inside each edge is stretched by a constant factor equal to the dilatation of ' . In [14]
Handel and Mosher answered the question, posed by Vogtmann, “Is the set of train
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tracks for an irreducible automorphism contractible?” They do so by defining, for a
nongeometric fully irreducible ' 2Out.Fr /, its axis bundle, which they also show is a
closed subset A' in CVr proper homotopy equivalent to a line, invariant under ' , and
such that the two ends of A' limit on the repeller and attractor of the source-sink action
of ' on CVr . Outer automorphisms induced by homeomorphisms of compact surfaces
are called geometric, and are usually primarily studied as surface homeomorphisms.
If ' is a nongeometric, fully irreducible outer automorphism, then [14, Theorem 1.1]
gives three equivalent definitions of the axis bundle (see Section 2.6), the third of which
is A' D

S1
kD1 TT.'k/, where TT.'k/ is just the set of train track graphs for 'k .

Unlike in the situation of a loxodromic isometry acting on hyperbolic space or of a
pseudo-Anosov mapping class acting on Teichmüller space, it appears that there is in
general no natural axis for a fully irreducible outer automorphism acting on outer space
and that the axis bundle is a good natural analogue, in spite of in general being so far
from a single axis as to actually be multidimensional. Handel and Mosher, via a list of
questions in [14], and Bridson and Vogtmann [5, Question 3], more directly, ask:

Question 1.1 Describe the geometry of the axis bundle for a fully irreducible outer
automorphism acting on outer space.

What we accomplish in this paper is to determine when a fully irreducible outer
automorphism behaves more like a pseudo-Anosov mapping class by having an axis
bundle that is just a single axis. Not only does this give a partial solution to the
conjugacy problem for outer automorphisms of free groups, but it allows one to read off
from an axis all train track representatives for the automorphism. Section 4 is dedicated
entirely to explaining several applications of our main theorem.

The condition we prove for a unique axis relies on the ideal Whitehead graph of [14].
The condition also relies on the rotationless version i.'/ of the index defined by
Gaboriau, Jaeger, Levitt and Lustig [10] for a fully irreducible ' 2 Out.Fr /. One can
think of the rotationless index as a sum of terms, each of which records the number
of vertices in a component of the ideal Whitehead graph. As originally defined, the
rotationless index also records the branching behavior of the attracting tree, TC' , for
the source-sink action of ' on CVr . Unlike in the surface case where one has the
Poincaré–Hopf index equality, Gaboriau, Jaeger, Levitt and Lustig proved in [10]
that there is instead a rotationless index inequality 0 > i.'/ � 1� r that each fully
irreducible ' 2 Out.Fr / satisfies. (Here we have rewritten the inequality using the
definition of the rotationless index given by Pfaff [21], revised to be invariant under
taking powers and to have its sign be consistent with the mapping class group case.)

The notion of an ageometric fully irreducible is defined in Section 2.9. Ageometrics are
believed to be generic (see, for example, Kapovich and Pfaff [16]). What we prove in
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Theorem 4.7 is a necessary and sufficient condition for an ageometric fully irreducible
outer automorphism to have a unique axis. Examples of fully irreducibles satisfying
the conditions of Theorem 4.7 can be found in Pfaff [20; 21] and it was in fact proved
later, in [16], that satisfying these conditions is generic along a particular “train track
directed” random walk.

Theorem 4.7 The axis bundle of an ageometric, fully irreducible outer automorphism
' 2 Out.Fr / is a unique axis precisely if both of the following two conditions hold:

(1) the rotationless index satisfies i.'/D 3
2
� r , and

(2) no component of the ideal Whitehead graph IW.'/ has a cut vertex.

The rotationless index is always a negative half-integer. Thus, one may observe that
3
2
� r is as close to equaling the bound of 1� r as possible without actually equaling

it. As equality is achieved precisely in the case of geometric and parageometric outer
automorphisms, this means that 3

2
� r is the bounding ageometric rotationless index.

Given a nongeometric, fully irreducible ' 2 Out.Fr /, we let ST.'/ denote the set of
train track graphs for ' on which there exists a fully stable train track representative
for ' , meaning that each power is stable in the sense of [4]. We then define the
stable axis bundle as SA' D

S1
kD1 ST.'k/; see Section 3. The stable axis bundle

was introduced in [14, Section 6.5] as an object of interest. Our approach to proving
Theorem 4.7 involves a study of the stable axis bundle, as proposed in [14].

Theorem 4.6 Suppose ' 2 Out.Fr / is ageometric and fully irreducible. Then the
stable axis bundle SA' is a unique axis if and only if the rotationless index satisfies
i.'/D 3

2
� r . In that case it is a unique periodic fold line.

The connection between Theorems 4.6 and 4.7 is that, for an ageometric, fully irre-
ducible ' 2 Out.Fr / with rotationless index i.'/D 3

2
� r , the ideal Whitehead graph

IW.'/ not having cut vertices is equivalent to the stable axis bundle in fact being
the entire axis bundle. We exploit here constructions of [14, Lemma 3.1] where cut
vertices lead to periodic Nielsen paths in unstable representatives.

1.1 Remarks and further questions

The proof of the main theorem will exhibit a sufficient condition for the axis bundle to be
of dimension two or higher, namely the existence of an affine train track representative
gW �! � having two or more illegal turns. In fact the axis bundle has local dimension
two or higher at the point represented by � ; see the proof of Lemma 4.3.

This condition motivates some follow-up problems regarding the behavior of higher
dimensional axis bundles:
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� Is there a formula for the local dimension of the axis bundle at a point �
represented by an affine train track map (or more generally at any point)?

� Is the local dimension a constant function on the axis bundle?

Regarding these questions, the proof of the main theorem gives some hints. For example,
here is a lower bound for the local dimension based on the illegal turn structure: each
gate of � of cardinality k should independently contribute k � 1 dimensions worth of
folding parameters. That lower bound only takes into account “folding” of � , which
captures just the forward direction along the axis bundle; a better dimension count
would certainly have to take “unfolding” into account, in order to capture the backward
direction. Also, see Comment 4.2 following the statement of Lemma 4.1 for a hint to
why the answer to the second question might be “no”.

The authors would like to thank the referee for the following questions:

Question 1.2 Does there exist a similar result to Theorem 4.7 for parageometric fully
irreducible outer automorphisms?

Question 1.3 Is the index condition in Lemma 4.5 necessary?
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would also like to thank Thierry Coulbois and Jerome Los for illuminating conversations
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2 Preliminary definitions and notation

2.1 Train track representatives

Definition 2.1 (marked graphs and train track representatives) Let Rr be the r–
petaled rose, ie the graph with precisely r edges and one vertex. Recall from [4], for
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example, that a marked graph is a connected finite graph � , with no valence 1 or 2

vertices, together with an isomorphism �1.�/ŠFr defined via a homotopy equivalence
(called the marking) �W � ! Rr . Marked graphs �W � ! Rr and �0W � 0! Rr are
considered equivalent when there exists a homeomorphism hW �! � 0 such that �0 ıh

is homotopic to � . A homotopy equivalence gW �! � of a marked graph � is a train
track representative for ' 2 Out.Fr / if it maps vertices to vertices, ' D g�W �1.�/!

�1.�/, and gk jint.e/ is locally injective for each edge e of � and k > 0.

Many of the definitions and notation for discussing train track representatives were
established in [4] and [3]. We recall some here.

Definition 2.2 (turns, gates and directions) Let gW �! � be a train track represen-
tative of ' 2 Out.Fr /. By a direction at a vertex v we will mean a germ of initial
segments of directed edges emanating from v . The definition can be extended to an
interior point x of an edge e by defining a direction at x to be a germ of open segments
of e with x as a boundary point. Dg will denote the direction map induced by g .

We call a point v periodic if there exists a j � 1 such that gj .v/D v . And we call a
point v preperiodic if there exists a point w and j � 1 such that gj .v/D gj .w/Dw .
The same definitions apply for a lift zg acting on T D z� . We call a direction d at a
periodic point v periodic if Dgk.d/D d for some k > 0.

We call an unordered pair of directions fdi ; dj g, based at the same point, a turn. It is
an illegal turn for g if Dgk.di/DDgk.dj / for some k and a legal turn otherwise.
Considering the directions of an illegal turn equivalent, one can define an equivalence
relation on the set of directions at a vertex. Each equivalence class is called a gate.

Directions and turns at a point v in a simplicial tree T can be analogously defined.
More generally, a direction at a point v in an Fr –tree T can be defined as a component
of T nfvg. If T is a train track, then, given a lift zgW z�! z� fixing some vertex zv , we
can define the direction map Dzg at zv . A periodic direction for zg is then a direction
mapped into itself by Dzgk for some k 2 Z>0 . The direction is fixed if k D 1

2.2 Periodic Nielsen paths and (fully) stable representatives

Throughout this subsection, ' 2 Out.Fr / is fully irreducible and gW �! � is a train
track representative of ' . (Hence, in particular, g is expanding and irreducible.)

Definition 2.3 (periodic Nielsen paths and principal points) We call a locally injective
path tight. Recall from [4] that a nontrivial tight path � in � is called a periodic Nielsen
path (PNP) for g if gk.�/'� rel endpoints for some k . It is called a Nielsen path (NP)
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if the period is one and an indivisible Nielsen path (iNP) if it further cannot be written
as a concatenation �D �1�2 , where �1 and �2 are also NPs for g .

