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Detection of knots and a cabling formula for A–polynomials

YI NI

XINGRU ZHANG

We say that a given knot J � S3 is detected by its knot Floer homology and
A–polynomial if whenever a knot K � S3 has the same knot Floer homology and
the same A–polynomial as J , then K D J . In this paper we show that every
torus knot T .p; q/ is detected by its knot Floer homology and A–polynomial. We
also give a one-parameter family of infinitely many hyperbolic knots in S3 each of
which is detected by its knot Floer homology and A–polynomial. In addition we
give a cabling formula for the A–polynomials of cabled knots in S3 , which is of
independent interest. In particular we give explicitly the A–polynomials of iterated
torus knots.
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1 Introduction

One of the basic problems in knot theory is distinguishing knots in S3 from each
other using knot invariants. There are several knot invariants each powerful enough
to determine if a given knot in S3 is the unknot, such as knot Floer homology, the
A–polynomial and Khovanov homology; see Ozsváth and Szabó [24], Boyer and
Zhang [6] and Dunfield and Garoufalidis [11] and Kronheimer and Mrowka [21]. In
other words, each of these invariants is an unknot-detector. It is also known that knot
Floer homology can detect the trefoil knot and the figure 8 knot; see Ghiggini [14].
In this paper we first consider the problem of detecting the set of torus knots T .p; q/
in S3 using knot invariants. To reach this goal neither knot Floer homology nor the A–
polynomial alone is enough: The torus knot T .4; 3/ has the same knot Floer homology
as the .2; 3/–cable over T .3; 2/ (see Hedden [18]), while the torus knot T .15; 7/ has
the same A–polynomial as the torus knot T .35; 3/. However when the two invariants
are combined together, the job can be done. We have:

Theorem 1.1 If a knot K in S3 has the same knot Floer homology and the same
A–polynomial as a torus knot T .p; q/, then K D T .p; q/.

Published: 26 January 2017 DOI: 10.2140/agt.2017.17.65

http://msp.org
http://www.ams.org/mathscinet/search/mscdoc.html?code=57M25
http://dx.doi.org/10.2140/agt.2017.17.65


66 Yi Ni and Xingru Zhang

We then go further to consider the detection problem for hyperbolic knots. For a
one-parameter family of mutually distinct hyperbolic knots k.l�;�1; 0; 0/ in S3 ,
where l� > 1 is integer-valued, we succeed in showing that each knot in the family
is detected by the combination of its A–polynomial and its knot Floer homology. A
knot diagram for k.l�;�1; 0; 0/ is illustrated in Figure 5. Note that k.2;�1; 0; 0/ is
the .�2; 3; 7/–pretzel knot. Also note that the knots k.l�;�1; 0; 0/ form a subfamily
of the hyperbolic knots k.l;m; n; p/ (with some forbidden values on the integers l , m,
n and p ) given in Eudave-Muñoz [12], each of which admits a half-integral toroidal
surgery (the slope formula is given in Eudave-Muñoz [13] and recalled in Section 4 of
this paper), and by Gordon and Luecke [17], these hyperbolic knots k.l;m; n; p/ are
the only hyperbolic knots in S3 which admit nonintegral toroidal surgeries.

Theorem 1.2 The knots in the family fk.l�;�1; 0; 0/ W l� > 1; l� 2 Zg are mutually
distinct hyperbolic knots in S3 . Let J� be any fixed k.l�;�1; 0; 0/ with l� > 1. If a
knot K in S3 has the same knot Floer homology and the same A–polynomial as J� ,
then K D J� .

