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Trisections of Lefschetz pencils

DAVID T GAY

Donaldson [J. Differential Geom. 53 (1999) 205–236] showed that every closed
symplectic 4–manifold can be given the structure of a topological Lefschetz pencil.
Gay and Kirby [Geom. Topol. 20 (2016) 3097–3132] showed that every closed
4–manifold has a trisection. In this paper we relate these two structure theorems,
showing how to construct a trisection directly from a topological Lefschetz pencil.
This trisection is such that each of the three sectors is a regular neighborhood of a
regular fiber of the pencil. This is a 4–dimensional analog of the following trivial
3–dimensional result: for every open book decomposition of a 3–manifold M ,
there is a decomposition of M into three handlebodies, each of which is a regular
neighborhood of a page.

57M99, 57M50; 57R45, 57R65, 57R17

Recall the following two definitions. (All manifolds are smooth and oriented, and all
maps, including coordinate charts, are smooth and orientation-preserving.)

Definition 1 A topological Lefschetz pencil on a closed 4–manifold X is a pair .B; �/
where B is a nonempty finite collection of points in X and � WX nB! S2 is a map
satisfying the following conditions:

(1) For each u 2 B there is a coordinate chart to C2 near u and an identification
of S2 with CP1 with respect to which � is the standard quotient map C2nf0g!

CP1 . Points in B are called base points and B is the base locus.

(2) For every critical point p 2X nB of � , there is a coordinate chart to C2 near p

and a coordinate chart to C near �.p/ with respect to which � is the map
.z1; z2/ 7! z2

1
C z2

2
. These points are called Lefschetz singularities.

(3) Distinct Lefschetz singularities in X map to distinct values in S2 . In other
words, each singular fiber has exactly one singularity.

The genus h of .B; �/ is the genus of a (noncompact) regular fiber ��1.q/, for any
regular value q 2 S2 . If the coordinate charts as in property (1) above are closed balls
U1; : : : ;Ub , then the fiber ��1.q/\ .X n . VU1 [ � � � [

VUb// is called a compact fiber
over q , is denoted Fq , and when q is regular Fq is a compact surface of genus h with
b boundary components.
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Note that the closure of a noncompact regular fiber ��1.q/ is a smooth closed surface
��1.q/[B of genus h, any two of which intersect transversely and positively at all
base points.

Definition 2 A .g; k/–trisection of a closed 4–manifold X is a decomposition X D

X1[X2[X3 such that each Xj Š \
kS1�B3 , each Xj \XjC1Š \

gS1�B2 (indices
taken mod 3) and X1\X2\X3 Š #gS1 �S1 .

Theorem 3 Given a closed 4–manifold X with a genus-h topological Lefschetz
pencil .B; �/, with b D jBj points in the base locus and l Lefschetz singular fibers,
and given any three regular values y1;y2;y3 2 S2 , there exists a .g; k/–trisection
X D X1 [X2 [X3 of X , with g D 2hC 2bC l � 1 and k D 2hC b � 1, such that
each Xj deformation retracts onto a compact fiber Fyj

over yj .

Proof Let u1; : : : ;ub 2 B be the base points, and let U1; : : : ;Ub be B4 neighbor-
hoods of these points with complex coordinates .z1; z2/ such that the map

�jUi
W Ui n fuig ! S2

DCP1

has the form .z1; z2/ 7! Œz1 W z2�, and such that each Ui is a ball of radius 1. We
will first “trisect” Y D X n . VU1 [ � � � [

VUb/ and then show how to extend this to all
of X by filling in with a “trisection” of each Ui . Until further notice, we now use �
to refer to �jY W Y ! S2 .

Let p1; : : : ;pl 2 Y be the Lefschetz critical points, with images qi D �.pi/, and let
Pi ;Qi be neighborhoods of pi ; qi in B4;B2 , respectively, such that �.Pi/DQi , with
local coordinates on Pi and Qi with respect to which � has the form .z1; z2/ 7!z2

1
Cz2

2

and each of Pi and Qi have radius 1. Assume that none of the Qi contain any of the
given regular values y1 , y2 or y3 , or the north or south poles of S2 . Let yC refer to
the north pole of S2 and let y� refer to the south pole.

Split S2 into three bigons S2 D A1 [A2 [A3 intersecting at the north and south
poles as in Figure 1, with yj 2

VAj , with each qi 2 A1 \A3 , each Qi contained in
A1[A3 , and A1\Qi D fz j Im.z/� 0g and A3\Qi D fz j Im.z/� 0g.

