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Minimal fibrations of dendroidal sets

IEKE MOERDIJK

JOOST NUITEN

We prove the existence of minimal models for fibrations between dendroidal sets
in the model structure for 1–operads, as well as in the covariant model structure
for algebras and in the stable one for connective spectra. We also explain how our
arguments can be used to extend the results of Cisinski (2014) and give the existence
of minimal fibrations in model categories of presheaves over generalized Reedy
categories of a rather common type. Besides some applications to the theory of
algebras over 1–operads, we also prove a gluing result for parametrized connective
spectra (or � –spaces).

55R65, 55U35, 55P48; 18D50

1 Introduction

A classical fact in the homotopy theory of simplicial sets — tracing back to J C Moore’s
lecture notes from 1955–56 — says that any Kan fibration between simplicial sets is
homotopy equivalent to a fiber bundle; see eg Barratt, Gugenheim and Moore [1],
Gabriel and Zisman [13], or May [17]. This is proven by deforming a fibration onto a
so-called minimal fibration, a Kan fibration whose only self-homotopy equivalences are
isomorphisms. Such minimal fibrations provide very rigid models for maps between
simplicial sets — in particular, they are all fiber bundles — which are especially suitable
for gluing constructions.

Essentially, the same method allows one to construct minimal categorical fibrations
between 1–categories as well; cf Joyal [15] and Lurie [16]. In fact, these two
constructions are particular cases of a general statement on the existence of minimal
fibrations in certain model structures on presheaves over Reedy categories, proved by
Cisinski in [7]. The case of dendroidal sets is not covered by this result however, due
to the presence of nontrivial automorphisms in the base category �.

The aim of this note is to show that the basic theory of minimal fibrations extends
naturally to the setting of dendroidal sets. We say that an operadic fibration pW Y !X
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of dendroidal sets (see Cisinski and Moerdijk [8]) is minimal if all weak equivalences
over X ,

Y

p �� ��

�
// Y

p����

X

are isomorphisms. This terminology is justified by the fact that any trivial cofibration
from another fibration into the fibration p ,

zY

�� ��

//
�

// Y

p����

X

is an isomorphism. Indeed, any such trivial cofibration i admits a retraction r with the
property that the composite ir W Y ! Y is a self-weak equivalence of Y over X , and
therefore, an isomorphism.

The presence of nontrivial automorphisms in � makes the discussion of minimal
fibrations a bit more delicate. For instance, the pullback of a minimal fibration need
no longer be minimal again; see Remark 3.11 below. Our main result asserts that
an operadic fibration can nonetheless be retracted onto a weakly equivalent minimal
fibration, although Quillen’s argument [22] showing that this retraction is a trivial
fibration no longer applies in general:

Theorem 1.1 Let pW Y ! X be an operadic fibration between dendroidal sets with
normal domain. Then the following hold:

(a) p admits a minimal fibration M !X as a fiberwise strong deformation retract.

(b) The retraction r W Y ! M is a trivial fibration of dendroidal sets when the
codomain X is normal.

The proof of this theorem appears in Section 3 and proceeds by induction along the
skeletal filtration of the domain Y , analogously to the classical case of simplicial sets.

One may also find minimal models for the fibrations in the covariant model structure
and the stable model structure (see Bašić and Nikolaus [3]) on dendroidal sets, or
any other left Bousfield localization of the operadic model structure on dendroidal
sets. Indeed, any fibration pW Y !X in a left Bousfield localization of the operadic
model structure is, in particular, an operadic fibration. The associated minimal operadic
fibration is a retract of p , and therefore, a local fibration. It is minimal in the localized

Algebraic & Geometric Topology, Volume 16 (2016)



Minimal fibrations of dendroidal sets 3583

model structure since the local weak equivalences between local fibrations over X
coincide with the operadic weak equivalences.

The same argument shows that any left fibration Y ! X of dendroidal sets admits
a minimal model. Such a left fibration is not quite a fibration in a certain model
category, but instead it defines a fibrant object in the covariant model structure on the
over-category dSet=X . This model structure has been constructed in the work of Heuts
[14], where it is also shown to be Quillen equivalent to the model category of algebras
(in sSet) over the simplicial operad associated to X .

A map f W X ! X 0 between dendroidal sets induces a Quillen pair between the
covariant model structures,

fŠW dSet=X �! � dSet=X 0 Wf �;

which is a Quillen equivalence whenever f is an operadic weak equivalence [14,
Proposition 2.4]. As such, one obtains a functor

AlgW dSetop
!ModelCatR; X 7! .dSet =X/cov;

taking values in model categories with right Quillen functors between them. We use
the theory of minimal fibrations to prove the following:

Proposition 1.2 The functor Alg preserves homotopy pullbacks. More precisely, for
any diagram of dendroidal sets X1 X0!X2 in which both arrows are cofibrations,
the natural adjoint pair

colimW dSet=X1 �hdSet=X0 dSet=X2 �! � dSet =X1[X0 X2 Wpullback

establishes a Quillen equivalence between the homotopy pullback model structure and
the covariant model structure on dSet =X1[X0 X2 .

Informally, this proposition asserts that algebras over a homotopy pushout of 1–
operads can equivalently be described as (homotopy) matching triples of algebras
over the individual pieces of the homotopy pushout. We will explain and prove
Proposition 1.2 in Section 4, where we also use the theory of minimal left fibrations to
give an elementary proof of a result by Heuts [14] about weak equivalences between
left fibrations.

In Section 5, we briefly discuss how the arguments of the present paper yield a general
existence theorem for minimal fibrations over a large class of so-called generalized
Reedy categories, providing a common generalization of Cisinski’s result for strict
Reedy categories [7] and ours for dendroidal sets. As an application of this extended
result, we have included a gluing result for parametrized connective spectra, analogous
to Proposition 1.2.
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2 Preliminaries on dendroidal sets

Recall that the category dSets of dendroidal sets is the category of set-valued presheaves
on the category � of finite rooted trees; see Moerdijk and Weiss [18; 19; 20]. The
category � comes equipped with two wide subcategories �C and �� whose inter-
section �C\�� consists of the isomorphisms in �. The maps in �� are given by
finite compositions of isomorphisms and degeneracy maps, ie maps �vW T ! T n v

obtained by picking a vertex v of T with a single input, removing that vertex and
identifying the incoming and outgoing edges. Similarly, the maps in �C are given by
finite compositions of isomorphisms and the following two kinds of face maps:

(1) for every inner edge e of a tree T , ie an edge connecting two vertices, an inner
face map @eW T=e! T obtained by contracting e , and

(2) for every external vertex v of a tree T , ie a vertex with an adjacent edge e such
that all other adjacent edges are outer edges, an outer face map @vW T=v! T

obtained by removing v , as well as all edges attached to it except e . Note that
the edge e is the unique inner edge attached to v , except when the tree T is an
n–corolla Cn . In the latter case, there are nC1 outer face maps, one associated
to each edge of Cn .

For any finite rooted tree T , the degree of T is given by the number of vertices of T .
It is immediate that noninvertible arrows in �C (resp. �� ) raise (resp. lower) the
degree. Furthermore, every map in � factors essentially uniquely as a map in �� ,
followed by a map in �C . Altogether, this gives the category � the structure of a
(generalized) Reedy category; see Berger and Moerdijk [5].

Lemma 2.1 Any map in �� is a split epimorphism, and two maps �; � W T ! S

in �� are the same if they have the same set of sections.

Proof Observe that a degeneracy �vW T ! T n v admits precisely two sections,
obtained by choosing an edge above or below the vertex v and considering the face
map induced by contracting this edge. This immediately implies that all maps in ��

are split epimorphisms.

A map of trees is completely determined by its effect on the set of edges, so the sections
of a map � W T !S in �� form a subset of the set of sections of the induced surjection
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��W Edge.T /! Edge.S/. On the other hand, any section i of �� is induced by the
iterated face map ıW S ! T that contracts all edges of T which are not contained
in the image of i . This face map is a section since �ı induces the identity map on
colors. It follows that sections of a map � in �� correspond bijectively to sections of
the associated surjection between sets of edges. Since surjections of sets are uniquely
determined by their sets of sections, we conclude that the maps in �� are uniquely
determined by their sections.

Recall that a pushout square is called absolute if every functor (or equivalently, the
Yoneda embedding) sends it to a pushout square. The following lemma is taken from
[18]. For completeness we give a compact replacement of the proof given in [loc. cit.].

Lemma 2.2 Any pair of maps � W S ! S 0 , � W S ! T in �� fits into an absolute
pushout square

(1)

S
�
//

�

��

S 0

� 0

��

T
� 0
// T 0

in which � 0 and � 0 are in �� as well.