To prove Theorem 1.1 (resp. Theorem 1.2), let K � S3 be any knot with the same
knot Floer homology and A–polynomial as the knot T .p; q/ (resp. J� ). Applying
well-known results from knot Floer homology we get immediately the following
three conditions on the knot K : K is fibered since T .p; q/ (resp. J� ) is, K has
the same Alexander polynomial as T .p; q/ (resp. J� ) and K has the same Seifert
genus as T .p; q/ (resp. J� ); see Ghiggini [14] and Ni [23], Ozsváth and Szabó [25]
and Ozsváth and Szabó [24]. Combining these three derived conditions on K with
the assumption on the A–polynomial of K will be sufficient for us in identifying K
with T .p; q/ (resp. J� ). The proof of Theorem 1.1 will be given in Section 3 after we
establish some general properties of A–polynomials in Section 2, where we also derive
a cabling formula for A–polynomials of cabled knots in S3 (Theorem 2.8) and in
particular we give explicitly the A–polynomials of iterated torus knots (Corollary 2.12).
The argument for Theorem 1.2 is more involved than that for Theorem 1.1, and so
we need to make some more preparations for it (besides those made in Section 2) in
the next three sections. In Section 4 we collect some topological properties about
the family of knots k.l;m; n; p/; in particular, we give a complete genus formula
for k.l;m; n; p/ and show that the knots k.l�;�1; 0; 0/ form a class of small knots
in S3 . In Section 5 we collect some information about the A–polynomials of the
knots k.l;m; n; p/ without knowing the explicit formulas of the A–polynomials, and
with such information we are able to show that if a hyperbolic knot K has the same
A–polynomial as a given knot J� D k.l�;�1; 0; 0/, then K has the same half-integral
toroidal surgery slope as J� and K is one of the knots k.l;m; 0; p/ with l divisible
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by 2p� 1. We then in Section 6 identify each J� D k.l�;�1; 0; 0/ among the knots
of the form k.l;m; 0; p/ where .2p � 1/ j l , using the genus formula and the half-
integral toroidal slope formula for k.l;m; 0; p/. Results obtained in these three sections,
together with some results from Section 2, are applied in Section 7 to complete the
proof of Theorem 1.2.

Note that the A–polynomial AK.x; y/ (for a knot K in S3 ) used in this paper is
a slightly modified version of the original A–polynomial given in Cooper, Culler,
Gillet, Long and Shalen [8]. The only difference is that in the current version, the
A–polynomial of the unknot is 1 and y�1 may possibly occur as a factor in AK.x; y/
for certain knots K contributed by some component of the character variety of the
knot exterior containing characters of irreducible representations, while in the original
version y�1 is a factor of the A–polynomial for every knot contributed by the unique
component of the character variety of the knot exterior consisting of characters of
reducible representations (see Section 2 for details). The current version contains a bit
more information than the original one.

Acknowledgements Ni was partially supported by NSF grant numbers DMS-1103976
and DMS-1252992 and an Alfred P Sloan Research Fellowship.

2 Some properties of A–polynomials

First we need to recall some background material on A–polynomials and set up
some notations. For a finitely generated group � , the set of representations (ie group
homomorphisms) from � to SL2.C/ is denoted by R.�/. For each representation
� 2 R.�/, its character �� is the complex-valued function ��W � ! C defined by
��./D trace.�.// for  2 � . Let X.�/ be the set of characters of representations
in R.�/ and t W R.�/!X.�/ the map sending � to �� . Then both R.�/ and X.�/
are complex affine algebraic sets such that t is a regular map (see [10] for details).

For an element  2� , the function f W X.�/!C is defined by f .��/D .��.//2�4
for each �� 2X.�/. Each f is a regular function on X.�/. Obviously �� 2X.�/
is a zero point of f if and only if either �./D˙I or �./ is a parabolic element.
It is also evident that f is invariant when  is replaced by a conjugate of  or the
inverse of  .

Note that if �W � ! � 0 is a group homomorphism between two finitely generated
groups, then it naturally induces a regular map z�W R.� 0/!R.�/ by z�.�0/D �0 ı�
and a regular map y�W X.� 0/ ! X.�/ by y�.��0/ D �z�.�0/ . Note that if X0 is an
irreducible subvariety of X.� 0/, then the Zariski closure of y�.X0/ in X.�/ is also
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irreducible. If in addition the homomorphism � is surjective, each of the regular maps
z� and y� is an embedding, in which case we may simply consider R.� 0/ and X.� 0/ as
subsets of R.�/ and X.�/, respectively, and write R.� 0/�R.�/ and X.� 0/�X.�/.

