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Three-manifold mutations detected
by Heegaard Floer homology

CORRIN CLARKSON

Given an orientation-preserving self-diffeomorphism ' of a closed, orientable sur-
face S with genus at least two and an embedding f of S into a three-manifold M ,
we construct a mutant manifold by cutting M along f .S/ and regluing by f 'f �1 .
We will consider whether there exist nontrivial gluings such that for any embedding,
the manifold M and its mutant have isomorphic Heegaard Floer homology. In
particular, we will demonstrate that if ' is not isotopic to the identity map, then
there exists an embedding of S into a three-manifold M such that the rank of the
nontorsion summands of cHF of M differs from that of its mutant. We will also show
that if the gluing map is isotopic to neither the identity nor the genus-two hyperelliptic
involution, then there exists an embedding of S into a three-manifold M such that
the total rank of cHF of M differs from that of its mutant.

57M27, 57M60

1 Introduction

In 2001, Ozsváth and Szabó introduced Heegaard Floer homology, a topological
invariant that assigns a collection of abelian groups to each closed, oriented three-
manifold equipped with a Spinc–structure [25]. Given a topological invariant, it is
natural to ask which topological operations it detects. In this paper, we will consider
whether or not Heegaard Floer homology detects mutation, the operation of cutting a
three-manifold along an embedded surface and regluing by a surface diffeomorphism.
In particular, we will show that the version of Heegaard Floer homology denoted by bHF
can detect mutation by any nontrivial diffeomorphisms of a closed, orientable surface
of genus greater than one.

In order to make this statement more precise, we introduce the following terminology
and notation. Let g�2 be a natural number and let Sg be a genus-g , closed, connected,
orientable, smooth surface. By a manifold–surface pair, we will mean a pair .M; f /

where M is a closed, connected, oriented, smooth three-manifold and f W Sg!M is
a smooth embedding of Sg into M such that f .Sg/ separates M . To an orientation-
preserving diffeomorphism 'W Sg ! Sg and a manifold–surface pair .M; f /, we
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2 Corrin Clarkson

associate the mutant manifold M
'

f
that results from cutting M along f .Sg/ and

regluing by f 'f �1 . The mutant manifold M
'

f
inherits an orientation from M .

Finally, we will denote the nontorsion summands of bHF in the following way:

bHFNT.M; s/ WD
M

c1.s/¤0

bHF.M; s/:

Here, c1.s/ is the first Chern class of the Spinc–structure s.

Theorem 1.1 Let ' be an orientation-preserving self-diffeomorphism of Sg that is
not isotopic to the identity map. Then there exists a manifold–surface pair .M; f / such
that

rkbHFNT.M; s/¤ rkbHFNT.M
'

f
; s/:

Our proof of this result begins with a reformulation of the theorem statement. In
Section 2, we use Ivanov and Long’s results about subgroups of mapping class groups
to show that Theorem 1.1 is equivalent to the statement that a particular subgroup of the
mapping class group Mod.Sg/ contains neither the genus-2 hyperelliptic involution
nor any pseudo-Anosov elements. In Section 3, we show that the genus-2 hyperelliptic
involution is not an element of this subgroup by giving an example of a mutation
by this map that changes the rank of bHFNT . In Section 4, we use the fact that bHF
detects the Thurston seminorm on homology to establish the existence of mutations by
pseudo-Anosov maps that change the rank of bHFNT . This step uses work of Ozsváth
and Szabó [23], Ni [22] and Hedden and Ni [12]. We conclude the proof of Theorem 1.1
in Section 5.

Then in Section 6, we use similar techniques to show that the total rank of bHF can
detect mutations by noncentral mapping classes:

Theorem 1.2 Let Œ'� 2Mod.Sg/ be a mapping class that is isomorphic to neither the
identity nor the genus-2 hyperelliptic involution. Then there exists a manifold–surface
pair .M; f / such that

rkbHF.M /¤ rkbHF.M '

f
/:

The question of whether the total rank of bHF is preserved by mutation along a separating
surface by the genus-2 hyperelliptic involution remains open.

