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Semistability and simple connectivity at 1

of finitely generated groups with a finite series
of commensurated subgroups

MICHAEL L MIHALIK

A subgroup H of a group G is commensurated in G if for each g 2G , gHg�1\H

has finite index in both H and gHg�1 . If there is a sequence of subgroups H D

Q0 �Q1 � � � � �Qk �QkC1 DG where Qi is commensurated in QiC1 for all i ,
then Q0 is subcommensurated in G . In this paper we introduce the notion of the
simple connectivity at1 of a finitely generated group (in analogy with that for finitely
presented groups). Our main result is this: if a finitely generated group G contains an
infinite finitely generated subcommensurated subgroup H of infinite index in G , then
G is one-ended and semistable at 1 . If, additionally, G is recursively presented and
H is finitely presented and one-ended, then G is simply connected at 1 . A normal
subgroup of a group is commensurated, so this result is a strict generalization of a
number of results, including the main theorems in works of G Conner and M Mihalik,
B Jackson, V M Lew, M Mihalik, and J Profio. We also show that Grigorchuk’s group
(a finitely generated infinite torsion group) and a finitely presented ascending HNN
extension of this group are simply connected at 1 , generalizing the main result of a
paper of L Funar and D E Otera.

20F65; 20F69, 57M10

1 Introduction and background

In 1962, J Stallings defined what it means for a space to be n–connected at 1, and
proved the following:

Theorem 1.1 (Stallings [23]) If V n , n� 5, is a contractible PL n–manifold without
boundary, then V is PL homeomorphic to Rn if and only if V is simply connected
at 1.

In 1974, R Lee and F Raymond first considered the fundamental group of an end of a
group. In particular, they considered groups that are simply connected at 1.
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3616 Michael L Mihalik

Theorem 1.2 (Lee and Raymond [14]) Let G be a finitely presented group with
normal subgroup N isomorphic to Zk and quotient K DG=N . Assume when k D 1

that K is one-ended and that when k D 2 that K is not finite, and no restrictions when
k > 2. Then G is simply connected at 1.

For a reasonable space X (or finitely presented group G ), one needs to know that X

(respectively G ) is semistable at 1 in order to have the fundamental group of an end
of X (respectively G ) defined independent of base ray. In 1982, B Jackson generalized
Theorem 1.2 and in 1983, M Mihalik proved the first semistability at 1 theorem for a
class of finitely presented groups. These two results serve as a starting point for this
paper.

Theorem 1.3 (Jackson [11]) If H is an infinite finitely presented normal subgroup
of infinite index in the finitely presented group G , and either H or G=H is one-ended,
then G is simply connected at 1.

Theorem 1.4 (Mihalik [16]) If H is an infinite finitely generated normal subgroup
of infinite index in the finitely presented group G , then G is semistable at 1.

In 1985, the following connections were drawn between semistability and simple
connectivity at 1, and group cohomology.

Theorem 1.5 (Geoghegan and Mihalik [6]) If G is a finitely presented and semistable
at 1 group then H 2.G;ZG/ is free abelian. If G is simply connected at 1 then
H 2.G;ZG/D 0.

It is unknown whether or not all finitely presented groups are semistable at 1. It is
also unknown whether or not for all finitely presented groups G , H 2.G;ZG/ is free
abelian. The main theorem in the unpublished 1993 PhD dissertation of V Ming Lew
generalized Theorem 1.4 and the main theorem of the 1990 PhD dissertation of J Profio
generalized Theorem 1.3.

Theorem 1.6 (Lew [15]) Suppose H is an infinite finitely generated subnormal
subgroup of the finitely generated group G , then

H DN0 C N1 C N2 C � � �C Nk DG

for k � 1, and H has infinite index in G . Then G is one-ended and semistable at 1.

Theorem 1.7 (Profio [21]) Suppose H C N C G is a normal series with H and G

finitely presented, and H one-ended and of infinite index in G . Then G is simply
connected at 1.

Algebraic & Geometric Topology, Volume 16 (2016)
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Given a subgroup H of a group G , the element g 2 G is in the commensurator
of H in G (denoted Comm.H;G/) if gHg�1 \ H has finite index in both H

and gHg�1 . The subgroup H is commensurated in G if Comm.H;G/ D G , so
normal subgroups are commensurated. The main result of G Conner and Mihalik [3]
generalizes Theorems 1.4 and 1.3 in a direction different than these last two results.

Theorem 1.8 (Conner and Mihalik [3]) If a finitely generated group G has an infinite
finitely generated commensurated subgroup Q, and Q has infinite index in G , then G

is one-ended and semistable at 1. Furthermore, if G and Q are finitely presented
and either Q is one-ended or the pair .G;Q/ has one filtered end, then G is simply
connected at 1.

Example For p a prime, the group SLn

�
Z
�

1
p

��
is finitely presented. When n > 2,

the only normal subgroups of this group are either finite or of finite index; see [22].
For n > 2, the finitely presented one-ended subgroup SLn.Z/ is commensurated in
SLn

�
Z
�

1
p

��
and so by Theorem 1.8, SLn

�
Z
�

1
p

��
is one-ended and simply connected

at 1.

While Lew’s theorem improves Theorem 1.4 by replacing normality by subnormality,
Profio’s result is the best attempt in the last 30 years to improve the normality hypothesis
of Theorem 1.3 to subnormality. As a corollary of our main theorem, we obtain the
subnormal version of Jackson’s Theorem 1.3. The semistability part of Theorem 1.9
is proved first and then used in an essential way in the proof of the simply connected
at 1 part of Theorem 1.9. A new idea, the simple connectivity at 1 of a finitely
generated group, is introduced and used in a fundamental way to prove the second part
of Theorem 1.9. We point out that we cannot prove this part of Theorem 1.9, even in
the finitely presented case, without this new concept.

If Q is a commensurated subgroup of G we use the notation Q � G . The main
theorem of this article is the following.

Theorem 1.9 (main theorem) Suppose H is a finitely generated infinite subgroup of
infinite index in the finitely generated group G , and H is subcommensurated in G :

H DQ0 �Q1 � � � � �Qk �G:

Then G is one-ended and semistable at1. If, additionally, H is one-ended and finitely
presented and G is finitely generated and recursively presented, then G is simply
connected at 1.

Algebraic & Geometric Topology, Volume 16 (2016)



3618 Michael L Mihalik

In the next section we define what it means for a finitely generated (and recursively
presented) group to be simply connected at 1 (a strict generalization of simple con-
nectivity at 1 for finitely presented groups).

Example In Mihalik [20], short exact sequences are produced for each n> 0 of the
form

1!H ! .Zn
�Z/� .Zn

�Z/! Zn
! 1;

where H is one-ended and finitely generated. The group Zn is .n�2/–connected
at 1, yet .Zn �Z/� .Zn �Z/ is not simply connected at 1. These examples show
that the finitely presented hypothesis on H in Theorems 1.3 and 1.9, cannot be easily
relaxed.

R Grigorchuk constructed a finitely generated infinite torsion group G and a finitely
presented HNN extension H of G ; see Grigorchuk [7; 8]. The group G contains
a subgroup of finite index T , and T is isomorphic to T � T ; see de la Harpe [9,
Chapter VIII, Theorem 28]. We show that a recursively presented direct product of a
one-ended finitely generated group with an infinite finitely generated group is simply
connected at 1, and so Grigorchuk’s group G is simply connected at 1. We also
show that an ascending HNN extension of a one-ended finitely generated recursively
presented semistable at 1 and simply connected at 1 group is simply connected
at1. This implies that the HNN extension of Grigorchuck’s group is simply connected
at 1.