As in [14], we call a periodic point v 2� principal if it either has at least three periodic
directions or is an endpoint of a periodic Nielsen path.

Definition 2.4 (rotationless) A train track representative is called rotationless if every
principal point is fixed and every periodic direction at each principal point is fixed.
Note that the rotationless property puts no restrictions on the preperiodic, nonperiodic
vertices. In [9, Proposition 3.24] it is shown that one can define a fully irreducible
outer automorphism to be rotationless if and only if one (hence all) of its train track
representatives are rotationless.

We will use the following, which tells us that rotationless powers always exist:

Proposition 2.5 [9, Corollary 4.43] For each r � 2, there exists an R.r/ 2N such
that 'R.r/ is rotationless for each ' 2 Out.Fr /.

Definition 2.6 (stable train track representatives) Let ' be a fully irreducible outer
automorphism. The paper [4] gives an algorithm for finding a representative with the
minimal number of Nielsen paths; such a representative is called a stable representative.
As in [14], we call a stable representative g of a rotationless power 'R of ' fully
stable.

Remark 2.7 It would not affect the definition of
S

ST.'k/ if we also called a repre-
sentative fully stable whose rotationless powers are fully stable, but we will generally
mean a rotationless representative when we use the term “fully stable”.

2.3 Culler–Vogtmann outer space CVr and the attracting tree TC

Definition 2.8 (outer space CVr ) A metric on a graph � is the path metric determined
by choosing for each edge e of � a length l.e/ and a characteristic map jeW Œ0; l.e/�!e ,
in the sense of CW complexes. A metric is determined, up to homeomorphism isotopic
to the identity, by an assignment of lengths to edges.

The volume of � is defined as vol.�/ WD
P

e2E.�/ l.e/. A point in Culler–Vogtmann
outer space CVr is an equivalence classes of metric marked graphs of volume one,
under the equivalence relation of marking-preserving isometry.

There is an unprojectivized version of outer space, denoted bCVr , where we no longer
require vol.�/D 1.
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Remark 2.9 Many definitions can be given both for CVr and bCVr . Hence, we
sometimes blur the distinction.

Lifting to the universal cover of marked graphs, one obtains an alternative definition
of CVr , used to describe the compactification. Points of compactified outer space
CVr DCVr [@CVr can be described as equivalence classes of minimal, very small Fr –
actions on R–trees, known as “Fr –trees”. The equivalence relation is Fr –equivariant
homothety. Under this description of CVr , points of CVr itself correspond to the
simplicial Fr –trees T on which Fr acts freely; up to equivalence, such trees correspond
bijectively to marked graphs via the relation of universal covering.

There are multiple equivalent descriptions of the standard topology on CVr . We
describe it via its (ideal) simplicial structure. For each marked graph �W �!Rr with
N edges, the set of metrics on � gives an .N�1/–dimensional open simplex in CVr :˚

.l1; l2; : : : ; lN / j lk > 0;
P

lk D 1
	
:

Where they exist, open faces of a cell can be obtained by assigning length zero to a
subset of the edges or equivalently by collapsing the forest in � consisting of those
edges of length zero. Faces are missing where assigning length zero to edges changes
the homotopy type of the graph.

The group Out.Fr / acts on CVr from the right, where each ' 2 Out.Fr / acts by
precomposing the marking with an automorphism representing ' . Given a fully
irreducible ' 2 Out.Fr /, the repeller and attractor for the action on CVr are elements
of @CVr , thus Fr –trees. We denote the attracting tree in @CVr by T

'
C , or just TC ,

and the repelling tree by T '
� , or just T� .

Definition 2.10 (attracting tree T
'
C ) We recall from [10] a concrete construction of

the attracting tree T
'
C for a fully irreducible ' 2 Out.Fr /. Let gW � ! � be a train

track representative of ' and z� the universal cover of � equipped with a distance
function zd lifted from � . The fundamental group, Fr , acts by deck transformations,
hence isometries, on z� . A lift zg of g is associated to a unique automorphism ˆ

representing ' . In particular, for each w2Fr and x 2 z� , we have ˆ.w/zg.x/D zg.wx/.
One can define the pseudodistance d1 on z� by limk!C1 dk , where

dk.x;y/D
d.zgk.x/; zgk.y//

�k

for each x;y 2 z� , where � > 1 is the unique positive real number such that for each
x;y 2 z� the limit converges, and such that for some x;y 2 z� the value of the limit is
nonzero. (This number � is equal to the Perron–Frobenius eigenvalue of the transition
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matrix of g .) Then TC is the Fr –tree defined by identifying each pairs of points
x;y 2 z� such that d1.x;y/D 0.

2.4 The attracting lamination ƒ' for a fully irreducible
outer automorphism

While one can define the set of attracting laminations for any element of Out.Fr /

(see [2]), we give here only a definition yielding the unique (see [3, Lemma 1.12])
attracting lamination for a fully irreducible outer automorphism.

Let � be a marked graph with universal cover z� and projection map pW z�! � . By a
line in z� we mean the image of a proper embedding of the real line z�W R! z� . We
denote by zB.�/ the space of lines in z� with the compact-open topology, generated by
the open sets

zU.z / WD fL 2 zB.�/ j z is a finite subpath of Lg:

A line in � is then the image of a projection p ız�W R!� of a line z� in z� , where two
lines are considered equivalent when they differ via precomposition by a homeomor-
phism of R. We denote by B.�/ the space of lines in � with the quotient topology
induced by the natural projection map from zB.�/ to B.�/. One can then define the
sets

U. / WD fL 2 B.�/ j  is a finite subpath of Lg;

which generate the topology on B . For a marked graph � , we say a line  in � is
birecurrent if every finite subpath of  occurs infinitely often as an unoriented subpath
in each end of  .

Definition 2.11 (attracting lamination ƒ' ) Fix a fully irreducible ' 2 Out.Fr / and
consider any train track representative gW �! � for ' . Given any edge e in � , there
exists a k > 0 such that

U.e/� U.gk.e//� U.g2k.e//� � � �

is a sequence of nested open sets. The attracting lamination ƒ' (or just ƒ) for ' is
the set of birecurrent lines in the intersection. We often use the same notation for the
total lift zƒ of ƒ to the universal cover. The meaning should be clear from context.

This definition of ƒ is well-defined independent of the choice of train track represen-
tative; see [2, Lemma 1.12] for a proof. Once a basepoint lift is chosen in z� , one
can identify @z� with the hyperbolic boundary @Fr of the free group. This allows
one to identify zƒ with a set of unordered pairs of points in @Fr , by lifting ƒ via the
projection @Fr D @z�! B.�/. It follows that zƒ is also well-defined.
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We may also define the realization of ƒ in a general point of outer space represented
by a marked graph � 0 with universal cover z� 0 and with a chosen basepoint in z� 0 .
Using the identifications @z� � @Fr � @ z� 0 , we obtain an identification zB.�/� zB.� 0/,
which identifies zƒ� zB.�/ with a subset of zB.� 0/ which is the realization of zƒ in z� 0 .
Following with the projection zB.� 0/! B.� 0/, we obtain the realization of zƒ in � 0 .

2.5 ƒ–isometries and weak train tracks

Recall that a fully irreducible ' 2 Out.Fr / is geometric if it is represented by a home-
omorphism f W M !M of a compact surface with nonempty boundary, meaning that
there exists a homotopy equivalence hW Rr !M with homotopy inverse xhW M !Rr ,
such that the homotopy equivalence xhf h is homotopic to a train track representative
of ' . Let ' 2Out.Fr / be a nongeometric fully irreducible with attracting lamination ƒ.

Definition 2.12 (ƒ–isometry) For a free, simplicial Fr –tree T , a ƒ–isometry on T

is an Fr –equivariant map fT W T ! TC such that, for each leaf L of ƒ realized in T ,
the restriction of fT to L is an isometry onto a bi-infinite geodesic in TC .

Definition 2.13 (weak train track) A normalized weak train track for ' is a free
simplicial Fr –tree T 2 bCVr on which a ƒ–isometry exists. A weak train track is an
element of CVr represented by a normalized weak train track.

2.6 The axis bundle

Three equivalent definitions of the axis bundle A' for a nongeometric fully irreducible
outer automorphism ' 2 Out.Fr / are given in [14]. We will use all three definitions
here and thus remind the reader in this subsection of each of them. We say a few words
with regard to their equivalence in Section 2.7.

Definition 2.14 ( �A' ) Fix a normalization of TC . Then define�A' D ˚free simplicial Fr –trees T 2 bCVr j there exists a ƒ–isometry fT W T ! TC
	
:

In other words, �A' is the set of normalized weak train tracks in bCVr .

Definition 2.15 (fold lines) A fold line in CVr is a continuous, injective, proper
function R! CVr defined by

(1) a continuous 1-parameter family of marked graphs t ! �t , and
(2) a family of homotopy equivalences htsW �s! �t defined for s � t 2R, each

marking-preserving, satisfying:

Train track property hts is a local isometry on each edge for all s � t 2R.
Semiflow property hut ıhts D hus for all s � t � u 2R, and hssW �s! �s

is the identity for all s 2R.
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Axis Bundle Definition I A' is the union of the images of all fold lines F W R!CVr

such that F.t/ converges in CVr to T '
� as t !�1 and to T

'
C as t !C1.

Axis Bundle Definition II A' is the set of weak train tracks in CVr for ' , ie A' is
the image of �A' under the projectivization of bCVr .

Axis Bundle Definition III A' D
S1

kD1 TT.'k/, where TT.'k/ is the set of train
track graphs for 'k and the closure is taken in CVr .