The effect of mutating by the genus-2 hyperelliptic involution has been considered for
invariants related to bHF . In particular, Ozsváth and Szabó showed that the Heegaard
Floer knot invariant bHFK can detect knot genus, which can be changed by mutations of
this form [23, Theorem 1.2]. Conversely, Moore and Starkston produced computational
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Three-manifold mutations detected by Heegaard Floer homology 3

evidence that the total rank of bHFK in each ı–grading is preserved by mutation by
the genus-2 hyperelliptic involution [21]. Finally, Ruberman showed that the instanton
Floer homology with Z=2Z coefficients of an oriented homology 3–sphere is preserved
by mutations of this form [26, Theorem 1].1

The results of this paper also fit into the growing body of work on group actions on
triangulated categories. See Section 7 for a more detailed discussion.

Acknowledgements I am grateful to Robert Lipshitz for suggesting this problem and
for many useful discussions and ideas. I am also grateful to Jason Behrstock, Ian
Biringer, Nathan Dunfield, Julia Elisenda Grigsby, Adam Levine, Dan Margalit, Walter
Neumann and Dylan Thurston for helpful conversations. Finally, I would like to thank
the referee for helpful comments and suggestions.

While working on this project, I was partially supported by NSF grant number DMS-
0739392.

2 Theorem reformulation

Let Mod.Sg/ be the mapping class group of Sg . In this section, we will reformulate
Theorem 1.1 as a statement about the triviality of a normal subgroup of Mod.Sg/.

Definition 2.1 A mapping class Œ'� 2Mod.Sg/ is bHF –invisible if for all manifold–
surface pairs .M; f / we have that

rkbHFNT.M; s/D rkbHFNT.M
'

f
; s/:

The bHF –invisible mapping classes are well defined, because mutating by isotopic
diffeomorphisms results in diffeomorphic mutant manifolds. Moreover, they form a
normal subgroup.

Proposition 2.2 The bHF –invisible mapping classes form a normal subgroup of the
mapping class group Mod.Sg/.

Proof The mapping class of the identity map is bHF –invisible, because mutating by
any of its representatives preserves the diffeomorphism class of the manifold. We will

1In private communication, Ruberman indicated that there is an issue with the signs in [26] due to a
particular moduli space not being orientable. However, this is not relevant when one considers Z=2Z
coefficients.
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4 Corrin Clarkson

show that mutations by products, inverses and conjugates of bHF –invisible mapping
classes preserve the rank of bHFNT .

Let .M; f / be a manifold–surface pair and let M1 and M2 be the closures of the two
connected components of M n f .Sg/. Finally, let ˛ and ˇ be arbitrary orientation-
preserving self-diffeomorphisms of Sg . The mutant manifold M ˛

f
can be made

into a manifold–surface pair by composing the embedding f W Sg 7! M1 with the
inclusion of M1 into M ˛

f
. Let .N; h/ denote this pair. Mutating .N; h/ by ˇ gives the

mutant N
ˇ

h
which is constructed by using .f ˛/ f̌ �1 to glue M1 to M2 . Thus, N

ˇ

h

is diffeomorphic to M
˛ˇ

f
by construction, and we can view mutation by a composite

map as a sequence of mutations.

Let Œ'� and Œ� � be bHF –invisible mapping classes. It follows that mutating by ei-
ther ' or � preserves the rank of bHFNT . Thus, if we view mutating .M; f / by the
composition '� as a mutation by ' followed by a mutation by � , we find that

rkbHFNT.M; s/D rkbHFNT.M
'

f
; s/D rkbHFNT.M

'�

f
; s/:

Therefore, the product Œ'�Œ� �D Œ'� � is bHF –invisible.

Mutating .M; f / by the composite map '�1' does not change its diffeomorphism
class. Furthermore, if we view this mutation sequentially, the second mutation preserves
the rank of bHFNT . Thus, we have that

rkbHFNT.M; s/D rkbHFNT.M
'�1'

f
; s/D rkbHFNT.M

'�1

f
; s/:

Therefore, the inverse mapping class Œ'��1 D Œ'�1� is bHF –invisible.

Let Œ � 2 Mod.Sg/ be an arbitrary mapping class. Composing f with  gives a
new embedding f  W Sg!M . Mutating the manifold–surface pair .M; f  / by '
gives the mutant manifold M

'

f  
. This mutant is constructed by using .f  /'.f  /�1

to glue M1 to M2 . In a similar manner, the mutant M
 ' �1

f
is constructed by us-

ing f . ' �1/f �1 to glue M1 to M2 and is thus diffeomorphic to M
'

f  
. Moreover,

the rank of bHFNT.M
'

f  
/ is the same as that of M , because Œ'� is bHF –invisible. Thus,

we have that

rkbHFNT.M; s/D rkbHFNT.M
'

f  
; s/D rkbHFNT.M

 ' �1

f
; s/:

Therefore, the conjugate Œ �Œ'�Œ ��1 D Œ ' �1� is bHF –invisible. It follows that
the bHF –invisible mapping classes form a normal subgroup of Mod.Sg/.