The remainder of the paper is organized as follows. In Section 2, the working definitions
and notation are established. We introduce our definition of a subgroup being simply
connected at 1 inside an overgroup. This definition is then used to define the simple
connectivity at 1 of a finitely generated group. We end Section 2 with a few important
technical lemmas.

In Section 3, we prove the semistability part of our main theorem. This is an induction
argument that starts with base case given by Theorem 1.8.

In Section 4, we prove the simple connectivity at 1 part of our main theorem. This is
also an induction argument that starts with the base case given by the simple connectivity
part of Theorem 1.8. The semistability result of Section 3 is used in conjunction with
Lemma 2.9 to set up the proof of the simple connectivity part of Theorem 1.9.

Finally, in Section 5 we prove two simply connected at 1 results, and apply the results
to show Grigorchuk’s group and its HNN extension are simply connected at 1.
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2 Definitions and a technical lemma

Geoghegan’s book [5] is a general reference to all that is in this section. A continuous
function f W X ! Y is proper if for each compact subset C of Y , f �1.C / is compact
in X . A proper map r W Œ0;1/! X is called a ray in X . If K is a locally finite,
connected CW-complex, then one can define an equivalence relation � on the set A of
all rays in K by setting r � s if and only if for each compact set C �K , there exists an
integer N.C / such that r.ŒN.C /;1// and s.ŒN.C /;1// are contained in the same
unbounded path component of K�C (a path component of K�C is unbounded if it
is not contained in any compact subset of K ). An equivalence class of A=� is called
an end of K , the set of equivalence classes of A=� is called the set of ends of K , and
two rays in K in the same equivalence class are said to converge to the same end. The
cardinality of A=�, denoted by e.K/, is the number of ends of K .

If G is a finitely generated group with generating set S , then the Cayley graph of G

with respect to S , denoted �.G;S/ , has vertex set G and an edge between vertices v
and w if vsDw for some s 2S . We define the number of ends of G , denoted by e.G/,
to be the number of ends of the Cayley graph of G with respect to a finite generating
set. (In particular, e.G/D e.�.G;S/ .) This definition is independent of the choice of
finite generating set for G . If G is finitely generated, then e.G/ is either 0, 1, 2, or is
infinite (in which case it has the cardinality of the real numbers). We let � denote the
base point of �.G;S/ , which corresponds to the identity of G .

If f and g are rays in K , then one says that f and g are properly homotopic if there is
a proper map H W Œ0; 1��Œ0;1/!K such that H jf0g�Œ0;1/Df and H jf1g�Œ0;1/Dg .
If f .0/D g.0/D v and H jŒ0;1��f0g D v , one says f and g are properly homotopic
relative to v (or relfvg).

Definition 2.1 A locally finite connected CW-complex K is semistable at 1 if any
two rays in K converging to the same end are properly homotopic. The space K is
simply connected at 1 if for any compact set C �K there is a compact D �K such
that loops in K�D are homotopically trivial in K�C .

In a locally finite CW-complex, any ray is properly homotopic to an edge path ray. So
in order to show semistability in such a complex, it is enough to prove edge path rays
converging to the same end are properly homotopic.

[16, Theorem 2.1] and [18, Lemma 9] provide several equivalent notions of semistability.
The space considered in [16] is simply connected, but simple connectivity is not
important in that argument. A slight modification of proofs gives the following result;
see [3].

Algebraic & Geometric Topology, Volume 16 (2016)



3620 Michael L Mihalik

Theorem 2.2 Suppose K is a locally finite connected one-ended CW-complex. Then
the following are equivalent:

(1) K is semistable at 1.

(2) For any ray r W Œ0;1/!K and compact set C , there is a compact set D such
that for any third compact set E and loop ˛ based on r and with image in
K�D , ˛ is homotopic relfrg to a loop in K�E , by a homotopy with image
in K�C .

(3) For some (equivalently any) ray r in K and any collection of compact sets Ci

such that
S1

iD1 Ci DK and Ci�1 is a subset of the interior of Ci , the inverse
system

�1.X �C1; r/ !�1.X �C2; r/ !� � �

with bonding maps induced by inclusion along r , is proisomorphic to an inverse
system of groups with epimorphic bonding maps.

(4) For any compact set C there is a compact set D such that if r and s are rays
based at v and with image in K �D , then r and s are properly homotopic
relfvg by a proper homotopy in K�C .

If K is simply connected (or if a group acting by homeomorphisms on K , acts tran-
sitively on the vertices of K ) then a fifth equivalent condition can be added to this
list:

(5) If r and s are rays based at v , then r and s are properly homotopic relfvg.

If finite connected CW-complexes X and Y have isomorphic fundamental groups,
then the universal cover of X is semistable (simply connected) at 1 if and only if the
universal cover of Y is semistable (simply connected) at 1. This result can be seen
from the early work of F E A Johnson [12; 13], or the proof of [14, Theorem 3]. For a
complete argument see the first three sections of [5, Chapter 5].

Definition 2.3 If G is a one-ended, finitely presented group and X is some (equiva-
lently any) finite CW-complex with fundamental group G , then we say G is semistable
at 1 if the universal cover of X is semistable at 1. We say G is simply connected
at 1 if the universal cover of X is simply connected at 1.

The notion of semistabilty for a finitely generated group was first defined in [19]. We
give the definition for one-ended groups since this is the case that concerns us. Suppose
G is a one-ended finitely generated group with generating set S WD fg1;g2; : : : ;gng

and let �.G;S/ be the Cayley graph of G with respect to this generating set. Suppose
f˛1; ˛2; : : : ; ˛mg is a finite set of relations in G written in the letters fg˙

1
;g˙

2
; : : : ;g˙n g.

Algebraic & Geometric Topology, Volume 16 (2016)
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For any vertex v 2 �.G;S/ , there is an edge path cycle labeled ˛i at v . The 2–
dimensional CW-complex �.G;S/.˛1; : : : ; ˛m/ is obtained by attaching, at each vertex
of �.G;S/ , 2–cells corresponding to the relations ˛1; : : : ; ˛n .

We show in [19] that if S and T are finite generating sets for the group G and there
are finitely many S–relations P such that �.G;S/.P / is semistable at 1, then there
are finitely many T –relations Q such that �.G;T /.Q/ is semistable at 1; hence the
following definition.

Definition 2.4 A finitely generated group G is semistable at 1 if for some (equiva-
lently any) finite generating set S for G and finite set of S–relations P the complex
�.G;S/.P / is semistable at 1.

Note that if G has finite presentation hS W P i, then G is semistable at 1 with respect
to Definition 2.3 if and only if G is semistable at 1 with respect to Definition 2.4 if
and only if �.G;S/.P / is semistable at 1.

The following definition defines what it means for a finitely generated subgroup of a
finitely presented group to be simply connected at 1 relative to the finitely presented
overgroup.

Definition 2.5 A finitely generated subgroup A of a finitely presented group G is
simply connected at 1 in G (or relative to G ) if for some (equivalently any by
Lemma 2.9 with N D 0) finite presentation hA;B W Ri of the group G (where A
generates A and A[B generates G ), the 2–complex �.G;A[B/.R/ has the following
property: given any compact set C � �.G;A[B/.R/, there is a compact set D �

�.G;A[B/.R/ such that any edge path loop in �.A;A/�D is homotopically trivial in
�.G;A[B/.R/�C .

In order to define what it means for a finitely generated group G to be simply connected
at 1, we must know that G embeds in some finitely presented group. In 1961,
G Higman proved the following.

Theorem 2.6 (Higman [10]) A finitely generated infinite group G can be embedded
in a finitely presented group if and only if G is recursively presented.

Definition 2.7 A finitely generated and recursively presented group A is simply
connected at1 if for any finitely presented group G and subgroup A0 isomorphic to A,
A0 is simply connected at 1 in G .