Proof Since absolute pushout squares can be pasted, it suffices to check this when
� D �vW S ! S n v and � D �w W S ! S n w are degeneracy maps. In this case,
one can easily check that the required pushout square (1) can be produced by taking
T 0 D S n fv;wg and � 0 (resp. � 0 ) the degeneracy removing the vertex v (resp. w )
and identifying the ingoing and outgoing edge. In the case where v D w , the maps � 0

and � 0 are simply the identity maps.

To see that the resulting pushout square is an absolute pushout square, it suffices to
find sections ˛ of � and ˛0 of � 0 which are compatible in the sense that �˛ D ˛0� 0 ;
see eg van den Berg and Moerdijk [4]. When the vertices v and w are the same, one
can just pick any section of � D �v and take the identity section of � 0 D id. If v is
different from w and v is not connected to w by a single edge, one can take both ˛
and ˛0 to be the face map contracting the edge below the vertex v (seen as a vertex
in S and in S nw , respectively).

We are left with the case that the vertices v and w are connected by a single edge. If v
is the vertex directly above w , compatible sections are provided by letting ˛ and ˛0 be
the face maps contracting the edge above v (again seen as a vertex in S and in S nw ,
respectively). If v is the vertex directly under w , one can take ˛ and ˛0 to be the face
maps contracting the edge below v .
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We identify elements of a dendroidal set X with maps xW �ŒT �!X , where �ŒT � is
the presheaf represented by the tree T . An element xW �ŒT �!X is called degenerate
if it factors as �ŒT �! �ŒS�! X , where T ! S is a noninvertible map in �� .
It follows easily from Lemma 2.2 that any element of a dendroidal set decomposes
essentially uniquely as a map �ŒT �! �ŒS� in �� , followed by a nondegenerate
element �ŒS�!X ; see eg [5, Proposition 6.7].

For every tree T , there is an action of the automorphism group Aut.T / on the set of
nondegenerate elements �ŒT �!X . If xW �ŒT �!X is an element of X , define its
automorphism group Aut.x/�Aut.T / to be the isotropy group of the element x under
this action. A map of dendroidal sets f W X ! Y induces a (necessarily injective) map
Aut.x/! Aut.f x/.

A monomorphism i W A!B between dendroidal sets is called normal if a nondegenerate
element of B has a trivial automorphism group whenever it does not factor through i . In
other words, Aut.T / acts freely on the set of nondegenerate elements in B.T /nA.T /.
A dendroidal set X is called normal if the map ∅!X is a normal monomorphism.
If B is a normal dendroidal set, any monomorphism A! B is normal.

Remark 2.3 In fact, for a normal monomorphism i W A! B , the group Aut.T / acts
freely on the set of all elements �ŒT �! B that do not factor through i , by Cisinski
and Moerdijk [8, Proposition 1.5]. This implies that any map with a normal codomain
also has a normal domain.

2.1 Skeletal filtration

Let tnW ��n ! � be the inclusion of the full subcategory of � on the objects of
degree � n. The n–skeleton of a dendroidal set X is given by X .n/ WD tnŠt�nX . The
skeleta of X fit into a natural skeletal filtration

(2) ∅DX .�1/!X .0/!X .1/! � � � !X:

Because every element of a dendroidal set X factors in an essentially unique way as a
map in �� , followed by a nondegenerate element, the maps in the skeletal filtration (2)
are all monomorphisms, and the colimit of this sequence of inclusions is the original
dendroidal set X . Indeed, X .n/ is the subobject of X consisting of those elements
�ŒT �!X that factor through some tree S of degree � n. For example, the boundary
@�ŒT � of a representable presheaf is defined as the .n�1/–skeleton �ŒT �.n�1/ , where
n is the degree of the tree T . Explicitly, @�ŒT �.S/ is the set of maps S ! T in �
that factor through a face map (up to isomorphism).

When xW �ŒT �!X is an element of X , define the boundary @x of x to be the restric-
tion of x to @�ŒT �. The following is a straightforward variation of [7, Lemma 2.6]:
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Lemma 2.4 Let x; yW �ŒT �!X be two degenerate elements of a normal dendroidal
set X . If the boundaries of x and y agree, then x and y are the same.

Proof Write x D ��xx and y D ��xy where xxW �ŒS�! X and xyW �ŒS 0�! X are
nondegenerate and � W T ! S and � W T ! S 0 are noninvertible maps in �� . Let ˛
be any section of � and let ˇ be any section of � . Since the boundaries of x and y
agree, we have that

xx D ˛�x D ˛�y D .�˛/�xy;

and similarly, xy D .�ˇ/�xx . If the composite map �˛ in � could be factored as a
noninvertible map in �� , followed by a map in �C , then xx would be a degenerate
element. In other words, the map �˛W S ! T ! S 0 is contained in �C , and in
particular, the degree of S is less than or equal to the degree of S 0 . Applying the same
argument to the composite �ˇ shows that the degrees of S and S 0 agree, which in
turn implies that �˛ and �ˇ are isomorphisms. Furthermore, we have that

.�˛/�.�ˇ/�xx D .�˛/�xy D xx:

Since xx is a nondegenerate element of a normal dendroidal set, it has no nontrivial
automorphisms. From this, we conclude that

.?/ for any choice of sections ˛ 2 �.�/ and ˇ 2 �.�/, the map �ˇ is inverse to �˛ .

We claim that � D �ˇ� , in which case, we conclude that

y D ��xy D ��.�ˇ/�xx D ��xx D x:

To see that � D �ˇ� , it suffices to check that both maps in �� have the same set of
sections, by Lemma 2.1. Our conclusion .?/ shows that ˛ is a section of �ˇ� as soon
as ˛ is a section of � . For the converse, suppose that ˛ is a section of �ˇ� . Since �ˇ
is an isomorphism, we have that �˛ is an inverse to �ˇ and consequently ˛�ˇ is a
section of � .

But now observe that .?/ implies that the isomorphism �ˇ is actually independent of
the chosen section ˇ 2 �.�/. This means that �ˇ D �.˛�ˇ/, which in turn implies
that ˛ is a section of � .

When X is a normal dendroidal set, the skeletal filtration (2) can be obtained by attach-
ing cells [5]. More precisely, each inclusion X .n�1/!X .n/ fits into a pushout square:`

jT˛ jDn
@�ŒT˛� //

��

X .n�1/

��`
jT˛ jDn

�ŒT˛�
.x˛/

// X .n/
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We will call the resulting elements x˛W �ŒT˛�!X generating nondegenerate elements.
For every nondegenerate element x of X there is a unique generating nondegenerate
element x˛ , together with a unique automorphism � of T˛ , such that x D ��x˛ .

2.2 Tensor product

The category � can be seen as a full subcategory of the category Oper of operads in
sets [19]. The inclusion of � in Oper induces a functor N W Oper! dSet called the
dendroidal nerve, with left adjoint � . The dendroidal nerve extends the usual simplicial
nerve of a category, in the sense that it fits into a commuting diagram:

(3)

dSets
�
// Oper

N
oo

sSets
�
//

� ?

OO

Cat
N
oo

� ?

OO

Recall that the category Oper of operads in sets carries a monoidal structure given
by the Boardman–Vogt tensor product ˝BV . This induces a tensor product ˝ on the
category of dendroidal sets by defining

X ˝Y DN.�X ˝BV �Y /

for representable X and Y , and by requiring that ˝ preserves colimits in each of its
variables. We will mainly need the following pushout-product property of the tensor
product (which is not part of a monoidal structure): for a normal monomorphism
A!B of dendroidal sets and a monomorphism of simplicial sets K!L, the induced
map of dendroidal sets,

(4) L˝AqK˝A K˝B �! L˝B;

is again a normal monomorphism [8, Proposition 1.9]; see also [10].

2.3 Model structures

The category of dendroidal sets admits a left proper model structure (called the operadic
model structure) which is Quillen equivalent to the model structure on simplicial
operads; see Cisinski and Moerdijk [8; 9]. The cofibrations of this model structure are
given by the normal monomorphism and the fibrant objects are given by the1–operads,
which are defined by extension properties with respect to certain dendroidal inner horn
inclusions. More details on horn inclusions in the setting of dendroidal sets will be
given when we need them in Section 4.
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We will call the fibrations in this model structure operadic fibrations. To get some
feeling for their behavior, denote by J the dendroidal nerve of the groupoid f0' 1g
with objects 0 and 1, together with a unique isomorphism between them. The operadic
fibrations then have the right lifting property with respect to the pushout-product map

(5) J˝A [fig˝A fig˝B �! J˝B;

where i D 0; 1 and A! B is a normal monomorphism. Stated differently, the above
map is a trivial cofibration for all normal monomorphisms A! B . Conversely, by [8],
a map between 1–operads is an operadic fibration if and only if it has the right lifting
property against all maps (5) induced by normal monomorphisms A! B , as well as
the right lifting property with respect to the inner horn inclusions.