Theorem 1.1 is equivalent to the statement that the normal subgroup of bHF –invisible
mapping classes is trivial. Reformulating the theorem statement in this way allows us
to leverage the group structure of Mod.Sg/. We begin by recalling a few definitions
from the theory of mapping class groups.

Algebraic & Geometric Topology, Volume 17 (2017)
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The Torelli group is the normal subgroup consisting of those mapping classes whose
representatives induce the identity map on homology and is denoted by I.Sg/. If gD2,
then Mod.Sg/ has a unique order two element that acts by � id on H1.S2IZ/. See Farb
and Margalit [5, Section 7.4]. This element is called the genus-2 hyperelliptic involution.
A subgroup G �Mod.Sg/ is called irreducible if for any simple closed curve C on Sg

there exists an element Œ'� 2G such that '.C / is not isotopic to C .

We are now ready to state and prove the following proposition:

Proposition 2.3 If a normal subgroup G C Mod.Sg/ contains no pseudo-Anosov
elements of the Torelli group, then it is either the trivial subgroup or the order two
subgroup generated by the genus-2 hyperelliptic involution.

Proof Let G C Mod.Sg/ be a normal subgroup of the mapping class group that
contains no pseudo-Anosov elements of the Torelli group. Also let H DG \ I.SG/

be the intersection of G with the Torelli group. Thus, H is a normal subgroup that
contains no pseudo-Anosov elements.

It follows from a theorem of Ivanov that H is either finite or reducible [14, Theorem 1].
Furthermore, the Torelli group is torsion free and thus H must be either trivial or infinite
and reducible [14, Corollary 1.5]. However, Ivanov also showed [14, Corollary 7.13]
that there are no infinite, reducible, normal subgroups of Mod.Sg/. Therefore, H

must be trivial.

Long showed that if the intersection of two normal subgroups of Mod.Sg/ is trivial,
then one of those groups must either be central or trivial [19, Lemma 2.1]. The Torelli
group is neither central nor trivial, so we must conclude that G is either central or
trivial. If g � 3, then the center of Mod.Sg/ is trivial [5, Theorem 3.10] and thus G

must also be trivial. In the genus-2 case, things are only slightly more complicated. The
center of Mod.S2/ is the order two subgroup generated by the hyperelliptic involution
[5, Section 3.4]. Therefore, G is either trivial or the order two subgroup generated by
the genus-2 hyperelliptic involution.

By combining Proposition 2.2 and Proposition 2.3, we see that Theorem 1.1 is equivalent
to the statement that neither the genus-2 hyperelliptic involution nor any pseudo-Anosov
elements of the Torelli group are bHF –invisible. In the next two sections, we will
consider mutations by these two types of mapping classes.

3 Genus-two hyperelliptic involution

In this section, we will show that mutating by the genus-2 hyperelliptic involution
can change the rank of the nontorsion summands of bHF . To accomplish this, we will
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6 Corrin Clarkson

consider the seminorm on H2.M IR/ defined by Thurston in [29]. This is a useful
invariant to consider, because it is detected by bHF and is much easier to compute. See
Ozsváth and Szabó [23], Ni [22] and Hedden and Ni [12].

Proposition 3.1 The genus-2 hyperelliptic involution is not bHF –invisible.

Proof We consider the pair of mutant knots that form the basis of Moore and
Starkston’s examples of mutations by the genus-2 hyperelliptic involution [21]. Let
K and K� be the knots denoted respectively by 14n

22185 and 14n
22589 in Knotscape

notation [21, Figure 2]. These two knots are related by a mutation of S3 by the genus-2
hyperelliptic involution [21, Figure 3]. From the computations of bHFK in Table 1
of [21], we see that K has genus two and K� has genus one.

Now, let M and M � be the results of 0–surgery on K and K� respectively. Because
the mutation of S3 that transforms K into K� involves a surface that is disjoint from
the knot, there is a corresponding surface in M . Moreover, mutating M along that
corresponding surface by the genus-2 hyperelliptic involution will result in a manifold
diffeomorphic to M � .