For a compact manifold W , we denote R.�1.W // and X.�1.W //, respectively,
by R.W / and X.W /.

The A–polynomial was introduced in [8]. We slightly modify its original definition for a
knot K in S3 as follows: Let MK be the exterior of K in S3 and let f�; �g be the stan-
dard meridian-longitude basis for �1.@MK/. Let yi�W X.MK/!X.@MK/ be the regular
map induced by the inclusion-induced homomorphism i�W �1.@MK/!�1.MK/, and
let ƒ be the set of diagonal representations of �1.@MK/, ie

ƒD f� 2R.@MK/ W �.�/ and �.�/ are both diagonal maticesg:

Then ƒ is a subvariety of R.@MK/ and t jƒW ƒ!X.@MK/ is a degree-two, surjective,
regular map. We may identify ƒ with C� �C� through the eigenvalue map

EW ƒ!C� �C�

given by

� 7! .x; y/ if �.�/D
�
x 0

0 x�1

�
and �.�/D

�
y 0

0 y�1

�
:

For every knot in S3 , there is a unique component in X.MK/ consisting of characters
of reducible representations, which we call the trivial component of X.MK/. (The
trivial component is of dimension one.) Now let X�.MK/ be the set of nontrivial
components of X.MK/ each of which has a one-dimensional image in X.@MK/ under
the map yi� . The set X�.MK/ is possibly empty, and in fact it is currently known that
X�.MK/ is empty if and only if K is the unknot. So when K is a nontrivial knot,
.t jƒ/

�1.yi�.X
�.MK// is one-dimensional in ƒ and in turn E

�
.t jƒ/

�1.yi�.X
�.MK//

�
is one-dimensional in C� � C� � C � C . Let D be the Zariski closure in C2

of E
�
.t jƒ/

�1.yi�.X
�.MK//

�
. Then D is a plane curve in C2 defined over Q. Let

AK.x; y/ be a defining polynomial of D normalized so that AK.x; y/ 2ZŒx; y� with
no repeated factors and with 1 as the greatest common divisor of its coefficients. Then
AK.x; y/ is uniquely associated to K up to sign and is called the A–polynomial of K .
For the unknot we define its A–polynomial to be 1. As remarked in the introduction,
y � 1 might occur as a factor of AK.x; y/ for certain knots. Also by [6] and [11],
AK.x; y/D 1 if and only if K is the unknot (in fact for every nontrivial knot K , the
A–polynomial AK.x; y/ contains a nontrivial factor which is not y � 1).

From the constructional definition of the A–polynomial, we see that each component X0
of X�.MK/ contributes a factor f0.x; y/ in AK.x; y/, ie f0.x; y/ is the defining
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polynomial of the plane curve D0 which is the Zariski closure of E..t jƒ/�1.yi�.X0///
in C2 , and moreover f0.x; y/ is balanced, ie if .x; y/ is a generic zero point of f0.x; y/
then .x�1; y�1/ is also a zero point of f0.x; y/. Also note that f0.x; y/ is not
necessarily irreducible over C but contains at most two irreducible factors over C .
We shall call such a f0.x; y/ a balanced-irreducible factor of AK.x; y/. Obviously
AK.x; y/ is a product of balanced-irreducible factors and the product decomposition
is unique up to the ordering of the factors.

We now define a couple of functions which will be convenient to use in expressing the
A–polynomials for torus knots and later on for cabled knots and iterated torus knots.
Let .p; q/ be a pair of relatively prime integers with q � 2. Define F.p;q/.x; y/ to be
the polynomial in ZŒx; y� determined by the pair .p; q/ by

(2-1) F.p;q/.x; y/D

8̂̂̂<̂
ˆ̂:
1C x2py if q D 2 and p > 0;
x�2pCy if q D 2 and p < 0;
�1C x2pqy2 if q > 2 and p > 0;
�x�2pqCy2 if q > 2 and p < 0

and define G.p;q/.x; y/2ZŒx; y� to be the polynomial determined by the pair .p; q/ by

(2-2) G.p;q/.x; y/D

�
�1C xpqy if p > 0;
�x�pqCy if p < 0:

Note that the ring CŒx; y� is a unique factorization domain. The following lemma can
be easily checked.

