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A type A structure in Khovanov homology

LAWRENCE P ROBERTS

Inspired by bordered Floer homology, we describe a type A structure in Khovanov
homology, which complements the type D structure previously defined by the author.
The type A structure is a differential module over a certain algebra. This can be paired
with the type D structure to recover the Khovanov chain complex. The homotopy
type of the type A structure is a tangle invariant, and homotopy equivalences of
the type A structure result in chain homotopy equivalences on the Khovanov chain
complex found from a pairing. We use this to simplify computations and introduce a
modular approach to the computation of Khovanov homologies. Several examples
are included, showing in particular how this approach computes the correct torsion
summands for the Khovanov homology of connect sums. A lengthy appendix is
devoted to establishing the theory of these structures over a characteristic-zero ring.

57M27; S5N35

1 Introduction

In a previous paper, we described an algebra BI;, for a set of 2n pOiPtS P,,, ordered
along a hne (summarized in the next section) and a type D structure [7')) for an outside
tangle T whose endpoints are these 2n points, where an outside tangle is one with
a diagram in an oriented half-plane whose boundary contains P,, but provides P,
with the opposite linear ordering when inherited from the boundary orientation; see
Roberts [9]. In this paper, we consider inside tangles: tangles where the orientation on
the boundary equips P,, with the same ordering. We will picture these as lylng on the
left side of the y—axis in R%. For example, the following is an inside tangle T over
P4 when the plane has its usual orientation:

These tangles will be taken with an orientation, although we suppress that data for
the introduction. To such a tangle we will associate a bigraded module ((T]] and a
differential daps, which is a modified version of the differential defined by M Asaeda,
J Przytycki, and A Sikora in [1], [2]. It is modified to have more generators, in a manner
similar to Khovanov’s invariant for tangles by [7].
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From there we define a bigrading preserving right action ((?]] ® BI'y — ?]] which
is compatible with daps by a certain Leibniz identity. This will make ((?]] into a
differential right module over BI',. If we consider this within a suitable category of
right 4—modules we have a notion of homotopy equivalence of right modules. We
will then show that Reidemeister moves on the diagram T will produce homotopy
equivalent 4.,—modules. We do this over Z with a somewhat different sign convention
than usual, and a good bit of this paper is devoted to ensuring that the sign choices
will work (the reader should consider that there are different sign conventions that can
be followed in the Khovanov construction, and that these will produce distinct even
and odd versions; we only consider the original, even, version here). Following the
conventions of bordered Floer homology as used in Lipshitz, Ozsvath and Thurston
[8], we will call this a type A4 structure.

We arrange these constructions so that the following argument will work. Consider the
following knot K cleaved transversely in half by the y-axis:

On the left side of the y—_::)lxis we recognize the inside tangle T. On the right side,

there is an outside tangle 7':
4
3"\
2

=

The Khovanov complex { K)) is generated by states consisting of a smoothing at each
crossing of a diagram for K and a decoration of {4, —} attached to each planar circle
resulting from the smoothing. Such a state & might look like this:
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We can similarly divide this resolution along the y—axis; however, we do this in a less
obvious way. The left side will be the diagram obtained by forgetting the circles on the
right which do not intersect the y—axis. We similarly describe the right side:

These are states, E and ?, generating summands in ((?]] and [[7)), respectively. To
obtain the resolution of K we will consider these to be glued along their common
cleaved link:

-

The latter diagram corresponds to an idempotent in 51", which acts on the two states
as the identity. These 1demp0tents W111 be orthogonal in BI',, and if we let A be the
idempotent subalgebra, then ((T 12z [[T)) will be isomorphic to {K)), and 5 ®§ will
represent £ in this decomposition. The Khovanov differential can then be decomposed
into the contribution of the crossings on the right and left. However, these contributions
can change the cleaved link, and the corresponding idempotent. We record the changed
in the cleaved link with the algebra BTI’,. For the crossings on the right we obtain a
map 5 ﬂ?)} — BT, ®1 ﬂ?)} which satisfies the requirements of a type D structure
described by Lipshitz, Ozsvath and Thurston [8]. The crossings on the left give rise to
the type A structure.

Following the constructlons in [8] we can combine the type A structure on ((?]] and
the e type D structure on [[T ) into a chain complex ((T]] X [[T ) with underlying module
((T I®z [[T)) and differential

B(x ® y) = daps(¥) ® |y + (m> @) (x ® 8(1)),
where m is the action on ((T]] We then show that (7)) = ((T]] X [[?))

Furthermore changing either ((T]] by a homotopy equivalence (of type A structures)
or [[T)) (of type D structures) changes {T]X[7T) by a chain homotopy equivalence.
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Thus, we can construct and simplify the two factors independently of each other, and
then combine them using the X—construction from [8].

This provides a fully modular approach to constructing Khovanov homology at the
level of bigraded homotopy types. In particular we can simplify the structures for
a tangle by homotopy equivalences before combining them with each other or any
other tangle. For example, in Section 6 we will compute the type A structures for
tangles underlying the three Reidemeister moves, and simplify them, to see that they
are homotopy equivalent to the type A structure after applying the move. The pairing
through X immediately implies the Reidemeister invariance of Khovanov homology.
In short, we obtain a convenient means for understanding local modifications of link
diagrams and their effects on the global Khovanov homology.

Ours is not the only approach to defining a Khovanov homology for tangles and their
pairings. Khovanov defined a tangle homology in [7] for (m, n)—tangles which can be
paired at the level of chain complexes to reflect the composition of tangles. However,
our approach records the information needed for gluing differently, and this necessitates
the use of the algebraic techniques of bordered Floer homology rather than those
employed in [7].

Example Consider the following connected sum:

\__/

We showed in [9] that BI'; is the quiver algebra for this:

ct
<~ —
ec—|— ec—|—
C_

In [9] we showed that, for this example, [[?)) is homotopy equivalent to

h<d + _ — — < -

8 (sCs—15/2) =26C ® (5 1372 € ® 5517/
Q) - " -
8 (S(—Z,—ll/z)) =—ec @Sy _13/2) 8 (S(o,—3/2)) = —ec ®5(g,—5/2)

where the 4+ and — superscripts identify which idempotent acts as the identity on the
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<
generator. Furthermore, the type A structure ((7°] is homotopy equivalent to one which
also has six generators:

+ + + - - —
Los/20 L2320 137720 U03/2)0 L2172 13,15/2)

For these generators daps = 0, the action of e_é is given by

+ — + — + —
Los/2) 7 o3/ Loz e/ 1ear 7 leas/2):

and the action of ¢c is given by t(-;,13/2) — 2+1(3,15/2)- The complex ((T]] X [[?))
can be computed exactly (see Section 8 for the details). It has homology with free part

L3y ®L2-3BL1-3) LYy S LY ©La3 S L3 ®La7)

and torsion part

(Z)2)(—2,—5) B (Z/2Z)(0,~1) D (Z/2Z)1,1) D (Z/2Z)3,5),

which is the Khovanov homology of this knot.

QOutline of the paper We construct the algebras BT, and their differentials in Section 2.
This includes a fuller description of cleaved links. In Section 3 we follow with a
description of the bigraded module {7'] we will associate to an inside tangle diagram,
and equip this module with a differential modified from that found in Asaeda, Przytycki,
and Sikora [2]. We then define the action of BT, on {7'] in Section 4, and prove that
the differential and action turn (7] into a bigraded differential module over BI,. In
Section 5 we recall the algebra of type A structures ( Aoo—modules) from [8] and how
they can be simplified through homotopy equivalences. We put this knowledge to work
in Section 6, where we show that the model tangles before and after a Reidemeister
move have type A structures that are homotopy equivalent as type A structures and
provide other example computations. In Section 7 we prove that we can pair the type A
structure for an inside tangle with the type D structure for an outside tangle, using a
pairing technique from [8], and recover the chain complex for Khovanov homology.
The construction respects the homotopy equivalences of type 4 and type D structures,
so we can simplify these structures using homotopy equivalences first, and then pair to
get a chain complex homotopy equivalent to the Khovanov chain complex. Finally, in
Section 8 we give examples of the pairing theorem in action, including the details of the
previous example. The pairing theorem rest upon an edifice of algebra described in [8]
for characteristic-two coefficients. In this paper we need to lift to integer coefficients in
a manner respecting the Khovanov sign conventions. The Appendix details the choices
of signs which are both compatible with Khovanov’s choices and allow us to replicate
the algebraic results of [8]. See the beginning of the Appendix for a more detailed
summary.
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Degree shift convention If M is a Z—graded module, M [n] is the graded module
with (M [n]); = M;—,, ie the module found by shifting the homogeneous elements
of M up n levels. If m € M , the corresponding element in M [r] will be denoted m[n].
Thus gr(m(n]) = gr(m) +n.

Acknowledgements After posting this paper to the arXiv, the author was informed
by Cotton Seed that he had independently discovered a similar construction of a type A
structure in Khovanov homology. The author would like to thank Andy Manion for
finding an error in the original version of this paper, and the referee for many helpful
comments. This research was supported by a research grant from Research Grants
Committee of the University of Alabama, Tuscaloosa.

2 The algebra from cleaved links
We summarize the construction of the algebra BT, from [9].

2.1 Cleaved planar links

Let P, be the set of points p; = (0,1),..., pan, = (0,2n) on the y—axis of R2,
ordgzed by thg second coordinate. We denote the closed half-plane (—oo, 0] x R C R?
by H while H = [0, c0) x R.
Definition 2.1 A n—cleaved link L is an embedding of circles in R? such that

(1) the circles of L are disjoint and transverse to the y-axis,

(2) each pointin P, isonacirclein L,

(3) eachcircle in L contains at least two points in Py.
The set of circle components of L will be denoted CIR(L).

We take two n—cleaved links to be equivalent if they are related by an isotopy of R?
which pointwise fixes the y—axis. We will denote the equivalence classes by CL,.

Definition 2.2 The constituents of an n—cleaved link L are the planar matchings

<«

) L=HNL and L=HNL.

Definition 2.3 A bridge for a cleaved link L is an embedding y: [0, 1]— R?\ ({0} xR)
such that

(1) y(0) and y (1) are on distinct arcs of L or Z

(2) the image under y of (0, 1) is disjoint from L.
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By definition, a bridge y has image in either H or H. We call this half-plane the
location of the bridge. Bridges are also considered up to isotopy fixing the y-axis.

Definition 2.4 The equivalence classes of bridges for a cleaved link L will be de-
noted BRIDGE(L). BR(I_DGE(L) = BR(L) UBR(L), where BR(L_)) consists of those
equivalence classes in H and BR(L) consists of those classes in H.

For each class of bridges y € BRIDGE(L) we can construct a new cleaved planar link.

Definition 2.5 Let L be an equivalence class of cleaved links and let y € BRIDGE(L).
L, is the equivalence class of cleaved links found by surgery along y .

L, has a special bridge y1 introduced by the surgery. More specifically, there is
a neighborhood of y homeomorphic to [—1, 1] x [—1, 1] which intersects L along
{£1} x[—1, 1], and for which y is the core [—1, 1] x {0}. L, results from removing
these two arcs from L and replacing them with [—1, 1] x {z1}. The bridge )/T is then
the bridge for L, defined by the cocore {0} x [—1, 1].

Definition 2.6 (1) The support of ¥ € BRIDGE(L) is the set of three circles in L
and L, which contain the feet of y and )/T.

(2) MERGE(L) is the subset of y € BRIDGE(L), where surgery on y merges two
circles {Cy(y), Cp(y)}. In this case, C,, is the circle in CIR(L,,) which contains
both feet of )/T.

(3) DIVIDE(L) is the subset of ¥ € BRIDGE(L), where surgery on y divides a circle
C of L. In this case, CJ and Cf are the circles in CIR(L, ) which contain the
feet of )/T.

Proposition 2.7 Given any bridge y for L, BRIDGE(L)\{y} can be decomposed as
a disjoint union By (L,y)U B||(L,y), where

(1) B4 (T, y) consists of the classes of bridges whose representatives all intersect y,

(2) Byj|(L,y) consists of the classes of bridges containing a representative which
does not intersect y .

Furthermore, we can divide B||(L,y) into the disjoint union By (L,y)U Bs(L,y) U
B,(L,y), where

(1) By(L,y) consists of those bridges neither of whose ends is on an arc with y,

(2) Bs(L,y) consists of those bridges with a single end on the same arc as y and
lying on the same side of the arc as y,

(3) By(L,y) consists of those bridges with a single end on the same arc as y and
lying on the opposite side of the arc as y .
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If nisin B«(L,y), where * represents a specific choice of one of the above, then
y € By (L, n). Furthermore, if § has a different location than y then § € B;(L,y).
We consider how these sets change under surgery on y.

Proposition 2.8 Surgery on y induces an identification By(L,y) with By (L, !
anda?2:1 map Bs(L,y) — Bo(Ly, vD. Dually, thereisa 2: 1 map Bs(Ly, yH—
B,(L,y).

Proof Let n € Bj|(L,y). Pick a representative arc for n which does not intersect
the representative arc for y. Then 7 also represents a bridge in B (L, )/T), and vice
versa. If n € B; (L, y), any isotopy of the representative arc occurs in a region disjoint
from y and its endpoints, since the isotopy will occur along arcs disjoint from those
intersecting ). This isotopy also survives into (L, ¥1). Reversing this construction for
By(Ly, ¥1) proves the identification. Note that an isotopy of n € By(L,y) missing y
can likewise be pushed forward. However, for each 1 we can slide 7 over y to get
another bridge n" € By(L,y). In Ly, n >~ n’, and both are on the opposite side of v
By looking at a local model, this is the only type of collision, so the map is 2: 1 on
Bg(L,y). We can apply the same argument to (L, )/T) to obtain the 2 : 1 map in the
other direction. O

A decoration for an n—cleaved link L is a map o: CIR(L) — {+, —}.

Definition 2.9 CL, is the set of decorated, n—cleaved links:

3) CLy,={(L,0)| L€ CLy, 0 is a decoration for L}

We will often restrict a decoration o of L to give decorations on the arcs of its
constituents L and L. In addition, we will need to following statistic for a decorated,
cleaved link:

4) t(L,o)=#{CecCIR(L) |o(C)=+4+}—#{C eCIrR(L) | 6(C) = —}.

2.2 The algebra BT,

We will describe BT, by generators and relations. First, there is an idempotent for
each decorated, cleaved link in CL,. We will denote the idempotent corresponding to
(L,o0) by I(1, ). The idempotents will be orthogonal to each other.

Definition 2.10 7, is the sub-algebra generated by the idempotents /(7 ).
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For each (L,0) € CL,, we specify certain elements in (1, ) BI',. BI';, will be freely
generated by the idempotents and these elements, subject to the relations described
below:

(1) For each circle C € CIR(L) with (C) = + there are two elements e and éc
in I(f o) BI'y. Furthermore, ec I(psc)= ec for the decoration with s¢ (C) = —
and sc (D) = s(D) for each D € CIR(L)\{C}, while e_éI(L/,s/) = 0 for every
other idempotent. The same relations hold for éc. These types of elements
are called decoration elements, while the C above is called the support of the
element.

(2) Let y € BRIDGE(L). There is a bridge element e(y;5,5,) With I(1 5)e(y:6,0,) =
e(yio,00) (L, ,0,) = €(y;0,0,,) 1N €ach of the following cases, based on the deco-
rations:

(a) y €EMERGE(L), o and oy, restrict to the support of y as one of the following
three configurations:

0(Ca(y)) =+, o(Gp(y) =+. 0y(Cy) =+:
0(Ca(y) == o(G(y) =+, 0y(Cy) =~
0(Ca(y)) =+, o(Gp(y) == 0y(Cy) =—;

and s(D) = s, (D) on every circle not in the support of y .

(b) y € DIVIDE(L), C € CIR(L) is the circle containing both feet of y, one of
the following two conditions holds:
(i) o(C)=+, oy restricts to the support of y as either of the configurations

oy (CH =+, 0,(CH)=—

oy (C)) == oy(C))=++;
(i) o(C) = —, oy restricts to the support of y as
0 (G == 0 (C) =

and s(D) = s, (D) on every circle not in the support of y.
In [9], we note that with these generators and idempotents, BI’, is finite-dimensional.
Proposition 2.11 BT, is finite-dimensional.

Furthermore, BI'; can be given a bigrading [9]. On the generating elements the
bigrading is specified by setting

ILo)—>(0,0), ec—(0.—1)., ¢éc—(1.1), ¢ —(0.-3). ¢ —(L.3).
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On every other element it is computed by extending the above homomorphically. The
first entry of this bigrading will be denoted / (o), while the second element will be
denoted ¢ (o).

We now turn to describing the relations between these generators. Each of the relations
is homogeneous with respect to the bigrading. First, there are a number of graded
commutativity relations, based on the first entry in the bigrading:

5 eqeg = (-1 [ (ea) ! (eB)eﬂea/~

This graded commutativity occurs in the following cases, assuming that /(7 5yeq 7 0
and I(1 s)eg # 0:

(1) eq and eg are decoration elements for distinct circles C and D in (L, o) with
0(C) =0(D) =+, and ey is the decoration element for D in (L, o¢), while
ep is the decoration element for C in (L,0p).

(2) eq = €(y,6,07) for a bridge y in (L,0) and eg is a decoration element for
C e CIrR(L), with C not in the support of y, while eqr = €(y.00,0L) and eg is
the decoration element for C in (L, s’). Due to the disjoint support, there will
always be a pair of such elements.

(3) ea = €(y,0,07) and eg = €(; 4,5 are bridge elements for distinct bridges y
and n in (L,0), with n € By(L,y), eg = e,/ 5 and ey = €(y g7 oy for
some decoration 6"’ on L, .