There are two other model structures on the category of dendroidal sets, obtained
from the operadic model structure by left Bousfield localization. The covariant model
structure, constructed by Heuts [14], has fibrant objects given by those 1–operads
that also have the extension property against certain left horn inclusions, and is Quillen
equivalent to the model category of E1–algebras (in spaces). The stable model
structure of Bašić and Nikolaus [3] is a further Bousfield localization of the covariant
model structure, whose fibrant objects have the extension property with respect to all
horn inclusions. This model category is equivalent to the model category of grouplike
E1–spaces, or equivalently, connective spectra.

Replacing the terminal dendroidal set by an arbitrary dendroidal set X , one can also
obtain the covariant model structure on dSet=X as a Bousfield localization of the
operadic model structure. This model structure has fibrant objects given by the left
fibrations Y !X , which are characterized by the right lifting property against the left
horn inclusions. It is equivalent to the model category of algebras (in spaces) over the
simplicial operad corresponding to X under the aforementioned Quillen equivalence
between dendroidal sets (operadically) and simplicial operads.

2.4 Cylinders and homotopies

Taking the tensor product of X with the functors f0; 1g! J !� provides a factoriza-
tion of the fold map

X qX ' f0; 1g˝X �! J ˝X
�
��!X:

When X is a normal dendroidal set, the first map is a cofibration and the second map
is an operadic weak equivalence, by the pushout-product properties (4) and (5). The
functor J ˝ .�/ therefore provides a cylinder construction for normal dendroidal sets;
furthermore, this construction preserves colimits.
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The cylinder J˝.�/ induces the usual variants of the notion of homotopy. For example,
let pW Y ! X be a map and let y0; y1W �ŒT �! Y be two elements of Y . Then a
fiberwise homotopy between y0 and y1 , relative to the boundary @�ŒT �, is given by a
map H which fits into a commuting diagram

J ˝ @�ŒT �

��

�
// @�ŒT � // Y

p

��

J ˝�ŒT �
�
//

H

44

�ŒT � // X

whose restriction to fig˝�ŒT � agrees with the map yi (for i D 0; 1).

Lemma 2.5 Let pW Y !X be an operadic fibration. Then fiberwise homotopy relative
to the boundary provides an equivalence relation on the set of elements Y.T /. More
generally, for any monomorphism A! B between normal dendroidal sets, the notion
of fiberwise homotopy relative to A provides an equivalence relation on Hom.B; Y /.

Proof This is a standard argument using the homotopy extension and lifting property.
For later reference (cf the proof of Proposition 3.3), we prove transitivity in a slightly
more general setting. Let x; y; zW B! Y be maps and suppose that there are fiberwise
homotopies gW x ' y and hW y ' z , where h is a fiberwise homotopy rel A. Then
x ' z via a homotopy that agrees with g when restricted to A. Indeed, consider the
following diagram:

J ˝
�
J˝A[f0; 1g˝B

�
[f0g˝ .J˝B/

��

H
// Y

p

��

J ˝ .J˝B/ //

L

33

B // X

In this diagram, the map H is given heuristically by H.s; t; a/Dg.t; a/ on J˝.J˝A/,
while it is given on J ˝ .f0; 1g˝B/[f0g˝ .J ˝B/ by

H.s; 0; b/D x.b/; H.s; 1; b/D h.s; b/; H.0; t; b/D g.t; b/:

The left vertical map is of the form (5) for the normal monomorphism

J˝Aqf0;1g˝A f0; 1g˝B �! J˝B;

which is itself of the form (4). It follows that the left vertical map is a trivial cofibration,
so there is a lift L as indicated since p was an operadic fibration. The restriction
of L to f1g˝ .J ˝B/ provides a fiberwise homotopy between x and z , which agrees
with g when restricted to A.
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3 Existence of minimal fibrations

This section contains the proof of Theorem 1.1, which asserts that any fibration of
dendroidal sets Y ! X admits a minimal fibration as a deformation retract, at least
when Y is normal. The idea of the proof is to construct a deformation retract of the
fibration Y !X which is skeletal (see Definition 3.1) by induction over the skeletal
filtration of Y . We then show that any such skeletal fibration is a minimal fibration.

3.1 Skeletal fibrations

The following definition is an immediate analogue of the notion of “skeletality” appear-
ing in the classical literature on simplicial sets (where it is usually called minimality,
anticipating Corollary 3.7):

Definition 3.1 Let pW Y ! X be an operadic fibration of dendroidal sets. We will
say that p is a skeletal fibration if for any two elements y0; y1W �ŒT �! Y which are
fiberwise homotopic relative to their boundary, there is an automorphism � 2 Aut.T /
such that y0 D ��y1 .

There is a second natural extension of the notion of “skeletality” to dendroidal sets,
where one requires two homotopic elements to be equal. This condition is too restrictive
for our purposes. Indeed, the following example demonstrates that there are dendroidal
sets that cannot have a deformation retract satisfying this stricter condition of skeletality:

Example 3.2 Let C2 be the 2–corolla, and let � be the tree with a single edge and
no vertices. Their associated dendroidal sets are �ŒC2� and �Œ0� WD �Œ��. The 2–
corolla C2 has a single nontrivial automorphism � of order 2, and its boundary @�ŒC2�
is the disjoint union of three edges. Define J ˝� �ŒC2� to be the pushout:

�ŒC2�q�ŒC2� // //

.id;�/
��

J ˝�ŒC2�

p

��

�ŒC2� // // J ˝� �ŒC2�

The bottom map defines an element of J ˝��ŒC2� which is J –homotopic to its conju-
gate by � . On the other hand, J ˝� �ŒC2� is normal since the top map in this pushout
diagram is a normal monomorphism and �ŒC2� is normal. Next, consider the pushout:

J ˝ @�ŒC2� //

��

J ˝�ŒC2�
p

// J ˝� �ŒC2�

��

�Œ0� // J ˝� �ŒC2� =J ˝� @�ŒC2�
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Note that both J ˝ @�ŒC2� and �Œ0� have no elements indexed by nonlinear trees.
Since pushouts of dendroidal sets are computed objectwise, this implies that the pushout
J ˝� �ŒC2� =J ˝� @�ŒC2� is again a normal dendroidal set. Finally, let

J ˝� �ŒC2� =J ˝� @�ŒC2� >
�
�!X

be a fibrant-cofibrant replacement of this dendroidal set. The composite

xW �ŒC2� >�! J ˝� �ŒC2� �! J ˝� �ŒC2� =J ˝� @�ŒC2� �!X

defines an element x of X with the property that x is homotopic (relative to the
boundary) to ��x , while x differs from ��x since X was assumed normal. This
property is shared by the image of x under a retraction r W X !M . We conclude that
any retraction of X admits two distinct (but conjugate) 2–corollas which are homotopic
relative to their boundary.

Proposition 3.3 Let pW Y !X be a fibration of dendroidal sets with normal domain.
Then p has a skeletal fibration qW M ! X as a fiberwise strong deformation retract
(with respect to the functorial cylinder J ).

Proof We construct the inclusion i W M � Y , the retraction r W Y !M and the strong
deformation retraction H W J ˝ Y ! Y all at the same time, by induction along the
skeleta of Y . Suppose that we have formed

M .n/
i.n/

,��!
 ���
r.n/

Y .n/ and J ˝Y .n/
H .n/

���! Y;

where H .n/
0 is the inclusion of Y .n/ into Y , and H .n/

1 is the composite i .n/ ı r.n/ .
All maps are maps over the base X , where M .n/ is considered as the domain of the
map pi .n/W M .n/! Y !X .

We start by producing M .nC1/ and the inclusion i .nC1/W M .nC1/! Y .nC1/ . Recall
that Y .nC1/ is obtained from Y .n/ by attaching a set of generating nondegenerate
elements (together with their conjugates under the Aut.T /–action). For each T 2�
of degree nC1, the set of generating nondegenerate yW �ŒT �! Y decomposes as the
disjoint union of the following three subsets of Y.T /:

(A) those y whose boundary takes values in M .n/ and which are not fiberwise
homotopic (relative to the boundary) to a degenerate element in M .n/ ,

(B) those y which are fiberwise homotopic (relative to the boundary) to a degenerate
element of M .n/ � Y , and

(C) those y whose boundary @yW @�ŒT �! Y takes no values in the subobject M .n/.
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The elements in C cannot be attached to M .n/ and the elements in B should not
be attached to M .n/ in the construction of M .nC1/ , since they would give rise to
homotopic elements which are not related by the action of Aut.T /.

We say that two elements y0 and y1 of the remaining set A are equivalent if y0
is fiberwise homotopic (relative the boundary) to ��y1 for some � 2 Aut.T /. This
defines an equivalence relation by Lemma 2.5. Let AM be a set of representatives for
each of the equivalence classes and let AY be its complement in A.