Algebraic & Geometric Topology, Volume 16 (2016)
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Suppose that A is a finitely presented group and A satisfies the simply connected at 1
condition of Definition 2.3, then A satisfies Definition 2.7. If A is a finitely presented
group satisfying Definition 2.7, then if we let ADG in Definition 2.7, we see that A

satisfies Definition 2.3, and there is no ambiguity.

We conclude this section with Lemmas 2.9 and 2.10, but first some terminology.
Suppose hS W Ri is a finite presentation for a group G . If A is a subcomplex of
�.G;S/.R/, then St.A/ is the subcomplex of �.G;S/.R/ whose vertices V .St.A// are
the vertices of A along with each vertex of �.G;S/.R/ that is connected to a vertex
of A by an edge. The edges E.St.A// of St.A/ are all edges of A union all edges of
�.G;S/.R/, both of whose vertices are contained in V .St.A//. The 2–cells F.St.A//
of St.A/ are all 2–cells of A union all 2–cells F such that all vertices of F belong
to V .St.A//. If A is an arbitrary subset of �.G;S/.R/ then let OA be the smallest
subcomplex of �.G;S/.R/ containing A and define St.A/ to be St. OA/. Inductively,
StL.A/D St.StL�1.A// for L> 1.

Lemma 2.8 (1) Suppose A and B are subcomplexes of �.G;S/.R/ and St.A/\
B ¤∅. Then A\St.B/¤∅.

(2) Suppose A is a subcomplex of �.G;S/.R/ and B is an arbitrary subset of
�.G;S/.R/ and St.B/\A¤∅ then StLC1.A/\B ¤∅, where L is the length
of the longest relation in R.

Proof Case (1) If St.A/\B ¤∅ then there is a vertex v 2 St.A/\B . If v is in A

then we are finished. Otherwise, there is a vertex w 2 A and an edge from v to w .
Then w 2A\St.B/.

Case (2) Let v be a vertex in St.B/\AD St. OB/\A. If v is in B we are finished.
Otherwise, v is in OB or v is adjacent to a vertex w 2 OB . If v is in OB then there is
an edge e containing a point b 2 B and v is a vertex of e , or there is a 2–cell F

containing a point b 2 B and v is a vertex of F . In either case, b is in StL.v/,
so b is in B \ StL.A/. If v is adjacent to a vertex w 2 OB then as above, there is
b 2 B \StL.w/� B \StLC1.A/.

The following technical lemma has a somewhat standard proof.

Lemma 2.9 Suppose A is a finitely generated subgroup of the finitely presented
group G . Then A is simply connected at 1 in G if and only if the following holds:

(|) For hS W Ri an arbitrary finite presentation for G , N � 0 an integer and C a
compact subset of �.G;S/.R/, there is a compact set D.C;N / � � such that
if ˛ is an edge path loop in � �D and each vertex of ˛ is within N of some
vertex of A.� �/, then ˛ is homotopically trivial in � �C .

Algebraic & Geometric Topology, Volume 16 (2016)
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Proof If condition .|/ holds with N D 0 then clearly A is simply connected at 1.
For the converse, assume A is simply connected at 1 and hA;B W T i is a presentation
for G satisfying the conditions of Definition 2.5. Define �1 WD �.G;A[B/.T / and
�2 WD �.G;S/.R/. Recall that the vertices of �1 and of �2 are both the elements of G .
In order to avoid confusion if v is a vertex of �1 we denote by v0 the corresponding
vertex of �2 . We define proper maps respecting the action of G , f1W �1! �2 and
f2W �2! �1 such that for each vertex g 2G of �1 , f1.g/D g0 and f2.g

0/D g . If e

is an edge of �1 with initial vertex v , terminal vertex w and label s 2 A[B , then
choose an edge path �s in �2 from v0 WD f1.v/ to w0 WD f1.w/. Define f1.e/ to be �s .
If g 2G define f1 on ge to be g�s . Similarly define f2 from the 1–skeleton of �2

to the 1–skeleton of �1 . Let M1 be the length of the longest path �s for s 2 A[B
and M2 be the length of the longest path �s0 for s0 2 S . Note that if e is an edge
of �1 , with initial vertex v and terminal vertex w , then f2f1.e/ is an edge path of
length at most M1M2 from v to w , and similarly if e is an edge of �2 .

In particular, if x is a point of an edge of �1 then f2.f1.x// 2 StM1M2.x/, and
likewise if x belongs to an edge of �2 .

If F is a 2–cell of �1 , then the boundary of F is an edge path ˇF with edge labels the
same as an element of T . Then f1.ˇF / is an edge path loop in �2 . Choose P1 > 0

so that if F is any 2–cell of �1 , then the edge path loop f1.ˇF / is homotopically
trivial in StP1.v0/ for any vertex v0 of f1.ˇF /. The map f1 is defined so that f1jF

(the restriction of f1 to any 2–cell F ) realizes this homotopy and respects the action
of G on �1 and �2 . Similarly map the 2–cells of �2 to �1 and choose P2 for f2 .
Let L be the length of the longest relator of T [R.

If x is a point of a 2–cell F of �1 and v is a vertex of F , then f1.x/2 StP1.f1.v//D

StP1.v0/. This means there is an edge path � in �2 of length at most P1 from v0 to a
vertex w0 and w0 belongs to an edge b or 2–cell B containing f1.x/.

If w0 belongs to an edge b then f2.f1.x// belongs to f2..�; b// an edge path of
length at most M2.P1C1/ that begins at v . In this case f2.f1.x// 2 StM2.P1C1/.x/.

Otherwise, w0 belongs to a 2–cell B containing f1.x/ and f2.f1.x// belongs to
StP2.f2.w

0// D StP2.w/. Then f2.�/ is an edge path of length at most P1M2

from v to w , and f2f1.x/ 2 StP1M1CP2.v/. As x 2 StL.v/, we have f2.f1.x// 2

StP1M1CP2CL.x/. Combining, we make the following claim.

Claim 1 There is an integer M such that if x is a point of �1 (respectively �2 ), then
f2.f1.x// 2 StM .x/ (respectively f1.f2.x// 2 StM .x/).

Let �3 WD �.A;A/ be the corresponding subgraph of �1 . Then for any compact set C

in �1 there is a compact set D in �1 so that any edge path loop in �3 � D , is

Algebraic & Geometric Topology, Volume 16 (2016)
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homotopically trivial in �1�C . Let �4 WD f1.�3/. Then A is a subset of the vertices
of �4 and we call these vertices the pseudo vertices of �4 . For each edge e of �3 ,
f1.e/ is an edge path of �4 (connecting two pseudo vertices) that we call a pseudo
edge of �4 .

Claim 2 Given a compact set C in �2 , there is a compact set D1.C / in �2 such that
any pseudo edge path loop ˇ in �4�D1 is homotopically trivial in �2�C .

Proof Assume C is a compact subcomplex of �2 . Then StMCL.f2.C // is a compact
subcomplex of �1 . As �1 satisfies Definition 2.5, there is a compact subcomplex E

of �1 such that any edge path loop in �3 � E is homotopically trivial in �1 �

StMCL.f2.C //.

Choose D1 a compact subcomplex of �2 such that if w 2 G is a vertex of E

then f2.w/ WD w0 2 D1 . If ˇ0 is a pseudo edge path loop in �4 � D1 , let ˇ
be an edge path loop in �3 such that f1.ˇ/ D ˇ0 . Note that no vertex of ˇ be-
longs to E and so ˇ avoids E . Then there is a homotopy H that kills ˇ in
�1 � StMCL.f2.C // and f1H kills ˇ0 in �2 . It remains to show that the image
of f1H avoids C . If im.f1H /\C ¤∅, then im.f2f1H /\f2.C /¤∅. By Claim 1,
im.f2f1H / � StM .im.H // and so StM .im.H //\ f2.C / ¤ ∅. By Lemma 2.8(1),
St.im.H //\StM�1.f2.C //¤∅ and by Lemma 2.8(2) im.H /\StMCL.f2.C //¤∅.
But im.H /\StMCL.f2.C //D∅.