Lemma 2.1 Among the polynomials in (2-1) and (2-2), the first two in (2-1) and the
two in (2-2) are irreducible over C , and the last two in (2-1) can be factored as the
product of two irreducible polynomials over C :

�1C x2pqy2 D .�1C xpqy/.1C xpqy/ if q > 2 and p > 0;

�x�2pqCy2 D.�x�pqCy/.x�pqCy/ if q > 2 and p < 0:

The set of nontrivial torus knots T .p; q/ is naturally indexed by pairs .p; q/ satisfying
jpj > q � 2, .p; q/ D 1. Note that T .�p; q/ is the mirror image of T .p; q/. The
A–polynomial of a torus knot T .p; q/ is given by (eg [28, Example 4.1])

(2-3) AT.p;q/.x; y/D F.p;q/.x; y/

In particular the A–polynomial distinguishes T .p; q/ from T .�p; q/.

For the exterior MK of a nontrivial knot in S3 , we can consider the set of elements
of H1.@MK IZ/ Š �1.@MK/ as a subgroup of �1.MK/ which is well defined up
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to conjugation. In particular, the function f˛ on X.MK/ is well defined for each
class ˛ 2H1.@MK IZ/. As f˛ is also invariant under a change of the orientation of ˛ ,
the function f˛ is also well defined when ˛ is a slope in @MK . Later on for convenience
we will often not make a distinction among a primitive class of H1.@MK IZ/, the
corresponding element of �1.@MK/ and the corresponding slope in @MK , so long as
it is well defined.

It is known (eg [4]) that any irreducible curve X0 in X.MK/ belongs to one of the
following three mutually exclusive types:

(a) For each slope ˛ in @MK , the function f˛ is nonconstant on X0 .

(b) There is a unique slope ˛0 in @MK such that the function f˛0
is constant on X0 .

(c) For each slope ˛ in @MK , the function f˛ is constant on X0 .

Obviously a curve of type (a) or (b) has one-dimensional image in X.@MK/ under the
map yi� . Note that the trivial component of X.MK/ is of type (b). Hence a curve of
type (a) is contained in X�.MK/ and so is a curve of type (b) if it is not the trivial
component of X.MK/.

An irreducible curve of type (a) is named a norm curve. Indeed as the name indicates,
a norm curve in X.MK/ can be used to define a norm, known as the Culler–Shalen
norm, on the real two-dimensional plane H1.@MK IR/ satisfying certain properties.
Such a curve exists when MK is hyperbolic: namely, any component of X.MK/ which
contains the character of a discrete faithful representation of �1.MK/ is a norm curve.

For an irreducible curve X0 in X.MK/, let zX0 be the smooth projective completion
of X0 and let �W zX0!X0 be the birational map. The map � is onto and is defined at
all but finitely many points of zX0 . The points of zX0 where � is not defined are called
ideal points and all other points of zX0 are called regular points. The map � induces an
isomorphism from the function field of X0 to that of zX0 . In particular every regular
function f on X0 corresponds uniquely to its extension zf on zX0 which is a rational
function. If zf is not a constant function on zX0 , its degree, denoted deg. zf /, is equal
to the number of zeros of zf in zX0 counted with multiplicity, ie

deg. zf /D
X
v2 zX0

Zv. zf /;

where Zv. zf / is the zero degree of zf at the point v 2 zX0 .

We shall identify H1.@MK IR/ with the real xy–plane so that H1.@MK IZ/ consists
of integer lattice points with � D .1; 0/ being the meridian class and � D .0; 1/

the longitude class. So each slope m=n corresponds to the pair of primitive ele-
ments ˙.m; n/ 2H1.@MK IZ/.
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Theorem 2.2 Let X0 be a norm curve of X.MK/. Then the associated Culler–Shalen
norm k � k0 on H1.@MK IR/ has the following properties: Let

s0 Dminfk˛k0 W ˛ ¤ 0; ˛ 2H1.@MK IZ/g

and let B0 be the disk in H1.@MK IR/ centered at the origin with radius s0 with
respect to the norm k � k0 . Then:

(1) For each nontrivial element ˛D .m; n/ 2H1.@MK IZ/, the norm k � k0 satisfies
k˛k0 D deg. zf˛/¤ 0 and thus k˛k0 D k�˛k0 .