A Mayer–Vietoris argument shows that both H2.M IR/ and H2.M
� IR/ are isomor-

phic to R. Furthermore, it follows from the work of Gabai that the genera of the
knots K and K� determine the Thurston seminorm on these homology groups [7,
Corollary 8.3]. In particular, the seminorm is constantly zero on H2.M

� IR/ and
nonzero on H2.M IR/. This implies that bHF.M � / is supported entirely in the Spinc–
structure whose first Chern class is zero and bHF.M / is nontrivial in at least one
Spinc–structure with nonzero first Chern class by Hedden and Ni [12, Theorem 2.2].

4 Pseudo-Anosov gluings

In this section, we examine mutations by pseudo-Anosov elements of the Torelli group.
In particular, we will show that mutating by any such element will change the Thurston
seminorm of some three-manifold.

Proposition 4.1 Let Œ'� 2 I.Sg/ be a pseudo-Anosov element of the Torelli group.
Then there exists a natural number N and a manifold–surface pair .M; f / such
that M D S1 �S2 and the mutant manifold M 'N

f
has a homology class with nonzero

Thurston seminorm.

In order to determine the effect of mutation on the Thurston seminorm, we must first
establish a relationship between the homology of a three-manifold and that of its
mutants. In the case of mutation by elements of the Torelli group, this is achieved by
the following lemma.

Algebraic & Geometric Topology, Volume 17 (2017)
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Lemma 4.2 If Œ � 2 I.Sg/ is an element of the Torelli group and .M; f / is a
manifold–surface pair, then M and its mutant M

 

f
have isomorphic homology groups

Hi.M /ŠHi.M
 

f
/ for all i:

Proof Because M and its mutant M
 

f
are closed three-manifolds, it suffices to show

that the first homology groups are isomorphic. In order to do this, we decompose M into
two open sets that overlap in a tubular neighborhood of the separating surface f .Sg/.
A comparison of the Mayer–Vietoris sequence coming from this decomposition to that
coming from a similar decomposition of the mutant M

 

f
shows that the first homology

groups are indeed isomorphic.

Our inquiry will focus on mutating S1 �S2 along Heegaard surfaces. We proceed by
considering the relationship between the complexity of the Heegaard splittings of a
three-manifold and the minimal genera of its homology classes.

4.1 Homology and Hempel distance

A genus-g Heegaard splitting is a decomposition of a three-manifold into two genus-g
handlebodies glued together along their boundaries. Such a splitting is determined
by two handlebodies with parametrized boundaries. A handlebody with parametrized
boundary is in turn determined by the curves on the boundary that bound disks in the
handlebody.

Definition 4.3 For a genus-g handlebody X with boundary parametrized by a map
to Sg , let VX be the set of isotopy classes of essential simple closed curves in Sg

whose preimages bound disks in X . We will refer to the elements of VX as compression
curves of X .

Given two genus-g handlebodies X and Y with boundaries parametrized respectively
by maps a and b to Sg , we can construct a three-manifold M by using b�1aW @X!@Y

to glue X to Y . We will write .Sg;VX ;VY / for the corresponding Heegaard splitting
of M .

The compression curves of a genus-g handlebody can be viewed as points in the
curve complex, C.Sg/. See Harvey [11]. The curve complex is a simplicial com-
plex with 0–simplices corresponding to isotopy classes of essential closed curves and
n–simplices corresponding to .nC1/–tuples of isotopy classes that can be realized
disjointly. There is a natural distance function d on the 0–simplices of the curve
complex given by viewing the 1–skeleton as a graph with edge length one. Applying
this distance function to the sets of compression curves in a Heegaard splitting can
provide information about the minimal genera of homology classes.

Algebraic & Geometric Topology, Volume 17 (2017)
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Lemma 4.4 If .Sg;VX ;VY / is a Heegaard splitting of a manifold M and the dis-
tance d.VX ;VY / is greater than two, then M is irreducible and has no essential tori.

Proof Haken showed that if M were reducible, then VX and VY would have a point in
common and thus d.VX ;VY / would be zero [8, page 84]. Furthermore, Hempel demon-
strated [13, Corollary 3.7] that if M had an essential torus, then d.VX ;VY / would
be � 2. Thus, d.VX ;VY /> 2 implies that M is irreducible and has no essential tori.