Now we complete the proof of Lemma 2.9. Recall, N � 0 is an arbitrary fixed integer.
Choose N1 such that if two pseudo vertices of �4 are within 2N C 1 of one another
in �2 then there is a pseudo edge path of �2 –length at most N1 connecting them.
Let C be compact in �2 . Choose N2 so that if � is an edge path loop in �2 of length
at most N1C 2N C 1, then � is homotopically trivial in StN2.w0/ for any vertex w0

of � . Now suppose ˛ is an edge path loop of �2�StN2.D1.C // and each vertex of ˛
is within N of A (the pseudo vertices of �4 ). By the definition of N2 , ˛ is homotopic
to a pseudo edge path loop ˛0 in �4 �D1 by a homotopy in �2 �D1 . Since ˛0 is
homotopically trivial in �2�C , ˛ is as well.

Remark For spaces (and finitely presented groups), simple connectivity at 1 is
stronger than semistability at 1. In fact Theorem 2.2(3) states that a space K is
semistable at 1 if and only if pro��end

1
.K/ is proisomorphic to an inverse system of

groups with epimorphic bonding maps. The space K is simply connected at 1 if and
only if pro��end

1
.K/ is protrivial. It is not clear whether or not our definition of simple

connectivity at 1 for a finitely generated group implies the group is semistable at 1.
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Interestingly, these two notions can be combined in effective ways (see Lemma 2.10
and Theorem 5.2).

Lemma 2.9 implies the following. Suppose the finitely generated group A is simply
connected at 1 in the finitely presented group G , .S;R/ is a finite presentation for G ,
and v1; : : : ; vn are vertices of �.G;S/.R/. Then for any compact C � � and integer
N � 0 there is a compact set D.C;N; fv1; : : : ; vng/ such that any loop in ��D , each
of whose vertices is within N of viA for some i 2 f1; : : : ; ng, is homotopically trivial
in � �C . What is not guaranteed is a compact set D.C;N / satisfying the following:
for all v 2G and any edge path loop ˛ in � �D with each vertex of ˛ within N of
vA, the loop ˛ is homotopically trivial in � �C . We do gain this enhanced condition
(see Lemma 2.10) if A is both simply connected at 1 in G and semistable at 1.

Lemma 2.10 Suppose A is a finitely generated semistable at 1 group and A is
simply connected at 1 in the finitely presented group G , then the following holds:

(}) For hS W Ri an arbitrary finite presentation for G , N � 0 an integer and C a
compact subcomplex of �.G;S/.R/, there is a compact set D.C;N /� � such
that if ˛ is an edge path loop in � �D , v is an element of G , and each vertex
of ˛ is within N of the coset vA.��/, then ˛ is homotopically trivial in ��C .

Proof By Lemma 2.9, condition .}/ holds for any finite collection of vertices v .
For the sake of simplicity, we assume that S contains a set of generators A for A,
and R contains a finite set of A–relations RA so that �.A;A/.RA/ is semistable at 1.
Choose an integer M so that if ˛ is an edge path loop in �.G;S/.R/ and each vertex
of ˛ is within N of A � �.G;S/.R/ then ˛ is homotopic to an edge path loop ˛0

in �.A;A/.RA/ by a homotopy in StM .image.˛// � �.G;S/.R/. Choose a finite set
of vertices v1; : : : ; vn such that if v�.A;A/.RA/\ StM .C /¤ ∅ then vAD viA for
some i 2 f1; : : : ; ng. Choose D.StM ;N; fv1; : : : ; vng/ compact (as in the remark on
page 3624) so that any loop in �.G;S/.R/�D , each of whose vertices is within N of
viA for some i 2 f1; : : : ; ng, is homotopically trivial in �.G;S/.R/�C . If vA¤ viA

for any i 2 f1; : : : ; ng, and ˛ is a loop in �.G;S/.R/�D such that each vertex of
˛ is within N of vA, then by the definition of M , ˛ is homotopic to a loop ˛0 in
v�.A;A/.RA/ by a homotopy avoiding C . Since A is simply connected in G there is
a compact set E such that any loop in v�.A;A/.RA/�E is homotopically trivial in
�.G;S/.R/�C . Since A is semistable at 1, ˛0 is homotopic in v�.A;A/.RA/ to a
loop ˛00 in v�.A;A/.RA/�E . Since C \v�.A;A/.RA/D∅ this homotopy avoids C .
Now ˛00 is homotopically trivial in �.G;S/.R/�C and so ˛ is also.
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3 Semistability

For the remainder of the paper, we assume that G is a finitely generated group, H is
an infinite finitely generated subgroup of infinite index in G and (as in the statement
of Theorem 1.9) H is subcommensurated in G :

H DQ0 �Q1 � � � � �Qk �QkC1 DG:

Let H WD fh1; : : : ; hng be a finite generating set for H , and suppose the group G has
generating set G WD fh1; : : : ; hn; s1; : : : ; smg. Let S WD fs1; : : : ; smg.

Lemma 3.1 [2, Lemma 3.1] Suppose Q and B are subgroups of the group G and
Q�G . Then Q\B � B .

Lemma 3.2 If H is a subgroup of A and A is a subgroup of G (H <A<G ), then

H DQ0 �Q1\A� � � � �Qk \A�A:

Proof Recall QkC1 WDG . For i D 1; : : : ; kC1, define Bi WDA\Qi . As Qi�1�Qi

and Bi <Qi , Lemma 3.1 implies that Qi�1 \Bi � Bi . Equivalently, Qi�1 \A �

Qi \A.

Lemma 3.3 Suppose i 2 f1; 2; : : : ; k C 1g, g 2 Qi and Y is a subgroup of Qi�1 .
Then g�1Qi�1g\Y has finite index in Y and so gYg�1\Qi�1 has finite index in
gYg�1 . Note that if Y is finitely generated, then g�1Qi�1g\Y and Qi�1\gYg�1

are as well.

Proof The group g�1Qi�1g\Qi�1 has finite index in Qi�1 . Therefore, the group
g�1Qi�1g \Qi�1 \ Y D g�1Qi�1g \ Y has finite index in Y . Conjugating, we
have that the group Qi�1\gYg�1 has finite index in gYg�1 .

For s 2 S˙1 let As be a finite generating set for Qk \ s�1Hs , and define

A1 WD

[
s2S˙1

As and A WDH[A1:

Then A WD hAi is a finitely generated subgroup of Qk .

The following two lemmas imply the semistability part of Theorem 1.9.

Lemma 3.4 If H has finite index in A, then H is commensurated in G (and so G is
one-ended and semistable at 1 by Theorem 1.8).
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Lemma 3.5 If H has infinite index in A, then H is subcommensurated in A:

H DQ0 �Q1\A� � � � �Qk \ADA;

and both A and G are one-ended and semistable at 1.

Proof of Lemma 3.4 It suffices to show that for s 2S˙1 , s�1Hs\H has finite index
in both H and s�1Hs . Since H has finite index in A, and hAsi DQk \ s�1Hs <A,
the group H \ .Qk \ s�1Hs/ D H \ s�1Hs has finite index in Qk \ s�1Hs . By
Lemma 3.3 (with Y DH and g D s�1 ), the group Qk \ s�1Hs has finite index in
s�1Hs and so H \ s�1Hs has finite index in s�1Hs for all s 2 S˙1 . Conjugating
we have sHs�1 \H has finite index in H for all s 2 S˙1 . Combining we have
s�1Hs\H has finite index in both H and s�1Hs for all s 2 S˙1 .