(2) The disk B0 is a convex finite-sided polygon symmetric about the origin whose
interior does not contain any nonzero element of H1.@MK IZ/ and whose bound-
ary contains at least one but at most four nonzero classes of H1.@MK IZ/ up to
sign.

(3) If .a; b/ is a vertex of B0 , then there is a boundary slope m=n of @MK such
that ˙.m; n/ lie in the line passing through .a; b/ and .0; 0/. (That is, a=b is a
boundary slope of @MK for any vertex .a; b/ of B0 .)

(4) If a primitive class ˛ D .m; n/ 2 H1.@MK IZ/ is not a boundary class and
MK.˛/ has no noncyclic representations, then ˛ D .m; n/ lies in @B (that is,
k˛k0 D s0 ) and is not a vertex of B0 .

(5) If the meridian class �D .1; 0/ is not a boundary class, then for any nonintegral
class ˛ D .m; n/, if it is not a vertex of B0 then it does not lie in @B and thus
k˛k0 > k�k0 D s0 .

Theorem 2.2 is originally from [9, Chapter 1], although it was assumed there that
the curve X0 contains the character of a discrete faithful representation of MK . The
version given here is contained in [4].

Recall that if f0.x; y/D
P
ai;jx

iyj 2CŒx; y� is a two-variable polynomial in x and y
with complex coefficients, the Newton polygon N0 of f0.x; y/ is defined to be the
convex hull in the real xy–plane of the set of points

f.i; j / W ai;j ¤ 0g:

The following theorem is proved in [5].

Theorem 2.3 Let X0 be a norm curve of X.MK/ and let f0.x; y/ be the balanced-
irreducible factor of AK.x; y/ contributed by X0 . Then the norm polygon B0 deter-
mined by X0 is dual to the Newton polygon N0 of f0.x; y/ in the following way: The
set of slopes of vertices of B0 is equal to the set of slopes of edges of N0 . In fact B0
and N0 mutually determine each other up a positive integer multiple.
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We remark that although in [5] there were some additional conditions imposed on X0
and the version of the A–polynomial defined in [5] is mildly different from the one
given here, the above theorem remains valid with identical reasoning as given in [5].
We only need to describe the exact relation between B0 and N0 as follows to see how
they determine each other up to an integer multiple: Let Y0 be the Zariski closure of the
restriction yi�.X0/ of X0 in X.@MK/ and let d0 be the degree of the map yi�W X0!Y0 .
As explained in [5] (originally in [26]), the Newton polygon N0 determines a width
function w on the set of slopes given by

w.p=q/D k 2 Z

if kC 1 is the number of lines in the xy–plane of slope q=p which contain points
of both Z2 and N0 . The width function in turn defines a norm k � kN0

on the
xy–plane H1.@MK IR/ such that

k.p; q/kN0
D w.p=q/

for each primitive class .p; q/ 2H1.@MK IZ/. Finally

k � k0 D 2d0k � kN0
:

Corollary 2.4 If every balanced-irreducible factor of AK.x; y/ over C has two mono-
mials, then K is not a hyperbolic knot.

Proof The condition of the corollary means that the Newton polygon of each balanced-
irreducible factor of AK.x; y/ consists of a single edge. On the other hand, for a
hyperbolic knot, its character variety contains a norm curve component X0 which
contributes a balanced-irreducible factor f0.x; y/ to the A–polynomial such that the
Newton polygon of f0.x; y/ has at least two edges of different slopes.

An irreducible curve in X�.MK/ of type (b) (such a curve exists only for certain knots)
is named a seminorm curve as suggested by the following theorem, which is contained
in [4].