The distance between the sets of compression curves in a Heegaard splitting is called
the Hempel distance of that splitting. Combining this language with the definition of
Thurston’s seminorm gives the following corollary to Lemma 4.4.

Corollary 4.5 If a three-manifold M has a Heegaard splitting with Hempel distance
greater than two, then the Thurston seminorm is in fact a norm on H2.M IR/.

Now that we have established a relationship between Hempel distance and the Thurston
norm, we turn our attention to the effect of mutating by a pseudo-Anosov map on the
Hempel distance of a Heegaard splitting.

4.2 Effects of pseudo-Anosov mutations

Each pseudo-Anosov map 'W Sg! Sg has two associated projective measured lami-
nations on Sg called its stable and unstable laminations. See Casson and Bleiler [4,
Theorem 5.5]. Furthermore, a set of compression curves can be viewed as a subset
of PML.Sg/, the space of projective measured laminations on Sg , by simply applying
the counting measure to each curve. See Hamenstädt [10, Section 2]. We will use VH

to denote the closure of VH in PML.Sg/. Hempel showed that repeatedly twisting by
a pseudo-Anosov map can increase the Hempel distance of a Heegaard splitting:

Theorem 4.6 (Hempel [13, page 640]; see also Abrams and Schleimer [1, Section 2])
Let X and Y be genus-g handlebodies with their boundaries parametrized by maps
to Sg and let 'W Sg ! Sg be a pseudo-Anosov map with stable lamination s and
unstable lamination u. If s and u are not in VX [VY , then the distance between VX

and 'n.VY / tends to infinity:

lim
n!1

d.VX ; '
n.VY //D1:

It is worth noting that .Sg;VX ; '
n.VY // is the Heegaard splitting of the mutant manifold

that results from mutating X [Y by 'n along the Heegaard surface @X . We would
like to use Hempel’s theorem to make statements about mutations of S1 � S2 by
pseudo-Anosov maps. However, we must first verify that S1 �S2 admits Heegaard
splittings of the appropriate form.

Algebraic & Geometric Topology, Volume 17 (2017)
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Lemma 4.7 Let 'W Sg! Sg be a pseudo-Anosov map with stable lamination s and
unstable lamination u. Then there exists a genus-g Heegaard splitting .Sg;VX ;VY /

of S1 �S2 such that s and u are not in VX [VY .

Proof For an arbitrary handlebody X , the stable lamination s is in VX if and only if the
unstable lamination u is also in VX by Biringer, Johnson and Minsky [3, Theorem 1.1].
Thus, it is enough to find a Heegaard splitting of S1 � S2 such that s is not in the
closure of either set of compression curves.

Let .Sg;VX ;VY / be a genus-g Heegaard splitting of S1 �S2 . The union VX [VY

is nowhere dense in PML.Sg/ by Masur [20, Theorem 1.2]. Furthermore, the stable
laminations of pseudo-Anosov elements of Mod.Sg/ form a dense subset of PML.Sg/.
See Farb and Margalit [6, Theorem 6.19]. Thus, there exists a pseudo-Anosov map
 W Sg! Sg with stable lamination t such that t is not in VX [VY and t is not equal
to s or u.

We will now show that translating the set VX by a high power of  will move it away
from s . In particular, we show that the set of natural numbers n for which s 2 n.VX /

is either empty or bounded above. Suppose there exists a k 2N such that s 2 k.VX /.
By Theorem 4.6, the distance d. k.VX /;  

kC`.VX // goes to infinity as ` grows.
Therefore, it is enough to show that if s is an element of  kC`.VX /, then the sets
 k.VX / and  kC`.VX / must be close together in the curve complex.

Suppose s is an element of  kC`.VX /. Let .ai/ and .bi/ be sequences of points
in  k.VX / and  kC`.VX / respectively that converge to s in PML.Sg/. It follows
from work of Klarreich that the sequences .ai/ and .bi/ converge to the same point
in the Gromov boundary of the curve complex C.Sg/ [15]. See also Abrams and
Schleimer [1, Theorem 8.4] and Hamenstädt [9, Theorem 1]. This in turn implies that
the Hempel distance between  k.VX / and  kC`.VX / is bounded above by a constant
which depends only on the genus g [1, Lemma 9.2].

Therefore, the set of n for which s 2  n.VX / is either empty or bounded above. By
a similar argument, the corresponding results holds for VY . Thus, there exists an N

such that s is not in  N .VX /[ 
N .VY /. By construction, .Sg;  

N .VX /;  
N .VY //

is a Heegaard splitting for S1 �S2 .