Remark 2.16 By [14, Lemma 5.1], every weak train track in CVr is represented
by a unique normalized weak train track in bCVr ; equivalently, the projection map
bCVr !CVr restricts to a bijection �A'!A' . Because of this, we will take the liberty

for the rest of the paper to blur the distinction between weak train tracks and normalized
weak train tracks.

Some crucial properties of the axis bundle are recorded in [14, Theorem 6.1, Lemma 6.2].
We summarize a few here as Proposition 2.17. Given a point T 2 bCVr , the length
of T is defined to be Len.T / WD vol.T=Fr /.

Proposition 2.17 [14] Let ' 2 Out.Fr / be a nongeometric fully irreducible outer
automorphism. Then the map LenW �A' ! .0;1/ is a surjective and '–equivariant
homotopy equivalence, where ' acts on .0;1/ by multiplication by 1=�, using the
number � from Definition 2.10.

2.7 Connections between the axis bundle definitions

The equivalence of the three axis bundle definitions is proved in [14, Theorem 1.1].
We explain here briefly connections frequently used. In particular, we show one
obtains from a train track representative gW �! � of a nongeometric fully irreducible
' 2 Out.Fr / both a ƒ–isometry g1W z�! TC and a “periodic” fold line.

2.7.1 ƒ–isometries from train track maps

Definition 2.18 (g1 ) Let gW �!� be a train track representative of a nongeometric
fully irreducible ' 2 Out.Fr /. We return to the construction of Definition 2.10. We
let Tk denote the simplicial Fr –tree obtained from z� by identifying x;y 2 z� with each
other when dk.x;y/D 0 and then equipping the quotient graph with the metric induced
by dk . Then, for each i , a basepoint-preserving lift of g induces a basepoint-preserving
Fr –equivariant map zgiC1;i W Ti! TiC1 restricting to an isometry on each edge. We
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obtain a direct system zgj ;i W Ti ! Tj defined inductively by zgj ;i D zgj ;j�1 ı zgj�1;i .
Then the ƒ–isometry g1W z�! TC is the direct limit map:

z� D T0
zg1;0

//

g1

!!

T1
zg2;1

//

g1;1

!!

T2
zg3;2

//

g2;1 ##

� � � TC

We will use the following result of Handel and Mosher.

Proposition 2.19 [14, Corollary 2.14] Let gW �! � be a train track representative
of a nongeometric fully irreducible ' 2 Out.Fr /, let z� be the universal cover, and let
Œzx; zy� be the tight path from zx to zy . Then g1W z� ! TC is a surjective equivariant
map such that, for all zx; zy 2 z� , the following are equivalent:

(1) g1.zx/D g1.zy/.

(2) There exists k � 0 such that gk
# .Œzx; zy�/ is either trivial or a Nielsen path.

In particular, g1 restricts to an isometry on all legal paths.

Remark 2.20 (realizing lamination leaves in TC ) Since lamination leaves are legal,
Proposition 2.19 allows one to describe how lamination leaves are realized in TC .

2.7.2 Periodic fold lines Stallings introduced “folds” in [23]. Let gW � ! � 0 be
a homotopy equivalence of marked graphs. Let e0

1
� e1 and e0

2
� e2 be maximal,

initial, nontrivial subsegments of edges e1 and e2 emanating from a common vertex
and satisfying that g.e0

1
/ D g.e0

2
/ as edge paths and that the terminal endpoints of

e0
1

and e0
2

are in g�1.V.�//. Redefine � to have vertices at the endpoints of e0
1

and e0
2

if necessary. One can obtain a graph �1 by identifying the points of e0
1

and e0
2

that have the same image under g , a process we will call folding. Stallings [23] also
showed that if gW � ! � 0 is tight, then g factors as a composition of folds and a
final homeomorphism. We call such a decomposition a Stallings fold decomposition.
It can be obtained as follows: At an illegal turn for gW � ! � 0 , one can fold two
maximal initial segments having the same image in � 0 to obtain a map g1W �1! � 0

of the quotient graph �1 . The process can be repeated for g1 and recursively. If some
gk W �k�1 ! � has no illegal turn, then gk will be a homeomorphism and the fold
sequence is complete.

Notice that choices of illegal turns are made in this process and that different choices
lead to different Stallings fold decompositions of the same homotopy equivalence.
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�0 g1

//

gDg0

  

�1 g2

//

g1

!!

�2 g3

//

g2
##

� � �
gn

// �n D �
0

Figure 1: Constructing a Stallings folds decomposition

When � is a marked metric graph (of volume 1), we obtain an induced metric on
each �k , which we may renormalize to be again of volume 1.

In [22], Skora interpreted a Stallings fold decomposition for a tight homotopy equiva-
lence gW �! � 0 as a sequence of folds performed continuously. Repeating a Stallings
fold decomposition of a train track representative for a fully irreducible outer automor-
phism defines a periodic fold line in outer space. The discretization of this fold line is
depicted in (1), where it should be noted that �nk D .1=�

n/�0 �'
n , for each integer n:

(1) � � � �! �0

g1
�! �1

g2
�! � � �

gK
��! �K

gKC1

����! �KC1

gKC2

����! � � �
g2K
���! �2K

g2KC1

�����! � � � :

2.8 Ideal Whitehead graphs and the rotationless index

We first explain for the reader more familiar with surface theory the ideal Whitehead
graph and index list for a pseudo-Anosov mapping class  on a closed surface S .
Suppose that v is a k–pronged foliation singularity and z is a lift of  to the universal
cover zS fixing a lift zv of v . Then zv in fact lies inside of a principal region P for the
invariant lamination. The index list entry for v would be 1� k

2
and the ideal Whitehead

graph component would be a k–gon. Equivalently, the ideal Whitehead graph compo-
nent is the polygon formed by the lamination leaf lifts bounding the principal region P .

We remind the reader of the definition from [14] of the ideal Whitehead graph of a
nongeometric fully irreducible outer automorphism. One can reference [19] and [14]
for alternative definitions of the ideal Whitehead graph and its outer automorphism
invariance.

Definition 2.21 (ideal Whitehead graph IW.'/) Let ' 2Out.Fr / be a nongeometric
fully irreducible outer automorphism with lifted attracting lamination zƒ (realized
in TC ). To define the ideal Whitehead graph, start with the graph having a vertex for
each distinct leaf endpoint and an edge connecting the vertices for the endpoints of
each leaf. eIW .'/ is the union of the components with at least three vertices. Fr acts
freely, properly discontinuously, and cocompactly in such a way that the restriction to
each component of eIW .'/ has trivial stabilizer. The ideal Whitehead graph IW.'/ is
the quotient under this action, which one can note has only finitely many components.
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The ideal Whitehead graph has another interpretation in terms of singular leaves of the
attracting lamination. For a fully irreducible ' , a leaf of the attracting lamination is
singular if it shares a half-leaf with another leaf. Two half-leaves are asymptotic if they
share a common ray. eIW .'/ has a vertex for each asymptotic class of half-leaves of
singular leaves and an edge for each singular leaf of zƒ. The edges for two singular
half-leaves share a vertex precisely when those half-leaves share an endpoint in the
boundary. This definition also allows one to view eIW .'/ in any Fr –tree T 2 TT.'k/.
Many details of the correspondence of these views will be explained in Remark 2.30.

Remark 2.22 As mentioned before, cut vertices of an ideal Whitehead graph yield
representatives with PNPs. One can obtain such a representative from a stable rep-
resentative by splitting open at cut vertices of the ideal Whitehead graph, as in [14,
Lemma 4.3]. We use this in particular in Lemma 4.5.

The notion of an index ind .'/ for a ' 2 Out.Fr / was first introduced in [10]. This
notion is not in general invariant under taking powers. The monograph [14] introduces
the notion of a rotationless index (there just called the index sum) i.'/ for a fully
irreducible ' 2 Out.Fr /. It follows from [14, Lemma 3.4] that for rotationless nonge-
ometric fully irreducible ' 2 Out.Fr /, the two notions differ only by a change of sign.

Definition 2.23 (index list and index sum) Let ' 2Out.Fr / be a nongeometric fully
irreducible outer automorphism and C1; : : : ;Cl the connected components of IW.'/.
For each j , let kj denote the number of vertices of Cj . The index list for ' is defined as

(2) .i1; : : : ; ij ; : : : ; il/D
�
1� 1

2
k1; : : : ; 1�

1
2
kj ; : : : ; 1�

1
2
kl

�
;

where the list is rewritten to be in increasing order of absolute values with repetitions
allowed. The rotationless index is then i.'/D

Pl
jD1 ij .

One can obtain the index list (hence rotationless index) from any PNP-free rotationless
train track representative gW � ! � . The ki in (2) are replaced by the number of
gates ki at the principal vertices vi 2 � . Since g is PNP-free, the principal vertices are
precisely those periodic vertices with at least three gates. The index sum is therefore

(3) i.'/D
X

principal vertices v

�
1� 1

2
#.gates at v/

�
:

2.9 Ageometrics

The division of the set of nongeometric fully irreducibles into “ageometric” and “para-
geometric” outer automorphisms could be considered to have evolved out of a series
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of papers. In [11] Gaboriau and Levitt define the geometric index indgeom.T / for
an R–tree equipped with a minimal, small Fr –action. They prove that the index
satisfies the inequality 1

2
� indgeom.T /� r � 1, with the equality indgeom.T /D r � 1

realized precisely by “geometric trees”. In [10] it is proved that, after replacing a
fully irreducible ' by a suitable positive power, one has indgeom.T

'
C/ D 2 ind.'/.