Proof of Lemma 3.5 Now suppose H has infinite index in A. The subcommensurated
sequence H DQ0 �Q1 � � � � �Qk �G has length kC1. Theorem 1.8 shows that if
k D 0, then G is one-ended and semistable at 1. Inductively, we assume that if G0 is
finitely generated and there is a subcommensurated sequence H 0 DQ0

0
�Q0

1
� � � � �

Q0
k�1
�G0 of length k such that H 0 is finitely generated and has infinite index in G0 ,

then G0 is one-ended and semistable at 1.

In our case, H has infinite index in A, and the length k subcommensurated series
H DQ0 �Q1\A� � � � �Qk�1\A�A implies that A is one-ended and semistable
at 1. Hence we may choose a finite set P of A–relations so that �.A;A/.P / is
one-ended and semistable at 1.

If s 2 S˙1 and a 2As , then there is a G–relation of the form aD s�1ass for some
H–word as . Let R be the (finite) collection of all such relations. Define

z� WD �.G;A[S/.P [R/:

We simultaneous show z� is one-ended and semistable at 1 by showing that all proper
edge path rays in z� are properly homotopic (completing the proof of the semistability
part of Theorem 1.9).

Claim 3 Let K be the length of the longest R–relation. If v 2 G (so v is a vertex
of z� ), s 2 S˙1 and r is an As –proper ray at v , then r is properly homotopic relfvg to
a ray of the form .s�1; h0

1
; h0

2
; : : :/, where h0i 2H . Furthermore, this proper homotopy

has image in StK .im.r//.

Proof Suppose r D .a1; a2; : : :/ with ai 2As . Then r is properly homotopic relfvg
to .s�1; .a1/s; s; s;

�1 .a2/
�1
s ; s; : : :/, simply by using the 2–cells for the R–relation

ai D s�1.ai/ss . Then r is properly homotopic relfvg to .s�1; .a1/s; .a2/s; : : :/ by a
proper homotopy in StK .im.r//.
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If v 2 G and Cv is a compact subcomplex of v�.A;A/.P / � z� then there is a
compact subcomplex Dv of v�.A;A/.P / such that if r and s are edge path rays
at w 2 v�.A;A/.P /�Dv , then r and s are properly homotopic relfwg by a proper
homotopy in v�.A;A/ �Cv . Hence, if C is a compact subcomplex of z� and we let
Cv WDC \v�.A;A/.P / (for the finite set of vertices v such C \v�.A;A/.P /¤∅) and
let D WD

S
Dv , then any two A–rays r and s at w 2 v�.A;A/.P /�D are properly

homotopic relfwg in z� �C .

[18, Lemma 2] is an elementary graph theory result that states: for each v 2G , there
is an H–ray rv at v such that for any compact set C � z� there are only finitely many
v 2 G such that rv intersects C . Also, for each s 2 S˙1 , there is an As –ray r.s;v/
at v such that for any compact set C � z� , only finitely many v are such that r.s;v/
intersects C .

Choose a sequence of compact subcomplexes fCig
1
iD1

of z� satisfying the following
conditions:

(1)
S1

iD1 Ci D
z� .

(2) StK .Ci/ (see Claim 3) is contained in the interior of CiC1 , and the finite set of
vertices v such that rv or r.s;v/ (s 2 S˙1 ) intersects Ci , is a subset of CiC1 .

(3) If r and s are A–rays in z� �Ci both based at a vertex v , then r and s are
properly homotopic relfvg by a proper homotopy in v�.A;A/.P /�Ci�1 ; see
Theorem 2.2(4).

For convenience, define Ci WD ∅ for i < 1 and observe that conditions (1)–(3) (see
Theorem 2.2(5)) remain valid for all Ci . The next lemma implies Lemma 3.5 and
concludes the proof of the semistability part of Theorem 1.9.

Lemma 3.6 If v is a vertex of z� , and t D .e1; e2; : : :/ is an arbitrary ray at v , then t

is properly homotopic to rv , relfvg.

Proof Assume that t has consecutive vertices v D v0; v1; : : :. By construction, if
vj 2 CiC1�Ci , then rvj

avoids Ci�1 . Assume j is the largest integer such that Cj

avoids ei . Then rvi�1
and rvi

avoid Cj�1 . We will show rvi�1
is properly homotopic

to ei � rvi
relfvi�1g by a proper homotopy Hi with image avoiding Cj�3 .

If ei 2A˙1 , this is clear by condition (3) with Hi avoiding Cj�2 . If ei 2 S˙1 , then
rvi�1

and r.ei ;vi�1/ are A–rays avoiding Cj�1 , and so by (3) are properly homotopic
relfvi�1g by a homotopy avoiding Cj�2 . By Claim 3 and condition (2), r.ei ;vi�1/

is properly homotopic relfvi�1g to a ray .ei ; h
0
1
; h0

2
; : : :/, where h0i 2 H˙1 and the
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e1 e2 eiv0 v1 v2 vi�1 vi

rv0
rv1

rv2
rvi�1

r.ei ;vi�1/
rvi

� � � � �

ei

ei

�

�

h0
1

h0
2

t

H1 H2

Figure 1: Inductive construction of H

homotopy avoids Cj�2 . By condition (3), .h0
1
; h0

2
; : : :/ is properly homotopic relfvig

to rvi
by a proper homotopy that avoids Cj�3 . Patch these three proper homotopies

together to obtain Hi ; see Figure 1.

Let H be the homotopy relfvg of t to rv , obtained by patching together the homo-
topies Hi . We need to check that H is proper. Let C � z� be compact. Choose an
index j such that C � Cj . Since t is a proper edge path to 1, choose an index N

such that all edges after the N th edge of t avoid CjC3 . Then for all i > N , Hi

avoids Cj , so H is proper.

This concludes the proof of Lemma 3.5 and the first part of Theorem 1.9.

4 Simple connectivity at 1

It is straightforward to check that the proof of the simply connected at 1 part of
Theorem 1.8 given in [3] extends to the finitely generated case (as follows): if hS WRi
is a finite presentation of the group G then �.G;S/.R/ is simply connected. The only
time the simple connectivity of � is used in the proof of Theorem 1.8 is via this fact:

.�/ If C is a compact subset of � and N is a fixed positive integer, then there is
an integer M.N;C / such that any edge path loop ˛ of length at most N in
� �StM .C / is homotopically trivial in � �C .

Suppose G is a finitely generated subgroup of a finitely presented group W and W has
presentation hW WRi, where W contains a set of generators G for G . When proving a
finitely generated version of the simply connected at 1 part of Theorem 1.8, all work
is done in the simply connected space �.W ;W/.R/, and one only needs .�/ for edge
path loops ˛ with edge labels in G˙1 . Hence, the proof of the simply connected at 1
part of Theorem 1.8 directly extends to the stronger finitely generated version.
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Theorem 4.1 (Conner and Mihalik improved) Suppose H is a one-ended, finitely
presented infinite subgroup of infinite index in the finitely generated and recursively
presented group G . If H is commensurated in G , then G is one-ended and simply
connected at 1.

In order to finish the proof of our main theorem it remains to prove the following.

Theorem 4.2 Suppose that H is a one-ended finitely presented subcommensurated
subgroup of infinite index in the finitely generated and recursively presented group G :

H DQ0 �Q1 � � � � �Qk �QkC1 DG:

Then G is simply connected at 1.