4.3 Proof of Proposition 4.1

Proposition 4.1 Let Œ'� 2 I.Sg/ be a pseudo-Anosov element of the Torelli group.
Then there exists a natural number N and a manifold–surface pair .M; f / such
that M D S1 �S2 and the mutant manifold M 'N

f
has a homology class with nonzero

Thurston seminorm.
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Proof Let s;u 2 PML.Sg/ be respectively the stable and unstable laminations of ' .
Also, let .Sg;VX ;VY / be a genus-g Heegaard splitting of S1 �S2 such that s and u

are not in VX [ VY . The existence of such a splitting is guaranteed by Lemma 4.7.
Finally, let .M; f / be the manifold–surface pair where M D S1 �S2 and f is the
embedding of Sg as the Heegaard surface @X from the splitting .Sg;VX ;VY /.

By Theorem 4.6, we have that

lim
n!1

d.VX ; '
n.VY //D1:

Thus, there is a natural number N such that d.VX ; '
N .VY // > 2. Furthermore,

.Sg;VX ; '
N .VY // is a Heegaard splitting for the mutant M 'N

f
. This implies that

M 'N

f
is irreducible and has no essential tori (Lemma 4.4).

A simple calculation shows that the H2.M IZ/ D H2.S
1 � S2IZ/ Š Z. It follows

that H2.M
'N

f
IZ/Š Z, because Œ'� is in the Torelli group (Lemma 4.2). Let ! be a

nonzero element of H2.M
'N

f
IZ/ŠZ and let F �M 'N

f
be a surface that represents ! .

Because M 'N

f
is irreducible and has no essential tori, the genus of F must be at least 2.

It follows that the Thurston seminorm of ! D ŒF � 2H2.M
'N

f
IR/ is nonzero.

5 Proof of Theorem 1.1

Theorem 1.1 Let ' be an orientation-preserving self-diffeomorphism of Sg that is
not isotopic to the identity map. Then there exists a manifold–surface pair .M; f / such
that

rkbHFNT.M; s/¤ rkbHFNT.M
'

f
; s/:

Proof Let G C Mod.Sg/ be the set of bHF –invisible mapping classes. We be-
gin by showing that G contains no pseudo-Anosov element of the Torelli group.
Let Œ'� 2 I.Sg/ be a pseudo-Anosov element of the Torelli group. Also let .M; f /

be a manifold–surface pair such that M D S1 �S2 and for some N 2N the mutant
manifold M 'N

f
has a homology class with nonzero Thurston seminorm. The existence

of such a pair is guaranteed by Proposition 4.1.

A simple computation shows that the Heegaard Floer homology of M D S1 �S2 is
isomorphic to Z˚Z and is supported entirely in the Spinc–structure whose first Chern
class is zero. See Ozsváth and Szabó [24, Section 3]. Thus, the rank of the nontorsion
summands of bHF.M / is zero:

rkbHFNT.M; s/D 0:

Algebraic & Geometric Topology, Volume 17 (2017)
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By construction M 'N

f
has a homology class with nonzero Thurston seminorm. It

follows from work of Hedden and Ni that bHF.M 'N

f
/ is nontrivial in at least one

Spinc–structure with nonzero first Chern class [12, Theorem 2.2]. In particular, the
rank of the nontorsion summands is positive:

rkbHFNT.M
'N

f ; s/ > 0:

Therefore
rkbHFNT.M; s/¤ rkbHFNT.M

'N

f ; s/:

Thus, the mapping class Œ'N �D Œ'�N is not bHF –invisible. Because the bHF –invisible
mapping classes form a subgroup of Mod.Sg/, we concluded that Œ'� is also not
bHF –invisible (Proposition 2.2). Therefore, no pseudo-Anosov element of the Torelli
group is an element of G .

Furthermore, we showed in Proposition 2.2 and Proposition 3.1 respectively that G is
normal and does not contain the genus-2 hyperelliptic involution. Hence, G is trivial
by Proposition 2.3.