4) eq=ey 6,01 and eg =e(7 5,0 are bridge elements for distinct right bridges y
and nin (L,0), and eg = e(§ o/ o) and ey’ = €5 57 677, Such that L, 5 =
Ly 4, and some compatible decoration o’

(5) eq =e(y 0,07 and eg = €5 5,0 are bridge elements for distinct left bridges
in (L,0), with 7 € Bo(L,¥), and eg = e(5 47,0 Ca’ = €(i5 .57 57 With
L, s = Ly, and some compatible decoration o””’.

We also note that the type (decoration vs bridge) and the location are the same for e
and ey’ as well as for the pair eg and ep . In fact, in all these relations elements of the
algebra from H W111 act like even elements for the Z /27 —grading from l (), while
elements from 11 act like odd elements.

Other bridge relations Suppose y € };R(L) and n € By (L, yT). Then

€(y,0,0")€(n,0",0") =0

whenever ¢’ and ¢’ are compatible decorations.
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Furthermore, suppose that there is a circle C € CIR(L) with 0(C) = +, and there are
elements ¢ € (y,0,07) and ¢ € (y*,0,0c) forabridge y € BR(L) Then

(6) € (y,a,a’)z(yT,U’,aC) = e—(,: .

Such a circle C is unique for the choice of y and o’ and is called the active circle
for y.

Flnally, suppose that o€ Bs (L.7). Let ﬂ be the brldge obtalned by sliding oz over y,
S be the i image of o and /3 in Ly, é‘ be the image of & and ¥ in L3 g and 7 be the
image of ,B and ¥ in L. Then

eaer’ +e(73é_§' +e<7/éjs =0

whenever there are compatible decorations on Ly, Lg, Ly,and Loy =Lge =L, 5,
for the paired edges to exist.

Relations for decoration edges When the support of ec is not disjoint from that
of ?(y,o,ay) the relations are different depending upon the location of ec .

The relations for ¢ Suppose that y € MERGE(L) merges C; and C, to get C €
CIR(Ly), and 6(Cy) = 0(C3) = +. Then

— = _ —
W eCiM(y,oc,,0c) = €C2M(y,0c,,0c) = M(y,0,0,)€C-
Note that if 0(C;) = — for either i = 1 or 2, then there is no relation imposed.

Dually, if surgery on y € DIVIDE(L) divides circle C € CIR(L) into C; and C; in
CIR(Ly), and o assigns + to C, then

— — —
®) ec Jvoc.ocy) = Jr.0.0)¢C1t = J(y.0,03)€Ca
where O')i, assigns + to C; and — to C;3_;.

The relations for ¢ Suppose that y € ME_R>GE(L) merges C; and C, to get C €
CIR(Ly), and 0(C;y) = 0(C3) = +. Then

<« <~ <«
© eciM(y,oc, .0c) T €C:M(y.00,.00) ~M(y.0.0,)¢C = 0,

and when 0(C) =+ and y € DIWDE(L) divides C into C; and (5,

(10) ec Jvoc.oc) ¥ Jy0.00¢C1 — Jiy.0.02)€C2 = 0

whereas if y € MﬁfGE(L) merges C; and C; to get C € CIR(Ly), and o(Cy) =
0(Cy) =+, then

(1D eCiM(y,0c, .00) T €CaM(y,00y.00) + M(y.0.0,)6C =0,
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and when 6(C) =+ and y € DIWDE(L) divides C into C; and C,,

(12) e%fiV,UCsUC,y) + f(y,a,all,)egl + f(y,a,a%)egz =0.

2.3 A differential on BT,

Surgery along a bridge y € ﬁ_R(L) followed by surgery on yT does not correspond to a
relation (compare relation (6)). Instead these products occur in a differential on BT,.

Proposition 2.12 [9] Let (L,0) € CL, such that there is a circle C € CIR(L) with
0(C) = +. Let éc be the decoration element corresponding to C . Let

(13) dr,(éc) = — Z €(y,0,0,)€(yt,0y,00)

where the sum is over all y € li_R(L) with C as active circle, and all decorations o,
which define compatible elements. Let dr, (e) = 0 for every other generator e (in-
cluding idempotents). Then dr, can be extended to a (1, 0)—differential on bigraded
algebra BI',, which satisfies the following Leibniz identity:

(14) dr, (@p) = (1) P(dr, (@) +a(dr, (B)).
We denote this differential bigraded 7 —algebra by (BI',, dr,).

Example Consider (BI'y,dr,). P; consists of two points, and there is only one
planar matching in M and H. Consequently, the only 1-—cleaved link is a circle
intersecting the y—axis in two points. Thus, there are two vertices in I';: when this
circle is decorated with a + and when 1t is decorated with a — We will call these C*.
There are no bridges in either M or H so the only edges are ec: CT — C~ d
¢c: Ct — C~. Thus I'; looks like this:

ct
<« —
eCJ,- eCJ,-
Cc-

Thus, BI'; consists of four elements: I+, Ic- in grading (0,0), e ¢ in grading
(1,1), and € ¢ in grading (0, —%) . The product of any two of these is trivial except for
the actions of the idempotents: -+ (e_c = (e_c = (e_c Ic—, and similarly for ¢ c. The
differential dr, = 0 since its image is in the set generated by paths of bridge edges.

For more detail about (BI';, dr,) see the examples in [9, Section 2].
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3 Tangles and resolutions

In this section we recall the notions of tangles and resolutions used in [9], adapting
them to the case at hand. More details are provided there.

Let ﬁl@ — [ xR be the half space corresponding to [ ¢ R? under the standard
projection m to the xy—plane.

Definition 3.1 An (inside) tangle 7’ is a smooth, proper embedding of
(i) n copies of the interval [0, 1], and
(i) k copies of S1

in R3 whose boundary is the set of 2n pomts P, in o1 7’1 and 7’2 are equivalent
if there is an isotopy of R3 taking 7'1 to 7'2 and pointwise fixing the boundary 8]R3

As usual, we will study T through its tangle diagrams in M. Different diagrams for T
are related by sequences of Reidemeister moves, and planar isotopies, in the interior
of . We will denote a tangle diagram for a tangle by the corresponding roman letter:
T will be a dlagram for T.

< <~
The crossings of T form a set CR(T). We will orient 7 and use the usual convention
for positive and negative crossings:

N /
N/

positive crossing negative crossing

The number of positive/negative crossings will be denoted ni((Y_").

3.1 Resolutions

Definition 3.2 A resolution r of T is a pair (,0, m), where p: CR(T) — {0, 1} and
is a planar matching of P,, embedded in H. The resolutlon dlagram r(T) is the
crossingless, planar link in M obtained by gluing Tch to m C H and locally
replacing (disjoint) neighborhoods of each crossing ¢ € CR(T ) using the following
rule:

NG NG
/ /

The set of resolutions will be denoted RES(T).
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The local arcs introduced by T« p(?) are called resolution bridges. The resolution
bridge for a crossing ¢ € CR(T) will be denoted y; . (or just . when the resolution is
understood). If p(c) =0 we will call Y, an active bridge for r, while if p(c) =1 it will
be called inactive. The active bridges for r are the elements of the set ACTIVE(r). We
will denote by y,.(r) the resolution obtained by surgering the diagram for r along y..
The resolution bridges at ¢ for y.(r) will be denoted by y, when considered from r.

A resolution diagram r (T) consists of a planar diagram of c(ircles, which we divide into
two groups: (1) the free circles which are contained in int H and are the elements of a
set FREE(r), and (2) the cleaved circles which cross the y—axis, and which determine
an element cl(r) € CLy.

Definition 3.3 A state for T is a pair (r,s), where

(1) r is aresolution of T,

(2) s is an assignment of an element of {+, 7_} to each circle of r(?). This
assignment will be called a decoration on r (7).

The states for 7' will be denoted STATE(T).

Definition 3.4 The boundary of a state (r, s) for T is the element ar,s)=(cl(r),o) €
CLy, where 0 = 5|¢(r)-

3.2 A bigraded module spanned by the states

Definition 3.5 For a state (r,s) € STATE(T) with r = (p, m), let

(1) h(r)= ZCGCR(?) p(c),
(2) q(r.s) = ZCGFREE(r) s(C),
3) u(r,s)=u(L,0), where (L,0)=09(r,s).

Let -
CK(T.L.o)= @ Z-@.9).
da(r,s)=(L,o0)

where (r,s) occurs in bigrading (h(r) —n—,h(r) + q(r,s) + $t(r.s) + ny —2n_).
The first entry will be called the homological grading of the state, while the second is
its quantum grading.
Definition 3.6 The type A module for an inside tangle T is

(Tl1= @ CK(T.L.o).

(L,0)ecLy,
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<«

There is a right action of the idempotent algebra Z,, C BT, on {T7]:

(r,s) ifd(r,s) =(L,0),

,8) -1 =
(r,8) - I(L,0) {0 otherwise.

Thus /(g ) acts non-trivially only on the summand é—K (T, L,o).

In addition the construction of Asaeda, Przytycki, and Sikora [1], in [2] ((T]] is en-
dowed with a (1, 0)—differential, daps, described presently. With this differential,
((T]] becomes a chain complex, and the mair(l_ result of [2] implies that the (bigraded)
homology of ((?]] is an isotopy invariant of 7, up to (bigraded) isomorphism.

3.3 The differential from [2]

To define the differential we first order the crossings of T . Then for (r,s) € STATE(?),
we define
daps(r.s) =Y (=D!PVD, ,(r.5).

Y EACTIVE(r)

where r = (p,m), I(p,y) = ch<c, p(c") is the number of p—inactive crossings
which occur after the crossing ¢ corresponding to y, and D, , is a map defined at
each active arc. This map is prescribed by the following recipe:

(1) Khovanov case (i) Suppose surgery on y merges the free circles C7 and C,

in p to get a free circle C in y(p).

(@) If s(Cy) =5(Cy) =+, then Dy, ,(r,s) = (y(r),s’), where s'(C) = + and
s'(D) = s(D) for every circle D # Cy, C,, C, free or cleaved.

(b) If either s(C;) = — and s(C,) = + or s(Cy) = — and s(C;) = +, then
D, ,(r,s) = (y(r).s"), where s”(C) = — and s”(D) = s(D) for every
circle D # Cy, C,, C, free or cleaved.

(c) If s(Cy) =5(Cy) =—, then Dy ,(r,5) =0.

(2) Khovanov case (ii) Suppose y has both feet on the same free circle C in r, so
that surgering C along y produces two new free circles C; and C, in y(r).
(@) If s(C)=+,then Dy ,(r,s)=(y(r),s+-)+(y(r),s—4), where we define
§+—(C1) =+, s—(C3) = — and s4+_(D) = s(D) for every other circle
in CIR(r). We similarly define s— , with the roles of C; and C, reversed.
(b) If s(C)=—,then Dy ,(r,s)=(y(r),s——),where s__(Cy)=s5__(C3) =—
and s—_(D) = s(D) for every other circle in CIR(r).

(3) Suppose y has both feet on the same arc 4 in E Nr. Then y(r) will have a
new free circle component C. Then Dy, ,(r,s) = (y(r), s’), where s'(C) = —
and s'(D) = s(D) for every other circle in CIR(y(r)).
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(4) If y has one foot on a cleaved circle C and the other foot on a free circle D,
then surgery on y will merge D into C, leaving the other circles unchanged.
If s(D) =+, then Dy, ,(r,s) = (y(r),s’) with s'(C") = s(C’) for every other
circle in CIR(r), including C, while if s(D) = — then D, ,(r,s) = 0.

(5) In every case not covered on this list, Dy ,(r,s) = 0.

3.4 Some classes of active bridges

For a state (r,s), we can use s to group the bridges in ACTIVE(r) into (overlapping)
classes:

(1) INTERIOR(r, s) is the subset ACTIVE(r) consisting of all y for which Dy, ,(r, s)
is nonzero. That is,
(a) both feet of y are on elements of FREE(r), or
(b) one foot of y is on C € cl(r) and the other foot is on C’ € FREE(r) with
s(C")y =+, or
(c) both feet are on the same arc of C N M for some C € cl(r).

(2) DEC(r,s) is the subset ACTIVE(r) consisting of those y where
(a) both feet are on the same arc of C NI for some C e cl(r) with s(C) =+, or
(b) one foot of y is on C € cl(r) with s(C) = + and the other foot is on
C’ € FREE(r) with s(C’) = —.

3) ﬁ_R(r) is the subset ACTIVE(r) consisting of those y such that either
(a) y has one foot on C; € cl(r) and the other on a distinct circle C; € cl(r), or
(b) y has both feet on some C € cl(r), but they are on different arcs of C N H.

If r = (p, m) we will let BRIDGE(r) = ﬁ_R(r) U B_l){(%) and B_l){(r) = ]3—13(171). There
is a natural map BRIDGE(r) — BRIDGE(cl(r)).

4 The type A structure for an inside tangle

Given a diagram T for an inside tangle ’?, we describe a type A structure on ((T]]
over BT, . This structure is specified by two bigrading preserving maps

(15) my: (T]— (T][(-1,0)],

(16) my: (T]®z Bl — (T].

Let £ = (r, s) be a generator of ((?]] with 0§ = (L, 0), and let e € B, be a generator.

For my we let my (&) = daps(£), the differential on ((T]] daps maps (7, s) in bigrading
(h,q) to an element in (4 + 1, q). This is bigrading preserving into {T]J[(—1, 0)].
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To define the action m, we start (lzy describing the action of the generators of B, .
Let £ = (r,s) be a generator of {T]. Then m, (€ ®z e) is computed as follows:

(1) When e is an idempotent, m,(§ ® I(1 ) =& I(1 +): the idempotent action
defined above.

(2) When e = e¢ for some C € 9¢ with 0(C) =+, my(EQzé¢) = (r, sc), where

sc(C) = — but equals s on all other circles in CIR(r).
(3) When e = é¢ for some C € 3¢ with o(C) = +,
myE®réc)= Y (DI 5,

y €DEC((r,9),C)
where DEC((r, s), C) are those active arcs which can change the decoration

on C, ry is the result of surgery on y, and s, is the new decoration with
§'(C) = — (and s’ (D) = + if a new circle is created).

(4) When e = e 4,4 for some 1 € li_R(L),

myE®renoo) = (—)ICROD (g,
Y EACTIVE(r)
c(y)=n

where ry, is surgery along y and sy, is the decoration on r,, which equals s on
FREE(r) and ¢’ on cl(r).

(5) When e = ey 5,5 for some n e B_l){(L) and r = (p,m), let r’ = (p, my) and s’
equal o on the cleaved circles and s on FREE(r'), m(§ ®7ep,6,0') = (. 5").

(6) In all other cases m;, (£ ®7¢) = 0. Note that (r,s) @z e; = 0 unless d(r, s) is
the source of e since otherwise Iy, s)-e1 = 0.

Proposition 4.1 The map m, constructed above is bigrading preserving.

Proof (1) This is immediate since the bigrading of I(7 4 is (0,0).

(2) When e = ec, if & is in bigrading (%, ¢), then £ ®z e¢ is in bigrading (4, ¢) +
(0,—1) = (h,q—1), whereas m(£ @z e¢) is in bigrading (h, ¢ — 1) since we changed
a (0,41) cleaved circle to a (0,—1) cleaved circle.

(3) When e = éc, the bigrading of £ ®7 éc is (h,q) + (1, 1). For m, (£ @z éc) we
consider the bigrading in two cases. If we merge a — free circle, then ¢ =g+ % —1 and
the bigrading of (r,sy) is (h, q— %) +(1,1)=(h+ 1,9+ 1), where the additional
(1, 1) comes from the grading shifts associated with 1-resolving a crossing. If we divide
a + cleaved circle then the bigrading change is from (h, q+ %) +(1,1)= (h +1,9+ %)
to (h, qg+1— %) +(1,1) = (h +1,9+ %) In either case, there is a (0, 0) change in
bigrading.
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(4) When e =ey 4,o for some ne ]§_R(L), if n merges two plus circles then £ ®@zey .0/
has bigrading (h, q+ % + %) + (1, %) = (h + 1,9+ %), while m5(§ ®z €y,0,67) has
(h, q—+ %) + (1, 1), since we change the resolution at a crossing. If n merges a 4+ and
a—wehave (h,g+1—-1)+(1.3)=(h+1,g+1) before and (h,g—1)+ (1. 1)
after. If 7 divides a + circle then we start with (h,g + 3) + (1, 1) and end with
(h.g+1—1)+ (1. 1), while if n divides a — circle we start with (h,7— 1) + (1, 3)
and end with (h, q— % — %) + (1, 1). Each of these is a (0, 0) change.

(5) When e = ¢y 4,4 for some n € BTQ(L) and r = (p,m), if surgery on 7 merges
two + cleaved circles, then the bigrading of £ ®z ;5,67 is (h, q+ % + %) + (0, —%),
while that of m,(§ ®z ey,6,07) is (h, q+ %) (as there is no crossing change). Likewise
for a 4+ and — circle: (h,q + % — %) + (0, —%) — (h,(j— %), while for a divide
of a + circle: (h,cj + %) + (O, —%) — (h,@ + % — %), and a divide of a — circle:
(h,g—3)+(0,—3) = (h.g—1 —1). Inall cases there is a (0, 0) change in bigrading.

(6) This is true by definition true since the image of m1, is 0. O

This specifies 71, on the generators of BI';,. To define m; on all elements, we impose
the following relation: if p{, p, € BI',,, we define

my(§ ® p1p2) =ma(m2(§ ® p1) ® pa).

Proposition 4.2 If two products of the generators p azz_d p> define equal elements
in BTy, then my(§ ® p1) = my(§ @ p,) forevery & € (T].