While it had been previously known that geometric fully irreducibles have geometric
attracting tree, Levitt proved in [17] that even some nongeometric fully irreducibles
have geometric attracting tree, hence creating a natural division of nongeometric fully
irreducible outer automorphisms by their rotationless index. It will still be important for
us that an ageometric fully irreducible ' 2 Out.Fr / can be characterized by satisfying
0 > i.'/ > 1� r . However, we also give an equivalent definition in terms of PNPs.
The equivalence follows from the fact proved in [1, Theorem 3.2] that for a fully
irreducible ' 2 Out.Fr /, the attracting tree T

'
C is geometric if and only if the “stable”

train track representative of ' contains a PNP. For interest’s sake, we make one final
remark that independently Handel and Mosher [13] and Guirardel [12] gave a further
characterization that a fully irreducible outer automorphism is geometric if and only if
both the attracting tree and repelling tree are geometric.

Definition 2.24 (ageometric) A fully irreducible outer automorphism is ageometric
when a fully stable representative of a rotationless power has no Nielsen paths (closed
or otherwise).

Remark 2.25 By [9, Lemma 3.28] every PNP of a rotationless train track representa-
tive is in fact an NP. Hence, a fully irreducible outer automorphism is ageometric if
and only if one (hence every) fully stable representative of a (hence every) rotationless
power has no NPs.

2.10 Local decomposition of ideal Whitehead graphs

The following definitions are from [14] and, as in that work, we make the following
assumptions throughout:

� ' 2 Out.Fr / is nongeometric fully irreducible,

� TC D T
'
C ,

� ƒDƒ' ,

� T 2 �A' , and

� f W T ! TC is a ƒ–isometry.
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We further let � WD T=Fr . Unless specified, we do not assume that T 2 TT.'/.

There is a partial ordering on the axis bundle which relies on the splitting of IW.'/

into “stable Whitehead graphs”.

We remind the reader of terminology and discussion found in [14, Section 3.3].

Definition 2.26 (principal points in trees) Given a branch point b of TC , the lifted
ideal Whitehead graph eIW .'/ has one component, which we denote eIW b.'/, whose
edges, realized as lines in TC , all contain b . This relationship gives a one-to-one
correspondence between components of eIW .'/ and branch points of TC . Given a
branch point b of TC , we let eIW b.'IT / denote the realization of eIW b.'/ in T .
This makes sense by viewing the ideal Whitehead graph in terms of the lamination
leaves, as in Definition 2.21. We call a point v in T principal for f if there exists a
branch point b of TC such that f .v/D b and v is in eIW b.'IT /.

Remark 2.27 By definition, and since f W T ! TC is a ƒ–isometry, the restriction
of f to the principal points is surjective onto the set of principal points, ie branch
points of TC . Thus, f injects principal vertices to branch points if and only if it bijects
principal vertices to branch points.

Definition 2.28 (basepoints, singular rays, and principal directions) Let lT denote
the realization in T of a singular leaf l of some component eIW b.'/ of eIW .'/. Then
there exists a unique principal point v of T , called the basepoint of lT , lying on lT
and such that f .v/D b . Then v divides l into two rays. Rays obtained as such are
called singular rays based at v . Given a principal point v 2 T , the initial direction of
a singular ray based at v is called a principal direction at v .

Definition 2.29 (principal lifts and principal directions for principal lifts) In this
definition, we add the additional assumption that T is a train track, and we fix gW �!�

to be a rotationless train track representative of 'k for some k � 1.

Given a principal vertex zv in T D z� , there exists precisely one lift zg of g fixing zv .
Such lifts are called principal lifts (see [9]).

There exists a one-to-one correspondence between the set of singular rays at zv and
the set of fixed directions of zg at zv (which are called the principal directions at zv
for zg ). The correspondence can be seen as follows (further details can be found in [19]).
Given a direction d of an edge E at a principal vertex v , the ray determined by d is
defined as zRD

SjD1
jD0

zgj .E/, where zg is a lift, fixing v , of a rotationless train track
representative gW �! � for some 'k .
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Remark 2.30 As in Definition 2.29, T 2 TT.'/ and f W T ! TC is a ƒ–isometry.

Recall from Definition 2.3 that a principal point downstairs either has at least three
periodic directions or is the endpoint of a PNP. For a principal point downstairs, having
at least three periodic directions, any lift is a principal point upstairs (with at least three
singular rays determined by the singular directions, as in Definition 2.29). Additionally,
since the directions are fixed, they give three distinct edges at f .v/, so that f .v/ is
indeed a branch point of TC .

Suppose that instead v , w are the endpoints of an iNP � for g . Then there exist at
least two fixed directions at v (one, which we call E1 , is a terminal edge of �) and
at least two fixed directions at w (one, which we call E2 , is the other terminal edge
of �). For any lift z� of � with terminal vertices zv and zw , lifts of v and w respectively,
f sends zv and zw to a common point b of TC , which has at least three directions (one
of which arises from the identification of E1 and E2 and the other two of which come
from the distinct fixed directions at v and w ). Hence, b is also a branch point of TC .
Notice that the rays constructed above from E1 and E2 are also asymptotic in T .

All principal points and principal directions in T arise in one of these two ways.

Definition 2.31 (stable Whitehead graphs SW.zvIT / and local Whitehead graphs
LW.zvIT / for weak train tracks) Let T be a weak train track. The local Whitehead
graph LW.zvIT / will have a vertex for each direction at zv and an edge connecting the
vertices corresponding to the pair of directions fd1; d2g if the turn fd1; d2g is taken
by the realization in T of a leaf of �ƒ' . The stable Whitehead graph SW.zvIT / at
a principal point zv will be the subgraph of LW.zvIT / obtained by restricting to the
principal directions. Equivalently, the stable Whitehead graph SW.zvIT / at a principal
point v can be identified with the graph having one vertex for each singular ray zR
based at v and an edge connecting the vertices corresponding to a pair of singular rays�R1 , �R2 at v if and only if �R1[

�R2 is a singular leaf at v . One can reference [14] for
further details.

Definition 2.32 (stable Whitehead graph SW.vI�/ and local Whitehead graph
LW.vI�/ for train tracks) For a general weak train track T and � D T=Fr , one can
obtain SW.vI�/ and LW.vI�/ from SW.zvIT / and LW.zvIT / by quotienting by
the Fr –action. In the special case of a train track T for ' , there is also a more direct
construction of these Whitehead graphs in � , as follows.

The local Whitehead graph LW.vI�/ at a point v 2 � has a vertex for each direction
at v and an edge connecting the vertices corresponding to the pair of directions
fd1; d2g if the turn fd1; d2g is taken by the realization in � of a leaf of ƒ' . And
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the stable Whitehead graph SW.vI�/ at a principal point v will be the subgraph of
LW.vI�/ obtained by restricting to the periodic directions and the edges connecting
them. Since each gate at a periodic vertex contains precisely one periodic direction,
one can equivalently give this definition in terms of gates. To do this one retracts each
gate to the periodic direction in that gate. Given two gates g1 and g2 , the set of edges
between directions in g1 and g2 is retracted to a single edge between g1 and g2 .

Remark 2.30 explains the relationship between the different definitions of stable White-
head graphs.

Given a train track map gW �! � , the direction map Dg induces a simplicial map
on both the local Whitehead graph and the stable Whitehead graph. We again denote
these maps by Dg .

Remark 2.33 Each stable Whitehead graph SW.zvIT / sits inside of eIW .'/: A
vertex of SW.zvIT / corresponds to a singular leaf zR at zv and the endpoint of this ray
corresponds to a vertex of eIW .'/. An edge of SW.zvIT / corresponds to a singular
leaf based at zv . This leaf also gives an edge of eIW .'/.

The following is a restatement of [14, Lemma 5.2], where information unnecessary for
our purposes is left out.

Lemma 2.34 Suppose that T is a weak train track and fT W T ! TC a ƒ–isometry.
Suppose that b is a branch point of TC and f zwig � T is the set of principal vertices
mapped by fT to b . Then:

(1) eIW b.'IT /D
S

SW. zwi IT /.

(2) For each i ¤ j , the intersection SW. zwi IT /\SW. zwj IT / is at most one vertex.
In the case where there is a vertex P in the intersection, we have that P is a cut
point of eIW .'/, separating SW. zwi IT / from SW. zwj IT / in eIW .'/.

Definition 2.35 (local decompositions and splitting) In light of Remark 2.33 (and
[14, Lemma 5.2]), the ideal Whitehead graph, realized in T , can be written as the
union of the stable Whitehead graphs at the principal points. We call this its local
decomposition.

Let T;T 0 be weak train tracks with ƒ–isometries f W T ! TC and f 0W T 0 ! TC .
As in [14], one says f splits as much as f 0 if the local decomposition eIW .'/ DS

SW.vj IT / is at least as fine as the local decomposition eIW .'/D
S

SW.wi IT
0/.

That is, for each principal vertex vj of T , there exists a principal vertex wi of T 0 such
that SW.vj IT / � SW.wi IT /, where the inclusion takes place in eIW .'/, realized
as a decomposition, as above.
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The following lemma is a consequence of the definitions in [14, Section 5.1].