Let P 0i D
˚
j.z1; z2/j �

1
2

	
� Pi be the 4–ball of radius 1

2
inside the 4–ball Pi of

radius 1. We carefully connect each P 0i to ��1.A2/ as follows. For each i D 1; : : : ; l ,
consider an embedding of a rectangle �i W Œ��; �� � Œ�; 1� ! S2 (for suitably small
� > 0) as illustrated in Figure 2, such that:
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Figure 1: “Trisection” of S2

(1) For all t 2
�
�; 1

2
C �

�
, �i.s; t/D t C s

p
�1 2Qi , using the complex coordinate

on Qi with respect to which � is .z1; z2/ 7! z2
1
C z2

2
.

(2) �i

�
0; 3

4

�
D yC , the north pole.

(3) For t 2
�
�; 3

4

�
, �i.0; t/ is an embedded path in A1\A3 .

(4) For t 2
�

3
4
; 1

�
, �i.0; t/ is embedded in A2 .

(5) The decomposition S2 DA1[A2[A3 splits the rectangle RD Œ��; ��� Œ0; 1�

into two trapezoids R1 and R3 and a pentagon R2 , with R1\R3Df0g�
�
0; 3

4

�
,

R1 � Œ��; 0�� Œ0; 1� and R3 � Œ0; ��� Œ0; 1�, exactly as in Figure 2.

Figure 2: The rectangle �1 in S2

Now lift this to an embedding �i W B
2
� �Œ��; ���

�
1
4
; 1

�
!Y such that �.�i.x;y; s; t//D

�i.s; t/, arranging also that all the �i have disjoint images. (Such a lift exists because,
having 2–dimensional fibers, there is a section of � over the image of �i which avoids
all singular points, and in fact the sections over the different �i can be assumed to be
disjoint even when the �i are not.) Finally, let Ni D �i

�
B2
� � Œ��; ���

�
1
4
; 1

��
[P 0i ;

this is a thin finger sticking out of ��1.X2/ with the ball P 0i stuck to the end. The
part of each finger that is outside ��1.A2/ is evenly split, with half in ��1.A1/ and
half in ��1.A3/.
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Now we define the trisection of Y as follows:

(1) Y1 D �
�1.A1/ n . VN1[ � � � [

VNl/

(2) Y2 D �
�1.A2/ n . VN1[ � � � [

VNl/

(3) Y3 D �
�1.A3/[N1[ � � � [Nl

It is not hard to see that each Yj is retraction diffeomorphic to a tubular neighborhood of
��1.yj /, and is hence diffeomorphic to B2�Fh;b , where Fh;b is a compact surface of
genus h with b boundary components. (We say that A is retraction diffeomorphic to B

when A is a smooth, compact manifold with boundary, B �A is a smooth, compact,
codimension-0 submanifold with boundary, and there is a collar structure .��; 0�� @A
on a neighborhood of @A such that @B is transverse to the .��; 0� direction, so that A

is diffeomorphic to B via a diffeomorphism which is a deformation retraction along the
collar.) Note that B2 �Fh;b Š \

2hCb�1S1 �B3 . We need to understand the pairwise
and triple intersections.

The pairwise intersection Y1\Y2 is the boundary connected sum of ��1.A1\A2/Š

Fh;b � Œ0; 1� with one solid torus in the boundary of each P 0i . The Morse function
Im.z2

1
Cz2

2
/ on @P 0i splits @P 0

1
ŠS3 into two solid tori, one in A1 and one in A3 , and

the one in A1 is connected back to ��1.A1\A2/ along the boundary of the tubular
neighborhood Ni . Thus Y1\Y2 Š \

2hClCb�1S1�B2 , and the same argument holds
for Y3\Y2 .

To understand Y1\Y3 , consider a meridian line m� S2 from the north pole yC to
the south pole y� , parallel and close to A1\A3 , just inside A1 and outside the Qi .
Then

��1.m/Š ��1.yC/� Œ0; 1�Š Fh;b � Œ0; 1�Š \
2hCb�1S1

�B2
I

this is illustrated in Figure 3. If we rotate m towards the meridian line A1\A3 , we
see Y1\Y3 as diffeomorphic to the complement in