Thus the rules above fully specify m,: ((T]] ®z By, — ((?]].

Proof It suffices to show that m; (¢ ® p) = 0 whenever p is a relation defining BT,.
We start with the relations from disjoint supports. Suppose C and D are distinct
cleaved circles with 0(C) = o(D) = +. Then

(17) my(E ® (ecep —epec)) = ma(ma(§ @ ec) ® ep) —ma(ma(E @ ep) @ ec)
= (r,sc,p) —(r.s¢,p) = 0.

On the other hand,

(18) my(§ ® (écep —epec))

=my(my( ® éc) ® ep) —ma(ma(E ®ep) ® ec)

= > DIy 50— > (DI, sp )

yeDpec((r,s),C) yepec((r,s),C)

=0.
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To compute m,(§ ® (écép + épéc)) note that each my(m2 (€ ® éc) ® ép) and
ma(m2(§ ® ép) ® éc) are sums over pairs of edges y € DEC(r,s,C) and )’ €
DEC(r, s, D). In one case we sum over (y, y’) pairs and in the other (y’,y) pairs. In
each case we obtain (ry,,, sy,,7) With sy, - uniquely determined by the requirement
that C and D are decorated with —. Thus we need only look at the signs: for (y, y’) we
have (—1)!(-CRIN+1(ry.CRYD) which is —(—1)L RN+ .CROD) | Congequently,
they cancel in the sum.

Now suppose that C; and C, are cleaved circles in r with s(Cy) = s(Cy) = +. Let B
be an active arc which merges C; and C, to get C and maps to y € ﬁ_R(L). We
can partition the active arcs o which contribute to DEC(rg, sg, C) into the three sets:
DEC(r, s, C1), DEC(r, s, C,), and o which also map to y. To obtain m;,(§ ® mye(fj)
we sum over all such 8 and « arcs: Z(ﬂ,a) (—1)1(B)+1(’ﬁ’“)(rﬂ’a, 5ga) - For a isotopic
as a bridge to B the term for («, B) occurs in this sum, with sign (—1)@+{Ce.p)
This cancels the term from (8, ). Thus

(19) mz(g ®mye(zv) = Z (_1)1(3)4‘1("[3,&)(,-’3’“’sﬂa)

B,aepec(r,s,Cy)

+ ) (DIPOTEEN Gy  spa)

B,a DEC(7,5,C2)

- _ Z (—1)1(“)"'1(’“”3)(1’&’5,Saﬂ)

aepec(r,s,C1),B

_ Z (_I)I(a)—'_l(rmﬁ)(”a,ﬂ»Soeﬁ)

a€pec(r,s,C),B
= —H/I2(§ ® e(ElmJ/) - le(é‘- ® e(Esz/)?

which verifies that m, is compatible with relation (11). Exactly the same argument
applies to for y € BT{(L), although we no longer need to sum over the representatives
of y since there is only one such bridge. More significantly, all the terms occur with
sign (—1)7® since surgery on y does not affect the signs. The conclusion becomes

mZ(é ® ml/e%) = mZ(g ® ezlm)/) + m2($ ® e(Esz/)a
which is compatible with relation (9). The case where surgery on y is divisive follows
from the same line of reasoning.

For é¢ and y merging C; and C, the situation is easier. First, suppose y € B}(L).
Then
my(§ @ myec) = (r,5y.0),
while
may(§ ® ecymy) = my((r, s¢,) @ my) = (r,5C.y)-
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As these are equal, and as C; plays a symmetric role, m, is compatible with this type
of relation. Again, the case for dividing is similar. For ec and y € BR(L), we have

maE@myec) =Y (=)' @ (g, 50.0),

where the sum is over active arcs which map to y. On the other hand, while

may(E ® ec,my) = ma((r.s¢,) ®@my) = Y (=)@ (g, 5¢.0).

o

Thus m, is compatible with m,,e_é = eam,, for all y € BRIDGE(L).

Suppose that y and y’ are in BRIDGE(L) and that there is a commuting square:

€(y.0.001)

(L,o) —— (Ly.o01)

e(y’,(r.(rlo)l le(v’,nm .0’

€(y.001.0")
(Ly,010) ——— (Lyy»a ")

Then we have the following cases:

(1) Both y and y’ are in B_l){(L) we need to see my(§ ® (eyey —eyrey)) = 0.
However, both terms resulting from expanding m w111 equal (ryy7,s"), where Fy,y’ 18
identical to  in [ but equals Ly, in I[_i)l and s” is s on FREE(r) but ¢” on cl(r).
Since both terms are identical, the difference will be zero and m1, is compatible with
this case.

(2) If y in li_R(L) but Y’ € B_I)Q(L), then we need m,(§ ® (eye, —eyrey)) = 0. The
action of e, followed by e, (or vice versa) will give Y, (—=1)T"® (ry /. s”), where
the sum is over all active arcs for  which have image y in cl(r). Since surgery on y’
does not affect the sign, we see that the two terms will cancel, and 1, is compatible
with this case.

(3) Suppose both y and y’ are in ﬁTQ(L), then m;(§ ® ey ey) is the sum over pairs
of active arcs (a,a’) for r which map to y and Y’ when considered as bridges.
Each pair also contributes to n1,(£ ® e,-e,) but in the reversed order (¢, ). The
decorations of the result are determined by ¢”, so we need only check the signs of
each term. The sign for (o, ') is (—1)I-CRE@D+1(ra-CR@)) while that for (o, «) is
(=) (rer@N+1(ror,CR@) | Dye to the ordering of the crossings, one of these will
be +1 and the other —1. Consequently, m,(§ ® eyeyr) = —m1(§ ® eyrey,) which is
compatible with the relation for li_R(L).
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Note that a similar argument to that in (1) works for all pairs of right bridge edges that
form commutative squares, so it will be omitted. For left bridge elements, there are
two further cases to consider:

(a) Suppose § € EO(L, y) and 81,68, € Bs(Ly, »") map to § under surgery along 7.
Likewise, suppose 1 and y, map to ¥ under surgery along §T. If we orient the mutual
arc for § and y, then §; corresponds to the version of § before y along the mutual
arc, and 8, corresponds to that after y. Likewise for y;,i = 1,2 and §. There can
then be (anti-)commutative squares

€(y.0.001) €(y.0.0091)

(L,o) —— (Ly,001) (L,o) ——> (Ly,001)
e(5.0,010)l 16(81,001,0”) e(&,ﬁ,ﬂlo)l 16(52,0’01,0’//)
€(vy.001.0") €yy.091.0")

(Ls.010) —— (Ly5,.0") (Ls,010) — (Ly5,.0")

where L, s, and L, s have different left matchings. Two resolution arcs a; and a;
for &, one corresponding to  and one corresponding to §, will be counted in the action
of either y followed by §;, or y followed by 8, (but not both). Reversing the order
means contributing to § followed by y,, or § followed by y;. As these contribute
with the usual sign conventions, the contributions of the pair will cancel in either the
action of eyes, + esey, or eyes, + esey, , which verifies that the action respects the
anti-commutativity in this case.

(b) Now suppose that & is in By (L y) and that ,3 is the bridge obtalned by shdmg
o over Y. Let § be the i image of o and ,3 in L3, é‘ be the image of @ and ¥ in L3 B
and 7 be the image of ,3 and y in L. The actlon of eae,, is the sum over active
resolution arcs @ and a, for £ with a; representing & and a5 representing 7 in L.
Thus, a, represents one of 8 or y in L. Reversing the order thus gives a contribution
to either éjgé_; or é;é_g. However, pairs representing 8 and y also contribute to éjgé_;
while their reverse contributes to e(:,é_g. Thus, if we consider all ordered pairs (a1, a»)
of resolution arcs which represent pairs of «, 8, or y, in either order, we will count
both (a1, a;) and (a,,a;) for each such pair, and they will contribute with opposite
signs (due to the Khovanov sign conventions) in the action of é;é:, + eTgé_; + e(;é_g oné.
Consequently, all the terms in this action will cancel, verifying that it acts as 0.

=
For the additional bridge relations, suppose y € BR(L). Then there is a relation
€y,0,06'€yto’ o0 = e_é. In this case

(20) my(§® (ey,a,a’ey"’a’,ac _e_C)‘)) = ((P”%yy"’)’SC)_ (r,sc)
= ((IO’%)’SC)_(RSC) = (V’SC)_(raSC) =0,
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where %WT = m follows from the result that surgery on a bridge y for L, followed
by surgery on yT, recovers L.

Now suppose that y € ]?R(L) and 1 € lg_R(Ly) intersects 1 non-trivially. We need to
see that m,(§ ® eyey) = 0 since eye; = 0. However, in m,(mz(§ ® ey) ® ey) the
action of e, will result in a sum over active arcs in r, which map to 7 in cl(r). Each
active arc comes from a crossing, and thus must already be present in r for it to be
present in ry, . This excludes there being any active arc for 1 in r,,. Consequently the
sum is 0 and we have verified that 7, is compatible with this relation.

Since m,(§ ® R) = 0 whenever R is a relation for BT, we have shown that m, is

well defined. O

Proposition 4.3 For & = (r, s) a generator of ((?]] and py, pp € BTy, the maps m
and m, above satisfy the following properties:

Q) 0=my(m; ),
22) 0= (=1)"POmy(m () ® p1) +ma(E ®dr(p1)) —my(ma(E @ pr)),
(23) 0=my(my(§ ®p1) ® p2) —m2(§ @ p1p2).

Note These are the relations for ((T]] to be an A.,—module over the differential graded
algebra BT, as in [8], with m, = 0 for n > 3.

Proof That m;(m;(£)) =0 is abyproduct of m; = d being a differential (see also the
proof that § isa D structure for an outside tangle). Furthermore, that m, defines a
right action follows from how we bootstrapped m, from the definition on generators.
Thus, we need only verify that d and m, are compatible with pr through the equation

dma(E B p1)) = (=1) L POy (d(E) ® 1) +ma(E ® dr(py)).

It suffices to prove this for p; of length 0 or 1 since we can bootstrap the relation for
longer words using

(24) d(E-(@B) =d((-2)-p)
= (1! Pd(E-0)-p+(Ea)dr(p)_
= (1P DEE) ) p+ (=)' P dr(@)-p+& (@dr (B)
=(- 1)’ B+ T@OLd©) @]+ [(- D! B (@) +adr(B)]
= () B+ @[d(E)- () +&-dr (@h)].

For length 0, we have p; = I(f ) for some idempotent. If 9§ # (L,o) then both
sides are zero since m5(§ ® I(f,,¢)) = m2(0) =0, d(£) has the same boundary as &
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so d(§)® I(1,0) =0, and dr(I( ) = 0 for every idempotent. On the other hand, if
0 = (L, o) the last term still vanishes, and

d(my(E ® I(1,)) =d(E) =ma(d(¢) @ I(10))-

For length-one words, we need to check when p; ie%, e%, or ey, for y € BRIDGE(L),
where 3¢ = (L,0). We know dr(é¢) =0 and / (ec) = 0, so for ec we need only
verify that d(m, (£ ® e¢)) = ma(d(§) @ ec). If & has o(C) = — then both are 0,
whereas if (C) = + then both equal S (—1)7® (ry, Sq,c), where the sum is over
all active, non-bridging arcs o and s4,c is any decoration compatible with d, rg,
and assigning C a —. For e, with y € B_ﬁ(L), the only difference is that the sum is
over terms (7a,y, Sa,y) -

For e, with y € lg_R(L), dr still vanishes but 7 = 1. We then have
(25) d(my(E ®ey)) = Z(_I)I(r,a)ﬂ(m,ﬁ) (Far.» Sa.B)-
a.p

where the sum is over all active arcs & which map to y and all active arcs f which
contribute to d (as well as all compatible decorations on r, g. On the other hand,

my(d(E) ® ey) = Z(—I)I(r’ﬁ)+l(rﬁ’a)(”ﬂ,wSﬂ,a)
B

due to the ordering of the crossings the signs will be different for each («, 8) term, so

d(my(E ® ey)) = —ma(d(E) @ey) = (=1) ©@Imy(d(E) @ ¢y).

We are left with verifying the formula for éc. We start with

dmyE®cc)) =Y (=) OB iy g s, p).
a,B

where the sum is over all active arcs o € DEC(r, s, C) and 8 contributing to d on ry,.
Furthermore,

madE) ®éc) =Y (~DICEI IO 1y o 5000,
ﬂ/’a/
where the sum is over all B’ contributing to d on r and over all ¢’ contributing to

DEC(Vﬂ/, Sg, C).

Some ordered pairs (o, B) contribute a term to d(m,(§ ® éc)) while the pair (8, @)
contributes to m,(d(§) ® ec). The corresponding terms in the sum occur with co-
efficients that are equal but have opposite signs, and thus cancel. We let R be the
sum over the pairs (o, 8) in d(m,(§ @ éc)), and define ¥; = d(m,(§ ® éc)) — R.
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Then m,(d(§) ® éc) = —R + W, for some W,. We can characterize the terms
which contribute to W; and W,. These terms correspond to pairs (&, f) coming
from bridges v, )/Jf with C as their active circle. A sign check, however, shows that
Ui+, =my(¢® Zy eyeyt), where the sum is over all y with active circle C. As
this sum is just the action of —d(éc) we obtain the relation

26)  d(ma({®éc)) = R+ ¥,

=—(—R+ V) + ¥, + ¥,

=-—my(d(§) ®éc) + (V) + ¥y)

= —m3(d(§) ® éc) = m3 (¢ ® —dr (éc))

— (1) € (my(d() @ 60)) + ma (& @ dr(é2))
as required.

We have now verified that the action of the length one words is compatible with the
(right) Leibni%_ relation, and thus using the bootstrap, that d is a (right) differential on
the module {77]. |

5 Background on type A structures and their simplification

5.1 Algebra

In this section we redefine 4.,—algebras and module to be consistent with our sign
conventions. We begin with some notation for handling signs and gradings

Definition 5.1 Let W = Wy & W) be a Z/2Z—graded module. |l |: W — W is
the signed identity defined by linearly extending

Ly |(w) = (=D¥
for homogeneous w € 4.
Note By |I|/ we mean the composition of |I| with itself j times. Furthermore, by
[T|/®” we will mean the function |I|/ ® ---® |I|/, where there are n factors. For an

element «, |1}/ («) will be sholftened to |«|/. Thus, on a homogeneous element o,
ol = (=1)/ ¥ @a, and [l [© = Jal i+,

Definition 5.2 An A —algebra A over a ring R is a graded module A equipped
with maps ji,: A®" — A[n —2] for each n € N which satisfy the relation

0= Y (C1EEDHEEDGED 18k gy @ |1 Ok +D)

i+j=n+1
ke{l,...n—j+1}
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Definition 5.3 A right module over a Z /27 —graded differential R—algebra (4, 111,/42)
is an R—module M together with maps m: M — M[—1] and my: M Qp A > M
such that

(27) 0=mqomy,
(28) 0=my(m & [I|) + ma(I ® 1) —my(my),
(29) 0=my(my @) —my(I® us).

A right module as above is a special case of the 4,,—modules found in [8] (when using
the sign conventions in this paper).

Definition 5.4 [8] A right Aso—module M over an A,—algebra A4 is a set of maps
{milien with mj: M @ A®U=1 — M[i —2], and satisfying the following relations
foreach n > 1:

(30) 0= Z (_1)j(i+1)ml,(mj ® |]I|j®(i—1))
i+j=n+1
+ Z (_l)k(j+1)+j(i+1)mi(]1®k ® 11j ® |]I|j®(i—k—1))‘
i+j=n+1,k>0

M is said to be strictly unital if for any § € M, my(§ ® 14) = &, but for n > 1,
myRa;®ar,®---Qay—1) =0if any a; = 14.

Our right modules correspond to m; = 0 for i > 2. Nevertheless, we will think of
these as objects in the category of right A.,—modules. The morphisms in this category
are the following.

Definition 5.5 [8] An As,—morphism W of right A-modules M and M’ is a set
of maps ¥;: M @ A®C=1D — M'[i —1] for i € N, satisfying

(1) > (=DEHDUAD (g @ 1)U +DBE-D)
i+j=n+1

= Z (—1)j(i+1)lﬂj(m]'®|H|j®(i_l))

i+j=n+1

+ Z (_1)j(i+1)+k(j+1)%(ﬂ®k ® 1) @ |H|j®(i—k—1))‘
i+j=n+1,k>0

W is strictly unital if ¥;(§®a; ®---®a;—1) =0 when aj =14 for some j and i > 1.
The identity morphism I,y is the collection of maps i;(§) =&, i; =0 for j > 1.
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Definition 5.6 [8] Let ¥ be an Ao—morphism from M to M’, and let ® be an
Aoo—morphism from M’ to M"”. The composition ® * W is the morphism whose
component maps for n > 1 are

(®* W), = Z (_1)(i+1)(j+1)¢i(wj ® |]1|(j+1)®(i—1))_
i+j=n+1

Definition 5.7 [8] Let W, ® be Ay,—morphisms from M to M’. ¥ and ® are
homotopic if there is a set of maps {A;} with &;: M ® A®U=1 — M[i] such that

32) Yi—¢;i = Z (_1)(i+1)jm;(hj®|H|j®(i—1))

i+j=n+1
+ Z (_1)(i+1)jhl.(mj Q |]I|j®(i—1))
i+j=n+1
+ Z (—l)k(j+1)+j(i+1)hi(]1®k ® 1j @ |H|j®(i—k—1))
i+j=n+1,k>0

andfori > 1, 7;(§®a; ®---®a;—1) =0 when a; = 1,4 for some ;.

The sign convention used in the previous definitions is that of Keller [5] with the Koszul
sign rule

(f@g)(x®y) =D (1) @ g(»).