Lemma 2.36 Let ' 2 Out.Fr / be nongeometric fully irreducible and let T;T 0 be
weak train tracks for ' with ƒ–isometries fT W T ! TC and fT 0 W T 0! TC . Then:

(A) If fT and fT 0 are each injective on principal vertices, then they split equally.

(B) If fT is injective on principal vertices, then fT 0 splits at least as much as fT .

We will also use [14, Proposition 5.4], which we record here as Proposition 2.37.

Proposition 2.37 Let ' 2 Out.Fr / be nongeometric fully irreducible. Then for any
train track representative gW �! � for ' with associated ƒ–isometry g1W z�! TC ,
there exists an " > 0 so that, if f W T ! TC is any ƒ–isometry, if g1 splits at least as
much as f , and if Len.T /� ", then there exists a unique equivariant edge-isometry
hW z�! T such that g1 D f ı h. Moreover, h is a ƒ–isometry.

3 The stable axis bundle

As mentioned above, the stable axis bundle was introduced in [14, Section 6.5] as an
object of interest and is studied here as a means to a more general proof of our main the-
orem. For this purpose we establish here rigorously properties previously believed true.

Definition 3.1 (stable axis bundle) Let  2Out.Fr / be ageometric fully irreducible.
Then define

(4) ST. / WD f� 2 TT. / j 9 a fully stable train track representative
gW �! � for  g:

The stable axis bundle is

(5) SA' D
1[

kD1

ST.'k/:

One can reformulate the stable axis bundle definition in terms of principal points:

Lemma 3.2 Let gW � ! � be a rotationless train track representative of a positive
power of an ageometric fully irreducible ' 2 Out.Fr /. Then the following are equiva-
lent:

(1) ' is fully stable.

(2) ' has no Nielsen paths.

(3) The associated map g1W z�! TC is injective on the set of principal points.
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Proof That (1) implies (2) is simply Definition 2.24. (2) implies (1) by the definition
of a stable train track representative. We now show (2) implies (3). Assume g is
NP-free and that (3) does not hold, ie that there exist distinct points zx; zy 2 z� such that
g1.zx/ D g1.zy/. Then Proposition 2.19 tells us that we can take a path � from zx
to zy , project to � , and know that some gk

# .�/ will either be trivial or an NP. However,
it cannot be trivial since the endpoints are distinct and periodic. Hence, some power
of � must be an NP, contradicting our assumption. We now prove that (3) implies (2).
Suppose that � has an NP � . Let zg and z� be lifts of g and � , respectively, so that zg
preserves the endpoints zx; zy of z� . Then Proposition 2.19 implies that g1.zx/Dg1.zy/,
ie that g1 is not injective on the set of principal points.

Definition 3.3 (stable weak train track) Generalizing the lemma, one can define a
weak train track � to be stable if there exists a ƒ–isometry z�! TC which is injective
on the set of principal points. We denote the set of stable weak train tracks for a given
fully irreducible ' by SWTT.'/.

Proposition 3.11 will then imply that SA' and SWTT.'/ are in fact the same set.

Definition 3.4 (weak periodic Nielsen path) A weak periodic Nielsen path in a weak
train track T is a homotopically nontrivial path in T whose endpoints are principal
points with the same image in TC .

One can then also characterize stable weak train tracks by their lack of weak PNPs:

Lemma 3.5 A weak train track T is stable if and only if it has no weak PNPs.

Proof If T is a stable weak train track, then it is injective on principal points. Hence,
the endpoints of a weak PNP in T would be the same, but this is impossible since T

is a tree.

Suppose that T is a weak train track with distinct principal points v1 , v2 in T having
the same image in TC . Since T , being a tree, is connected, there exists some path
from v1 to v2 in T . This path would be a weak PNP. Hence, if T is a weak train
track, it is injective on principal points.

Lemma 3.6 Suppose gW � ! � is a fully stable train track representative of a rota-
tionless power 'R of a fully irreducible ' 2Out.Fr /. If the rotationless index satisfies
i.'/D 3

2
� r , then g has a unique illegal turn.
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Proof As laid out in Definition 2.24 and the preceding paragraph, from results of [1]
it follows that ' is ageometric if and only if i.'/ � 3

2
� r if and only if each stable

train track representative of ' is PNP-free.

For simplicity, in what follows, we define

GI.g/D
X

vertices v

�
1� 1

2
#(gates of v )

�
:

Recall also (from Definition 2.23) that the rotationless index i.'/ is the same sum as
GI.g/ but with the terms indexed by nonperiodic vertices with � 3 gates removed.
Hence, in particular, GI.g/� i.'/. We also have

1� r D �.�/D #Vertices� #Edges

D #Vertices� 1

2

X
gates D

card.D/

D GI.g/C 1

2

X
gates D

.1� card.D//:

Thus,

(6) .1� r/�GI.g/D 1

2

X
gates D

.1� card.D//:

Each term on the right-hand side of (6) is nonpositive and is zero if and only if the
gate D consists of a single direction. Thus, GI.g/D 1� r if and only if each gate has
cardinality 1. This is true if and only if there are no illegal turns, which is impossible
as ' is fully irreducible, hence of infinite order. Thus, GI.g/ > 1� r and, since GI.g/
can only take half-integer values, GI.g/ � 3

2
� r . Hence, under the assumption that

i.'/D 3
2
� r , we have

3
2
� r � GI.g/� i.'/D 3

2
� r:

Now, GI.g/D 3
2
� r precisely when each gate has cardinality 1, except a single gate of

cardinality 2. Equivalently, GI.g/D 3
2
� r if and only if g has a unique illegal turn.

Remark 3.7 The proof of the above lemma implies that, given a fully stable train track
representative gW �!� of a rotationless power 'R of a fully irreducible ' 2Out.Fr /

satisfying i.'/D 3
2
� r , we have

(7) i.'/D GI.g/:

The following corollary, while not used in what follows, may be of independent interest.

Algebraic & Geometric Topology, Volume 16 (2016)



Lone axes in outer space 3405

Corollary 3.8 Let ' 2 Out.Fr / be a fully irreducible outer automorphism with rota-
tionless index satisfying i.'/D 3

2
� r . Then there exists a rotationless power 'R of '

with a fully stable train track representative gW �! � such that each vertex of � is
principal with respect to g and all but one direction of � is fixed by Dg .

Proof Let g0W � 0!� 0 be a stable train track representative of a rotationless power 'R .
Such a representative exists by Lemmas 3.7 and 3.8 of [4] and the intervening paragraph.
Amongst all such representatives we may assume that � 0 has the minimal number of
vertices.

By Definition 2.6, g0 is fully stable. Passing to a higher power, we may assume that
g0 fixes every periodic vertex in � 0 , that Dg0 fixes every periodic direction at each
periodic vertex, and that g0 fixes the image of every nonperiodic vertex, and hence
every nonperiodic vertex has no vertex in its preimage. If any valence-2 vertex is
nonperiodic then that vertex may be removed from the list of vertices, contradicting
minimality. It follows that every vertex of valence 2 is fixed.

By the proof of Lemma 3.6 (see Remark 3.7) we have i.'R/D GI.g0/. In particular
no nonperiodic vertex can have more than two gates. Since g0 has only one illegal turn
(by Lemma 3.6), there exists at most one vertex of valence � 3 with only two gates.
Hence, there exists at most one nonperiodic vertex of valence � 3.

Let v 2 � be the vertex at which g0 has an illegal turn fd1; d2g. Let g00W � 00! � 00 be
the train track representative of 'R obtained by folding the illegal turn of g0 in the
sense of [4, page 11], so there is a factorization

g0W � 0
g1
�! � 00

g2
�! � 0

where g1 folds the illegal turn, and g00 D g1 ıg2W �
00! � 00 . The fold g1 identifies

initial segments �1; �2 of the oriented edges E1;E2 representing fd1; d2g; these are
the maximal initial segments that are identified by g0 , and g1 must be a full fold,
meaning that �i DEi for some i D 1; 2, for otherwise �1; �2 are both proper and their
terminal endpoints are identified to a new valence-3 vertex of � 00 having three gates,
contradicting that i.'R/DGI.g0/DGI.g00/. Since g1 is a full fold it follows that � 00

has no more vertices than � 0 . Also, g00 is fully stable, because folding in the sense of
[4, page 11] cannot create periodic Nielsen paths. It follows by minimality that � 00 has
the same number of vertices as � 0 , and so g1 is a proper full fold, identifying all of
E1 or E2 with a proper initial segment of the other.

The proof now breaks into the following two cases:
(1) There are no nonperiodic vertices.
(2) There is a single nonperiodic vertex, and it has two gates and the unique illegal

turn, and so it must be equal to v .
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Case 1 In this case there is no vertex of valence 2, because any such vertex has no
vertex in its preimage and hence may be removed, contradicting minimality. If v has
valence � 4 then we are done, because each vertex is a fixed vertex with at least three
fixed directions and so is principal, in addition to the illegal turn containing the only
nonfixed direction. If v has valence 3 then, after the proper full fold g1W �

0! � 00 ,
the vertex w D g1.v/ has valence 2 in � 00 and has no vertex in its g00 preimage, thus
w may be removed from the list of vertices of � 00 , contradicting minimality.

Case 2 The vertex v has valence 3, and so as in Case 1 the vertex w D g1.v/ has
valence 2 in � 00 and has no vertex in its g00 preimage, leading again to a contradiction
with minimality.

Lemma 3.9 Suppose ' 2 Out.Fr / is ageometric fully irreducible with i.'/D 3
2
� r .