��1.m/Š Fh;b � Œ0; 1�Š \
2hCb�1S1

�B2

of a collection of l solid tori, each connected to ��1.yC/ŠFh;b�f0g by a tube. Each
of these solid tori in Fh;b � Œ0; 1� is a tubular neighborhood of a simple closed curve in
a surface Fh;b � ftig for some ti 2 Œ0; 1� (corresponding to qi 2A1\A3 ); these solid
tori (horizontal) and connecting tubes (vertical posts) are illustrated in Figure 4. The
complement of these solid-tori-with-posts is in fact a solid handlebody diffeomorphic
to \2hClCb�1S1 �B2 for the following reason: Removing each solid-torus-with-post
is the same as removing a single thickened arc which starts on Fh;b � f0g, goes up to
Fh;b � ftig parallel to the post, goes around the loop in Fh;b without quite closing up,
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Figure 3: In light blue we show an example for ��1.yC/Š Fh;b ; we have
also drawn two curves which will be important in the following figure. Ex-
tending up from this base is ��1.m/Š Fh;b � Œ0; 1� .

Figure 4: Solid tori and posts in Fh;b � Œ0; 1�; the complement of the solid
tori and posts is Y1\Y3 .

then goes back to Fh;b � f0g parallel to the tube. Removing these thickened arcs one
by one, starting from the highest one, the largest value of ti , corresponds to adding
1–handles one by one to Fh;b � Œ0; 1� because each of these arcs is boundary parallel
in the complement of the higher arcs; see Figures 5 and 6.

The triple intersection Y1 \ Y2 \ Y3 lies entirely in ��1.A1 \A3/, and is equal to
the connected sum of ��1.A1 \A2 \A3/ Š Fh;b � fyC;y�g with l copies of T 2
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Figure 5: Seeing that Y1\Y3 is a handlebody, part 1: here we see Y1\Y3

as the complement of arcs in Fg;b � Œ0; 1� .

Figure 6: Seeing that Y1\Y3 is a handlebody, part 2: here we see that the
arcs from Figure 5 can be ordered so that each is boundary parallel in the
complement of the preceding arcs.

(the connected sum happening on the Fh;b � fyCg component). Each of the T 2 ’s is a
separating T 2 in @P 0i Š S3 . Thus Y1\Y2\Y3 Š Fh;b tFhCl;b .

Now we need to fill in the neighborhoods Ui of the base points ui 2 B . We will do
the same thing in each Ui , so we will drop the subscript i and simply look at one
neighborhood U DB4 . On @B4DS3 , we have S3D .S3\Y1/[.S

3\Y2/[.S
3\Y3/
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where each S3
j DS3\Yj is .�jS3/�1.Aj /. But �jS3 is the Hopf fibration S3!S2 ,

and we see a decomposition of S3 into three solid torus neighborhoods, S3
1
;S3

2
and S3

3
,

of three Hopf fibers, and these three neighborhoods have triple intersection equal to a
Hopf link and pairwise intersections equal to annulus pages of the Hopf open book
decomposition of S3 for this Hopf link. This is illustrated in Figure 7 (left). We now
need to extend this decomposition to all of B4 .

Figure 7: The trisection of S3 D @Ui into three solid tori. Here we focus
on what is happening near one of these solid tori. The colors identify the
three annular pages of the Hopf open book which are also the three pairwise
intersections S3

1
\S3

2
, S3

2
\S3

3
and S3

3
\S3

1
. Black is the triple intersection,

a Hopf link, and the solid tori themselves are the regions between the annuli.
On the right we have pinched one of the solid tori S3

j to a ball and a rectangle;
here red and blue have changed from annuli to disks while green has changed
from an annulus to a genus-1 surface with one boundary component.

We describe the extension of S3 D S3
1
[ S3

2
[ S3

3
to B4 D B4

1
[B4

2
[B4

3
as a 1–

parameter family of decompositions of concentric S3 ’s in B4 , ie as a movie as we
shrink the S3 from @B4 to the center. As we shrink the S3 , we will consecutively
pinch each solid torus S3

j Š S1 � B2 to a 3–ball with a rectangle attached, as in
Figure 7 (right). The 3–ball is what we see of B4

j at this radius, while the rectangle
becomes part of B4

j�1
\B4

jC1
at this radius (and further inwards). After pinching each

solid torus, we are left with a radius at which we have three B3 ’s intersecting in pairs
along B2 ’s and with triple intersection an unknot, and this continues to the center. The
upshot is that each B4

j is a copy of S1 �B3 with half of its boundary (S1 �B2 ) on
@B4 D S3 and the other half in the interior. The pairwise intersections B4

j \B4
jC1

are
genus-2 handlebodies with their boundaries split as an annulus S3

j \S3
jC1

on @B4 and
a genus-1 surface with 2 boundary components properly embedded in B4 . The triple
intersection is this properly embedded genus-1 surface with two boundary components.