We now construct M .nC1/ and i .nC1/W M .nC1/! Y .nC1/ by attaching one copy of
�ŒT � to M .n/ for every equivalence class of elements in the set A and mapping it
to its representing element in AM � Y.T /. This defines M .nC1/ together with an
inclusion into Y .nC1/ . This inclusion fits into the following diagram, in which the two
solid squares are pushouts:

(6)

ÀM

@�ŒT �

��

// M .n/ i.n/
//

��

Y .n/

��

ÀM

�ŒT � // M .nC1/ //

i.nC1/
&&

M .nC1/[M .n/ Y .n/

��

`
AY ;B;C

@�ŒT �

��

oo

Y .nC1/
`

AY ;B;C

�ŒT �oo

The resulting map M .nC1/[M .n/ Y .n/! Y .nC1/ is obtained by attaching those cells
of Y .nC1/ that we have not yet attached in our construction of M .nC1/ . This is pictured
by the dotted pushout diagram in (6), where the attaching maps indexed by the sets AY
and B take values in M .n/ and the ones indexed by C take values in Y .n/ .

Having constructed the inclusion M .nC1/! Y .nC1/ , our next task is to extend the de-
formation retraction H .n/ . The constant homotopy on M .nC1/ and the homotopy H .n/

on Y .n/ (relative to M .n/ ) together define a homotopy

J ˝
�
M .nC1/

[M .n/ Y .n/
�
�! Y:

We extend this homotopy along each of the cell attachments that constitute the dotted
pushout diagram in (6):

Case AY We attach a generating nondegenerate element yW �ŒT �! Y which is
fiberwise homotopic (relative to the boundary) to the conjugate of an element in AM .
Since we constructed M .nC1/ by attaching the elements in AM (and their conjugates),
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it follows that y is homotopic to an element in M .nC1/ . The extension of H .n/ to the
element y is given by a choice of such a fiberwise homotopy (relative boundary).

Case B We attach a generating nondegenerate element yW �ŒT � ! Y which is
fiberwise homotopic (relative boundary) to a degenerate element that is contained
in M .n/ and, therefore, in M .nC1/ . The extension of H .n/ to the element y is then
given by a choice of such fiberwise homotopy (relative boundary).

Case C We attach a generating nondegenerate element yW �ŒT �!Y whose boundary
is not contained in M .n/ . We can use the restriction of H .n/ to the boundary of y ,
together with the element y itself, to form the following commuting diagram:

J ˝ @�ŒT �[f0g˝�ŒT �
.H .n/ı@y;y/

//

��

Y

��

J ˝�ŒT � // �ŒT � // X

Since Y !X is a fibration, there is a lift hW J˝�ŒT �!Y which provides a fiberwise
homotopy between y and an element zW �ŒT �!Y whose boundary is the evaluation of
H .n/ı@y at 1, which takes values in M .n/ . By construction, this fiberwise homotopy h
extends the deformation retraction H .n/ applied to the boundary of y .

When z is an element of M .nC1/ we use the homotopy h to extend H .n/ to the
element y . When z is not contained in M .nC1/ , we have already constructed a
homotopy k (relative to the boundary) between z and an element m in M .nC1/ in the
previous two steps. We can compose the two homotopies h and k (as in the proof of
Lemma 2.5) to produce a homotopy between y and m which agrees with H .n/ on the
boundary. Use this homotopy to extend H .n/ over the element y .

In this way we produce a fiberwise strong deformation retraction

H .nC1/
W J ˝Y .nC1/ �! Y

extending H .n/ . By construction, the restriction of H .nC1/ to f1g˝Y .nC1/ factors
as i .nC1/ ı r.nC1/ for some retraction r.nC1/W Y .nC1/ ! M .nC1/ . Proceeding by
induction on the skeleton, we thus obtain a fiberwise strong deformation retract of Y
onto some subobject M .

It remains to check that the resulting map q D pi W M ! X is a skeletal fibration.
Since M is a fiberwise retract of Y , it follows that the map qW M !X is a fibration.
To see that it is skeletal, let x; yW �ŒT �!M be two elements of M that are fiberwise
homotopic relative to their boundary. If both maps are degenerate, then they must
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be the same since their boundaries are the same; see Lemma 2.4. We may therefore
assume that x is nondegenerate.

Applying the inclusion i , we see that x and y determine homotopic elements (relative
boundary) in Y , whose boundary lies in the n–skeleton M .n/ . By the construction
of M .nC1/ , it follows that y is nondegenerate as well: indeed, we removed all non-
degenerate elements from Y that were fiberwise homotopic (relative boundary) to
degenerate elements in M . But then the construction of M implies that x D ��y
for some � 2 Aut.T /, since we attached only one generating nondegenerate element
to M .n/ for each equivalence class of nondegenerate elements in Y .

3.2 Minimal fibrations

Let pW Y !X be a skeletal fibration with normal domain. To check that p is a minimal
fibration, it suffices to check that any fiberwise self-homotopy equivalence of p is an
isomorphism. In turn, this is guaranteed by the following:

Proposition 3.4 Suppose that pW Y !X is a skeletal fibration with normal domain.
If f W Y ! Y is an endomorphism of p which is fiberwise homotopic to the identity
map on Y , then f is an isomorphism.

We prove this by induction on the skeleton of Y , the case Y .�1/ being trivial. The
inductive step follows from the following two lemmas:

Lemma 3.5 Let pW Y ! X be a skeletal fibration with normal domain Y and let
hW J ˝Y ! Y be a fiberwise homotopy from an endomorphism h0 of p to the identity
map. If h0 induces an isomorphism on the n–skeleton Y .n/ , then h0 is injective on
the .nC1/–skeleton of Y .

Proof Let T 2� be of degree nC 1 and let x; yW �ŒT �! Y be two elements such
that h0x D h0y . We have that px D py and, by inductive hypothesis, @x D @y . We
may clearly assume that one of the two, say x , is a nondegenerate element.

Take the (fiberwise) homotopies h.x/ and h.y/ from h0x to x and from h0y to y ,
together with the constant homotopies on @xD @y and h0.x/D h0.y/. Together these
give a map K which fits into a commuting square:

J ˝
�
J˝@�ŒT � [ f0; 1g˝�ŒT �

�
[ f0g˝ .J ˝�ŒT �/

��

K
// Y

��

J ˝ .J ˝�ŒT �/ //

L

22

�ŒT � // X
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This square allows for a diagonal map L because Y !X is a fibration. The composite

f1g˝ .J ˝�ŒT �/ �! J ˝ .J ˝�ŒT �/
L
��! Y

determines a fiberwise homotopy between x and y , relative to @�ŒT �. The fibration p
is skeletal, so x D ��y for some � 2 Aut.T /. But then we also have that h0.x/ D
��h0.y/ D �

�h0.x/. Since Y is normal, this either means that � D 1 (if h0.x/ is
nondegenerate) or h0.x/ is degenerate.

In the latter case, there is a degenerate z such that h0.x/ D h0.z/, since h0 was
assumed to be an isomorphism on Y .n/ . Repeating the previous argument shows that
x D ��z for some � 2 Aut.T /. Since x was assumed nondegenerate, this cannot
happen and we conclude again that � D 1. This shows that x D y .

Lemma 3.6 Let f W Y ! Y be a fiberwise homotopy equivalence from a skeletal
fibration pW Y ! X with normal domain to itself. If f induces an isomorphism
on Y .n/ , then f induces a surjective map on elements of degree nC 1.

Proof Let f W Y ! Y be a fiberwise homotopy equivalence from p to itself. Factor
f D qi where i W Y !Z is a cofibration and qW Z! Y is a trivial fibration. Since Y
is normal, so is Z , and i is the inclusion of a fiberwise strong deformation retract
over X , with retraction r W Z! Y over X .

Let T 2 � be of degree n C 1 and take xW �ŒT � ! Y . Because f induces an
isomorphism on the n–skeleton of Y , there is a map yW @�ŒT �!Y such that fyD@x .
Since q is a trivial fibration, there is a map zW �ŒT �!Z such that qzDx and @zD iy :

@�ŒT �

��

y
// Y

i
// Z

q

��

�ŒT �
x

//

z

66

Y

Let w D r.z/. Then @f .w/ D f r.@z/ D f ri.y/ D @x , and f .w/ is fiberwise
homotopic to x (rel @�ŒT �):

f .w/D f r.z/D qir.z/'rel @�ŒT � q.z/D x:

Since p was skeletal, it follows that f .w/ D ��x for some � 2 Aut.T /, and so
x D f .��1�w/.

Proof of Theorem 1.1 Let pW Y !X be an operadic fibration with normal domain.
By Proposition 3.3, p admits a skeletal fibration qW M ! X as a fiberwise strong
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deformation retract, with inclusion i W M!Y and retraction r W Y !M . The object M
is normal, being the retract of a normal object. It then follows from Proposition 3.4
that q is a minimal fibration.