Theorem 2.5 Suppose that X0 �X�.MK/ is an irreducible curve of type (b) with ˛0
being the unique slope such that f˛0

is constant on X0 . Then a seminorm k � k0 can be
defined on H1.@MK IR/, with the following properties:

(1) For each slope ˛ ¤ ˛0 , the seminorm k � k0 satisfies k˛k0 D deg. zf˛/¤ 0.

(2) k˛0k0 D 0 for the unique slope ˛0 associated to X0 , and the slope ˛0 is a
boundary slope of MK .
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(3) If ˛ is a primitive class and is not a boundary class and MK.˛/ has no noncyclic
representation, then �.˛; ˛0/D 1.

(4) Let s0 D minfk˛k0 W ˛ ¤ ˛0 is a slopeg. Then k˛k0 D s0�.˛; ˛0/, for any
slope ˛ .

Note that for each torus knot T .p; q/, every nontrivial component in its character
variety is a seminorm curve with pq as the associated slope.

Remark If K is a small knot, ie if its exterior MK does not contain any closed
essential surface, then every nontrivial component of X.MK/ is a curve [8, Proposition
2.4] and is either a norm curve or a seminorm curve [4, Proposition 5.7].

We now proceed to get some properties of A–polynomials of satellite knots in S3 .
Recall that a knot K in S3 is a satellite knot if there is a pair of knots C and P
in S3 , called a companion knot and a pattern knot respectively, associated to K ,
such that C is nontrivial, P is contained in a trivial solid torus V in S3 but is not
contained in a 3–ball of V and is not isotopic to the core circle of V , and there is a
homeomorphism f from V to a regular neighborhood N.C/ of C in S3 which maps
a longitude of V (which bounds a disk in S3 ) to a longitude of N.C/ (which bounds
a Seifert surface for C ) and maps a meridian of V to a meridian of N.C/, and finally
K D f .P /. We sometimes write a satellite knot as K D .P; C; V; f / to include the
above defining information (K still depends on how P is embedded in V ).

Lemma 2.6 Let KD.P; C; V; f / be a satellite knot in S3. Then AP .x; y/ jAK.x; y/
in ZŒx; y�.

Proof The lemma is obviously true when P is the unknot in S3 . So we may assume
that P is a nontrivial knot in S3 . Let MK , MC and MP be the exteriors of K , C
and P in S3 , respectively. There is a degree-one map hW .MK ; @MK/! .MP ; @MP /

such that h�1.@MP /D @MK and hj@MK
W @MK ! @MP is a homeomorphism. The

map h is given by a standard construction as follows: From the definition of the pattern
knot given above, we see that if W is the exterior of P in the trivial solid torus V ,
then MP is obtained by Dehn filling W along @V with a solid torus V 0 such that
the meridian slope of V 0 is identified with the longitude slope of V . Also if we let
Y D f .W /, then MK DMC [Y . Now the degree-one map hW MK!MP is defined
as follows: on Y it is the homeomorphism f �1W Y !W and on MC it maps a regular
neighborhood of a Seifert surface in MC to a regular neighborhood of a meridian disk
of V 0 in V 0 and maps the rest of MC onto the rest of V 0 (which is a 3–ball).
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The degree-one map h induces a surjective homomorphism h�W �1.MK/! �1.MP /

such that
h�j�1.@MK/W �1.@MK/! �1.@MP /

is an isomorphism, mapping the meridian to the meridian and the longitude to the
longitude. In turn h� induces an embedding yh� of X.MP / into X.MK/ in such a way
that the restriction of yh�.X.MP // on X.@MK/ with respect to the standard meridian-
longitude basis f�K ; �Kg of @MK is the same as the restriction of X.MP / on X.@MP /

with respect to the standard meridian-longitude basis f�P ; �P g of @MP , that is, for
each �� 2 X.MP /, we have ��.�P / D yh�.��/.�K/, ��.�P / D yh�.��/.�K/ and
��.�P�P /D yh�.��/.�K�K/. The conclusion of the lemma now follows easily from
the constructional definition of the A–polynomial.