We view points in outer space as free, simplicial Fr –trees. Then, for each T 2S
ST.'k/, the ƒ–isometry IW T ! TC is unique.

Proof Let ' 2 Out.Fr / be as in the lemma and have attracting lamination ƒ, ie
ƒ D ƒ' . Consider a point in outer space viewed as a free, simplicial Fr –tree T .
In [14], Handel and Mosher define an orientation of zƒ in T as an Fr –equivariant
choice of orientation on each leaf of zƒ satisfying that the orientations of leaves LT

and L0
T

agree on their intersection LT \L0
T

, provided the intersection contains a
nontrivial interval. By birecurrence, an orientation on zƒ is determined by an orientation
of any of its leaves. Also note that an orientation of zƒ in T induces a well-defined
Fr –equivariant orientation on each edge of T , hence on its quotient graph � D T=Fr .

In [14, Theorem 5.8] the authors prove that the ƒ–isometry IW T 7! TC is unique if zƒ
is nonorientable. Hence, we can assume zƒ is orientable and fix an orientation.

By a positive gate we will mean a gate that the attracting lamination only exits (and
never enters) the vertex through. A negative gate will mean a gate that the attracting
lamination only enters (and never exits) the vertex through. Each gate is either positive
or negative. A direction in a positive gate will be called positive and a direction in a
negative gate will be called negative. Notice that, for an orientable lamination realized
in � , for each edge of � , the direction of the edge at one vertex is positive and the
direction of the edge at the other vertex is negative.

Now let T specifically represent a point in
S

ST.'k/ and again let � D T=Fr . Thus,
there exists a fully stable train track representative gW � ! � of some rotationless
power 'R . According to [14, Theorem 5.8c(iii)], IW T ! TC is unique if and only if
there exist vertices v;w 2 T such that v has � 2 positive gates with respect to I and
w has � 2 negative gates with respect to I . Thus, by symmetry, it suffices to prove it
impossible for each vertex to have a unique positive gate.
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For the sake of contradiction we assume each vertex has only one positive gate. We will
use the fact that, in the absence of PNPs, the rotationless index is computed from the
gates (see Remark 3.7). In particular, we will also use the fact that, since i.'/D 3

2
� r ,

there is only one illegal turn (see Lemma 3.6), ie there is a unique gate with two
directions and all other gates have only one. Each vertex with �3 gates has �2 negative
gates. Also, the total number of positive vertex directions in � and of negative vertex di-
rections in � must be equal in order for them to correspond to a set of edge orientations.

We restrict our attention to vertices of valence � 3. We consider separately the cases
where � has only one such vertex and where � has more than one such vertex. If
� has only one such vertex, then it would have to have 2r � 2 negative gates. Thus,
it would have � 2r � 2 negative directions and � 2 positive directions. For r � 3

this makes having an equal number of positive and negative directions impossible. So
suppose � has k � 2 such vertices. Then � would have � 2k negative gates by the
previous paragraph. Thus, it would have � 2k negative directions and at most kC 1

positive directions. This is a contradiction, as above, unless k D 1.

Before proceeding with Proposition 3.11, we recall from [14, Proposition 5.5] the
following. Most of the notation is described in Definition 2.31 and Definition 2.26;
however, we need one more definition. We gave in Definition 2.2 the definition of a
periodic point in a train track. One can define the set of periodic points in TC using
any ƒ–isometry f W T ! TC on a train track T . The periodic points in TC will be
the images under f of the periodic points in T . This definition is equivalent to the
intrinsic definition, involving automorphisms representing ' , given in [14, Section 5.3].

Proposition 3.10 [14] Let T be a weak train track and f W T ! TC a ƒ–isometry.
Then the following are necessary and sufficient conditions for the existence of a train
track representative gW �! � of 'k , for some k , such that � D T=Fr and f D g1
(ie for � to be a train track for 'k ):

(1) For every vertex w of T , f .w/ 2 TC is a periodic point.

(2) For every vertex y of T , if f .y/D b is a branch point of TC then there exists
a principal vertex w of T such that

Df .LW.yIT //�Df .SW.wIT //�eIW b.'/:

Proposition 3.11 Suppose that ' 2 Out.Fr / is an ageometric, fully irreducible outer
automorphism with i.'/D 3

2
� r . Then:

(A) SA' is the set of stable weak train tracks for ' .

(B) SA' is a nonempty, closed, '–invariant subset of A' .
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Proof For the purposes of this proof, given any weak train track T 0 with associated
ƒ–isometry T 0 ! TC , we call a point in T 0 mapping to a periodic point in TC
preperiodic.

We first show, via applying Proposition 3.10, that SWTT.'/ is contained in
S

ST.'k/.
We cannot directly apply Proposition 3.10 to a given T 2 SWTT.'/ (with ƒ–isometry
fT W T ! TC ) because T may fail to satisfy the first of the necessary and sufficient
conditions for each vertex being TC preperiodic. Hence, we approximate T by
performing the operation in the proof of [14, Corollary 5.6] of eliminating one at a time
those vertices w which are not TC preperiodic, via small folds of directions at w having
the same image. In fact, the folds can be chosen sufficiently small to avoid interaction
with any principal vertices. In particular, for the T 0 obtained, the injectivity of fT 0

on the set of principal vertices is unaffected, and the weak train tracks fT 0 W T 0! TC
obtained will still be stable. Thus, we can apply Proposition 3.10 to approximate T by
stable weak train tracks provided that the T 0 satisfy Proposition 3.10(2), and hence
are train tracks. That is, for each vertex y of T 0 such that f .y/D b for some branch
point of TC , we need that there exists a principal vertex w of T 0 such that

(8) DfT 0.W .yIT 0//�DfT 0.SW.wIT 0//�eIW b.'/:

First notice that, because fT 0 W T 0! TC is a stable weak train track, for each principal
point w 2 T 0 and b D fT 0.w/ we have that DfT 0.SW.wIT 0// D eIW b.'/. This
follows from the facts that

DfT 0.SW.wIT 0//�eIW b.'/�
[

principal x

DfT 0.SW.xIT 0//

and that, since fT 0 is injective on principal vertices, no leaf of[
principal x

DfT 0.SW.xIT 0//�DfT 0.SW.wIT 0//

can be contained in eIW b.'/. We know that DfT 0.W .yIT 0// � eIW b.'/ since it
contains all leaves passing through b . Hence, (8) holds and Proposition 3.10(2) is
satisfied. So the T 0 are both stable weak train tracks and train tracks and hence are stable
train tracks by Lemma 3.2. Since they approximate T , we have that T 2

S
ST.'k/.

Hence, SWTT.'/�
S

ST.'k/, as desired.

Since each stable train track is in SWTT.'/, we are left to show for (A) that SWTT.'/
is closed. In other words, we need that each T 2 SWTT.'/ is in fact in SWTT.'/, ie
that the associated ƒ–isometry T ! TC is injective on principal points. Notice that it
also suffices to show this in bCVr , as the projection to CVr will then also be closed.
Sometimes in what follows we will use the same notation for a tree and its projection.
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Let T be in the closure and Ti a sequence of stable weak train tracks converging to T .
Take a subsequence, if necessary, so that all Ti are in the same open cell. Notice that,
if T is not in the open cell containing the Ti , then it is in a face of the cell. Let f Ci
denote the ƒ–isometry Ti! TC .

Let X D
S
fTig [ T . Then X is a compact subset of �A' . Hence, since the length

function is continuous, there is an upper bound on the length of a Fr –tree in X . By
Proposition 2.17, for each Fr –tree R in �A' and each integer k , we have Len.'k.R//D

�.'/�k Len.R/. Thus, given any ", there exists a k" such that, for all i , we have
Len.'k".Ti// < ". Because applying 'k" does not change full stability (just acts as a
change of marking) it is safe in what follows to replace 'k".Ti/ with Ti , to replace
'k".T / with T , etc.

By the arguments of the previous paragraph, we can assume that Len.Ti/;Len.T / < "
and apply Proposition 2.37 as follows. Since the ƒ–isometry for each Fr –tree in fTig

is injective on principal points, we can choose some Fr –tree S in A' \
�S

ST.'k/
�
,

with ƒ–isometry sW S ! TC (also injective on principal points), such that S satisfies
the following condition: for each Ti , there exists a ƒ–isometry li W S ! Ti such that
each arrow in the following diagram represents a ƒ–isometry:

S
li

//

s
  

Ti
f

C

i

// TC

Since T is in the closure of the cell containing the Ti , one can obtain T from each Ti

via a quotient map qi W Ti! T , affine on edges. Let mi D qi ı li :

S
li

//

mi

  

Ti qi

// T

For each i , let Gi WDTi=Fr denote the quotient graph of Ti and let q0i W Gi!G be the
induced quotient map. Since all Ti are in the same open cell, there exists a family of
marked homeomorphisms gji W Gi!Gj , affine on each edge, so that gkj ıgji D gki .
For each Gi , choose an indexing fe˛i g of the edge set of Gi so that gji.e

˛
i /D e˛j . In

a well-defined manner we can give each edge q0i.e
˛
i / in G the label e˛ . (Note that,

for some e˛i , we have that q0i.e
˛
i / is just a point, but we are only concerned with cases

where it is an edge.)