It remains to check that the retraction r W Y !M is a trivial fibration when the base X
is a normal dendroidal set. This is proven exactly as in Quillen’s paper [22], which
treats the analogous result for simplicial sets. Consider a diagram of the form:

(7)

@�ŒT �

��

y
// Y

r

��

�ŒT �
x
// M

Then ix provides a lift making the bottom triangle commute, but the boundary of
ix agrees with iryW @�ŒT �! Y , which is only fiberwise homotopic to y using the
deformation retraction H between ir and the identity on Y .

We therefore replace ix by a homotopic element of Y whose boundary agrees with y .
Since pW Y !X is a fibration, there is a lift in the following diagram:

f0g˝�ŒT �[J ˝ @�ŒT �
.ix;H/

//

��

Y

��

J ˝�ŒT � //

K

55

X

Let zW �ŒT � ! Y be the restriction of the lift K to f1g ˝ �ŒT �. We claim that
zW �ŒT �! Y provides a lift in diagram (7).

Indeed, @z D y , and the deformation retraction H gives a homotopy from ir.z/ to z .
This means that i.x/ and ir.z/ are fiberwise homotopic to z , both via a homotopy
which is given by H when restricted to the boundary @�ŒT �. But then there is a
fiberwise homotopy between ir.z/ and ix which is constant on the boundary (using
an argument similar to the proof of Lemma 2.5). It follows that r.z/ is homotopic
(relative boundary) to x . Because qW M ! X was a skeletal fibration, we conclude
that x D ��r.z/ for some automorphism � of T .

Applying q , we see that q.x/D ��qr.z/D ��q.x/. But X is a normal dendroidal
set, so � must be the identity automorphism. We conclude that xD r.z/, which means
that zW �ŒT �! Y provides a diagonal lift in diagram (7).

Corollary 3.7 Let pW Y !X be a fibration with normal domain. Then p is a minimal
fibration if and only if p is a skeletal fibration.
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Proof All skeletal fibrations are minimal fibrations, so assume that p is a minimal
fibration. Then there is a trivial cofibration i W M!Y such that pi is a skeletal fibration.
By minimality of p , the map i is an isomorphism and one finds that p is skeletal.

Remark 3.8 In particular, the notion of skeletal fibration from Definition 3.1 is
independent of the chosen cylinder, as long as it preserves colimits and has the properties
mentioned in Section 2.4.

Corollary 3.9 Let f W X 0!X be a map of dendroidal sets with the property that for
any element xW �ŒT �!X 0 , the map Aut.x/! Aut.f x/ is bijective. If Y !X is a
minimal fibration with normal domain, then the base change f �Y !X 0 is a minimal
fibration as well.

Proof This follows immediately from the corresponding property for skeletal fibrations:
indeed, let pW Y !X be a skeletal fibration (with normal domain) and consider the
following pullback square:

f �Y
f 0

//

p0

��

Y

p
��

X 0
f

// X

If x; yW �ŒT �!f �Y are fiberwise homotopic, then f 0x and f 0y are fiberwise homo-
topic as well. It follows that there is an element � 2 Aut.T / such that f 0x D ��f 0y .
Projecting to X, we see � is an automorphism of the element pf 0x D fp0xW �ŒT �!X.
By the assumption that f induces a bijection on automorphism groups, it follows that
��p0y D ��p0x D p0x . Since Y 0 is the pullback of Y and X 0 over X , this implies
that x D ��y . We conclude that Y 0!X 0 is indeed skeletal.

Example 3.10 The condition of Corollary 3.9 is satisfied by monomorphisms and by
all maps between normal dendroidal sets (whose elements all have trivial automorphism
groups). Furthermore, it is satisfied by all maps whose domain is a simplicial set, ie a
dendroidal set without elements indexed by nonlinear trees. In particular, if pW X! S

is a minimal fibration, then the fiber Xc of p over a color cW �Œ0�! S is a minimal
1–category.

Remark 3.11 Minimal (or skeletal) fibrations are not stable under base change along
an arbitrary map. For example, consider the normal 1–operad X constructed in
Example 3.2 and let M be a skeletal deformation retract of it. The dendroidal set M
comes equipped with a 2–corolla xW �ŒC2�!M which is homotopic (relative to its
boundary) to ��x , where � is the nontrivial automorphism of C2 .
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Now let pW E1 ! � be a trivial fibration with normal domain. Then the map
M ! � is a skeletal fibration, but the base change M �E1! E1 is not. Indeed,
let yW �ŒC2�!E1 be a lift of the unique map �ŒC2� ! �. Then the element
.x; y/W �ŒC2�!M �E1 is fiberwise homotopic (rel boundary) to .��x; y/, but it is
not related to .��x; y/ via an automorphism of C2 .

4 Applications

By way of example, we give two applications to the theory of left fibrations between
dendroidal sets. Before stating these, we will recall the definitions of the relevant types
of fibrations between dendroidal sets and the corresponding dendroidal horn inclusions.

4.1 Fibrations between dendroidal sets

Recall from Section 2 that every tree T comes equipped with two kinds of face maps:
inner face maps @eW T=e ! T contracting an inner edge e , and outer face maps
@vW T=v! T removing an outer vertex and all the outer edges attached to it. Each
such face map determines a monomorphism of dendroidal sets @˛W �ŒT=˛�!�ŒT �

whose image we denote by @˛�ŒT ���ŒT � and call the face opposite ˛ .

The union of all faces of �ŒT � is precisely the boundary @�ŒT � discussed in Section 2.
If ˛ is an inner edge of T or an outer vertex of T , we define the ˛–horn of �ŒT �,
denoted by ƒ˛ŒT �, to be the union of all faces of �ŒT � except the face opposite ˛ . All
horn inclusions ƒ˛ŒT �!�ŒT � are normal monomorphisms, since �ŒT � is normal.

When e is an inner edge, we will call ƒeŒT �! �ŒT � an inner horn inclusion. A
map of dendroidal sets is called an inner fibration if it has the right lifting property
against all inner horn inclusions and is called inner anodyne if it has the left lifting
property with respect to all inner fibrations. The pushout-product property for normal
monomorphisms mentioned in Section 2.2 now admits the following refinement [8,
Proposition 3.1]: if A!B is a normal monomorphism of dendroidal sets and K!L

is a monomorphism of simplicial sets, then the pushout-product map

(8) L˝AqK˝AK˝B �! L˝B

is inner anodyne if one of the two maps is inner anodyne.

A dendroidal set X is called an 1–operad if the map X!� to the terminal object is
an inner fibration. As we already remarked in Section 2.3, the 1–operads are precisely
the fibrant objects of the operadic model structure on dendroidal sets. The fibrations in
this model structure, ie the operadic fibrations, are all inner fibrations but not every
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inner fibration is an operadic fibration. For example, as we remarked in Section 2.3,
the operadic fibrations between 1–operads are those inner fibrations that also have
the right lifting property against pushout-products of a normal monomorphism and an
inclusion fig ! J .

The left horn inclusions consist of the inner horn inclusions, together with the horn
inclusions ƒvŒT �!�ŒT � indexed by a leaf vertex of T (in the case that T is not a
corolla) and the horns ƒvŒCn�!�ŒCn� consisting of all faces indexed by a leaf of Cn .
Because the other horns of the corolla play no role in our discussion, we will ignore
the ambiguity in the notation ƒvŒCn�.

A map of dendroidal sets is called a left fibration if it has the right lifting property
against all left horn inclusions and left anodyne if it has the left lifting property with
respect to all left fibrations. An inspection of the proof of [8, Proposition 3.1] shows
that the pushout-product map (8) is left anodyne if either A! B is left anodyne or
K! L is a left anodyne map of simplicial sets; see also Heuts [14, Appendix A.2]. It
follows that left fibrations have the right lifting property against pushout-products of a
normal monomorphism and the map fig!J , which is a left anodyne map of simplicial
sets. In particular, all left fibrations over an 1–operad are operadic fibrations.

As we already remarked in Section 2.3, for any dendroidal set X , the left fibrations
Y ! X form the fibrant objects of the covariant model structure on dSet=X . The
fibrations in this model are, in particular, left fibrations, but the converse need not hold in
general. An operadic weak equivalence of dendroidal sets f W X!X 0 induces a Quillen
equivalence fŠW dSet=X � dSet=X 0 Wf � between the covariant model structures [14].
Applying this to an operadic weak equivalence X !X 0 into an 1–operad and using
that left fibrations over 1–operads are operadic fibrations, one can conclude that all
left fibrations are operadic fibrations.

It follows that the covariant model structure on dSet=X has the same cofibrations as
the operadic model structure, but less fibrant objects. This means that the covariant
model structure is a Bousfield localization of the operadic model structure; in particular,
this implies that the covariant weak equivalences between left fibrations agree with the
operadic weak equivalences.