Thus, as can be checked directly, the composition of morphisms is a morphism for this
sign convention, and homotopy of morphisms is an equivalence relation (or see the
Appendix). With these definitions, we are equipped to consider right 4.,—modules up
to homotopy equivalence. The following is our version of a standard result in the study
of Aso—modules.

Proposition 5.8 Let (M, {m;}) be a strictly unital, right Asc—module over (A, {{t;}),
and let (M ,im;) be a chain complex. Suppose there exist chain maps v: (M , i) —
(M,m;) and 7: (M,my) — (M ,m,), and a map H: M — M][l] satistying the
following relations:

(33) mor=1,

(34) tomr—lpy =myoH+ Homy,
35) Hot=0,

36) wtoH =0,

(37) H? =0.
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Then there are maps in;: M @ A®C=Y — M fori > 2 such that {m;}72, defines a
strictly unital right A, —module structure on M . This structure is homotopy equivalent
to (M, {m;}) through strictly unital morphisms which extend 7 and t.

The proof supplies an explicit formula for computing #; and the morphisms in the
homotopy equivalence. First, we introduce some notation to simplify the formulas.

Definition 5.9 For positive integers iy, ..., i, let
N(y.....ip) =Y (=1 and a(ii.....ig)= Y  (@r—D(s—1).
J 1<r<s=<k
Definition 5.10 Let i; > 2 be integers for j =1,...,k. By [i1,...,ix] we will mean

the composition
(mil)(H® |]I|<§Z>(i1—1))(n,li2 ® |H|i2®(i1—1)) . (H® |H|®(I—ik))(mik Q |]I|ilc®(1_ik)),

where we alternate between applying m;; to the first i; entries in the tensor product
and applying H to the first factor in the tensor product.

Using this notation, we can define the action, morphisms, and homotopy. First, for
n > 2 define amap M ® A®"~D — M[n—2] by

¥, = > (=)@t ]
N(ll 9i25-"5i1()=n_1
ij=>2

We use X, to define m, forn > 1:
My :=moX,o (L ® I[®(”_1)).

For n =1 we use the boundary map 7. Then {1;}72 | equips M with the structure
of a right 4,,—module.

The morphisms which induce the homotopy equivalence are similarly defined. For
n=1wewilluse 71 = 7 and w; = ¢, while for n > 1 we use

= (=)' (roZyo(H® |H|®(”_1))),
wp =HoX,o (L ®H®(n_l)).

The additional H means that these are maps m,;: M ® [®n=0 5 pf [n — 1] and
wn: M @ I®"=D 5 pf [n —1]. As defined, these morphisms satisfy the relations
IM*Q =1z and Q* I ~p Ips, where Ay = H,

hn = (=1)"(H 0 Sy 0 (H @ [1|27V)),

and all homotopy equivalences occur in the category of (right) 4.,—modules.
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We note that even when m; = 0 for i > 2, a homotopy equivalence as described in
Proposition 5.8 can have higher order action terms. Indeed, the new module structure
is given by

my=(—D)n[2,2,...,2]®1"),

where there are exactly n—1 2s inside the square brackets and ¢ = 0 if n = 1,2
modulo 4, and € = 1 if n = 3,4 modulo 4. Thus, in all cases

my=momyo(t®I),

which comes from appropriately adjusting m,. The effect of 7, however, is substantial
when doing calculations. With this observation and Proposition 5.8, we can, by directly
analyzing the diagrams before and after a Reidemeister move, see that the A.,—module
structure is preserved up to homotopy equivalence. This affords us the difficult part of
the next theorem.

Theorem 5.11 Let T be an inside tangle with boundary P, .

(1) Let T bea diagram for 7’ in T If 01 and o, are two orderings of CR(?), then
(T, 01] and (T, 0] are isomorphic type A structures.

Q) If 7(:1 and 1(:2 are two diagrams for (7_’ then ((ﬁ]] and ((Tz]] are homotopy
equivalent type A structure.

Corollary 5.12  The homotopy type of the type A structure ((T]], for any diagram T
of an inside tangle T, is a tangle invariant.

We will not prove these theorems here, as the proofs are modifications of those for the
type D structure for an outside tangle found in [9]. In addition, there are easier ways
to prove these results once we have generalized the gluing theory in Section 7. Instead
we content ourselves with computing some examples using Proposition 5.8 which will
illustrate the argument.

How we will use this Suppose we have a chain complex {C; | i € Z} with explicit
generators for each free chain group C;. If the generators of C; are {x{,...,x,} and
those for C;_y are {yi,..., ym} we can find a homotopy H as in Proposition 5.8
by searching through the images dx; = > al! yj to find one where aj. = u is a unit,
for some j. We will reorder the generators so that this occurs for i = j = 1. We
can then construct a new chain complex where the other chain groups and boundary
maps are taken to be the same, but C/ is spanned by x5....,x, and C;_, is spanned
by ¥y, ...y, Welet m(x;) = x; for i > 1 and 7(x;) = 0, and likewise for
the y;. Otherwise 7 is the identity. The new boundary 0;: C;» — C/_, is given by
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Ix! = (mod)(xi—alulxy). fwelet «(x}) =x;—alu"'x; and H(y1) = —u"'x
(H(B) = 0 otherwise), then we are in the situation envisioned in Proposition 5.8.
The map = is the quotient map found by quotienting out the subcomplex generated
by {x1,dx1}. The formulas involving 7 are a specific presentation of this quotient
complex for the specific basis. 0’ is computed by calculating 7 o d in this presentation.

We now compute 77,(x; ® e). Since 771, = m om0 (1 ®I) we first compute
mo ((x; —a} ulx)) ®e) =my(x; ®e) —a}u_lmz(xl ®e),

then compute 7. In particular, suppose (dx;, y1) = q} =0but my(xj®e)=ay; +7Y.
Then ﬁz(xj’. Qe)=m(ay;+Y) =a(u™! > =1 a{yj) + Y. This is the same process
as for adjusting the boundary maps above.

However, suppose (dx;, y1) za} #0,but my(x;®e1) =ay;+Y and my(x1®ez) =
W Then 3 (¥} ® ¢ @ ¢2) = 7(m3(x) ® €1 ® €2)) —w(ma(H oms (x) @ 1) ®¢2)).
We concentrate upon 7 (my(H omy(xj ® 1) ® e3)) = n(my(H(ay; +Y) ® ez))
= (my(—u~'ax; ® e5)) = —u~'a- W . We can thus pick up a higher order action.

6 Examples of the type 4 structure

Example I (Reidemeister tangles) The three tangles below appear in the local de-
scription of the Reidemeister moves; we will analyze each in turn:

F /— C1
£ ]
O (4 (C=
4 Cs 2

~—

(a) First move For the RI move we have a tangle diagram Rj, over P, with one
crossing. There are two resolutions, corresponding to p =0 and p =1, and the unique
matching on P,. Since the crossing is right handed, the 0 resolution has a single free
circle. Writing the decoration on the cleaved circle first, we can think of the decorated
resolutions as z44, z4—, z—4, and z__ which occur in bigrading (0,3), (0, 3),
(0, %) and (O, —%) For the 1-resolution there is only the cleaved circle, so we get two
state 74 in grading (1, %) and 7_ in (1, %) We can compute daps as daps(z4+4) =1+
and daps(z—+) =¢—. BT has two non-idempotent elements éc and e¢ . The actions
of these elements are z4xec = z_4 and tyec =t_, since € ¢ only changes the sign
on the cleaved circle. On the other hand, z; _éc = ¢_ is the only non-trivial action for

< . . . . .
e ¢ . Since 4 is not in the image of the action, or daps except for z4 we can cancel
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both to result in the homotopy equivalent structure with generators z_4,z4_,z__
and 7_.

We now cancel 7 through the image of z_4. To compute the new action on z4_
and z__ we consider ¢, which in this case is just inclusion, followed by m;(zx— ® €)
followed by projection. For z4_ there is the non-trivial action m,(z4— ® e_é) =z__,
which projects to an action as well. However, while m1, (24— ® éc) = f_, the projection
will kill this image. Furthermore, all the higher actions vanish since mi, acts trivially
on z__, and any computation of 771, for n > 2 starts with H om,(z4_ @éc) =z,
but the action on z_ is trivial for all non-idempotents. The idempotent will fix z_ 4,
but this will be killed under &, or H, and the computation cannot proceed. Thus,
{ Ry] is isomorphic to o4+ = z4_ in grading (O, %) and o— = z__ in (0, —%) with
daps = 0 and the only non-trivial action term being o - é¢ = a—. This is isomorphic
to (U,], where U, is the planar matching on P, found from untwisting the crossing.

(b) Second move For the RII move we analyze the tangle below, R;; over P4, with
two opposite crossings:

Thus ny =1 and n— = 1 for every choice of orientation. We label the crossings from
top to bottom. Now consider the states corresponding to the 01-resolution. There is a
free circle in this resolution, and we can divide the states into S(;rl_)and SO_1 based on
the decoration of the circle (we do this regardless of the matching 7 used to construct
the state). daps maps Sgrl isomorphically to S1; and Soo isomorphically to Sy, . The
action m(§®e) for £ in S (;rl has image in S| (;“1 since it will not change the decoration
on the + free circle, and merging the + free circle does not change the boundary
of the state. Consequently if we cancel along the isomorphism from S(;’] to S11 the
image of H is in S(;rl and the image of ¢ on v € Syg is a sum v + V', where v’ € S(;Ll.
Thus 7 om, o (¢t @ I) will have image equal to the part of m,(v ® ¢) in S;g, since 7
will kill SSLI . The only element e for which the image may not be in Syq is eT, for
the unique class of bridges y in the boundary of any element in S1q. Its action would
have image in S, but does not contribute to m, for n > 1 since H: S;; — Sgrl , and

thus any additional actions stay in Sgrl , which will be killed by 7.

The effect of the cancellation, therefore, is to reduce our module to S1o & Soo @ Sy,
with action defined by restricting the image of 11, to the remaining summands. Now a
similar argument applies to the isomorphism found by the image daps|Soo in Sg; . Now,
however, no element from Sy can have a term in its action or boundary within Sy, so
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these will be unchanged. After the cancellation we obtain all the states in S1o having
trivialized the ) action, but otherwise left the action unchanged. This is the same
type A structure as for the matching of the top point in P, with the bottom, and the
second with the third. Thus it is isomorphic to the structure obtained after removing
the crossings with the RII move. Being in S79 means the states have no free circle,
and just receive grading based on the cleaved circles. Furthermore, they are shifted by
(1,1) 4+ (=1,1—=2-1) = (0,0) when we account for the resolution and the crossings.
Thus, as a bigraded type A4 structure the RII tangle is homotopy equivalent to the planar
matching obtained from the RII move.

(¢) Third move (sketch) Let Rj be the diagram before the move and R, be the
diagram after:

(B

In each, if we O-resolve the second crossing from the top we obtain a diagram with an
RII move. As usual the states with a 1-resolution here give rise to the same type A
structure. It is enough then to see what happens in the 0—resolved sub-module. As with
the RII move we can use daps to leave Sygo with its action intact, including the action
of 6;1 which has image in S119. However, daps now maps S;[)l to Si01 D So11,
isomorphically to each factor, given by minus the Khovanov maps. We let £ be the state
in Sio1 then &’ is the corresponding state, found by planar isotopy, in So;1. The effect
of 7 is to identify & with —&’. Now, let v be a state in S1¢o and let v/ = H o daps(v)
in S(;Bl. Then t(v) = v 4+ v’. The action m,((v 4+ 1) ® €5,) = m(v ® €y,) since
the action of e?z on S(;Bl is trivial (y, is used in the calculation of daps for these
states). If my(v ® e(;z) is non-zero in Sjo1, then the effect of m is to identify it with

—my(v ®ey,) .

If we repeat this argument with R,, with the same crossing ordering, we get Soo1
being the planar matching diagram and SIJBO being used in the cancellation process.
For v in Syg; the effect of e(;z is the same as before, but as it takes image in Sq11
it occurs with a minus sign. On the other hand, the image of e(;l will be in Si¢1,
occurring with a minus sign, due to the crossing ordering, and thus will be identified
with —(—n), where 7 is the image m, (v ® e;) from Rj in the previous paragraph.
As such the actions of the bridges will be the same, and the APS-complexes will be the
same. It is straightforward to see that the higher actions all vanish.
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Example I1 (Hopf tangle) For the Hopf tangle over P,

H

we will enumerate the crossings from the top of the page to the bottom, and write states
with the decoration of the cleaved circle first. For the moment we will ignore orientations.
There are four states s?t(fi in homological grading 0 and quantum gradings j:% +1.
There are two states s1° for the 10-resolution, and two states s?tl for the 01. These
occur in the bigradings ( 1,1+ 1) Finally, there are four states s 4 with bigrading
(2, 2+1+ %) For these states:

(1) daps is computed as

00 10, 01 00 10 4 01 10 11
Sy 8y sy, STy s 4sD, sy Sy,

510 5 510 sil — lerl_, P
(2) The action of ec simply takes s, — s*,, where * matches anything in those
spots.

(3) The action of é¢ is given by

00 10 11 01 11
S+_—>S —|—S_, Sy =Sy, Sy — s

If we cancel 50 + ", with s10 we will have no effect except to remove these generators,
as sl T 0 does not occur in the 1mage of daps or the action for any other state. Once we
have done that, we can cancel s ! with —s1 + with no other effect, since s_lir1 only
occurs in the image of a prev1ously canceled state. s'! will then appear only in the
image daps (s°1) and daps(s1?) (since s_lirl_ has been canceled, otherwise we would
also need to include it in the image of e_é ). As daps (sgl) = ll we can cancel
these without affecting the rest of the maps. Finally we can cancel s° + with s10. Now,
519 occurs as sg_o ec , but there are no other terms to consider, so the effect of the

cancellation (through the projection 7) is to cancel this portion of the action of e ¢ .

Following these steps results in sio and 5°° in bigrading (O ——) and (0 2) and
5] + . in bigrading (2 —) and s~ 1n blgradlng (2, 2). The residual action is that of

ec, which takes s3_0 to s and s 4 to s“Jr
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The Hopf tangle will either have two positive or two negative crossings, depending
upon the orientation of the components. If there are two positive crossings we will
shift the bigrading up (0, 2). Otherwise, for negative crossings, we add (-2, —4) to
each bigrading.

Consequently, for the positive Hopf tangles we will have

—

e ec
Fo,32 — Fo,172 and Fea 1172 —> Fa,0/2).

For negative Hopf tangles we will have

— —

ec ec
F2,—9/2) — F(—2,—11/2) and T —1/2) —> F(o,—3/2)-

7 Gluing inside and outside tangles

Let 7'1 be an inside tangle for P, and 7'2 be an outside tangle. We let T 7'1 #7’2 be
the link in R3 obtained by gluing R R? to ] R? and d thereby gluing 7'1 to 7'2 along Py,.
Likewise, if Tl is a diagram for 7'1 in H and Tz is a diagram for 7'2 in H we can
glue these diagrams along P,, to obtain a diagram 7" for 7.

N
In [9], we showed how to associﬁte a bigraded type D structure to 75 whose homotopy
type is an isotopy invariant of 7,. In particular, we constructed a bigrading preserving
map

§7:[T) — By @ [T)(~1,0)]
which satisfies the type D structure equation
(npr,®DA®ST)8 7+ (dr, ®|I)d7 =0,
where 1 Br,: BI'y ® BTy, — BTy, is the multiplication map on BI7,.
Definition 7.1 By (7] X [7>) we mean the bigraded module

(Th]®z, [T2)

equipped with the map

0 (x ® ) = daps(x) ® || + (2,1, @ D(x ® 8 1, ().

Proposition 7.2 9% is a (1, 0)—differential map on (T;] R [T>).
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Proof First, we rewrite 9% as an operator:
0% = daps ® [I] + (2,7, @ DA ® 3 1,).

We note that T ® g)Tz isa (1,0)-map (T1]®z[T2) — (T1]®z BT, ®7[T,)), while
my 1, ® I preserves the bigrading as a map (7] ®z BT, @7 [T2) — (T1] ®z[T2).
In addition, dps is a (1,0)—map. Hence 9% is a (1,0)—map. We need to verify that
9™ is a differential. This result follows from Section A.9 in the Appendix, and that
when m; 7, =0 for i > 2, my 1, = daps, implies that 9¥ above coincides with the
definition in the Appendix. a

By {T) we will mean the usual bigraded Khovanov complex over Z, equipped with
its invariant bigrading.

Proposition 7.3 (7)) = ((T1] R [7), 8%).

Important comment We have not required that the orientations on 77 and 7, match
along P,. If they do, (T")) is exactly the Khovanov complex from [6], as described
in [3]. However, the statement still holds even if the orientations do not match. The
Khovanov complex in the latter case is for a link with a finite number of orientation
changes, constructed in the same manner as before. Now, however, it has an invariant
bigrading only as long as isotopies do not take a strand across a point where the
orientation changes. In the latter case there is a bigrading shift of (1, 3) due to the
conversion of a negative crossing to a positive crossing, or vice versa.

Proof We start by identifying the generators of {7}] ®z[7>) with the generators of
(7). For (r1,s1) ®z (r2,52) # 0 we need that Iy, s,)- (r2.52) # 0 since (rq,s1)-
Iy, ,s;) = (r1,51). However, only Ia(,z,SZ) (rz,52) 75 0, so a(rl,sl) = 8(s2,r2)
(L,o). If ry = (p1, my) and r, = (Mo, p2), we use m1 = L to identify my with
the arcs in po(T5), and likewise we can identify n1, = L with the arcs in pq(77).
Since s; and s, restrict to o, we can decorate p{(77) # p2(7>) by s1 #s5, to get a
resolution diagram for T° where every circle is unambiguously decorated with =.