Proof We say H is .kC1/–subcommensurated in G . When k D 0, Theorem 4.1
implies that G is simply connected at 1. Assume (inductively) the statement of
Theorem 4.2 is valid when H is .nC1/–subcommensurated for n< k . Let

H WD fh1; : : : ; hng generate H ,

G WD fh1; : : : ; hn; s1; : : : ; smg generate G, and

S WD fs1; : : : ; smg:

For p an element of a group P with generating set P , let jgjP be word length in P :
the smallest integer ` such that g D p1 � � �p` where pi 2 P˙1 . We use the notation
jgj WD jgjP for all g 2 P .

For each s 2 S˙ let As be a finite generating set for sHs�1 \Qk (see Lemma 3.3
with Y DH ) and let A0s WD s�1Ass �H . Choose an integer L1 such that

L1 � jajH for all a 2
[

s2S˙1

A0s:

We have that
As WD hAsi<Qk

has finite index in sHs�1 , and

A0s WD hA
0
si D s�1Ass <H

has finite index in H . As in Section 3, define

A1 WD

[
s2S˙1

As; A WDH[A1 and A WD hAi<Qk :

For each s 2 S˙1 and a 2As there is an H–word w.s; a/ of length at most L1 , such
that s�1asw�1.a; s/ is an .A;A/–relator, which we denote by r.a; s/. Let

R1 WD fr.a; s/ j s 2 S˙1; a 2Asg:
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For each g 2 G let Bg be a finite generating set for the group gAg�1 \Qk ; see
Lemma 3.3 with Y D A. Let B0g WD g�1Bgg � A\ g�1Qkg . If g is in A, then
gAg�1 DA and so we define Bg WDA WD B0g . Then

Bg WD hBgi D gAg�1
\Qk

has finite index in gAg�1 , and

B0g WD hB
0
gi D g�1Bgg DA\g�1Qkg

has finite index in A. For each g 2G , let Ng be an integer so that in the Cayley graph
�.G;G/ , each vertex of A is within Ng of a vertex of B0g . Let

Bj WDA[
� [
fg2GWjgj�jg

Bg

�
�Qk and Nj WDmaxfNg W g 2G and jgj � j g:

Lemma 4.3 Suppose g is in G and y in gA. Then in �.G;G/ , y is within NgCjgj

of a point of Bg .

Proof Let yD ga for some a2A. There is b0 2B0gD g�1Qkg\A within Ng of a.
Then y0 WD gb0 is within Ng of y D ga. As y0g�1 D gb0g�1 2Qk \gAg�1 DBg ,
y0 is within jgj of Bg and so y is within NgCjgj of Bg .

If H has finite index in A, then by Lemma 3.4, H is commensurated in G and so G

is simply connected at 1 by Theorem 4.1. So we may assume that H has infinite
index in A. Our induction hypothesis, Lemma 3.2 and the results of Section 3 imply
the following.

Lemma 4.4 The finitely generated subgroups A and Bj WD hBj i of Qk are one-ended,
semistable at 1 and simply connected at 1 for all j � 1.

Next assume that G is a subgroup of a finitely presented (over) group W . Then for all
j � 1, A and Bj are simply connected at 1 in W . Let W be a finite generating set
for W containing A and G , and let hW WRi be a finite presentation for W . Assume
that R contains a set R0 of A–relations so that �.A;A/.R0/ is semistable at 1. We
also assume that R0 contains the set of conjugation relations R1 . If v is a G –vertex
of �.W ;W/.R/, let v�.A;A/.R0/ be the copy of �.A;A/.R0/ at v . To ease notation,
if p is a G˙1 –word and Np is the corresponding element of G , define Bp WD B Np and
B0p WD B0

Np .

As a direct consequence of Lemma 4.3, we have another lemma.
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Lemma 4.5 Suppose v is a G –vertex of �.W ;W/.R/ and .e1; : : : ; ei/ labels a G–edge
path with consecutive vertices vD v0; v1; : : : ; vi . If j 2 f1; 2; : : : ; ig and w is a vertex
of the Cayley graph vj�.A;A/ , then w is within j CNj of a vertex of v�.Bj ;Bj / .

Note that Theorem 4.2 does not follow directly from Lemma 2.9 and the fact that B`
is simply connected at 1 in W for all `, but it does follow from the next lemma.

Lemma 4.6 Given any compact subcomplex C of �.W ;W/.R/ there is a compact
subcomplex D of �.W ;W/.R/ such that any G–loop ˛ at a G –vertex of �.W ;W/.R/�D

is homotopically trivial in �.W ;W/.R/�C .

Proof If v is a vertex of �.W ;W/.R/ and v�.A;A/.R
0/ \ C is empty, then by

Theorem 2.2(5), any two A–rays at v are properly homotopic relative to v by a
proper homotopy in v�.A;A/.R0/ (and so the homotopy avoids C ). There are only
finitely many v�.A;A/.R0/ that intersect C . Since �.A;A/.R0/ is semistable at1 there
is a compact subcomplex D1 of �.W ;W/.R/ such that any two A–edge path rays based
at a G –vertex v and with image in �.W ;W/.R/�D1 , are properly homotopic relative
to v by a homotopy in v�.A;A/.R0/�C . There are only finitely many Cayley graphs
of the form v�.H ;H/ or v�.As ;As/ (for v 2G and s 2 S˙1 ) that intersect D1 . Choose
a finite subcomplex D of �.W ;W/.R/ such that D contains D1 and the bounded
components of both v�.As ;As/�StL1.D1/ and v�.H ;H/�D1 , for all v�.As ;As/ and
v�.H ;H/ that intersect D1 . (Recall, if s 2 S˙1 and a 2As , then there is an H–word
w.a; s/ of length at most L1 , such that s�1asw.a; s/�1 2R1 .)

Therefore,

.�/ if e is an edge of �.W ;W/.R/�D with initial vertex v 2G , terminal vertex w
and label s 2S˙1 , then there is a proper As –ray qv at v avoiding StL1.D1/ and
hence an H–ray sw at w avoiding D1 , such that qv and .e; sw/ are homotopic
relative to v by a homotopy (using only 2–cells arising from R1 –conjugation
relations) in �.W ;W/.R/�C (see Figure 2); and

.��/ if v is a G –vertex of �.W ;W/.R/�D , there is an H–ray at v in �.W ;W/.R/�D1 .

Assume ˛ is a G–loop based at the G –vertex v in �.W ;W/.R/�D . We wish to show
that ˛ is homotopically trivial in �.W ;W/�C . Since G is one-ended, we may assume
that �.G;G/�D is connected, and so there is an edge path in �.G;G/�D from v to a
vertex of H . Hence we assume, without loss, that v 2H . Let ` be the length of ˛ .
By Lemma 4.4, B` is simply connected at 1 and Lemma 2.9 implies that there is a
compact subcomplex E.C; `CN`/ of �.W ;W/.R/ with the following property: if ˇ
is an edge path loop with image in �.W ;W/.R/�E and each vertex of ˇ is within
`CN` of B` , then ˇ is homotopically trivial in �.W ;W/.R/�C .
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Figure 2: For e an edge of �.W ;W/.R/�D , there is a proper As –ray qv

avoiding StL1.D1/ and hence an H–ray sw avoiding D1 , such that qv and
.e; sw/ are homotopic in �.W ;W/.R/�C .
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Figure 3: A G–loop based at a G –vertex in �.W ;W/.R/�D is homotopically
trivial in �.W ;W/.R/�C .

It is enough to show that ˛ is homotopic to such a ˇ in �.W ;W/.R/� C (and this
is where the semistability of A comes in). Let sv be an H–proper edge path ray
at v in �.W ;W/.R/ � D1 ; see .��/. If all edges of ˛ are H–edges, then by the
definition of D1 , the rays sv0

and .˛; sv0
/ are properly homotopic relative to v ,

by OH a proper homotopy with image in v�.A;A/.R0/ � C . Otherwise, write ˛ as
.�0; e0; �1; e1; : : : ; �j ; ej ; �jC1/, where �i is a (possibly trivial) H–path and ei is an
S–edge. Let the initial vertex of ei be v0i and the terminal vertex of ei be viC1 ; see
Figure 3.