4.2 Gluing left fibrations

Let X be a simplicial set and let A and B be two subobjects of X which cover X .
The class of Kan fibrations satisfies a certain “homotopy descent” condition, which
asserts that Kan fibrations over A and B can be glued, up to homotopy, to yield a
fibration over their union X . More precisely, consider two Kan fibrations YA! A
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and YB!B and a homotopy equivalence between their restrictions to the intersection
A\B . Then there exists a Kan fibration Y !X whose restrictions to A and B are
homotopy equivalent to the original two fibrations.

This homotopy descent property is a special case of a result about homotopy colimits
of simplicial sets stated in the work of Rezk [23], which is discussed by Puppe [21] in
terms of topological spaces. It reflects the fact that Kan fibrations are local in nature:
a map Y ! X is a Kan fibration whenever its restriction to each simplex of X is a
Kan fibration. One may therefore expect a similar gluing result to hold for fibrations
between dendroidal sets which have the same locality property. Operadic fibrations do
not have this property, but left fibrations do since they are defined by the right lifting
property with respect to left horns, which are subobjects of representables.

With this in mind, the homotopy descent property for left fibrations of dendroidal sets fol-
lows by a straightforward reduction to the situation where all left fibrations are minimal.

Proposition 4.1 Consider a diagram of dendroidal sets

(9)

Y1

����

Y0oo //

����

Y2

����

X1 X0oooo // // X2

in which the vertical maps are left fibrations and the bottom horizontal maps are
cofibrations. Suppose that both squares are “homotopy cartesian” in the sense that the
maps Y0! Yi �Xi X0 are weak equivalences in the covariant model structure over X0 .
Then there exists a left fibration over the pushout X1[X0 X2 , whose pullback to each
of the Xi is weakly equivalent to the left fibration Yi ! Xi in the covariant model
structure over Xi .

Proof We can replace the above diagram by any weakly equivalent diagram of left fibra-
tions over the Xi . In particular, we can assume that all dendroidal sets Yi are cofibrant.

We can further reduce to the case where all vertical maps are minimal left fibrations.
Indeed, we can first replace diagram (9) by a diagram of the form

M0

j
��}} !!

Y1

����

Y0oo //

����

Y2

����

X1 X0oo // X2
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where j is the inclusion of a minimal fibration with cofibrant domain. The resulting
diagram of left fibrations remains homotopy cartesian. Next, replace this diagram by
a diagram of the form

(10)

Y1

r1
��

M0
oo //

|| ""

����

Y2

r2
��

M1

����

M2

����

X1 X0oo // X2

where r1 and r2 are fiberwise retractions onto minimal fibrations (with cofibrant
domains). The vertical maps in the resulting diagram remain left fibrations and the
maps M0!Mi �Xi X0 are given by the composition

M0 �! Y0 �! Yi �Xi X0 �!Mi �Xi X0:

The composition of the first two maps is an operadic weak equivalence, and the second
map is the base change of a fiberwise deformation retract over Xi . It follows that
the composite is a weak equivalence between two minimal fibrations over X0 , which
means that it must be an isomorphism. In other words, the two solid squares in diagram
(10) are both pullback squares.

Taking the pushout of the top and bottom row gives a map

pW M1[M0M2 �!X1[X0 X2:

Because both squares in diagram (10) are cartesian, the pullback of this map to each of
the Xi reproduces the fibration Mi !Xi , up to a canonical isomorphism. Since left
fibrations between dendroidal sets are local, it follows that the map p is a left fibration
over X1[X0 X2 whose pullback to each of the Xi is weakly equivalent to the original
left fibration Yi !Xi .

Proposition 4.1 has a simple model-categorical consequence, which we will now explain.
The covariant model structures over all dendroidal sets assemble into a functor

AlgW dSetop
!ModelCatR; X 7! .dSet=X/cov:

Given a diagram X of dendroidal sets of the form

X1
f
 �X0

g
�!X2;
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we thus obtain a diagram of (combinatorial, left proper) model categories and right
Quillen functors between them:

Alg.X1/
f �

��! Alg.X0/
g�

 �� Alg.X2/:

By Barwick [2], any such diagram of right Quillen functors admits a “homotopy
pullback” model category Alg.X1/�hAlg.X0/ Alg.X2/, whose underlying category is
the lax pullback of the above diagram of categories. More precisely, the homotopy
limit model category has objects given by triples of objects Yi 2Alg.Xi / together with
two structure maps in Alg.X0/:

˛W Y0! f �Y1 and ˇW Y0! g�Y2:

The maps are maps of triples Yi ! Zi that are compatible with the two structure
maps. This category carries a model structure in which the trivial fibrations are triples
of trivial fibrations Yi !Zi , while the fibrant objects are given by triples of fibrant
objects Yi , together with structure maps ˛ and ˇ which are weak equivalences.

In the present situation, where each of the categories Alg.Xi / is just the category of
dendroidal sets over Xi , this means that the category underlying the homotopy pullback
Alg.X1/�hAlg.X0/

Alg.X2/ is simply the overcategory

.dSet1 0!2/=X;

whose objects are diagrams of shape (9). The model structure described above agrees
with the model structure for which

� cofibrations are projective cofibrations between the underlying diagrams of
dendroidal sets,

� fibrant objects are natural transformations Y !X such that each Yi!Xi is a left
fibration and each map Y0!Yi�XiX0 is a covariant weak equivalence over X0 ,

� weak equivalences between fibrant objects are degreewise weak equivalences.

This homotopy pullback model category comes equipped with a Quillen pair

colimW .dSet1 0!2/=X �! � dSet=colimX Wpullback

to the covariant model structure over the pushout of the diagram X . The right adjoint
sends a map over colimX to its pullbacks to each of the Xi . Proposition 4.1 now has
the following reformulation:
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Corollary 4.2 When X1 X0!X2 is a diagram of cofibrations between dendroidal
sets, the above Quillen pair is a Quillen equivalence.

Proof The derived unit is easily checked to be a natural weak equivalence, and the proof
of Proposition 4.1 shows that the derived counit map is a natural weak equivalence.

Remark 4.3 The same result holds when only one of the two arrows is a cofibration.
Indeed, this follows from the following facts: the operadic model structure is left proper
[8], the covariant model structures over weakly equivalent dendroidal sets are Quillen
equivalent, and two (naturally) Quillen equivalent diagrams of model categories have
Quillen equivalent homotopy pullbacks [2].

4.3 Weak equivalences between left fibrations

As another application, we give an alternative, self-contained proof of the result of
Heuts [14] that the weak equivalences between left fibrations of dendroidal sets are
precisely the fiberwise weak equivalences.

Proposition 4.4 Let pW X ! S be a left fibration between normal dendroidal sets.
Then p is a trivial fibration if and only if for every color cW �!S , the fiber XcDX�S�
is a contractible Kan complex.

Corollary 4.5 Consider a map of left fibrations over S :

X
f

//

��

Y

q
��

S

Then f is a weak equivalence if and only if for every color cW �! S , the map between
fibers Xc! Yc is a weak equivalence of Kan complexes.

Proof By Brown’s lemma, weak equivalences between left fibrations are preserved by
the right Quillen functor taking the base change along cW �! S . A weak equivalence
between left fibrations is therefore a fiberwise weak equivalence. For the converse,
we can assume that X and Y are normal. Factor the fiberwise weak equivalence f
as a covariant trivial cofibration X ! zX followed by a covariant fibration zX ! Y .
Because zX ! S is a left fibration, the trivial cofibration X ! zX is a fiberwise weak
equivalence. This implies that the covariant fibration zX ! Y is a fiberwise weak
equivalence as well.
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For every color cW �! Y , the fiber zX �Y fcg is isomorphic to the fiber over fcg of
the map between simplicial sets,

zX �S fqcg �! Y �S fqcg:

This map is a trivial fibration between Kan complexes because zX!Y is a left fibration
and a fiberwise weak equivalence. The left fibration zX ! Y has contractible fibers, so
it follows from Proposition 4.4 that it is a trivial fibration.

The proof of Proposition 4.4 uses a more restrictive notion of homotopy, which is
particularly useful in the setting of left fibrations. Recall that a linear order Œn� can
be viewed as a tree with n bivalent vertices (this induces the vertical inclusions in
diagram (3)). We will denote the associated dendroidal set by �Œn� and denote the tree
associated to Œ0� by �. The following definition is taken from Cisinski and Moerdijk [8]:

Definition 4.6 For any tree T and any number k�0, let �ŒT �?�Œk� be the dendroidal
set represented by the tree T? Œk� obtained by adding a vertex below the root of T and
grafting the result on top of the linear order Œk�:

(11) extra

kC 1

0

1

2

k
Œk�

T

Each dendroidal set �ŒT � ?�Œk� comes equipped with an iterated degeneracy map
� W �ŒT � ? �Œk�! �ŒT � which removes the linear order and the extra vertex from
T ? Œk�. We will be particularly interested in the case where nD 0, in which case the
dendroidal set �ŒT ? ��D�ŒT � ?�Œ0� has three types of faces:

(0) the face @0W �ŒT �!�ŒT ?�� associated to the inner edge marked by 0 in (11),

(1) the face @1W �ŒT �!�ŒT ? �� opposite the root vertex, and

(2) for every face @˛�ŒT �!�ŒT �, a face @˛�ŒT � ?�Œ0�!�ŒT � ?�Œ0�.