Furthermore, we can reverse the construction. If p is a resolution of 7', we let p; be p
restricted to those crossings in HNnT = T and p, be p restricted to HNT = T.
Furthermore, the arcs in p,(7%) form an (outside) planar matching 17, and we define
r1 = (p1,my). Likewise the arcs of p;(T}) define an (inside) planar matching n1,
and we let r, = (112, p2). A generator of (T') is a pair (p, s), where s is a decoration
of CIR(p(T)). By restriction s defines decorations, s, s; on r{(77) and r,(7T5) with
a(ry,s1) = d(rp, s2). It is straightforward to see that (rq, s1) ®7 (2, 52) = (0, 5), SO
this is the inverse of the previous map.
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Furthermore, the bigrading of (rq, s1) ®z (2, 52) coming from the tensor product is
identical to that of (p, s) from the construction of {7)). The bigrading of (r{, s1) ®7
(72, 82) is the sum

h(r1) —n—(T1), h(r1) + q(r1.51) + 310(r1,51)) + n-(T1) —2n—(T1)
+ h(ra) =n—(T2). h(r2) + q(rz. 52) + 31(3(r2.52)) + n4(T2) — 2n_(T>).

However /(r1) + h(r,) is the number of 1-resolutions in p;(77) added to the number
in p,(7T3), which equals the total number in p(7"). Likewise, since they are counts
over crossings, n4(7T1) +ny(T3) =n4(T) and n_(Ty) +n—(T,) = n—(T). Finally,
1(9(rq, 1)) + 1(3(r2, 52)) = 21(L, 0) so the second entry in the bigrading equals the
sum of the decorations on the free circles in r{(77) plus the sum of the decorations
on the circles in (L, o) plus the sum of the decorations on the free circles in r(773).
In p(T) this is just the quantum grading for the usual Khovanov generator. Thus the
bigrading of (ry,s1) ®z(r2.52) is (h(p) —n—(T), h(p)+4(p.s) +n(T)—2n(T))
which is the bigrading of (r,s) in (7). The tensor product identifies (7)) with
{T1]®z[[T>) as bigraded modules over Z.

To see that 9%¥ is the (1, 0)—Khovanov differential dxy under this isomorphism, we
must first specify the order of the crossings to be used in calculating the signs in dgy.
The chain isomorphism type of (7)) is unaffected by this choice of ordering [6]. If o;
is the ordering of the crossings in 7; and, then o0¢||o, is an ordering of the crossings
for T, which we now fix. In short, all the crossings of the inside tangle 77 come
before all the crossings of 75, and in the same order as in 77 .

We compute 9% in stages. First (daps ® |I)[(r1,51) ®z (2, 52)] is a sum over the
crossings of T} . For each crossing ¢ we get either 0 or (—1)"(—=1)"2)(+',s") @1
(72, 82), where m is the number of 1-resolutions in (rq,s1) following ¢, h(r;) is the
total number of 1-resolutions in r,, and (r/,s”) is as specified previously, which has
d(r’,s") = d(ry,s1). Consequently, m + h(r,) is the number of 1-resolutions of T
following ¢ in our fixed order, and (r/, s") ®7 (2, s2) is a generator of (7). Following
the definition of daps this is precisely a term in dgy(r, s). In fact, the sum of these
is precisely the terms in dgg(r, s) which have the same decorated cleaved link, and
occur from a crossing change in 7N M. Those terms in dgu(r, s) which have the same
decorated cleaved link, and occur from a crossing change in HNT correspond to terms
in (my, 1, ®DHIA® 872) applied to (r1, s1) ®z (2, 52). In the definition of 3T2 (r2,52)
there is a term Ij(,, s5,) ® daps(r2,52). Since d(ry, s2) = d(r1, s1) we conclude that
(ma, 1y, @ D((r1,51) ® Iy(ry,s5) ® daps(r2,52)) = (r1,51 &1 daps(r2,s2). Note that
the signs are also correct for dgy since the sign of a term in Iy, 5,) ® daps(r2.52)
is (—1)", where m is the number of 1-resolutions in r, following the crossing that
yields the term. As this crossing follows all those of 77, the same sign is used in dky.
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This leaves the terms of dxu[(r1, 1) ®7 (72, 52)] which change the decorated, cleaved
link. We divide (t_hem i_r)lto two groups, based on \E)hether the crossing change giving the
term occurs in H or H. We start with those in H. Each such crossing gives an active
arc which is either in B_l)z(rz) or DEC(r;, 5). In the first case, g)Tz (r2, 52) will have a
term, or two terms, (—1)" (¢, ® (r’,s”)) which corresponds to the crossing change.
As before, m is the number of 1-resolved crossings following the crossing. This is the
same sign as in dgy, and the decorations on the decorated, cleaved link also follow the
pattern for Khovanov homology.

In (my,r, DI ® sz) we get the term (—1)"(ma, 1, @ D[(r1,51) ® €5 ® (', s")].
From the definition of m, 7, the action of €, on (7] is just to change the decorated,
cleaved link to have the same boundary as (r’,s’) (which occurs purely in 717 ). Con-
sequently, we obtain the tensor product of compatible pairs, and we replicate the term
in dgy. The case of an arc in DEC(r5, §5) is similar, except only the decoration on one
circle changes, and not the underlying cleaved link. This is the effect of e¢, for that
circle, on {(71].

This leaves the terms of dgyg which come from crossing changes in M that change the
decorated, cleaved link. Let ¢ be such a crossing, and y be the active arc. Suppose y
has image in ]§_R(8(r1,s1)), which we will denote by y’. There is then a term in
S)Tz (r2,52) of the form (=2, @ (r5.55)), where (r,s%) is the result of y’
surgery on r(75) NH which reflects the decoration changes necessary for the Khovanov
differential. In (—1)}’(’2)(W12]1 @ 1) ((r1,51) ® ey ® (r5.s5)) we get a sum over all
the terms in dgy which correspond to 3’ and the decoration changes for e(;/, but with
sign (—l)h(’ 2)(—1)™, where m is the number of 1—resolved crossings following that
for y (not y") in ordering on the crossings of 7. However, A(r,) + m is the number
of 1-resolved crossings following that for y in the ordering on 7'. Thus, the sign is
the same as that for dgy. If ¥ € DEC(rq, s1) then the argument is the same except
that the term in dgy comes from the action of (—1)"02) (éc ® (r,, s2,c)), where C is
the cleaved circle whose decoration changes. Note that a crossing change can occur
in multiple terms, but that with the decoration changes included, each crossing and
decoration change occurs in precisely one way above. Thus we recover all the terms of
dku(r, s) with the correct signs from the ordering of crossings. |

The advantage of using (7|7, ) arises from the ability to separately simplify {77 ]
and [7)) without changing the homotopy type of {77 X [73)). We show this in the
Appendix through a series of propositions which replicate, for our sign conventions,
results from [8]. In particular, Proposition A.43 and the corollary to A.45 imply the
following result.
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Proposition 7.4 Suppose (N, §) is homotopy equivalent, as a type D structure over
BTy, to [T2)), and (M, {m;}) is homotopy equivalent to {T1], as a type A structure.
Then (M. {m;}) W (N,d) = (T1]R[T>) ~ (T #T2).

In the preceding proposition, we assume that the homotopy equivalences preserve the
quantum grading.

We have seen in Section 5 how to affect such a homotopy equivalence by simplifying
the chain complex ({71], daps). A similar result holds for the type D structure
on {T,]: simplifications of the chain complex with differential daps results in a
homotopy equivalent type D structure on the simplified complex. Over a field, F,
such simplifications show that ((71] ® F, daps) >~ Hy r({T1]), where the homology
is taken with respect to d; and similarly for ([75)) ® F, daps). These homologies are
determined by the tangle homology of Asaeda, Przytycki, and Sikora. The following
corollary is a consequence.

Corollary 7.5 There is a type A structure on Hy ({7T1]) and a type D structure on
H, 7 ([T32)) for which

(T) ~ He p ((T1]) W Hi 7 ([T2))-

For example, this result applies to the rational coefficient theory and the theory over
Z7]27.

8 Examples of pairing type 4 and type D structures

Example I (Reidemeister invariance of Khovanov homology) Suppose that L and L’
are two link diagrams for an oriented link in S3. Furthermore, suppose they differ
by a Reidemeister move. If D? C R? is the local region in which the move occurs,
we can use _B)D2 and the orientation on R? to think of R = L N D? as El)le inside
tangle, and L = L N (R?\ D) as the outside tangle. Then (L) = (R]X[L). If we
let R = L' N D? then (L") = (R'JR[L). In Section 6 we computed the type A4
structure for three of the tangles involved in the Reidemeister moves. In each, we saw
that the type A4 structure was homotopy equivalent to the structure obtained for the
tangle after applying the Reidemeister move. Due to the results in Section A.9, this
implies that N N
(L) = (RIR[L) ~ (RIR[L) = (L').

This gives a new perspective on the locality arguments for invariance in various forms
of Khovanov homology.
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Exar_pple II In [9] we computed the type D structure [[?L ) for the following tan-
gle T’y , based on the left handed trefoil 77, :

This structure is the map S’ where

+ _ —_ p— < p—
(s(—3,—15/2)) =2ec ®S_y _13/2) T eC ®535_17/2)

o)

+ _ < —
(38) (52 11/2) = —€C ®SCs _13/2):

e + _ <« —
8 (S(o,—3/2)) =—eCc ®S(y,—5/2)

where the superscript indicates the decoration on the cleaved circle C in the corre-
sponding resolutions, and the subscript is the bigrading. We use the pairing theorem to
compute several connected sums.

(i) With the unknot We can think of the unknot U as a cleaved circle on P,, where
U=UnNTand U = UNTH are the unique planar matchings. Then the left handed
trefoil is the connected sum U # Ty which we can think of as gluing U with the
tangle above. The type A structure (((7 [ is isomorphic to Z f(o,1/2) D Z f(0,~1/2)»
which is the idempotent decomposition for /~+ and Ic— (see the example in Section 2).
The action of ¢ is trivial since there are no crossings in the standard diagram. On
the other hand e¢ takes J0,1/2) 0 fo,—1/2)- Since daps = 0 for U , we need
only compute (m, ® [)(I ® ). Using the idempotents we see that there are six
generators. Furthermore, the only terms in (m;)@ DI ® 3)) come from e¢. This
gives the following chain complex for (U] X [77):

J©0,1/2) ®S(Jr—3,—15/2) 2 J0.-1/2) ®S(2,-13/2)"
J0,1/2) ®S(+—2,—11/2) — 0,
J0.1/2) ®S(J6,_3/2) -0,

Jo~1/2®50,5/2 0

J0.~1/2) ®S_3,-17/2) =~ 0
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whose homology consists of a Z—summand in bigradings (-2, —5), (0, —1), (0,-3),
(—3,—9) and a Z /27 summand in bigrading (=2, —7). This is the Khovanov homol-
ogy of the left handed trefoil.

(ii) With the positive Hopf tangle in Section 6 To compute the Khovanov homology
of the connected sum of the left handed trefoil with the Hopf link with 41 linking
number, recall that the Hopf tangle with positive crossings has { H] with the following

action: N
ec ec
r0,3/2) — 7(0,1/2) and r,11/2) —> 7(2,9/2)»

where the first entry in each corresponds to the + decoration. As a consequence,
{H]| ®z [T} has the following generators:

+ + +
r0,3/2) OS5 1572 12.11/2) ®S 3 _15/2)>  10.3/2 B S5 _11/2)
+ + +
F@11/2) ®SCo 1172 T0.3/2) @80 372y T(2.11/2) @5 _3/2)
r0,1/2) ® 82,1372 1(2,9/2) @S2 —13/2):  T(0,1/2) ®S(_3,_17/2)"

r2,9/2) ®5(3.-17/2)>  T(0,1/2) ®S(0,—5/2)" 1(2,9/2) ®5(0,—5/2)"

Since daps = 0 after the simplification, we need only compute (m1, @ )(I ® S)) on
these twelve generators. Since the action m, is trivial except for on ec, we can ignore
all the terms in § except for those with éc. This leaves the following as the only
non-trivial maps in 9%:

_|._ —

0,3/2) @83, _15/2) 2(r(0,1/2) ®S(—2,—13/2))’
J’_ —_

F@.11/2) ® 83 _15/2) 2(r2,9/2) ®s(—2,—13/2))-

Taking the homology of this new complex gives two Z /27 summands in bigradings
(—2,—6) and (0,—2), and eight Z summands for the remaining generators in the
corresponding bigrading:

103/ ®5 g _11y2 = (2,74 r@11/2) @5, _y1/5 > (0.0).
r0.3/2 850 32 = 0.0 reay®sly _yy = 2.4),
10,1/2) ® 83 —1772) = (3. =8), 12, 9/2) @53 _y7/2) = (=1.—4),
1.1/ ®5(0 s/ — (0.=2), 1@, 9/2) @500, 572y — (2.2),

which is isomorphic to the Khovanov homology of the connected sum of the positive
Hopf link with the left handed trefoil.

(iii) With a right-handed trefoil W(e_ give some details on the computation in the
introduction. We consider the ta(llgle T g found by removing an arc from the right-
handed trefoil. We can compute {7 ]| directly. The result is a bigraded module spanned
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by t(’(L),S/Z), [(45’13/2)’ t(Jg,”/z), 10,3/2)> 12,11/2)> 1(3,15/2)» Where the superscript iden-
tifies the corresponding idempotent. The action of € ¢ is given by t('(';’ 5/2) > 1(0,3/2)

[(45’13/2) —>12,11/2) t(J§’17/2) —>13,15/2)- The action of <e_c is té’13/2) — 2t(_3’15/2).

Consequently, the module ((ﬁg]] 71 [[ﬁ)) has eighteen generators. Those, along with
their images under 3™ are shown in the following list:

+ + - -
Lo.s/2) B5Cs—15/2) ~ 210,3/2) ®S(=2,—13/2)

+ +
Lo.s/2) ®5Ca—11/2) = 0

0,52 ®5( 0, ~3/2) =0
t(Jg,la/z) ®S(Jr—3,—15/2) = 250172 ®S(Ca,—13/2) T 213,152 B S5(3,-17/2)
’(Jg,la/z) ®s(+—2,—11/2) = —20(3,15/2) ® S(—2,-13/2)"
l(t,w/z) ®S(-’_ 0, —3/2) 7 ~2(3,15/2) ® S(0,-5/2)"
%,17/2) ®S(+—3,—15/2) = 203,15/2) ®S(—2,-13/2)°
t(Jg,17/2) ®S(+—2,—11/2) — 0, t8,17/2) ‘X’S(Jr 0, —3/2) = Vs
f0,3/2) ®S(=3,-17/2) 7 0 L0,3/2) ®S(—2,—13/2) > 0 L0,3/2) ®S(0,-5/2) = 0
t2,11/2) ®SCa-17/2 0 12,1172 B S(C2,—13/2) = 05 12,1172) ® S(0,-5/2) = 0

13152 ®5Ca,17/2) = 0s 13,1572 ®S(Ca.—1372) = 05 43,15/2) ®S(0,—5/2) = 0

From this we see immediately that there are Z summands for each of

. 156,5/2) ®S(+_2,_11/2) in bigrading (-2, —3),
16,5/ ® 50,372 in (0.1),

* Z(j;,17/2) ®S(+—2,—11/2) in (1, 3),

161772 ®5(,-3/2) in (3.7),

* 10,3/2) ®S(3,-17/2) in (=3,-7),

* 10,3/2 ®S(0,-s/2) in (0,=1),

* 1a,11/2) ®5(C3,-17/2) in (—=1,-3), and

* 12,11/2) ¥ 50,—5/2) in (2,3).

The remaining generators occur in the non-zero rows for %. We will have a Z /27—
Summand fOI‘ Z(_3’15/2) ®S(_0’_5/2) in (3, 5) and fOI‘ t(?),3/2) ®S(__2’_13/2) iIl (_2, _5)
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The equality

X — — — —
d (155,13/2) ® S(+—3,—15/2)) =213,11/2) ®S(—2,—13/2) T 21(3,15/2) B S(=3,—17/2)
givesa Z @ Z /27 in (0,—1). In addition, that

X — —

d (t(JE,13/2)®S(+—2,—11/2)):_21(3,15/2)‘3’3(—2,—13/2) and
X — —

0%(t¢5.17/2) ® 33 —15/2)) = 21(3,15/2) @ 5(2,-13/2)

means that Z(JE’B/Z) ® s(+_2,_11/2) + t(Jg,”/z) ® s(+_3,_15/2) generates a Z summand
in homology in bigrading (0, 1), while 73 15/5) ® 55 _13/2) generates a Z/2Z
summand in (1, 1).

Consequently, the Khovanov homology of this connected sum has free part
L3y ®L-2,~3) D L(-1,-3) D Lig 1y ® Lo 1y D L1,3) O L2.3) D La,7)

while the torsion part is

(Z]2)(=2,-5y B (Z/2)0,—1) D (Z/2)(1,1) ® (Z/2)(3,5)-

This agrees with the Khovanov homology of the knot as computed by Bar-Natan and
Green’s JavaKh program [4]. Note that we have correctly computed the torsion terms.
Furthermore, we provide a modular approach: we can simplify [[7")) using homotopy
equivalences before knowing with which type D structure it will pair.