If ei is labeled by s2S˙1 then let qi be a proper As –ray at v0i , avoiding StL1.D1/. For
each edge a of qi , there is a 2–cell with boundary label .s�1; a; s; w�1.a; s//, where
w.a; s/ is an H–word of length at most L1 (see the definition of R1 ). So if qi is labeled
.a1; a2; : : : / then sviC1

, the H–ray at viC1 , with labeling .w.a1; s/; w.a2; s/; : : :/

is such that qi is properly homotopic to .ei ; sviC1
/ relative to v0i by a homotopy

(only using R1 –cells) with image in �.W ;W/.R/ � C . The ray svi
has image in

�.W ;W/.R/�D1 and so by the semistability of �.A;A/.R0/ we have for i 2f0; 1; : : : ; j g,
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qi is properly homotopic to .��1
i ; svi

/ relative to v0i by a proper homotopy OHi in
v0i�.A;A/�C . Finally, define OHjC1 to be a proper homotopy in v0�.A;A/�C of sv0

to .��1
jC1

; svjC1
/.

Assume that v0i is the j .i/th vertex of ˛ . By Lemma 4.5, every vertex of v0i�.A;A/.R
0/

is within Nj.i/Cj .i/.�N`C`/ of Bj.i/ �B` . Hence for i 2 f0; : : : ; j g, each vertex
of (the image of) OHi is within N`C ` of a vertex of B` .

Combining the homotopies OH0; : : : ; OHjC1 along with those of qi to .ei ; sviC1
/, we

have a proper cellular homotopy OH (relative to v ) of sv0
to .˛; sv0

/ with image in
�.W ;W/.R/�C , and each vertex of the image of the homotopy OH is within N`C `

of a vertex of B` . Then

OH W Œ0; 1�� Œ0;1/! �.W ;W/.R/�C

such that OH jŒ0;1��f0g is ˛ , OH jf0g�Œ0;1/ and OH jf1g�Œ0;1/ both agree with sv0
, and

each vertex of the image of OH is within N`C` of B` . Choose N such that OH�1.E/�

Œ0; 1�� Œ0;N �. The loop OH jŒ0;1��fNC1g provides a G–loop ˇ such that ˛ is homotopic
to ˇ in �.W ;W/.R/�C , and each vertex of ˇ is within N`C` of B` . By the definition
of E , the loop ˇ (and hence ˛ ) is homotopically trivial in �.W ;W/.R/�C .

This completes the proof of Theorem 4.2.

5 Grigorchuk’s group is simply connected at 1

In 1985, Mihalik [17] proved that if H is an ascending HNN-extension of a finitely
presented group G , then H is semistable at 1. If, additionally, G is one-ended,
then H is simply connected at 1. Finitely presented ascending HNN extensions of
one-ended finitely generated groups are not even known to be semistable at 1.

Grigorchuk [7; 8] constructed an infinite finitely generated torsion group G . The
group G has a subgroup of finite index T , and T has a subgroup of finite index that is
isomorphic to T �T . There is a finitely presented ascending HNN-extension of G (and
so G is recursively presented). It is easy to see that if G is finitely generated and H

has finite index in G , then G is semistable at 1 if and only if H is semistable at 1;
see [5, Proposition 16.5.3]. [16, Theorem 2.2] implies that T �T (and hence G ) is
semistable at 1. Theorem 5.1 implies that Grigorchuk’s group G is simply connected
at 1 and Theorem 5.2 implies that the finitely presented HNN-extension of G is also
simply connected at 1. This last result generalizes the main result of [4] which states
that G is quasisimply filtered (qsf).
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Theorem 5.1 Suppose the recursively presented group G is finitely generated and
isomorphic to A�B where A and B are finitely generated infinite groups and A is
one-ended. Then G is simply connected at 1.

Proof Suppose G is a subgroup of a finitely presented group Q. Let P WD hQ WRQi

be a finite presentation for Q such that Q contains generators A for A and B for B ,
and RQ contains the commutation relations R between these generators. Define
�.P/ WD �.Q;Q/.RQ/ (the Cayley 2–complex for P ). The subspace �.G;A[B/.R/�
�.P/ is G –equivariantly homeomorphic to �.A;A/��.B;B/ . Let �AW �.G;A[B/.R/!

�.A;A/ and �BW �.G;A[B/.R/! �.B;B/ be projections.

Claim 5.1.1 Suppose C is a compact subcomplex of �.P/. Then there is a compact
subcomplex D of �.P/ such that if  is an edge path loop in �.G;A[B/.R/�D with
edge labels all in A˙1 or all in B˙1 , then  is homotopically trivial in �.P/�C .

Proof The set �B.C / union the bounded components of �.B;B/��B.C / is compact
and so contains finitely many vertices. If v is one of these vertices, let ˇv be an
edge path from v to a vertex v0 of an unbounded path component of �.B;B/��B.C /.
If v is a vertex of an unbounded component of �.B;B/ � �B.C /, then ˇv is trivial
and v0 WD v . In any case, let �v be a proper edge path ray at v0 with image in
�.B;B/��B.C /. Let L be the length of the longest ˇv . Let D WD StL.C /. Suppose
each edge of  has label in A˙1 . Then �B. / is a single vertex of v of �.B;B/ .
Let w be the initial vertex of  , and lift the ray .ˇv; �v/ to w (ie consider the B–ray
at w with the same edge labeling as that of .ˇv; �v/). Call the lift . Q̌v; Q�v/. Since
each edge of . Q̌v; Q�v/ has label in B˙1 and each edge of  has label in A˙1 , there
is a proper homotopy of H W Œ0; 1� � Œ0;1/ ! �.G;A[B/.R/ that uses the product
structure of �.G;A[B/.R/ to basically slide the loop  along the ray . Q̌v; Q�v/. In
particular, H jf0g�Œ0;1/DH jf1g�Œ0;1/D . Q̌v; Q�v/ and H jŒ0;1��fng is an edge path loop
with the same labeling as  for each integer n � 0. The image of �B.H / is simply
the image of .ˇv; �v/. Say ˇv has length K.� L/. Then H jŒ0;1��Œ0;K � has image
in StK .image. // � �.G;A[B/.R/�C . As �B.H jŒ0;1��ŒK ;1// has the same image
as �v (which avoids �B.C /), the image of H avoids C . Note that H jŒ0;1��fng is
the translate of  to the nth vertex of . Q̌v; Q�v/. Since this ray is proper, there is an
integer N such that the translate of  to the N th vertex of . Q̌v; Q�v/ is homotopically
trivial in �.P/�C . Since H jŒ0;1��Œ0;N � provides a homotopy (avoiding C ) of  to a
loop that bounds in �.P/�C , we have that  is homotopically trivial in �.P/�C .

A completely analogous argument in the case all edges of  have labels in B˙1 finishes
the proof of the claim. Note that the one-endedness of A is not important yet.
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Let C be a compact subcomplex of �.P/ and D the associated compact set of
Claim 5.1.1. Since A is one-ended, �.A;A/��A.D/ has one unbounded component K

and �.A;A/ �K is compact. Let z0 be a vertex of K . For each vertex v of �.A;A/
choose an edge path �v from v to z0 so that if v 2K then �v has image in K . There
are only finitely many vertices of �.A;A/ not in K . Of these, let M be the length of
the longest �v . Let E WD StM .D/. We show that edge path loops in �.G;A[B/.R/�E

are homotopically trivial in �.P/�C .