The first two face maps for k D 0 can be used to give another notion of homotopy be-
tween two elements of a dendroidal set, which is discussed in Moerdijk and Weiss [20]:
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Definition 4.7 Let pW X ! S be a map of dendroidal sets and let ˇ; ˇ0W �ŒT �!X

be two elements of X with the same image in S . A fiberwise homotopy along the
0–edge from ˇ to ˇ0 is a commuting diagram

�ŒT ? ��

�

��

H
// X

p

��

�ŒT �
p.ˇ/

// S

such that @1H D ˇ and @0H D ˇ0 , and where � is the degeneracy removing the root
vertex. Furthermore, we say that H is a fiberwise homotopy relative to the boundary if
the restriction of H to each face of the form @˛�ŒT �?�Œ0� factors over the degeneracy
@˛�ŒT � ?�Œ0�! @˛�ŒT �.

Lemma 4.8 Let pW X!S be an operadic fibration and suppose that H W �ŒT?��!X

is a fiberwise homotopy along the 0–edge between elements ˇ and ˇ0 , relative to the
boundary. Then ˇ and ˇ0 are fiberwise homotopic (relative to their boundary) with
respect to the cylinder J from Section 2.4.

Proof One can deduce the existence of such a homotopy either from Theorem B.2
in [8], or via the following argument. Observe that H and the constant homotopy

�ŒT ? ��
�
��!�ŒT �

ˇ
��! Y

agree on all faces of �ŒT ? ��, except for the face @0W �ŒT �!�ŒT ? �� obtained by
contracting the edge “0” above the root vertex (on which the value of H was ˇ0 , rather
than ˇ ). Both of these homotopies therefore provide a diagonal lift for the same diagram

ƒ0ŒT ? �� //

��

Y

��

�ŒT ? �� // X

where the inner horn ƒ0ŒT ? �� excludes the face that contracts the “0”–edge. But in
the operadic model category, as in any model category with a choice of cylinder, lifts
along inner horn inclusions are unique up to fiberwise J –homotopy, relative to the horn.
In particular, we have that @0H D ˇ0 and @0.�ˇ/ D ˇ are fiberwise J –homotopic
relative to their boundary.

With this notion of homotopy at hand, we turn to the proof of Proposition 4.4.
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Proof of Proposition 4.4 Let i W M ! X be the inclusion of a minimal fibration
into X . The fibers of pi W M ! S are weakly equivalent to those of pW X ! S and
the composite pi is a trivial fibration if and only if the original fibration p is a trivial
fibration. We can therefore reduce to the case where pW X ! S is a minimal fibration
with normal codomain. Note that a minimal fibration with contractible fibers actually
has trivial fibers; ie its fibers are isomorphic to �.

We will prove that any minimal left fibration pW X ! S with trivial fibers is an
isomorphism. It is immediate that p induces a bijection on colors, and a left fibration
inducing a surjection on colors is always an epimorphism. We show by induction that p
induces a monomorphism on all n–skeleta.

Assume that pW X ! S induces an isomorphism on .n�1/–skeleta; let ˛W �ŒT �! S

be a (possibly degenerate) element of degree n. We have to show that any two lifts of
the element ˛ to X , which exist by surjectivity of p , agree. The proof of this uses
another inductive argument: we will say that an element ˛W �ŒT �! S has a trunk of
height 0� k � n if there is a factorization:

�ŒT �
˛

// S

�ŒT 0� ?�Œk� 1� // �ŒT 0�

x̨

OO

The left vertical isomorphism asserts that the tree T has the form of picture (11), and
the rest of the diagram asserts that ˛W �ŒT �! S factors over the degeneracy that
collapses the linear order at the bottom of T . Note that having a trunk of height 0 is
no condition, so it suffices to prove by decreasing induction on the number k that ˛
has a unique lift to X .

If ˛ has a trunk of height n, then ˛W �Œn�! S is a degenerate n–simplex in S . Such
a simplex indeed has a unique (fully degenerate) lift since the fibers of X ! S over
each color are trivial. Now take k < n and assume that all elements with a trunk of
height l > k have a unique lift.

Suppose that ˛W �ŒT �!X has a trunk of height k and let ˇ; ˇ0W �ŒT �!X be two
lifts of ˛ . Since p induces an isomorphism on .n�1/–skeleta, the boundaries of ˇ
and ˇ0 are the same. To conclude that ˇ and ˇ0 are the same, it suffices to show
that ˇ and ˇ0 are fiberwise homotopic relative to their boundary, since we assumed that
pW X!S was a minimal left fibration. By Lemma 4.8 it suffices to provide a fiberwise
homotopy from ˇ to ˇ0 along the 0–edge, relative to the boundary (see Definition 4.7).
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Pick any leaf vertex v of the tree T . The idea will be to first construct a fiberwise
homotopy H which is constant on all faces except the face opposite v , and then to
use our inductive hypothesis to conclude that this homotopy is also constant on this
remaining face. We will construct the homotopy H as a diagonal lift in a diagram

(12)

ƒvŒT ? ��

��

// X

��

�ŒT ? �� //

H

55

�ŒT �
˛
// S

using the fact that X ! S is a left fibration. In order to obtain this diagram, observe
that the horn ƒvŒT ? �� opposite the leaf vertex v of T ? � fits into a pushout square:

ƒvŒT �qƒvŒT �
.@0;@1/

//

��

ƒvŒT � ?�Œ0�

��

�ŒT �q�ŒT � // ƒvŒT ? ��

This follows immediately from the description of the faces of �ŒT?�� given just above
Definition 4.7. The elements ˇ and ˇ0 , as well as the constant homotopy on the horn
ƒvŒT �, define maps

�ŒT �q�ŒT �
.ˇ 0;ˇ/
����!X and ƒvŒT � ?�Œ0�

�
��!ƒvŒT �

ƒv.ˇ/
����!X

that agree on ƒvŒT �qƒvŒT �. The induced map ƒvŒT ?��!X out of the pushout fits
into a commuting diagram of the form (12), whose diagonal H W �ŒT?��!X provides
a fiberwise homotopy between ˇ and ˇ0 which is constant on all faces except @v�ŒT �.

The restriction of H to the remaining face @v�ŒT �?�Œ0� gives a homotopy (rel bound-
ary) from the face @vˇ to the face @vˇ0 . This restriction fits into a commutative diagram:

@v�ŒT � ?�Œ0�
@vH

// X

��

@v�ŒT
0� ?�Œk� 1� ?�Œ0� // @v�ŒT

0�
x̨

// S

The left equality uses that the element ˛ had a trunk of height k . In other words, the
element @vH provides a lift of the degenerate element

@v�ŒT
0� ?�Œk�D @v�ŒT

0� ?�Œk� 1� ?�Œ0� �! @v�ŒT
0�
x̨
��! S;
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which is of degree n and has a trunk of height kC1. But by the inductive assumption,
elements with a trunk of height kC1 have unique lifts. It follows that H is degenerate,
which means that the homotopy H is also constant on the remaining face @v�ŒT �.

The map H W �ŒT ? ��! X thus provides a fiberwise homotopy (along the 0–edge)
between ˇ and ˇ0 which is constant on the boundary. Using Lemma 4.8 and the fact
that pW X ! S is a minimal fibration, this gives that ˇ D ��ˇ0 for some � 2 Aut.T /.
Using p to project to S , we find that � induces an automorphism of the element ˛ .
But S was assumed to be normal, so � is the identity, and ˛ indeed has a unique lift.

5 Other examples

Recently Cisinski [7] has shown that the theory of minimal fibrations of simplicial sets
can be generalized to model categories of presheaves over certain “Eilenberg–Zilber
type” Reedy categories (see Section 2.1 of [7]), in which the cofibrations are the
monomorphisms. Such Reedy categories share the combinatorial properties of the
simplex category � that provide presheaves over them with a well-behaved skeletal
filtration, the crucial tool used in the construction of minimal Kan fibrations.