Appendix: Graded modules, type A structures, conventions

Summary of the appendix In this appendix, we record the sign conventions used for
type A (Aso) algebras and modules, review type D structures, and prove the algebraic
results about the pairing of these structures. This gives a characteristic-zero account of
the algebra in bordered Floer homology [8], where it is stated only in characteristic
two. We start by reviewing basics about graded modules and tensor algebras. We
then define a category which will allow us to show that the sign conventions we need
for this paper will also work with the algebra from [8]. The approach is already
present in [8], although not with signs and not as explicitly as we will use it. An
object of this category, equipped with a certain differential captures the structural
equations for type A structures with the correct sign conventions for this paper. We
then describe type D structures in the same language, and show that this description
captures the sign conventions use in [9]. We also show that type D structures with
these conventions still form an 4 —category. Finally, we define the pairing of our
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type A and type D structures, and prove that the pairing is appropriately functorial for
homotopy equivalences in the two factors.

Let M be a Z—graded module over a ring R and let M; be the module of elements
in grading i € Z. For a homogeneous element m € M, |m| will denote the grading
of m: if m € M; then |m| =1i.

A module map f: M — M’ has order r if the composition M; — M i) M’ has
image in M;y, foreachi € Z.

Degree shift convention If M is a Z—graded module, M [n] is the graded module
with (M[n]); = M;_y, ie the module found by shifting the homogeneous elements
of M up n levels. If m € M, the corresponding element in M [n] will be denoted
m(n]. Thus |m[n]| = |m| +n.

An order r map f: M — M’ induces order 0 maps M — M'[—r] and M[r]— M’,
along with maps of different orders M [n] — Ms]. These will also be denoted by f,
except where confusion could arise.

The identity on M will be denoted [;,. We will also have need of a graded version of
the identity.

Definition A.1 |[5s]: M — M is the O—order map defined by setting
[Lar|(m) = (=D)"™m

for homogeneous 7 € M and linearly extending to M . |I5z|/ is the j—fold composi-
tion of |Iz].

If m € M; then |Ipz]7 (m) = (—1) m. Consequently, |Ips]7 o|Tar]* = |Tar]/ T* while
(1Lar ) = Lg%

In addition, shifting changes the sign:
D) = (=D"[In| and Iyl = (17"
A.1 Tensor algebras

We fix a Z—-graded R—module A. As usual,
oo
7—* (A) — @ A®n’
i=0

where A®% =R andforn >0, A" = AQrAQRr---®r A using exactly n factors.
A®" is graded using the standard rule |a; ® --- @ au| = Y |a;].
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Furthermore, 7*(A) has a filtration
RCT'AC-CcTHA) C--,
where TX(4) = @f';o A®",

By ]If?" we will mean the identity on 4®” thought of asthe map I, R4 ®--- R I 4.
In general, we will only use the subscript when we need to distinguish A4 ; by default,
197" will be the identity on A®”. Furthermore, by |I|/®" we will mean the map
I @---®|I]/ on A®",

Definition A.2 For any Z-graded module, 7 (M) is the Z—graded R-module
M ®pg T*(A) filtered by the submodules M QT (A) for k=0,1,2,....

Definition A.3 Let T4 be the category whose objects are the R—modules 7 (M) for
each Z—graded module M , and whose morphisms, T4 (M, M), are filtered R—module
maps &: T (M) — Tf(M').

Definition A4 Let ® € T4(M,M’). For i, j € N, the i j™ component of ® is the

map

. o* .
®ij M @ AP s THM) — T*(M') > M' @ ABY™D,
Since ® is filtered, ®;; = 0 unless j <i.

A.2 The INF-subcategory of 7/

Proposition A.5 Let C4(M, M') CT4(M, M’) be those module maps ®: T (M) —
T4 (M') such that ® has order r for some r € Z, and

(39) Dy = Ppom1, @ [[|FMTISE=1)

for every n,m € N with 1 <m <n. Then C4(M, M) are the sets of morphisms for a
subcategory C4 of T4 whose objects are all the objects of T4.

Proof First, we verify that I7x ) € C4(M, M). Inm is non-zero only if n = m.
When n = m the right side of (39) equals I;; ®|I |("+"+O)®(”_1). However, 111 =1y,
and |[|(+7n+0®@—=1) — 1®(=1) gince an even entry in the first factor in the exponent
of |I| will not change the sign. Thus, I,, = I3; @ I®"~1 which is the identity on
M ® A®=D On the other hand, if n > m, then I, =0 and I,_p41,1 = 0 as well.
Thus, L7y ar) € C4(M, M) for every M .

We now need to verify that composition of morphisms with the property in (39) will
still have this property. Suppose ® € C4(M, M) has order r and W € Cy(M', M")
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has order s, and components of each satisfy (39). Then the order (r+s) morphism
W o ® has components

(40) (Yo d)um
= Z Wiem oDy

m=<k=<n

= 3 (Wemara @I EFEIRD) o (@, @1 HEFIRED)
m=k=n

= Y W1, 1 (Ppier,1 ® I HHFNEE=M) @ | (nbmA 7+ )SCn—1),
m=<k=<n

Ifweleti =k—m+1and j =n—k+1, then n+k = j + 1 modulo 2, as k changes
from m to n, i changes from 1 to n —m + 1, so we can rewrite the previous result as

41) (Yo d)um

— ( Z \Iji,l (cDj,l ® |H|(j+r+1)®(i—1))) Q |]I|(n+m+(r+s))®(m—1)‘

i+j=n—m+2
On the other hand,
42) (Yo®)ymitn= Y. Y0Py pmyr,
1<i<n—-m+1
= Y Wi(Puomeitan ® [I[HHIHENSGD)
1<i<n—m+1
— Z ; l(q)j | ® |H|(j+r+l)®(i—l))
i+j=n—m+2
when we let j =n—m +2—i. Thus Wo ® satisfies (39). O

Definition A.6 For ® € C(M, M’) of order r, the core of ® is the set of order r
module maps ®* = {¢y | n € N}, where ¢y = Ppy: M ® A~ — M'. Given a set
of order r module maps R = {py | n € N} with pg: M @ AK=1 — M’ the extension
of R is the map R € C(M, M’) with components

(43) an = Pn—mt1 ® |]1|(n+m+r)®(m—1).

The argument in Proposition A.5 shows that these are inverses: for ® € C(M, M’),
®* = @, while for R = {p; | n € N}, (R)* equals R. Consequently, we can
describe C4 completely in terms of a composition on the cores ®* which directly
reflects the usual module map composition for filtered maps on 74 (M). This allows
us to pull the operations of C4 back to the category of R—modules.
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Definition A.7 Cj is the category whose objects are Z—graded R-modules, and
whose morphisms ®*: M s> M’ are sets ®* = {¢; | i € N} of R—module maps
di: M ® A®E=1 5 M’ such that every ¢; has order r for some r € Z. The identity
I37: M 3> M is the set of O—order module maps with (I},); = I3 and (H;‘\‘/[i =0
for i > 1. The composition of an order » morphism ®*: M s> M’ with an order s
morphism W*: M’ %> M" is the set of order r+s module maps given by

(V* % @%) = Z Vi(¢; ® [I|U+r+De=1)
i+j=k+1
fork=1,2,....

Proposition A.8 There is a functor F: Cj — C4 which takes M — T (M) and
O*: M s> M’ to its extension ®: T (M) — T (M').

Proof This result is implied directly by Proposition A.5. |

We will generally work in C4, and then pull back our results to CJ.

A.3 INF-structures

Since A is a Z-graded R—module, we may take M = A above. Then 7 (4) =
AQRT*(A) = P2, A®". Let P: T4(A) — T4 (A) be an order r map in T4(4, A).
Then we can form a new map P+ (I4® P) in T4(A4, A). This is evidently still filtered.

Definition A.9 An INF-algebra structure on A is an order 1 map D € T (A4, A) such
that

(1) DoD =0, and
2) D+(I®D)isinC(4,A).
For an INF-algebra structure D, we will let £ = D + 1 ® D. Then the core of u is

a collection of maps p* = {u;: 4 ® AP~ — A} in C5(4, A). When we have a
prescribed p in mind, we will write D, for the corresponding structure.

Definition A.10 A right INF-module M over (4, D) is a Z—graded module and
an order 1 morphism Dys € T(M, M) such that

(1) DpsoDy =0, and
(2) Dy +1®D, isin C(M, M).
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Notice that 4 with the map Dy, is a right module over (4, D;,). A right INF-module
over (4, Dy,) is a chain complex with an additional requirement placed on its boundary
map. We can similarly adapt the notion of chain map and chain homotopy to this
context.

Definition A.11 An INF-module map between right INF-modules (M, Djs) and
(M', D) (over (A, Dy))is an order 0 morphism W eC(M, M) suchthat W o Dys =
DM/ oW,

Definition A.12 An INF-homotopy between INF-module maps & and ¥, each
mapping (M, Dps) to (M’, Dygr), is an order —1 map H € C(M, M') such that
®—-V=HoDy+DpoH.

Since chain complexes form a category, and the maps are drawn from the morphisms of
C(M, M'), we obtain a category of right INF-modules. Furthermore, we can quotient
by chain homotopies to obtain a notion of chain homotopy equivalence.

A.4 INF-structures in terms of the core category

Let (A4, Dy) be an INF-algebra. The following identity is an immediate consequence
of the definition

From this identity we obtain

o0
Dy=p-I@p+Igleu+t =Y (DI mw.
=0

Note that the sum is actually finite on any summand A®" .

If we wish to write out the relations for INF—algebras, modules, morphisms, etc, in
terms of their cores, we encounter the difficulty that D, is not itself in C4(4, A).
Furthermore, composing with it is not likely to be in C4(A4, A), either. However, a
graded commutator with / ® D, will be an extension. Before we prove this, we must
understand commutators with [I]7 .

Proposition A.13 If R € C4(A, A) has order r, then

L4l 0 Rgy = (=)™ Ry y o [T|/®F.
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Proposition A.14 If ® € C4(M, M) has order r, then ®(I ® D) — (—1)" (I ® D)®
isin C4(M, M") and has core {(®(I ® D)),,; | n € N}.

Proof We compute the components of (I ® D)®d:

(T ® D))
= Y (IR D)gmo Pi

m=<k<l

o0
=y (z:(—l)s]I ®I'® ,uk—s—1,m—s—1) 0 (®f_py1,1 ® [1]HHFNEEL)
m=k=l “5=0

o
= Z (Z(—I)S}I QI ® Uk—mt1,1 @ |H|(k+m+1)®(m_s_2))

m=<k<l- “5s=0 Sk 1 T
(¢l—k+1,1 ®|H|(+ +r)®(k— ))

- OC

— Z Z(_l)s+l+k+r (cbl—k—&-l | ® |]I|(l+k+r)®(m—l))

m=<k=<Il-s5=0 7
(]I ®]Il—k+s ® Ukemi11 ® |]I|(k+m+1)®(m—s—2))

_ Z |: i (_I)S/+r(q>l—k+1,1®|H|(l+k+r)®(m_1))

m=<k=<l“-s'=I-k
(]I ®]Is’ ® hemir1 ® |H|(k+m+1)®(m+ls’k2))]

=(=1" Z (ch—k-H,l ® |]I|(l+k+r)®(m—1))

m=<k<l 0o
( Z (_Ds’H ®Hs’ ® Lhomitl ® |]I|(k+m+1)®(m+l—s’—k—2))
s'=l—k
=—(=1)" Y (Dopg1,1 ® || THEHDIOnD)
m=<k<lI I—k—1
( Z (—I)S/H ® Hs’ ® Ukemi11 ® |H|(k+m+1)®(m+l—s’—k—2))
s/=0
+ED" D Pmkem T ® D)rtm—k
m=<k<Il
I—k—1
= _(—l)rl: Z q>l—k+1,1( Z (_l)s (]I QI* ®ﬂk—m+1,1 ® |]I|(k+m+1)®(lfs kl)))
m=<k=I s'=0

®|H|(l+m+r+l)®(m—l):| + (—l)r(q)(]I ® D))Z,m

However, ®;_1,; will consume the M factor as well as the first / — k factors
of A. Since s” only has range up to / —k — 1,the u term must feed into an argument
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of ®;_41,1- By the identity (43), (—1)" (I ® D)® — (I ® D) is the extension of
{pn}, where

n—k—1
=Y @y, 1( DD (IR @ gy, @ [TFEC7H- 1)))
1<k=n s=0
—k—
=Y cI)n—k+1,1( Z D' (IS ® tn—s—1,n-5— k))
1<k=n 5s=0
Thus py = (—P(I @ D))y,1. a

To write out the requirement that (4, Dy) be an INF—algebra in terms of the u;, we
first note that 0 = Dy oDy = pou— (I ® Dy)p — (I ® Dy ). Using the preceding
proposition, 0 = popu —{(u(I ® Dy))n1}. However, pop = pu* * pu*, so for each
neN, (uwxpu)y— (I ® Dy))y,1 =0. Unpacking the definitions above produces the
following:

Z Mi(Mj®|H|J®(’ l) Z (— 1)1M1(H®H®l®ﬂ ®|H|]®(1 —I— 2))

i+j=n+1 i+j=n+1
1=<Il<i 0=<l/<i-2

which is equivalent to

i+j=n+1
1<I<i

Definition A.15 An Ay,—algebra structure on a Z—-graded R—module A is an INF—

algebra structure Dy on A[—1].

If po* = {p;}, then pui: (A[—- 1])®! — A[—1] being order 1 means y;: ((A[ 1))®); —
(A[=1Dks1 or (A®) gy — Agyo. If welet k' =k +i then pu;: Ak, — Apr_jyr =
Ali —2)s. Thus, uy is a grading preserving map A®" — A[n —2]. Alternatively,

in terms of A with its original grading, each i, needs to be an order 2 — n map
A®" — 4.

The preceding relation for an INF—structure on A[—1] is

j—1
Z (—)! 1y, H@(l 1)®M ®|H|ﬁ©_(;] )):0.

i+j=n+1
1<I<i

Since |I|4(—1] = —|I|4 in terms of the grading on A we obtain

e _ QG-I

i+j=n+1
1=<I<i
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However, j(i =)+ +1=ji+I1j+I+1=j0+1)+ U+ +1)so

R . _ iQ(i—1
Z (1) EHDFGHDED ) 80D g - @ |]I|j4®(’ )) —0.

i+j=n+1
1=<I<i

We therefore see that our definition of an A,—algebra is equivalent to the standard one.

Definition A.16 An Ay —algebra 4 over a ring R is a Z-graded R—module A4
equipped with maps p,,: A®" — A[n — 2] for each n € N, which satisfy the relation

0= 3 (~)/EHDHGHDEHD (180D @ 1y, g [1/8GD).
i+j=n+1
le{l,...,i}
Definition A.17 A (right) Asc—module structure on a Z—graded R—module M , over
a Ao—algebra (A4, ), is a (right) INF-module structure Dps_;) on M[—1] over
(A[=1], D).

Following the argument above, suppose the core of D + (I ® D) is a set of order 1
maps m;: M[—1]® (A[-1])®¢~D — M[—1] with extension 7. Then Do D =0 is
equivalent to 77 0 m — (I4—1] ® Dy)m —m(l4—1] ® D) = 0. Pushing this identity
back to one involving the maps m;: M ® A®C=1D — M[i — 2] yields the following.

Definition A.18 [8] A right Aoc—module M over an Ay,—algebra A4 is a set of
maps {m;}ien with m;: M @ A®C=D — M[i — 2], and satisfying the following
relations for each n > 1:
@) 0= > (1)U Dm;(m; @ [1[720D)
i+j=n+1
n Z (—1)k(f+1)+j(i+1)m,-(]l®k W ® |]I|j®(i—k—1))'
i+j=n+1,k>0
M is said to be strictly unital if for any & € M, my(E @ 14) = &, but for n > 1,
mya;®a; ®---®ay—1)=0ifany a; =1 4.

The definition for an INF—morphism unpacks similarly.

Definition A.19 An A,—morphism ¥ from M to M’ over (A4, u) is an INF-
morphism from (M[—1], Dpsj—17) to (M'[—1], Dpg—17) over (A[—1], Dy).

The same argument as above allows us to write this requirement in terms of the core
maps for ¥, conceived of as order 0 module maps ¥;: M[—1]® (A[-1))®¢~D —
M'[—1]. The requirement that W o Dps(_1] = Dpgri—170 ¥ becomes Woini—im' oW =
Vo(I®Dy)—(I® Dy)oW. By our proposition, Vo (I® D,)—1I&® Dy)oW is the
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extension of {(W(I ® Dy,))u1}, since W is order 0. Writing out his relation in terms
of the cores, and adjusting |I| 4j—1; = —|I|4 as above yields the standard definition.

Definition A.20 [8] An As,—morphism W of right A-modules M and M’ is a set
of maps ¥;: M @ A®C=1 — M'[i —1] for i € N, satisfying

(45) Z (—=D)EDUHD ! (g @ 1)U +DSG=D)Y
i+j=n+1
— Z (—l)j(i+1)l/fi(n’Ij®|H|j®(i_l))
i+j=n+1
4 Z (—1)j(i+l)+k(j+1)% (]I®k R 1) ® |H|j®(z‘—k—1)).
i+j=n+1,k>0

W is strictly unital it Y;(§®a; ®---®a;—1) =0 when aj =14 for some j and i > 1.
The identity morphism I,y is the collection of maps i;(§) =&, i; =0 for j > 1.

Likewise, if we have two morphisms of As—modules ®: (M'[—1], Dpsr[—1]) —
(M"[~1], Dpgri—1)) and W: (M[=1], Dpgj—1)) — (M'[=1], Dpgrp—1)) over (4, p),
when we take their composition ® o ¥, we can write it in terms of the cores of ®
and W, and then adjust the signed identities to be on A. This process gives the
following.