Let  be a loop in �.G;A[B/.R/�E . Write  as .˛1; ı1; : : : ; ˛n; ın/, where edge
labels in the edge paths ˛i (respectively ıi ) are in A˙1 (respectively B˙1 ). Let ai

be the initial vertex of ˛i and di the initial vertex of ıi . Let a0i WD �A.ai/ and
d 0i WD �A.di/. Then d 0i D a0

iC1
since ıi is a B–path. Let Q�i be the lift of the path �a0

i

to ai and O�i be the lift of �d 0
i

to di ; see Figure 4. Note that

(1) �d 0
i
D �a0

iC1
, so O�i and Q�iC1 have the same edge labeling,

(2) Q�i and O�i share the same end point vi , where �A.vi/D z0 2K , and

(3) the translate of ıi to vi (call it ı0i ) ends at viC1 .

By (1) there is a product homotopy Hi of .ıi ; Q�iC1/ to . O�i ; ı
0
i/. We show that the

image of Hi avoids D .

If d 0i.D �A.di// 2K then the image of �A.Hi/ is equal to the image of �d 0
i

which is
a subset of K � �.A;A/��A.D/. In this case, Hi has image in �.G;A[B/.R/�D . If
�A.di/ 62K , then the length of O�i is �M and the image of Hi is in StM .image.ıi//�
�.G;A[B/.R/�D (since ıi has image in �.G;A[B/.R/�E and E D StM .D/).

The A–loops .˛i ; O�i ; Q�
�1
i / have image in �.G;A[B/.R/�D and so, by Claim 5.1.1

are homotopically trivial by a homotopy H 0i in �.P/ � C . Combining all homo-
topies Hi and Hi

0 we have that  is homotopic to .ı0
1
; : : : ; ı0n/ by a homotopy in

�.G;A[B/.R/�D . Since all edge labels of this last loop are in B˙1 , Claim 5.1.1
implies .ı0

1
; : : : ; ı0n/ (and hence  ) is homotopically trivial in �.P/�C .

If �W G!G is a monomorphism then the HNN extension

H WD hG; t W t�1gt D �.g/ for all g 2Gi

is called an ascending HNN extension of G with stable letter t , and denoted G��;t .
When � is not an epimorphism, then H is a strictly ascending HNN extension. There
is an ascending HNN extension H of Grigorchuk’s group G that is finitely presented.
The main result of [4] shows that H has the quasisimply filtered (qsf) property. Simple
connectivity at 1 implies qsf [1]. Our next result implies that H is simply connected
at 1 and so generalizes [4]. We need not assume that H is finitely presented.
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Figure 4: Loops in �.G;A[B/.R/�E are homotopically trivial in �.P/�C .

Theorem 5.2 Suppose H is an ascending HNN extension of a one-ended finitely
generated semistable at 1 and simply connected at 1 group G . Then H is simply
connected at 1.

Proof Say H WD G��;t . Assume that Q is finitely presented and H is a subgroup
of Q. We must show that H is simply connected at 1 in Q. Let G be a finite set
of generators for G , and R1 a finite set of relations so that �.G;G/.R1/ is semistable
at 1. Since t is the stable letter in G��;t , the finite set H WD G [ ftg generates H .
For each generator g 2 G there is a G–word (usually denoted �.g/) giving rise to
the relator t�1gt D �.g/. These (finitely many) relators are called the conjugation
relations of H with respect to G . Let R2 be this set of conjugation relations and let
R WDR1[R2 . Let P be a finite presentation for Q with H a subset of the generators
and R a subset of the relations of P . We assume �.G;G/.R1/ is a subset of �.H ;H/.R/
which is a subset of �.P/.

There is a homomorphism from �W H ! Z with kernel equal to the normal closure
of G . We say an element h 2 H (ie a vertex of �.H ;H/ ) is in level n if �.h/ D n.
If C is a compact subcomplex of � we say C is in levels L.C / through M.C / if L

is maximal and M is minimal such that for each vertex v of C , L � �.v/ �M .
If e is a G–edge of �.H ;H/.R/ in level K and e has label g 2 G˙1 then the relation
t�1gt D �.g/ defines a 2–cell of �.H ;H/.R/ that slides e to a path in level KC 1.
The path in level KC 1 can be slid to level KC 2 and so e can be slid to any level
above level K .
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Level L� 1

Level M C 1

tn

� �

� �

� �˛1

ı2

˛

a b

tn
C

ı3

rb
ı1

ra

Figure 5: Sliding G–edges of  up in any level L� 1 through M to level
M C 1 by a homotopy avoiding C .

The basic idea is to show that there is a compact set D in �.H ;H/.R/ such that any
loop in �.H ;H/.R/�D is homotopic to a loop that can be slid to a single level (usually
above the levels of C ), by a homotopy avoiding C . Any path in a single level belongs
to a translate of �.G;G/.R1/. The semistability of G is used to move this loop (by a
homotopy in that copy of �.G;G/.R1/) to a loop far from C . The simple connectivity
at 1 of G shows this last loop is homotopically trivial in �.P/� C and so H is
simply connected at 1 in Q.

Let D.C / be a compact subcomplex of �.H ;H/.R/ such that if e is a G–edge of
�.H ;H/.R/ between levels L.C /� 1 and M.C / and the homotopy that slides e to
level M C1 intersects C , then e is an edge of D . Also assume that if X is a translate
of �.G;G/ in level L� 1, then D contains all bounded components of X �D (there
are only finitely many such X that intersect D ). Now let  be an edge path loop in
�.H ;H/.R/�D . If no vertex of  is in level L through M , then  can be slid up to
be entirely in level L�1 or into some level above level M by a homotopy avoiding C .

Otherwise, each G–edge of  in a level L� 1 through M can be slid to level M C 1

by a homotopy missing C . Call the resulting path 1 (so any edge of 1 between
levels L� 1 and M is labeled t ). Consider a maximal segment ˛ of 1 with vertices
all in levels L�1 and below. Then ˛ is preceded (respectively followed) by a segment
of 1 of the form t�n (respectively tn ) that begins (respectively ends) in level M C 1.
Let a be the initial point of ˛ , and b be the end point of ˛ ; see Figure 5.

Note that a and b are points of  and so do not belong to D . Hence there are proper
G–edge path rays ra and rb at a and b respectively that avoid D . Slide ˛ (relative
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to a and b ) to level L� 1 and call the resulting path ˛1 . This homotopy is below the
levels of C and so avoids C . Now since �.G;G/.R1/ is semistable at 1, there is a
proper homotopy A (in a�.G;G/.R1/) of ra to .˛1; rb/ relative to a. This homotopy
gives an edge path of the form ı WD .ı1; ı2; ı3/ that is homotopic to ˛1 , where ı1 is an
initial segment of ra (and so avoids D ), ı�1

3
is an initial segment of rb (and so avoids

D ) and ı2 is a “far out” path in the image of A (and so it also avoids D ). By the
definition of D each edge of ı can be slid to level M C 1 by a homotopy avoiding C .

This shows that 1 (and hence  ) is homotopic to a loop 2 in levels all above level M .
Slide this loop up to a loop 3 in a single level (by a homotopy avoiding C , since C

is below level M C 1). Note that 3 is a G–path (since it has no t –edges). In any
case,  is homotopic (in �.P/�C / to a G–loop 3 in a translate, v�.G;G/.R1/, of
�.G;G/.R1/ that avoids C . The simple connectivity at 1 of G implies that there is
a compact set E such that any loop in v�.G;G/.R1/�E , is homotopically trivial in
�.P/�C . The semistability of G implies 3 is homotopic in v�.G;G/.R1/ to a loop
in �.G;G/.R1/�E and so 3 and hence  , is homotopically trivial in �.P/�C .
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