6 Total rank detects mutation

Theorem 1.2 Let Œ'� 2Mod.Sg/ be a mapping class that is isomorphic to neither the
identity nor the genus-2 hyperelliptic involution. Then there exists a manifold–surface
pair .M; f / such that

rkbHF.M /¤ rkbHF.M '

f
/:

Proof Let G be the set of mapping classes such that Œ'�2G if and only if rkbHF.M /

is equal to rkbHF.M '

f
/ for all manifold–surface pairs .M; f /. The set G , like the set

of bHF –invisible mapping classes, is a normal subgroup of Mod.Sg/. This follows
from the proof of Proposition 2.2 with the appropriate notation changes. Thus, it
suffices to show that G contains no pseudo-Anosov elements of the Torelli group
(Proposition 2.3).

Let Œ'� 2 I.Sg/ be a pseudo-Anosov element of the Torelli group. Also let .M; f /

be a manifold–surface pair such that M D S1 �S2 and for some N 2N the mutant
manifold M 'N

f
has a homology class with nonzero Thurston seminorm. The existence

of such a pair is guaranteed by Proposition 4.1.

Let T be the result of 0–surgery on the trefoil. Hedden and Ni showed that T and M

are the only closed, orientable, irreducible three-manifolds with nonzero first Betti
number and rkbHF D 2 [12, Theorem 1.1]. In the proof of Proposition 4.1, we showed

Algebraic & Geometric Topology, Volume 17 (2017)



12 Corrin Clarkson

that the mutant M 'N

f
is closed, orientable and irreducible, and its first Betti number is

nonzero. Thus, it is enough to show that M 'N

f
is not diffeomorphic to either T or M .

A Mayer–Vietoris argument shows that H2.T IR/ Š R. The Thurston seminorm
is constantly zero on H2.T IR/, because the trefoil is a genus-1 knot by Gabai [7,
Corollary 8.3]. The homology group H2.M IZ/ D H2.S

1 � S2IZ/ is isomorphic
to Z and is generated by the homology class of a sphere. Thus, the Thurston seminorm
of any homology class in H2.S

1 �S2IR/ is zero. Therefore, the Thurston seminorm
differentiates M 'N

f
from both T and S1 �S2 .

7 Implications

There are two ways to interpret Theorem 1.1 and Theorem 1.2 as statements about
actions of mapping class groups of surfaces on categories. The first uses bordered
Heegaard Floer homology and results in a statement about an action on a category
of A1–modules. The second uses the definition of bHF and results in a statement
about an action on a Fukaya category.

7.1 Bordered Heegaard Floer homology

In [16] and [18], Lipshitz, Ozsváth and Thurston developed a variant of Heegaard Floer
homology for three-manifolds with parametrized boundary called bordered Heegaard
Floer homology. These bordered invariants are related to bHF by pairing theorems
[16, Theorem 1.3] and [18, Theorem 11]. The pairing theorems provide a method
for computing bHF.M / by cutting M along separating surfaces and computing the
bordered Heegaard Floer homology of the resulting components. By applying this
method to manifold–surface pairs and their mutants, we can use Theorem 1.1 to infer
information about the bordered Heegaard Floer homology of mapping cylinders of
surface diffeomorphisms.

Let Mod0.Sg/ denote the strongly based mapping class group of Sg that is the isotopy
classes of diffeomorphisms that fix a given disk in Sg . There is a canonical projection

pW Mod0.Sg/!Mod.Sg/

given by quotienting out by the copy of �1.Sg/ that corresponds to pushing the
disk around closed curves in Sg as well as by the Dehn twist around the boundary
of the disk. Following [18, Section 8], we assign to each strongly based mapping
class Œ'� 2Mod0.Sg/ the bimodule 1CFDA.'; 0/ associated to its mapping cylinder.
By considering Theorem 1.1 from the perspective of bordered Heegaard Floer homology,
we get the following result about these bimodules.
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Corollary 7.1 If Œ'� 2 Mod0.Sg/ is a strongly based mapping class such that Œ'�
is not in the kernel of p , then the action of Œ'� on the category of G.Z/–graded
A.Z/–modules given by tensoring with 1CFDA.'; 0/ is not the trivial action.

Proof Let Œ'�2Mod0.Sg/ such that Œ'� is not in the kernel of p . Also, let .M; f / be a
manifold–surface pair such that the rank of bHFNT.M / differs from that of bHFNT.M

'

f
/.

The existence of such a pair is guaranteed by Theorem 1.1. Finally, let M1 and M2

be the connected components of M nf .Sg/.

The Heegaard Floer homology of M can be computed from the bordered invariants
of M1 and M2 as follows:

bHF.M /ŠH�.bCFA.M1/ z̋ bCFD.M2//;

where z̋ is the A1–tensor product.