Definition A.21 [8] Let ¥ be an Ao,—morphism from M to M’, and let ® be an
Aoo—morphism from M’ to M”. The composition ® * ¥ is the morphism whose
component maps for n > 1 are

@)L= Y (~)EHDUHDg,(y; @ 1|UHDSE-D),
i+j=n+1

This is almost the same composition defined in C%;_,y, but in transferring to 4, we use
|H|£{[i‘11])®(i_1) = (—1)(j+1)(i_1)|]I|1(4j+1)®("_1). This accounts for the additional sign.

Definition A.22 Two Ay,—morphisms W, ® from M to M’ over (A, i) are homo-
topic if they are homotopic as INF-morphisms from (M[—1], Das[—1]) to (M'[-1],
DM’[—I]) over (A[—1], Dy).

If H is a homotopy, it is order 1. Writing out the conditions in terms of its core, using
the commutator proposition, and adjusting the signs in using |I|4 instead of |I|4_;
produces an equivalent definition.
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Definition A.23 [8] Let W, ® be Aoo—morphisms from M to M’. ¥ and ® are
homotopic if there is a set of maps {/;} with h;: M ® A®E~D — M'[i] such that

i+j=n+1

+ Z (_1)(l+1)]hl(m] ®|H|J®(l—l))
i+j=n+1

i Z (_l)k(j+1)+j(i+1)hi(]l®k ® 1 ® |H|j®(i—k—1))’
i+j=n+1k>0

andfori > 1, hj(§®a; ®---®a;j—1) =0 when a; =14 for some j.

In short, all the notions of an As,—object O come from the same notion for an INF—
object applied to O[—1], and then adjusting the signs on |I|p[—] to get a formula
without grading shifts.

A.5 Incorporating a factor on the right

Let A and N be Z-graded R—modules (as above). We can lift maps 7*(A4) — T *(A4)
to maps which take account of V.

Definition A.24 Let W: T7*(A) — T*(A) be an order r module map. W is the map
T*(A)® N — T*(A) ® N with component maps A®" @ N — A®™ ® N given by

(\IIN)n,m = an,m ® |H|r]1V—m+r‘
We can also extend maps with domain N .

Definition A.25 Let ¢: N — T*(A) ® N’ be a degree r map with projections
¢i: N - A®" @ N’. The extension of ¢ is the degree r map ¢: 7*(4) ® N —
T*(A) ® N’ with component ¢,p,: A" @ N — A®™ @ N’ given by

‘i;nm = (_l)nr(ﬂz ® ¢m—n)
for n < m and 0 otherwise.

Proposition A.26 ¢ is the extension of ¢ if and only if ¢ = ¢ ® (—1)" (14 ® ¢) under
the isomorphism T*(A) @ N = N B AQT*(A) QN .

Proof For m1 > n > 0 we have
(L4 ®Pnm = T4 ® Pyt m—1) = (D) V([ T ® pun) = (1) Pm.
If n=0 then (I4 ® #)nm = 0 but Pom = dm. 0
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Example (1) We thinkof y: N > AQN asamap N — T*(4) ® N by setting
Y; = 0 except for 1 = . In this case, 1; only has non-zero entries J,,,nﬂ =
D" (A" @ V).

(2) In: N — N can be considered as a degree 0 map t: N — T*(4) ® N by
setting ¢; = 0 except for (9 = [y . In this case, 1, = ]Iz’f1 ® I while 1, =0
for n #m. Thus 1 = L« @nN -

We now fix an INF—structure D, on A. Let u be the corresponding map on 7*(A)
with core maps u* = {u;} and extension uy: 7*(A) @ N — T*(4) ® N. The
core of i is the map puy: 7*(4) ® N — A® N found by extending each p; to
A" QN > AQ N :

o0

@ (/’Ln 02 |HN|n)-

n=1

A similar set of identities obtain for these maps, and the extension of D .

Proposition A.27 Let Dy n: T*(A) ® N — T*(A) ® N be the extension of D, .
Then Dy y +1® Dy y = pun,and Dy yo Dy n =0.

Proof We know that (Dy)nm = pnm — (I ® Dy)nm, while on the other hand,
(I®Dy)nm=1®(Du)n—1,m—1- Thus we have the equation (Dy)n,m ® |I |’]’\,_erl =
pnm ® [N =1 ® (Dp)n—1,m—1 @ |17 . Consequently, (Dy,N)nm =
Unm Q@ |]I|’]1V_m+l -I® (D,u,N)n—l,m—l . Thus D,LL,N +I® D,u,N = UN- O

As a consequence of the proposition,
o0
Dun =Y (-D'(1®®puy).
1=0
A.6 Type D structures

Definition A.28 A type D structure on N over (A4, Dy) is an order 0 map A: N —
T*(A) ® N such that

1 Ao =1In,
(3) DynoA=0.

Definition A.29 A type D structure A on N (over (4, D,)) is bounded if there is
an N € N such that A, =0 whenever n > N.
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From now on all type D structures in this paper will be bounded, unless otherwise
stated.

If we let § = Ay then (I$” ® Ap)An = Amsn implies that
(47) Ao=Iy, A1=68 Ap=I°%""DRQEA,_;.
We will denote type D structures by this core map: (N, §), where 6: N > AQ N .

Note that we may also extend §: N — A® N as the map §: T*(AQN — T*(A)®N
with 8, 441 = ]Iff’” ® §, and that we can similarly extend A.

Proposition A.30 Let A be the map for §, then A satisfies the following identities:

(D) (AA)y=@n+1)A,,
2) A=Iyd(I4® A)S, and
3) AZHNEBSA.

Proof Item (1) follows by noting that (I*® Ay) is Kk,k+l and (I[k QANAr =Ajyk-
In the composition, / and k are independent, so we obtain A, in each of the (n + 1)
ways we can write n + 1 =/ 4+ k with /, k > 0. For item (2), note that

(Li®A)S = [4®As—1)8 =[P VAR A,—2)8 = I®" VRE) (L ®A)y—18.

Thus the components of (I4 ® A)§ follow the same definition as A. Furthermore,
Ig4A)186=>04®1n5)5 =6, but (I4® A)y = 0 since there must be at least one
A—factor. Item (2) follows after adjusting the 0™ level to compensate. For item (3),
we compute (gA)Om = gm_l,m o A,,—1 for m > 1. Thus, this component equals
(I®=1D) @ §) A1 = Ay for m > 1. However, Ago = Iy . o

The definition above uses the map D, n, but we can use the identities to replace this
condition with one depending solely on the core map j}; .

Proposition A.31 (N, d) being a type D structure for (A, D,) is equivalent to either
UNA =0 or

o0
pNA = Z(/,Ln ® [In[")An = 0.

n=1

Proof First, note that Dy, yA=unyA—(I4®D, n)A. If wereplace the second A on
theright with A=Tn+(I4®A)5 we willget Dy NA=punNA—I4® Dy, n)I4®A)S
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since (I4 ® A) is zeroon N C 7*(A) ® N. However, (I4 ® D, n)(I4 ® A) =
(I4® Dy ,NA)). So

UNA =Dy NA+ (I4® DM’NA)(S.

Thus, when Dy yA = 0, then uyA = 0. On the other hand, if uyA = 0 then
Dy NA=—(I4® Dy nA)S. Iterating this yields Dy nA = (14 ® (14 ® D, nyA)S)S
= (]Iffz Dy NA)I4®8)8 = (H?2 ® D, N A)A,. By induction, we can show that
Dy nNA = (—1)"(]1?" ® Dy, NA)Ay. Since § is assumed to be bounded, A, =0
for n large enough. Thus Dy yA =0 when uA =0.

To complete the argument, we show that the identity in the proposition is equivalent to
unA =0 or, more simply, 3 A = 0. It follows from the definition of y that

(Don= Y (i ®|La'®V™ @ Iy]")A,
j—i=n—1

forn>1.But A; = gj_iA,' for j > 1. Since § is order 0, we then have

(uA)on = Z lle 29 |HN| Al

since the later application of § produces factors on the right of the tensor products
of A. Rewriting the sum to be in terms of i = j —n + 1, and noting that any j > 7 is
possible, we get

(1D)on = 8" i (1i @ [Inl) A,
from which the statement in the propositio_n follows directly. a
We now consider maps between type D structures and their compositions.
Definition A.32 Let (N,§) and (N’,§’) be bounded type D structures for (4, D).
An order r type D map ¥: (N,8) o— (N’,§) is an order r map of graded modules

v:N—>AQN'.

Definition A.33 Let v;: (N, §;) o> (Ni+1,0i+1), i =1,...,n be order r; type D
maps. Define My, (Y, ..., Y1) to be the order 1+ > r; map given by

My(Yu, ... Y1) = M}kvn+]zn+1l7nzn"'52‘%A1-

Here is the basic proposition relating the M, compositions to the INF—algebra (4, i).
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Proposition A.34 Let A;,i=1,...,n+1 be type D structures for (A, D) and let
Y; be a degree r; map from (N, A;) to (Nj+1, Aj+1). Then
(48) Dy N1 Bnp1¥nBn Doy A

= (=) Xp=n—r+298Vo Ay Ry Dyt MiB g1 Do Ay,

1<i<n
0</=<n—i

where M = Mi(Yu—i. ... Yn—i—i+1)-

Proof We consider the image of £ € Ny under the map found by alternating the v;
and the A;:

Zn-Hl;nZn"'ZZKZIAI-
The image of £ is then a sum of terms of the form
1 1 2 +1 +1
(49) €k g1 @1 ® Ry, @V QIR ap Ya®a]" ®--ap’ ®E',

where aj. € A, each y; € A marks the factor coming from a v;, and & is some element

of Nj41. The sign in front equals

— kiri+(ei+1+k Fot (kg +14-+1+k
€k ke = (—DI1HEH IR A4 .

These signs come from the signs in ¥; foreachof i =1,...,n: (ky+14---+14+k;)r;,
comes from the number of factors preceding v;, including the i — 1 factors arising
from v; with j <1, times the degree of ;.

To this we will apply the map

Dy = ), V(¥ @ueI*™M I Doy, [')=0
1<isM
0</<M—i
with M =ky+1+---+1+k,+ 1+ ky4+1. To simplify the computation let L be
the number of y; —factors which are after the closing parenthesis for p; and I be the
number of such factors inside p;. Finally, let x5,,. s, =851 +14+s24+---+1+5,.
We will fix the value of I for a minute. After applying D, n, ., we obtain terms of
the form

.....

Qui(@l i @ YL 111 ® QoL ®a] I @ @dl )

®lay F N @@yl ®laf T @ o F@ '),

where the additional sign comes from (—1)1 in the definition of D, n .
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We now do some sign accounting. First, €x, x,. . .k, = 1—[;1:11 (=1)Xk1-keTt  Conse-
quently, we can use this sign to replace each y,, with (—1)%<1.ku"uy, Note that this
is the sign which would be used in an application of i, in the product above. For
Yn—Lo-- s Yn—L—I+1, however, we rewrite Xi,.. k,"u 8 Xk,,..ky—r_5.s"u + Dulu.
Then p, is the number of factors inside u; which precede y,. We can then bring the

x—sign from the front into the factors, and rewrite the portion which uses u; as

Wi (a?J_rlL_IH ® @ (—)Probo Ity p g @
®(—1)Pn=Lin—Ly, L®an L+1® ®an L+1>

The sign in front is the same as the sign introduced in extending to get M ; (V,_pr.. ...,
Ynor—1+1), adegree 1+ Y 1_) ry_p 45 map, after skipping X, .k, _;.s Pre-
ceding A—factors. Each p, is the number of factors preceding the application of v,
in My(Wp—r—1+1,--.,¥n—r) before extending. There is another sign which is also
added when we change to M : in M| we use W not u*. The action on N —factor
introduces another sign: that in |§|" versus &, where &’ is the term in the N —factor
coming right after the application of ;. This sign is (—1)?9eg®)

Last we consider the terms on the third line. We note that the sign introduced
is —1 raised to i(D_deg aj. + ) degys + deg(¢)) from the signed identity terms,
times (—1) raised to the sum of X, . ,7p forn > p=>n—L + 1. In the INF-
relation for v; we apply ¥, after we have used u; to contract i factors to 1
factor. Thus the exponent we need differs from yg, . x,7p by (i — )rp. This
occurs for each of the n — (n — L + 1) + 1 = L factors after u;. Thus, the sign
is different by (— I)ZP n—L+2U=D" In addition, Zdega + Y degys + deg(&’)
is deg(€) + Z p=n—L+2 'p> Where £ is the result in the N —factor immediately after
applying M ;. This introduces another i Zp —n—L+2 I'p in the exponent. As a conse-
quence, the sign remaining after combining is (—1)i %e®+X5—u—r+27» . Combining
with the sign above, we are left with (— I)Zn n—L+2"p

Thus (—1)! (I® ® p; ® |1|/®E=D) applied to each term in
(Aps1¥nlBn- Do Ay (E)
is the same as a term in
(—)Zp=r—L42" (R 1Yl Bpep 2 M By - g2+ Do 1 A1) (6),

where My = My(Yp—L+1s.... Yn_L—s+2). If we add over all the terms we obtain
the desired identity.
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Note that we are interpreting / = 0 as the case where p; is applied solely to 4—factors
which come from As. In the final summation these will all cancel since A; is a type D
structure. d

We note that for type D morphisms, ZZ:n_ L+2"p = L —1 and the signs will mimic
the INF—relations used above.

Proposition A.35 The compositions M,,,n € N, satisfy the following INF —relations:

D (D28 M (Y g n MG Y=gt Y1) =0,
i+j=n+1
1<I<i

where Mj = Mj(Yn—i+1.--- . Yn—i—j+2)-

Proof We compose M7Vn+1 to Du’Nn+IZn+ITZ"Zn"'ZZJIAI. Since (A4, ) is an
INF-algebra, /L}k\,n+l Dy N,,; = 0. On the other hand, using Proposition A.34, we see
that this implies

M}k\’nﬂ( > (—1)Z"=”‘L+2deg‘//”5n+1Jnxn'"xn—lﬁﬂixn—l—iﬂ'“52171A1)
1<i<n
0<T<n—i

=0,

where ]\7,- =Mi(Yu_t. . VYn—i—i+1)-

Moving M7Vn+1 inside the summation, and then using the definition of M,,, we obtain
the INF-relations we desire. |

We now concentrate on M; and M,. Note that M, (Y5, Y1) has degree 1 +r; +r,. If
we limit v; to have degree —1, then M, (5, Y1) will also have degree —1. Thus M,
defines a product on the degree —1 maps. Indeed, the INF-relation on —1 maps has
the simpler form

Y ETIM W V2 My Wntg 1 Yn i 2)s Yned— 1o V1)
i+j=n+1
I<l<i

=0.

From the INF-relations we see that A/ is a boundary map. We will call a map ¥ with
Mi() =0 a closed map.

Definition A.36 A type D morphism ¥: (N,§) o> (N’,8’) is a closed order —1
module map ¥: N > AQ N'.
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Proposition A.37 A degree —1 map ¥: N — A ® N’ is closed if and only if
Dy N oA oyoA=0.

Proof By Proposition A.34, we know
Dy n'o Ao 1;0 A= Z,Ml (V)A.

If M;(¥)=0,then D, n-oA’oyroA =0 since M;(y) = 0. On the other hand, if the
left hand side is 0, we get that A’ M;(¥)A = 0. This map has image in 7*(4) ® N'.
If we look at the image in 4 ® N', we see that it equals A Mi(W)o1 Moo = My (V).
Thus, when Dy n'o A’ oo A =0 we have M;(¥) =0. |

We will now restrict ourselves to degree —1 maps of type D structures. The INF—
identity for n = 3 reduces to

My (M3 (Y2, Y1) + My(My(Y2), Y1) — Ma (Y2, My (Y1) = 0.

We see from this identity that M, will take closed maps to closed maps, thereby defining
a product on the kernel of M. Furthermore, M is a (signed, right) differential for
the composition —M,. We formalize this as follows.

Proposition A.38 If y: (N,§) o— (N',8') and ¢: (N',8') o> (N”,8") are two
type D morphisms, then M, (¢, vV): (N,§) o> (N”,8") is a type D morphism. The
composition ¢ x  is the type D morphism —M,(p, V).

We require that A be (strictly) unital with identity 14 € A_;!. The identity is a

two-sided identity for p, (which willmap A_;{ ® A_; — A_»41), but its presence as
any argument in the application of another core map p; will mean the image is 0.

Proposition A.39 Let Iy 5): (N,8) o= (N,d) be the map N — A ® N defined
by x — 14 ® x. Then I(y,s) is a type D morphism with M> (I’ sy, ¥) = ¥ and
M, ((]b, ]I(N,(s)) = ¢. Furthermore, the presence of I(y; 5,y as an argument in My, n >3
results in 0.

Proof First, /() has degree —1 since 14 is in A_;. Second, we show that I(y s)
is a morphism, ie it is closed for M :
;,L;/ZT(N’S)A = 0.

Note that the image in A®" ® N will be non-zero only for n > 1. If it is non-zero,
then its image will be linear combinations of terms with a 14 in some factor of 4",

IRecall that we will let A be A’'[—1] for some A’, thus (A'[—1])_; = AL =4
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due to the presence of I( s). This factor will be fed into a core map f; in ,u”;v. When
i =1 ori > 2, the image will then be zero. The only potentially non-zero terms of the
composition applied to & are those with w,. If §(§) = > ¢; ® x; we have

(51 (2@ IN)(—L4 ® I(n,5)8() + (12 ® IN)(Lg ® ) [(n,5)(§)
= (12 ® IN)(La @ I ) (3 i ©31) + (12 @ IN) Ly @ 8)(Ls B §)

= (s ®1N)<—Zc,- ® 1y ®xz') +(M2®IN)(1A® (Zci ®x,-))

= (12 ® In) (Z(lA ®ci—ci®lg)® xz')
=0.
To verify that Iy 5y composes as the identity on both sides, we compute
Wi oh oy oA 0P oA.