Since each li is a ƒ–isometry, and the lengths of the fe˛i g converge to the lengths
of the e˛ , the mi converge to a ƒ–isometry mW S ! T . Then g ımW S ! TC is a
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composition of ƒ isometries, hence is a ƒ–isometry. By Lemma 3.9, s D g ım:

S
m
//

s
  

T
g
// TC

Recall that, by definition, principal points of an Fr –tree R in A' map via the ƒ–
isometry R! TC to branch points in TC . What we need to show is that the set of
principal points of T is mapped injectively via g into the set of branch points of TC ,
and T 2 SWTT.'/, as desired. So, in particular, we need to show that, given principal
points v;w 2 T with g.v/D g.w/, we have v D w .

Let v;w 2 T be principal points such that g.v/ D g.w/ D b and let l and l 0 be
leaves of eIW b.'/ such that v is the basepoint of the realization lT of l in T and
w is the basepoint of the realization l 0

T
of l 0 in T . Let bS be the basepoint of the

realization lS of l in S and let b0
S

be the basepoint of the realization l 0
S

of l 0 in S .
Then bS D b0

S
, as s is injective on principal points and s.bS / D b D s.b0

S
/. Now,

since m is a ƒ–isometry, m maps lS isometrically onto l and l 0
S

isometrically onto l 0 .
Also, m.bS /D v since m maps lS isometrically onto lT and v is the only point on lT
mapped to b . Similarly, m.b0

S
/ D w . Thus v D w , as desired, and the proof that

SWTT.'/, and hence SA' , is closed is complete.

SWTT.'/ is nonempty since ' has a rotationless power with a stable representative
(obtained, for example, via the stabilization algorithm of [4]). Since SA' is a closure,
hence closed, we are left to show that SWTT.'/ is '–invariant. That

S
ST.'k/ is

invariant follows from the fact that changing the marking does not change stability.
SA' is then invariant since the action is continuous.

4 The proof

According to Theorem 1.2 of [14], A' is proper homotopy equivalent to a line. In
fact, there are distinguished lines from which it is possible to get to any point in A'
by a combination of folding and of collapsing PNPs. These distinguished lines are
periodic fold lines for representatives with the maximum number of PNPs possible.
The strategy of our proof is to show when A' consists of only a single such fold line.

We start with a sequence of two lemmas immediately revealing the necessity for the
rotationless index to be 3

2
� r .

Lemma 4.1 Suppose gW � ! � is a fully stable train track representative of a rota-
tionless power 'R of a fully irreducible ' 2Out.Fr /. If the rotationless index satisfies
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i.'/ > 3
2
� r , then by following from � a Stallings fold decomposition of g , one

reaches a point � 0 2 CVr such that there exists a fully stable train track representative
g0W � 0! � 0 of some power 'R with more than one illegal turn.

Proof As explained in the opening passage of Section 2.9, ' is ageometric if and
only if i.'/� 3

2
� r . We thus can assume each stable representative is PNP-free.

We suppose i.'/ > 3
2
� r and prove the lemma. The first observation we use is that

GI.g/ � i.'/, with equality if and only if each vertex with � 3 gates is fixed. The
second observation is that the following three statements are equivalent:

(i) GI.g/ > 3
2
� r .

(ii) Either there exist gates D1 , D2 with card.D1/; card.D2/ > 1 or there exists
some gate D with card.D/ > 2.

(iii) g has � 2 illegal turns.

Let gW � ! � be any rotationless train track representative of a 'R . If g has � 2

illegal turns, then (iii) is proved. So we suppose g has only one illegal turn. As above,
GI.g/ D 3

2
� r . So i.'/ > GI.g/ and � must have a nonperiodic vertex with � 3

gates. Any such vertex v is preperiodic.

By iterating a Stallings fold decomposition of gW �! � we obtain a periodic fold line
as in Section 2.7.2 (see (1), in particular).

Let k be such that gkC1 ı � � � ıg1.v/D gkC1 ı � � � ıg1.w/, while gk ı � � � ıg1.v/¤

gk ı� � �ıg1.w/. For each i let vi denote gi ı� � �ıg1.v/, let wi denote gi ı� � �ıg1.w/,
and let

fi D gi ı � � � ıg1 ıgK ı � � � ıgiC1W �i! �i :

Notice that the fold map gk W �k ! �kC1 conjugates fk to fkC1 , ie gkC1fk D

fkC1gkC1 . Also, the gk bijectively map the periodic directions of the wi because
periodic directions cannot be identified (as they are in distinct gates) and g bijectively
maps the periodic directions.

In �k , the vertex vk is preperiodic (and not periodic) and has � 3 gates, while the
vertex wk is fixed with � 3 gates. To identify vk and wk , the fold gkC1W �k! �kC1

must be an improper full fold, which fully folds two oriented edges E , E0 having
the same initial vertex and having terminal vertices vk , wk respectively. We have
gkC1.E/ D gkC1.E

0/ D E00 with terminal vertex gkC1.vk/ D gkC1.wk/ D wkC1 .
At vk there are � 2 directions, namely d and d 0 , not in the same gate as each other nor
in the same gate as the terminal direction of E . It follows that gkC1.d/ and gkC1.d

0/

are two directions at wkC1 not in the same gate as each other, and they are not periodic
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directions. Therefore, the two gates at wkC1 containing gkC1.d/ and gkC1.d
0/ must

each contain � 1 other direction, namely some periodic direction. Therefore, the train
track representative fkC1 has � 2 gates each of cardinality � 2. This proves that
g0 D fkC1W �kC1! �kC1 is the desired fully stable train track representative with
more than one illegal turn.

Comment 4.2 Notice that Lemma 4.1 does not assert that � itself has more than one
illegal turn. This motivates a question which may shed light on whether local dimension
is constant on the axis bundle: does there exist a fully irreducible ' 2 Out.Fr / and
two fully stable train track representatives g1W �1! �1 and g2W �2! �2 such that
�1 has only one illegal turn and �2 has more than one?

Lemma 4.3 Suppose that ' 2 Out.Fr / is ageometric and fully irreducible. If i.'/ >
3
2
�r , then, for each k � 1, each point in

S
ST.'k/ is contained in at least two distinct

periodic fold lines.

Proof Suppose ' 2 Out.Fr / is ageometric and fully irreducible with rotationless
index i.'/ > 3

2
� r . Then each 'k is also ageometric and fully irreducible with the

same rotationless index. Let � be a point of
S

ST.'k/ and f W �! � a fully stable
rotationless train track representative of some 'k . By Lemma 4.1, we can fold from �

to an X on which there exists a fully stable representative g of 'k with more than
one illegal turn, and that is in fact conjugate to f by precisely the folds taken to move
from � to X .

For any illegal turn fd; d 0g in X , consider its forward orbit fDgi.d/;Dgi.d 0/gi�0 .
There is a minimal value of i � 1 for which the turn fDgi.d/;Dgi.d 0/g is degenerate.
It follows that there exists an illegal turn fd; d 0g in X whose immediate forward
image fDg.d/;Dg.d 0/g is degenerate. If there are two such illegal turns then, by
choosing each of those two turns (respectively) for the first fold, we get two different
Stallings fold factorizations of g , hence two different fold lines passing through X .
Now suppose there is only one illegal turn T1 D fd; d

0g such that fDg.d/;Dg.d 0/g

is degenerate. Since some other illegal turn exists, there exists a distinct illegal turn
T 0 D fd 00; d 000g ¤ T1 which is mapped to T1 by Dg . For the first fold line passing
through X , one can use a Stallings fold decomposition for g starting with a maximal
fold of T1 . One obtains a second fold line as follows. Start by folding the two initial
segments corresponding to T1 some nonmaximal amount, producing a fold segment
from X to some X 0 . Let s denote the direction in X 0 of the folded segment and S

the segment in the direction of s that was obtained by the initial fold of T1 . Now we
must consider separate cases:
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(1) T1 and T 0 share no common direction;

(2) T1 and T 0 share a common direction.

If (1) holds, we continue by folding the initial segments of T 0 mapping to S , return to
finish maximally folding T1 , then continue with any Stallings fold decomposition from
there. Now assume (2) holds and T1 and T 0 share a common direction, say d D d 000 .
Let d 00 denote the image in X 0 of the direction of X of the same name. Next fold two ini-
tial segments corresponding to the turn fs; d 00g. Again one can continue and obtain a dif-
ferent Stallings fold decomposition, hence a different periodic line passing through X .

To obtain two distinct periodic fold lines passing through � , we create periodic fold
lines for '2 by folding along the Stallings fold decomposition for f from � to X ,
following one of the distinct fold lines from X to X , and then finishing from X to �
the Stallings fold decomposition for f .

Another obstacle to an axis bundle having only one axis is the possible existence of
multiple affine train track representative on the same point of outer space. The following
lemma restricts when this can occur (by Proposition 2.19 each train track representative
would induce a distinct ƒ–isometry of the universal cover).

Lemma 4.4 Suppose that ' 2 Out.Fr / is ageometric fully irreducible with i.'/D
3
2
� r . Suppose that X;Y 2

S
ST.'k/ and that there exists a ƒ–isometry IW zX ! zY .

Then I is unique.

Proof Suppose there were two distinct ƒ–isometries I1; I2W
zX ! zY . By Lemma 3.9,

there is a unique ƒ–isometry IX W
zX ! TC and unique ƒ–isometry IY W

zY ! TC .
Let

IX ;1 D IY ı I1W
zX ! TC and IX ;2 D IY ı I2W

zX ! TC:

Let x 2 zX be such that I1.x/ ¤ I2.x/. Let L be a leaf of ƒ realized in zX and
passing through x . Since I1 and I2 are ƒ–isometries, I1.L/ D I2.L/. Thus, for
each y 2 L, we have that I1.y/ is a shift of I2.y/ along L by the same distance
as I1.x/ is shifted from I2.y/. Since IY is a ƒ–isometry, this also holds for IX ;1

and IX ;2 . This contradicts the uniqueness of IX .