Similarly, decomposing the mutant manifold M
'

f
as the union M1[C' [M2 , where

C' is the mapping cylinder of ' , corresponds to the following module decomposition
of bHF.M '

f
/:

bHF.M '

f
/ŠH�.bCFA.M1/ z̋ 1CFDA.'; 0/ z̋ bCFD.M2//:

Thus, the difference between bHF.M / and bHF.M '

f
/ must result from the effect of

tensoring with 1CFDA.'; 0/. Therefore, the action of Œ'� on A.Z/–modules given by
tensoring with 1CFDA.'; 0/ must not be the trivial action.

A similar reformulation of Theorem 1.2 gives the following result about the action
of Mod0.Sg/ on the category of ungraded A.Z/–modules.

Corollary 7.2 If Œ'� 2Mod0.Sg/ is a strongly based mapping class such that p.Œ'�/

is neither the identity nor the genus-2 hyperelliptic involution, then the action of Œ'� on
the category of ungraded A.Z/–modules given by tensoring with 1CFDA.'; 0/ is not
the trivial action.

These results are closely related to work of Lipshitz, Ozsváth and Thurston. In [17],
they showed that the action of a nontrivial strongly based mapping class Œ'� on the
ungraded A.Z/–modules given by tensoring with 1CFDA.';˙.g�1// is not the trivial
action.
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7.2 Fukaya categories

When viewed from another perspective, the work of Lipshitz, Ozsváth and Thurston
shows that the strongly based mapping class group Mod0.Sg/ acts freely on a version
of the Fukaya category of Sg with a disk removed as well as on a version of the Fukaya
category of the .2g� 1/–fold symmetric product Sym2g�1.Sg �D/. See Auroux [2].

Theorem 1.2 is also related to mapping class group actions on Fukaya categories. In
particular, the chain complex that underlies bHF of a three-manifold with a genus-g
Heegaard splitting corresponds to a morphism group in the Fukaya category of the
g–fold symmetric product of Sg with a point removed. Furthermore, the action of the
based mapping class group of Sg on the symmetric product Symg.Sg � z/ induces a
strict action on the Fukaya category Fuk.Symg.Sg�z//. See Seidel [27, Section 10b].

Corollary 7.3 If Œ'� 2 Mod.Sg � z/ is a based mapping class such that the corre-
sponding element of Mod.Sg/ is neither the identity nor the genus-2 hyperelliptic
involution, then the action of Œ'� on the Fukaya category Fuk.Symg.Sg�z// is not the
trivial action. In particular, the map induced by ' on Symg.Sg�z/ is not Hamiltonian
isotopic to the identity.

Proof Let Œ'� 2Mod.Sg � z/ be a based mapping class such that the corresponding
element of Mod.Sg/ is neither the identity nor the genus-2 hyperelliptic involution.
Also, let .M; f / be a manifold–surface pair such that f .Sg/ is a Heegaard surface
and

rkbHF.M /¤ rkbHF.M '

f
/:

The existence of such a manifold is guaranteed by the fact that the proof of Theorem 1.2
only uses manifold–surface pairs where the embedded surface is a Heegaard surface.
Finally, let T˛ and Tˇ be the corresponding Heegaard tori in Symg.Sg � z/.

The action of Œ'� on Fuk.Symg.Sg � z// sends Tˇ to T'.ˇ/ , the Heegaard torus that
results from translating the curves of ˇ by ' . Furthermore, T˛ and T'.ˇ/ are the
Heegaard tori of a splitting of the mutant manifold M

'

f
. It then follows from the

definitions thatcCF.M /DMor.T˛;Tˇ/ and cCF.M '

f
/DMor.T˛;T'.ˇ//:

Since bHF.M / and bHF.M '

f
/ do not have the same rank, we concluded that their

underlying chain complexes cCF.M / and cCF.M '

f
/ are not quasi-isomorphic. Thus,

the morphism groups Mor.T˛;Tˇ/ and Mor.T˛;T'.ˇ// are not quasi-isomorphic.
Therefore, Tˇ is not isomorphic to T'.ˇ/ .
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It should also be possible to reformulate Theorem 1.1 as a statement about an ac-
tion of the based mapping class group of Sg on a version of the Fukaya category
of Symg.Sg � z/. Such a reformulation would likely require working with grading
data like that described by Sheridan [28]. We will return to this in a future paper.
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