So now we extend the decomposition Y D Y1 [ Y2 [ Y3 to an honest trisection
X D X1 [X2 [X3 by attaching each B4

j in each B4 D Ui to Yj . This does not
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change the topology of the 4–dimensional pieces, and in fact we see that Xj is retraction
diffeomorphic to Yj via a retraction along each B4

j , and thus Xj Š \
2hCb�1S1 �B3 .

However, Xj \XjC1 is not diffeomorphic to Yj \YjC1 ; the difference is that we have
attached genus-2 handlebodies along annuli in @.Yj \YjC1/, which really means that
we have attached one 3–dimensional 1–handle for each base point. Thus Xj \XjC1Š

\2hClC2b�1S1�B2 , and similarly X1\X2\X3Š#2hClC2b�1S1�S1 . (Alternatively,
for X1\X2\X3 , recall that Y1\Y2\Y3 Š Fh;b tFhCl;b . Filling in the trisection
of one Ui connects one boundary component of Fh;b with one boundary component
of FhCl;b via a genus-1 surface with two boundary components, ultimately producing
a genus-.hC.hCl/CbC.b�1// surface.)

Finally, note that each Yj deformation retracts onto the compact fiber .�jY /�1.yj /�Y ,
and hence so does each Xj . But as constructed, Xj is not a tubular neighborhood of
the full noncompact fiber ��1.yj /�X .

Remark 4 This theorem as stated is not in fact sensitive to the orientations involved
in the local models in the definition of “Lefschetz pencil”, so that the theorems holds
for “achiral Lefschetz pencils” as well. The achirality may be interpreted as removing
the orientation constraints at either the base points or the critical points.

Remark 5 We have stated this theorem in the honest Lefschetz pencil case, not the
achiral case, simply because the main motivation is to work toward a notion of a
“symplectic trisection”.

Remark 6 Running the construction above in the case of the pencil of lines in CP2

yields the standard trisection of CP2 into three B4 ’s meeting in pairs along solid tori,
coming from the toric structure on CP2 , as described in [2].

Remark 7 This theorem does not hold for Lefschetz fibrations. The essential problem
is that we have closed fibers, and a regular neighborhood of a closed surface is not a
1–handlebody.

Remark 8 We have not addressed the question of how to draw a trisection diagram for
a trisection coming from a Lefschetz pencil. Also note that the phrase “vanishing cycle”
does not appear in the proof above. Obviously a description of the pencil in terms of
vanishing cycles will be sufficient to reproduce the trisection diagram. This remains to
be worked out in detail, but a sketch of the method is as follows: In fact, vanishing
cycles did appear in this proof, they are the simple closed curves in parallel copies
Fh;b � ftig � Fh;b � Œ0; 1� of the compact fiber Fh;b , as in Figure 4. Each vanishing
cycle is connected to Fh;b � f0g with a post, and the complement is Y1\Y3 . We can
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then see directly the surface Y1\Y2\Y3 as part of the boundary of this complement
(the top by itself, and the bottom with the boundaries of the posts and solid tori). From
the picture of Y1\Y3 we can see which curves bound disks in Y1\Y3 . To see which
curves bound disks in Y1\Y2 and Y2\Y3 , we have meridian and .1; 1/–curve pairs
on each of the solid tori, and the remaining curves come in parallel pairs. Finally,
when we extend to the trisection X DX1[X2[X3 , we get meridian, longitude and
.1; 1/–curves on each of the new twice-punctured S1 �S1 ’s which connect the two
components of Y1\Y2\Y3 to create X1\X2\X3 .

Acknowledgements This work was supported by NSF grant DMS-1207721 and by a
grant from the Simons Foundation (#359873, David Gay).

References
[1] S K Donaldson, Lefschetz pencils on symplectic manifolds, J. Differential Geom. 53

(1999) 205–236 MR1802722

[2] D T Gay, R Kirby, Trisecting 4–manifolds, Geom. Topol. 20 (2016) 3097–3132

Euclid Lab, 160 Milledge Terrace, Athens, GA 30606, United States

Department of Mathematics, University of Georgia
Athens, GA 30602, United States

d.gay@euclidlab.org

http://euclidlab.org/david-gay/

Received: 30 October 2015 Revised: 10 May 2016

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

http://projecteuclid.org/euclid.jdg/1214425535
http://www.ams.org/mathscinet-getitem?mr=1802722
http://dx.doi.org/10.2140/gt.2016.20.3097
mailto:d.gay@euclidlab.org
http://euclidlab.org/david-gay/
http://msp.org
http://msp.org



	References