Lemma 4.5 Suppose that ' 2 Out.Fr / is ageometric fully irreducible such that
i.'/D 3

2
� r . Then IW.'/ has no cut vertices if and only if SA' DA' .

Proof Suppose no component of IW.'/ has a cut vertex. Then, by [14, Lemma 3.1],
no train track representative of ' has a PNP. That is, every representative of ' is fully
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stable. Since IW.'/D IW.'k/ for all k � 1, the same can be said for each 'k with
k � 1. Thus, TT.'k/D ST.'k/ for each k � 1 and SA' DA' , as desired.

Suppose IW.'/ has a component with a cut vertex. We claim that [14, Lemma 4.3]
implies that some power 'k has a train track representative (which we can consider
to be affine) gW � ! � with a PNP. In order to apply [14, Lemma 4.3], we need
to show that there exists a PNP-free train track representative g0W � 0 ! � 0 of this
sufficiently high power of ' satisfying (1)–(3) of the lemma. We take a high enough
power k so that the image of every nonperiodic vertex is a fixed vertex and, further, the
image of every nonperiodic direction is a fixed direction. We write this representative
g00W � 00! � 00 . Since g00 has no PNP and the ideal Whitehead graph has a component
with a cut vertex, there exists a principal vertex w of � 00 such that SW.g00; w/ has
a cut vertex. At the vertex w , we fold each gate at w a small amount so that each
direction at w is fixed by our new train track representative g0W � 0! � 0 . Now

SW.g00; w/Š SW.g0; w/Š LW.g0; w/;

so that LW.g0; w/ has a cut vertex, which we will call x . We therefore have a decom-
position into nontrivial subgraphs LW.g0; w/D X1 [X2 such that X1 \X2 D fxg,
which verifies (1). Since g0 is obtained from g00 by folding at illegal turns, g0 also
has no PNPs. For (2), we need that if g0.v/ D w for some vertex v ¤ w , then
Dg.LW.g0; v// is contained in either X1 or X2 . By the proof of Lemma 3.6, in order
to have i.'/ D 3

2
� r , we need that GI D 3

2
� r , which can only occur when each

preperiodic vertex either has valence 2 or has valence 3 and the unique illegal turn. If v
has valence 2, then LW.g0; v/ is a single edge, so its image is in the component. Also
in the case where v has valence 3, and the unique illegal turn, the image of LW.g0; v/

is a single edge. In either case, the single edge must lie in either X1 or X2 , which
completes the verification of (2). Since SW.g0; w/D LW.g0; w/ and, in particular,
all directions at w are fixed by Dg0 , we have that Dg0 is the identity on LW.g0; w/,
so that (3) holds. Since g0.w0/D w0 , we then have from [14, Lemma 4.3] the desired
train track representative g of 'k with a PNP.

This � on which g is a train track map, together with its marking and metric, gives
a point in A' . By Lemma 3.9, there cannot additionally be a stable train track
representative on that point. Thus, the point is not in

S
ST.'k/. By Proposition 3.11,

SA' is actually the set of stable weak train tracks. And, hence, since a stable weak
train track cannot be induced by a train track map unless it is a stable train track map
(see Lemma 3.2), g cannot be in SA' .

Theorem 4.6 Suppose ' 2 Out.Fr / is ageometric fully irreducible. Then the stable
axis bundle SA' is a unique axis if and only if the rotationless index satisfies i.'/D
3
2
� r . In that case it is a unique periodic fold line.
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Proof Notice that SA' would have to contain the entirety of the periodic fold line
for each affine train track representative on each element of

S
ST.'k/. Suppose that

SA' contained more than one fold line. Since
S

ST.'k/ is dense in SA' , then SA'
would contain stable train tracks on distinct periodic fold lines. Hence, SA' would
contain distinct periodic fold lines.

First suppose i.'/ > 3
2
� r . Then each point in

S
ST.'k/ is contained in at least two

distinct periodic fold lines by Lemma 4.3. We thus suppose instead that i.'/D 3
2
� r .

It suffices to prove that SA' contains a unique periodic fold line.

Before proceeding with the proof, we remark that, for each T 2
S

ST.'k/, there is
only one way to fold from T to TC . This is because there is only one ƒ–isometry
from T to TC (by Lemma 3.9) and only one illegal turn (by Lemma 3.6).

We remark further that, for a given T 2 SWTT.'/, the realization of IW.'/ in T is
the disjoint union of the stable Whitehead graphs SW.wIT / for the principal points
w of T . Thus, for any T;T 0 2 SWTT.'/ with respective ƒ–isometries iT W T ! TC
and iT 0 W T 0!TC , by Lemma 2.36, we have that iT and iT 0 both split minimally (and,
in particular, split as much as each other). This allows us to apply Proposition 2.37.
That is, for any T 2 SWTT.'/, there exists an " > 0 such that, for any T 0 2 SWTT.'/
with Len.T 0/� ", the ƒ–isometry iT W T ! TC factors (uniquely) as a ƒ–isometry
iT W T ! T 0 followed by the ƒ–isometry iT 0 W T 0! TC . Since there can only be one
fold line from T 0 to TC , this implies that T 0 lies on the unique fold line from T to TC .

For the sake of contradiction suppose SA' contained two distinct periodic fold lines
L and L0 . Choose T 2

S
ST.'k/ on L, choose " as in Proposition 2.37, and then

choose T 0 2
S

ST.'k/ on L0 so that Len.T 0/<". Since the lines converge to TC (andS
ST.'k/ is dense in SA' ), this is possible. Then, by Proposition 2.37, as explained in

the previous paragraph, T and T 0 must be on a common fold line. Without generality
loss assume that, on the fold line, the parameter of T is less than the parameter of T 0 .
Thus, for the parameter t0 for T 0 , we have L.t/DL0.t/ for all t � t0 .

We claim that there cannot exist two distinct periodic fold lines reparametrizable so
that, for some t0 , L.t/DL0.t/ for all t � t0 . Suppose that L is a periodic fold line
for 'k and L0 is a periodic fold line for 'k0

. Letting mD kk 0 , it follows that L;L0

are both periodic fold lines 'm . This means that

'm˛.L.t//DL.t Cm˛ log.�// and 'm˛.L0.t//DL0.t Cm˛ log.�//

for all t 2R and ˛ 2 Z. Given t 2R, this gives us L.t/DL.t 0/ by using a suitable
choice of t 0 � t0 and ˛ 2 Z.

Theorem 4.7 The axis bundle of an ageometric, fully irreducible ' 2 Out.Fr / is a
unique axis precisely if both of the following two conditions hold:
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(1) the rotationless index satisfies i.'/D 3
2
� r , and

(2) no component of the ideal Whitehead graph IW.'/ has a cut vertex.

Proof If both conditions hold, A' is a unique axis by Lemma 4.5 and Theorem 4.6.

Suppose ' 2 Out.Fr / is ageometric fully irreducible and that A' is a unique axis.
Since ' is ageometric, as shown in the opening passage of Section 2.9, i.'/� 3

2
� r .

If i.'/ > 3
2
� r , then each point in

S
ST.'k/ is contained in at least two distinct

periodic fold lines by Lemma 4.3. Since each ' has a stable train track representative,S
ST.'k/ is nonempty. A' would then contain multiple fold lines. So i.'/D 3

2
� r .

The second condition now follows by Lemma 4.5.

5 Final remarks

With the Coulbois computer package [6], the Full Irreducibility Criterion of Pfaff
[20, Proposition 4.1], and full irreducibility decidability algorithm of Kapovich [15,
Theorem A], it is becoming increasingly easy to check that an outer automorphism
satisfies the conditions to have a single-axis axis bundle. Once one determines that
it does, they can compute a train track representative using the Coulbois computer
package. A Stallings fold decomposition of the representative then gives the periodic
line, which is the entire axis bundle.

Ideal decomposition diagrams Let ' 2 Out.Fr / be ageometric fully irreducible.
Suppose that, in addition to the conditions of Theorem 4.7, the ideal Whitehead graph
is connected. Then A' is still a single periodic fold line. By [19, Proposition 4.3], a
power of ' has a representative with a Stallings fold decomposition that is a sequence of
proper full folds of roses. Also by [19, Proposition 8.3] we know that this decomposition
has a realization as a loop in the “ideal decomposition diagram” ID.IW.'//. In other
words, the single axis in A' can be viewed as a repeated gradual folding of a loop in
ID.IW.'//. And this is true for any fully irreducible  with IW. /Š IW.'/.

The conjugacy problem One can observe that A' and A differ by the action of
Out.Fr / on CVr if and only if there exist integers k; l � 1 such that 'k and  l are
conjugate in Out.Fr /. Thus, given two outer automorphisms ' and  that one has
checked, as above, satisfy the conditions for a single axis, one can construct the axis of
each to determine if some 'k and  l are actually conjugate. In fact, 'k and  l are
conjugate if they give the same bi-infinite path in the automata defined in [20].

Algebraic & Geometric Topology, Volume 16 (2016)
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Determining all train track representatives for an outer automorphism In gen-
eral, it is difficult to identify the set of train track representatives for a given outer
automorphism. However, under the conditions of Theorem 4.7, once one has the axis
bundle, all train track representatives have the same periodic fold line, namely the
single axis of the axis bundle.
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