As above, the strict unitality of the maps p; mean that the only terms in this composition
which are non-zero will be those which feed two factors of A into . These must
come from m and ¥ . Thus the entire composition collapses to a sum of terms
(M2 ®IN)(—ci ® 14 ® X)) = —pa(ci, 14) ® X; = —¢; ® x], where ¥ (§) = )~ ¢; ®x].
So ¥ x I(y,sy = —Ma(I(ns), ¥) = ¥. A similar argument shows that [ 5) acts as
an identity on the left (recalling the order reversal in the product).

To see that I(,5) in an argument of M) for n > 2 we note that since there are n
morphisms the p; map applied will have 7 > n > 2. Furthermore, at least one argument
in that u; will come from Iy sy and thus be 1,4. Since the w; form a strictly unital
INF—algebra, this means that the result must be 0. |

However, the product —AM> is not associative. Instead, again from the INF-relations,
M, satisfies the generalized associativity relation

(52) My (Mo (3, ¥2), Y1) — Ma (Y3, My (Y2, Y1)
=—M{(M3(V3, V2, ¥1)) — M3(Mi(Y¥3), V2, Y1)
+ M3(V3, M1 (Y2), Y1) — M3(¥3, Y2, M1 (Y1)).

We can simplify this relation by quotienting by the image of M. To this end we
declare equivalent any two —1-—morphisms ¥ and ¢ if there is a degree —2 map
H: N > A® N’ with

v —¢ =M (H)=pyANHA.

We call such morphisms homotopic, following the terminology in [8]. However,
equivalent maps represent the same homology class under M.
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That M is a differential for M, implies that M, defines a composition on the
equivalence classes under homotopy. The generalized associativity relation implies
that the composition M, is associative once restricted to equivalence classes. As usual,
once we have the INF—structure above, we obtain an INF—structure on the homology:
the set of closed morphisms after modding out by homotopy. From the arguments
above, and the INF—relations we obtain the following.

Proposition A.40 Let D be the collection of type D structures (N, §) over (A, Dy,).
Let MOR((N, 8), (N’,8")) be the homotopy equivalence classes of the set of closed
degree —1 type D maps. Then D, with these morphism sets, forms a category if we
take

(1) the composition
MOR((N, 8),(N’,8")) @ g MOR((N',§"), (N",§")) — MOR((N, §), (N",§"))

to be induced from (¢, ) — —M, (¥, ¢), and
(2) the identity morphism at (N, §) to be Iy ).

A.7 For A aDGA

We are interested in the following case: A’ is such that A = A’[—1] has an INF—structure
with p; = 0 for i > 3. This makes A’ into a differential graded algebra. In this case
M; = 0 for i > 3 since these require the use of u, for n > i due to the number
of A’[—1]-factors involved. Examining the INF—relation we see that M, defines
an associative composition on type D morphisms, before quotienting by homotopy.
Furthermore, Iy, s) is still the identity map. Thus, in this case, type D structures
with type D morphisms form a category before quotienting by the homotopy relation.
Modding out by homotopy is then quotienting this category by an ideal.

We can write out the conditions for being a type D structure, a type D morphism,
and composition of type D structure in this setting. We note that these only require
grading shifts and not changes in sign. First, a type D structure is an order 0 map
§: N > A[-1]® N =~ (A’ ® N)[—1] satisfying

o0
U =D (1 ® [IN]") An = 0.

n=1

Since p, = 0 for n > 2 we can simplify this to

(2 ®IN)A2 + (11 @ |IN])A; = 0.
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Since Ay = (Ig/[—1]®6)8 and Ay = § we obtain the relation
(2 ® In) g ®8)8 + (11 ® [In])§ = 0.

By a similar argument, we see that a morphism of type D structure will be an order —1
map ¥: N — (A'[-1]® N’). Thus, ¥ maps Ny to (A’ @ N)[—1]_; = (A’ @ N).
Thus we can take a type D morphism to be an order 0 map N — 4’ ® N’ which
satisfies ;Lj‘\,,& ¥ A = 0. This simplifies to

(12 @ IN)(A'Y Aoz + (11 @ |IN (AP A)gr = 0.

IZ will increase the number of A’ —factors by one, so (Z’JA)OI =g In)Yiy
since we must use Ay and A or else have too many factors. On the other hand, in
the first term we may use either Ay or A’ , but not both. Then

(AP D)oz = (Lap—11® 8N Y — (Ly—1] ® ¥)8.
Under our isomorphisms, this becomes
(2 @ IN)(Lar—1) ® 80 — (12 R IN) (Lyr[-1) ® ¥)8 + (1 ® [In Y = 0.

The composition of two morphisms ¥: (N, §) o— (N’,8’) and ¢: (N',8")o— (N",8")
can be computed from —M, (¢, ) = —uk»A"¢ A’y A. Both ¥ and ¢ introduce
A’[—1]—factors. Hence, the contributions of A”, A’ and A must either be the identity
on the respective modules, or introduce A’[—1]—factors which force 1%, to evaluate
to 0, as w; =0 for i > 2. Thus,

M3 (¢, V) = —(n2 @) (g ®P)Y = (2 @I n) (L R P) Y.

Furthermore, a homotopy H: N — (A'[—1] ® N’) is a degree —2 map, and thus
can be thought of as a map Ny — (4’ @ N'[—1])x_2 = (4’ ® N'[+1]). It is thus
an order 0 map N — (4’ ® N’)[+1]. Furthermore, as above, we can compute
Mi(H) = (1, In)(A'HA) gy + (111 ® [In|) (A’ HA)g, which simplifies using

(AHA)o2 = (Ly-11® 8V H + (Ly—1] ® H)S,

since H has even order. Thus if ¥ and ¢ are homotopic type D morphisms, with
homotopy H, then

Y —¢ =2 ®IN)Ly—1)® 8V H + (n2 ® IN) (Lyr—1) ® H)S + (11 R |IN D H.
or, after applying the shift isomorphisms

V—¢ =2 QIn) Iy ®)VH + (12 @ In)(Ly @ H)S + (111 Q [In|) H.
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A.8 Pairing

Since Dps,ny o Dyy,y =0 and Dy y = my —Ipr @ Dy, Ny we see that mympy =
my Iy ® D,u,N) + Iy ® D;L,N)mN' (Ipr ® D;L,N)mN has image in @n>0 M®
A" ® N since there is always an A—factor remaining in the codomain of Dy n . Thus,
after restricting to have domain and codomain M Qg N,

m}"v ompy = m”]‘\,(]IM X D,LL,N)-
This works for any right INF-module M .

Now suppose that we have type D structures (N;, A;) fori =1,...,n+ 1. Let
Vvi: (N, 6i) o> (Ni4+1,06i+1), i = 1,...,n be order r; type D maps. We will now
apply both sides of m}k\’n-l—l oMy, = m*Nn+1 (Ins ® Dy,N,,,) tO

E=Tn ® (A 1¥nln-- A Ay).
We let

Qn(‘ﬂm---ﬂﬂl)
=myy ., (s @ Ay ) (g @ V) (g ® Ap) -+ (Ing @ Ag) (g @ Y1) (s @ Ay)

for n>1, and Qozm*;\,IAl.

By Proposition A.34,

(53) my(Ip ® Dy N)(E) =

n
_ d
D (et 2 Qi (Y Ynig2. My Ynei— 1 V).
i+j=n+1
1<I<i

where Mj = Mj(Yn—i+1:-- s ¥Yn—i—j+2)-

Similar to the proof of Proposition A.34 we can analyze (m’ omy)(£). There are two
differences between this argument and that in the proof of Proposition A.34. The first
occurs in the signs: there we removed j factors of A4 by applying p; and replaced it
with a new factor (the image) which resulted in a difference of sign of (j — 1)y for
each Y occurring after the application of ;. Here, however, applying m; removes
j —1 factors and merges them into the A factor out front. This also results in a change
of (j —1)ri. The second difference is that my A = Qg = 3% and not zero as before.
Furthermore, when we apply m; followed by m; we obtain a composition of £2; and
2 since each has image in M ® N . Putting these observations together with the
proof of Proposition A.34 we get

(myomn)(E) = 3 (D)X= 192V (Y Y1) (W V1),

i+j=n

Algebraic € Geometric Topology, Volume 16 (2016)



A type A structure in Khovanov homology 3715

where both 7 and j on the left side can equal 0. Consequently,
(54) Y (=DZr=it1 eV QY)W )
i+j=n

= Z (_1)2p=n—1+2deg1ﬁp§2i(wn’ e Wn—l+2» M]’ Wn—l—j+1» e wl)’
it+j=n+1

1<I<i
where Mj = Mj(Yn—i+1.---  Yn—i—j+2)-
A.9 Pairing a left INF-module and a type D structure

Let (4, D,,) be an INF—algebra with pu* = {u;}, and let M be a right INF-module
over (A4, Dy) with differential Dps. We let m = Dy + Ipr ® Dy, and m™* = {m;}
be the corresponding core maps m,: M @ A®"~1 — M . In addition, we let (N, §)
be a type D structure over (4, Dy).

Definition A.41 Define M XN to be the graded module M ®gN , and 0%: M XN —
(M K N)[—1] to be the map

o0
0% = my (g @A) = 3 (1 @ [In[ 1) 0 (L ® Ap).
k=0
Theorem A.42 [8] (M X N, 3%®) is a chain complex.

Proof We note that 9% = Q for N; = N. Taking the relation for i = j = 0 we
obtain 22y = 0, since the right hand side contains no terms. This shows that o™ s
a boundary map. O

Proposition A.43 For each type D structure (N, §) over (A, D,) there is a functor
F(n,5) from the category of right INF—modules over (A4, D) to the category of chain
complexes. F(y,s) is defined by

(55)  Fne(M,Dar) = (M RN, ®),  Fine(®) =0kl @A),

where ® € C(M, M) is a morphism of right INF-modules over (A, D,). We will
denote F(n 5 ® by ® K1y . Furthermore, if ® and ¥ are homotopic then ® X Iy
is chain homotopic to W R [ . Thus, F(y,s) induces a functor from the homotopy
category of right INF—modules to the homotopy category of chain complexes.

Before proving this proposition, we introduce a useful lemma.
Lemma A.44 Let ® € C(M, M') have order r. Then
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Proof The image of (Ipy ® A)o (P})o(Iyy ® A) in M ® A®" ® N has the form

> @ Ap)( @, R IN ) (I ® A).
/

Since (Ips ® Ap) does not change the M factor, and (®; 1 ® ~1/17) only affects

the M factor and the / available A—factors, we can rewrite
(I ® An)(@F 4, @ [In]'F7)
= (@}, ®IF" ®Iy) Iy RIS ® Ap)(In RIS @ [Ty,
Furthermore, as A, preserves grading, so
An(IIn[7) = (L %" @ Ly |+ A
Therefore,
(Inr ® An)(@F 4, @ [In]'*7)
= (9], 1% @ In) (I ®H§l ® [Ly| I8 @ [Ty [T (I Hfl 2 A,).
However,
(@4, ®LF" ®In)(Iy R I @ L7 @ Iy |™) = @y 41041 ® Iy,

which is an entry in ®5. If we precompose with I3y ® A; we can then replace
Iy ® ]Ifl ® Ap)(Iar ® Ay) with I ® Ajy,. As a consequence, the image in
M @ A®" @ N is the sum D Putiviar1 ® |]IN|I+’)(]IM ® Aj4y), which is also
the entry in ®n (I37 x A) which maps M ® N to M ® A®" ® N .. a

Proof of Proposition A.43 Let ® € C(M, M’) be an order 0 morphism from M
to M’ with core ®* = {¢; }. We define

PRIy = D% (I ® A).

To see that this is a chain map, we compute (OX1 5 )0™ = DY Iy @A) (my) (I @A).
Using the previous lemma we can simplify this to &}, (my)(Ips ® A). Since @ is a
morphism of right INF-modules, we have ®n Dps v = Dpgpr NP, OF

On(my — [y @ Dy, n)) = (m'y —(Iapr @ Dy n)) P

If we look at those terms with image in M ® N we obtain &3 my—®3 (Ip ® Dy N) =
(m'y)*®pn . Thus

(PRIN)I® = (O (Iar @ Dy n) + (M) * On)(Ipr @ A) = (my)* Oy (I ® A).

On the other hand, % (® R y) = (my) (I ® A)(PR)(Iar ® A), which reduces to
(my)®n(Ip ® A), using the lemma above. Thus, (® X 1) is a chain map.
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Let W: M — M’ and ®: M’ — M" be morphisms of right INF-modules. Then
(®+ W)Xy is the map (P+W) 3 (I ®A) =D} WUy (Iar®A). Since U (Iy @A) =
(Lar ® AW Iy ® A), we see that (& % W) Ry = &% (Iyy @ A)¥% (I ® A) =
(PXIN)(YXIy) as required. Furthermore, 177 M1y = (Hﬁ’N)*(]IM ® A). Since
(I37 A5 Will be non-zero only for kK = 1, we see that the only non-zero term is
(I3)7 @ |0y ® Ag) = (Ing @ In)(Iar ® In) = Iage v - Our map preserves
the identity morphisms.

Finally, we verify that the functor preserves homotopy relations. Suppose @y — Wy =
Dy N Hy + Hy Das n for some homotopy map: an order —1 map in C(M, M’).
Since Dpy v Hy+Hy Dy, = (m'y+Ipp @ Dy N)Hy+Hy(my +(Ipr ® Dy N).
the only terms with image in M ® N will be those without a Dy n term. Thus,
QY — Yy = (m )y Hy + Hymy.
Now, let H = Hy,(Ips ® A). Then, using Lemma A.44 above,
(56) 9®H+H™

= (m") ) Iar @ A)Hy(Ipr @ A) + Hyy(Ing ® A)(my)(Iar @ A)

= ((m"}) Hn (I ® A) + Hymy (I ® A)

= (Oy — Yy (Iym ® A)

=(OXIy)—(YXIy). o
Consequently, homotopy equivalent INF-modules will result in chain equivalences of

the chain complexes.

Proposition A.45 For each right INF-module (M, Dys) over (A, D,) there is a
functor G(pr, p,,) from the category D of homotopy classes of type D structures over
(4, Dy) to the homotopy category of chain complexes. G(a, p,,) is defined by

Gm.ppy) (N, 8) = (M RN, %),
G pa) W) = miy Iy @ AT @ ¥)(Inr ® A)],

where V represents a homotopy class of morphisms of type D structure over (A, D),
and the image G(ps,p,,)(¥) is the homotopy class of the chain map inside the brackets.
We will denote Gz, p,,)(V) by Ip M.

(57)

Corollary A.46 When (A, D) has p; =0 fori > 2 then the functor G(pr,p,,) can be
extended to a functor on the category whose objects are type D structures over (A, D)
and whose morphisms are all the type D morphisms between two type D structures.
Homotopic morphisms will be taken by G(ar, p,,) to chain homotopy equivalent chain
maps.
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Proof Let ¥: N — A ® N’ be an order —1 morphism of type D structures. We
define Iy Xy: M XN — M KN’ tobe Q(¥), or

Iy By = my (I ® A)(Ing @ ¥)(Ins ® A).
By taking n = 1 in the pairing relation we obtain
(=D'Q1 ()20 + (=1 Q01 (¥) = Q1 (M1 (),

soif ¥ is atype D morphism, we obtain (I37 Bv/)d% = 9% (Ip, Kv). Thus, (Ips K1)
is a chain map.

Suppose that H is homotopy of type D morphisms ¥ and ¢: ¥ —¢ = M (H). If
we apply the same identity to H we obtain

(=1)?Q1 (H)Q0 + (=1)°Q0Q1 (H) = Q1 (M (H)),

or
Qi (H)® +0%Q (H) = Qi (¥ — ).
If we let
Iy ®H=Q(H)=my(py @A)y H)(Iy ®A),
then

(INRY)— Iy K¢) = Iy R H)®+ %Iy R H),

so homotopic type D morphisms will be taken to chain homotopic chain maps. Thus the
functor takes morphisms in the homotopy category of type D morphisms to morphisms
in the homotopy category of chain complexes.

We have seen that the map ¥ — [, X 1 takes homotopy classes to homotopy classes.
We now verify that it maps the identity correctly, and preserves compositions. The
image of I(y,s) is the map my (Ins ® Ay ® m) (Iny ® A). This introduces
a 14 into each term. Since M is strictly unital, the only term remaining will be that
employing m,. We are thus able to add only one A—factor, so m}"\,’z(ﬂ M RILns) =
m}k\,’z(ﬂM Rly®In)or [y I n.

To verify that the functor preserves compositions in the homotopy categories, recall
that the composition of two type D morphisms i and ¢ is given by

My(p. ) = W AGA'PA.

As a consequence, we may use the pairing relations, when ¢ and i are type D
morphisms and n = 2, to get

(58) (=1)°3¥Q1(h, ¥) + (=)' Q1 ()1 (¥) + (=12 Q2 (¢, ¥) ™
= (—1)°Q; (Ma(¢,¥)) + (=D°Q (M (#), ¥) + (=)' Qa(¢, M1 (¥)).
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Since M1 (¢) = M(y) = 0, this identity becomes

Q2 (p, ¥) + Q2(d, ¥)I® = Q1 (9)Q1(¥) + Q1 (Ma(9. V).

Thus the map €21 (¢)21(¥) is chain homotopic to 21 (—M>(¢, ¥)). Consequently,
after modding out by homotopies,

(I RP)TR ) =~ (TK (¢ * ),

and we have verified that the map preserves compositions and thus is a functor. a
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