The model structure on dendroidal sets does not entirely fit into this framework for the
simple reason that the category � of trees is not a strict Reedy category. Our proof
of Theorem 1.1 demonstrates how to take care of the automorphisms in � during
the construction of minimal fibrations. To analyze the scope of our arguments, let
us introduce the following notion of an “Eilenberg–Zilber type” generalized Reedy
category, which is closely related to the notion of a skeletal category from Cisinski [6]
and that of an EZ-category from Berger and Moerdijk [5]:

Definition 5.1 A generalized Reedy category R is called an Eilenberg–Zilber category
if it satisfies the following two conditions:

(1) R� is the subcategory of split epimorphisms.

(2) Two maps r! s in R� are the same if they have the same set of sections.

Example 5.2 The category � of trees is an Eilenberg–Zilber category by Lemma 2.1.
Apart from �, the class of Eilenberg–Zilber categories includes well-known examples
like the simplex category �, Segal’s category � [25], Connes’ cyclic category ƒ [11],
the category of nonempty finite sets, and all group(oid)s.

Furthermore, the product of two Eilenberg–Zilber categories is also one, and for any
presheaf X on an Eilenberg–Zilber category R, the category of elements R=X is
again one.
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One can observe that all the definitions in Section 2 make sense when � is replaced by
an arbitrary Eilenberg–Zilber category R, as defined above. Although Lemma 2.2 need
not hold for arbitrary R, the corollary that elements are essentially unique degeneracies
of nondegenerate elements still applies to normal presheaves over R. It follows from
this that any normal presheaf X on an Eilenberg–Zilber category R admits a skeletal
filtration, in which each inclusion X .n/!X .nC1/ is a pushout of boundary inclusions
@RŒr� ! RŒr� into presheaves represented by objects r 2 R of degree nC 1; see
Chapter 8 of Cisinski [6] for more details. Lemma 2.4 (which appears as Lemma 2.6
in [7] for strict Eilenberg–Zilber categories) shows that two degenerate elements of a
normal presheaf X are the same once their boundaries agree.

One can apply the arguments from Section 3 and proceed by induction along the skeletal
filtration to prove the following generalization of Theorem 1.1(a):

Theorem 5.3 Let R be an Eilenberg–Zilber category and suppose that the category
PSh.R/ of set-valued presheaves on R carries a model structure in which the cofibra-
tions are the normal monomorphisms. If pW Y ! X is a fibration between cofibrant
objects in this model structure, then p admits a minimal fibration M!X as a fiberwise
strong deformation retract.

Example 5.4 Apart from the model structures on dendroidal sets, there are many
common model categories which are of this form. Examples include the model structure
on the category PSh.ƒ/ of cyclic sets from Dwyer, Hopkins and Kan [12] and the
model structure on the category PSh.Fin/ of symmetric simplicial sets from Rosický
and Tholen [24] (see also the erratum). One can produce many more examples by
taking the category of simplicial presheaves over an Eilenberg–Zilber category R
and equipping it with the generalized Reedy model structure [5] or any Bousfield
localization thereof (viewed as a model structure for the Eilenberg–Zilber category
R��). This includes the model structures on � –spaces and (dendroidal) Segal spaces
as important examples.

Remark 5.5 Part (b) of Theorem 1.1 does not hold in general: it crucially relies on
the fact that the category �=X is a strict Reedy category when X is normal, in which
case it is just a special case of Proposition 2.8 of [7]. This property is not shared, for
example, by the category � (or � ��).

In Theorem 5.3, the notion of a fiberwise strong deformation retract can be interpreted
with respect to any model-categorical cylinder. However, the proof requires a cylinder
construction that shares the good properties of the cylinder described in Section 2.4.
More precisely, our proof in Section 3 needs a functorial factorization X q X WD
f0; 1g˝X ! J ˝X !X of the fold map in PSh.R/ such that:
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(i) The functor J ˝ .�/W PSh.R/! PSh.R/ preserves all colimits.

(ii) For each r 2 R, the pushout-product map

f0; 1g˝RŒr�[f0;1g˝@RŒr� J ˝ @RŒr� �! J ˝RŒr�

is a normal monomorphism.

(iii) For each r 2 R and i D 0; 1, the pushout-product map

fig˝RŒr�[fig˝@RŒr� J ˝ @RŒr� �! J ˝RŒr�

is a trivial cofibration, where fig ˝ RŒr�! J ˝ RŒr� is the inclusion of the
relevant summand.

By [6, Proposition 8.1.35], the normal monomorphisms are the weakly saturated class
on the boundary inclusions @RŒr�! RŒr�, so the above three properties guarantee that
the map X qX ! J ˝X !X provides a cylinder for all normal X .

Lemma 5.6 Let R be an Eilenberg–Zilber category and suppose that the category
PSh.R/ carries a model structure whose cofibrations are the normal monomorphisms.
Then there exists a functorial factorization X qX ! J ˝X !X of the fold map in
PSh.R/ satisfying the above three properties.

Proof Since the functor J˝.�/ is required to preserve colimits, it suffices to produce
the functorial factorization for representables. The fold map provides a natural trans-
formation RŒ��qRŒ��! RŒ�� of R–indexed diagrams in PSh.R/. The category R
is a generalized Reedy category, and PSh.R/ carries a model structure with a set of
generating cofibrations. The category of R–indexed diagrams in PSh.R/ therefore
carries that part of the Reedy model structure (with respect to the given model structure
on PSh.R/) that allows us to factor this natural transformation as a Reedy cofibration
RŒ��qRŒ��! J ˝RŒ��, followed by a Reedy trivial fibration J ˝RŒ��! RŒ��.
Property (ii) immediately follows from the fact that RŒ��qRŒ��! J ˝RŒ�� is a
Reedy cofibration.

Property (ii) immediately implies that the pushout-product map from property (iii) is a
cofibration. To see that it is a weak equivalence, we proceed by induction on the degree
of r . When r D 0 the given map is a section of the map J ˝RŒr�!RŒr�, which was
a trivial fibration by construction. Now suppose that property (iii) holds for all r of
degree < n, and let s be of degree n.

This implies that the map fig˝X! J ˝X is a trivial cofibration for all those normal
presheaves X that can be obtained as iterated pushouts of boundary inclusions in degree
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less than n. This applies in particular to the boundary @RŒs�, so the first map in

fig˝RŒs� �! fig˝RŒs� [fig˝@RŒs� J ˝ @RŒs� �! J ˝RŒs�

is a trivial cofibration. Since the composite is the section of the trivial fibration
J ˝RŒs�! RŒs�, property (ii) also follows for elements s of degree n.

Remark 5.7 Model categories of presheaves often have a cylinder provided by the so-
called Lawvere interval [6, Example 1.3.9], ie by taking the product with the subobject
classifier. This does not work in our setting since it gives a factorization of the fold
map into a monomorphism, rather than a normal monomorphism, followed by a weak
equivalence.

Finally, we would like to illustrate the use of the theory of minimal fibrations by means
of the following application:

Example 5.8 Let us consider the following model for the homotopy theory of connec-
tive spectra parametrized by a simplicial set S . The category .sSet=S/�op

of � –objects
in sSet=S carries a model structure in which:

� The cofibrations are the normal monomorphisms.

� An object X W �op! sSet=S is a fibrant object if it is Reedy fibrant (with respect
to the Kan–Quillen model structure on sSet=S ), and the Segal maps

X.n/ �!X.1/�S X.1/�S � � � �S X.1/

are trivial fibrations for all n� 0, as is the shear map X.2/!X.1/�S X.1/.

One can easily adapt the classical proof in simplicial sets (see eg [13]) to prove that
any minimal object in this model structure is a locally trivial bundle of � –spaces, ie a
� –space over S whose pullback to a simplex �Œn� is of the form �Œn��F , for some
� –space F .

Each map of simplicial sets S ! S 0 induces a Quillen pair

.sSet=S/�
op
�!
 � .sSet=S 0/�

op
;

where the right adjoint pulls back a � –space over S 0 to a � –space over S . This Quillen
pair is a Quillen equivalence whenever the map S ! S 0 is a weak equivalence. Asso-
ciating to each simplicial set S the above model category therefore provides a functor

(13) sSetop
!ModelCatR; S 7! .sSet=S/�

op
:
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A � –space over S is fibrant precisely when its pullback to each simplex of S is fibrant,
since the Reedy fibrancy conditions and the Segal conditions require certain maps of
simplicial sets over S to be (trivial) Kan fibrations. In other words, being fibrant is
a property “local” in S , in the sense of Section 4.2. We can therefore apply the proof
of Proposition 4.1 to obtain the following variant of Proposition 1.2 for parametrized
� –spaces:

Corollary 5.9 The functor (13) sending a simplicial set S to the model category
of � –spaces parametrized by S , sends a homotopy pushout of simplicial sets to a
homotopy pullback of model categories.

This corollary remains true if one uses the covariant model structure on sSet=S rather
than the Kan–Quillen model structure, since being fibrant requires certain maps of
simplicial sets over S to be (trivial) left fibrations, which is again a property local in S .
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