For polynomials f .x; Ny/ 2CŒx; Ny� and g.y; Ny/ 2CŒy; Ny� both with nonzero degree
in Ny , let

Res Ny.f .x; Ny/; g.y; Ny//

denote the resultant of f .x; Ny/ and g.y; Ny/ eliminating the variable Ny . In general
Res Ny.f .x; Ny/; g.y; Ny// may have repeated factors even when both f .x; Ny/ and g.y; Ny/
are irreducible over C . For a polynomial f .x; y/ 2CŒx; y�, let

RedŒf .x; y/�

denote the polynomial obtained from f .x; y/ by deleting all its repeated factors.

Proposition 2.7 Let K D .P; C; V; f / be a satellite knot such that the winding num-
ber w of P in the solid torus V is nonzero. Then every balanced-irreducible factor
fC . Nx; Ny/ of the A–polynomial AC . Nx; Ny/ of C extends to a balanced factor fK.x; y/
of the A–polynomial AK.x; y/ of K . More precisely:

(1) If the Ny–degree of fC . Nx; Ny/ is nonzero, then

fK.x; y/D RedŒRes Ny.fC .xw ; Ny/; Nyw �y/�:

In particular, if fC . Nx; Ny/ D Ny C ı Nxn or fC . Nx; Ny/ D Ny Nxn C ı for n some
nonnegative integer and ı 2 f1;�1g (such a factor is irreducible and balanced),
then fK.x; y/D y � .�ı/wxnw

2

or fK.x; y/D yxnw
2

� .�ı/w , respectively.
(2) If the Ny–degree of fC . Nx; Ny/ is zero, ie fC . Nx; Ny/ D fC . Nx/ is a function of Nx

only, then fK D fC .xw/.

Proof Let MK , MC , Y , �C , �C , �K , �K be defined as in the proof of Lemma 2.6.
We have MK DMC [Y . Note that H1.Y IZ/DZŒ�K �˚ZŒ�C � and Œ�K �DwŒ�C �
and Œ�C � D wŒ�K �. Given a balanced-irreducible factor fC . Nx; Ny/ of AC . Nx; Ny/,
let X0 be a component of X�.MC / which gives rise to the factor fC . Nx; Ny/. For
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each element �� 2X0 , the restriction of � on �1.@MC / can be extended to an abelian
representation of �1.Y /, and thus � can be extended to a representation of �1.MK/,
which we still denote by � , such that

�.�C /D �.�
w
K/ and �.�K/D �.�

w
C /:

It follows that X0 extends to one or more components of X�.MK/ whose restric-
tions on @MK are each one-dimensional and thus together give rise to a balanced
factor fK.x; y/ of AK.x; y/. Moreover the variables x and y of fK.x; y/ and the
variables Nx and Ny of fC . Nx; Ny/ are related by

(2-4) Nx D xw and y D Nyw :

Therefore when the Ny–degree of fC . Nx; Ny/ is positive, fK.x; y/ can be obtained by tak-
ing the resultant of fC .xw ; Ny/ and Nyw�y , eliminating the variable Ny , and then deleting
possible repeated factors. In particular, if fC . Nx; Ny/D NyC ı Nxn or Ny NxnC ı for some
nonnegative integer n and ı 2 f�1; 1g, then the resultant of NyC ıxwn or NyxwnC ı
with Nyw� y , eliminating the variable Ny , is y � .�ı/wxnw

2

or yxnw
2

� .�ı/w , re-
spectively (which is irreducible over C and is balanced). Also if the degree of fC in Ny
is zero, then obviously fK D fC .xw/.

Remark In Proposition 2.7, the y–degree of fK.x; y/ is at most equal to the
Ny–degree of fC . Nx; Ny/ (and generically they are equal). This follows directly from the

definition of the resultant; see [22, Chapter IV, Section 8].

Next we are going to consider cabled knots. Let .p; q/ be a pair of relatively prime
integers with jqj � 2, and K be the .p; q/–cabled knot over a nontrivial knot C . That
is, K is a satellite knot with C as a companion knot and with T .p; q/ as a pattern
knot which lies in the defining solid torus V as a standard .p; q/–cable with winding
number jqj. As the .�p;�q/–cable over a knot is equal to the .p; q/–cable over the
same knot, we may always assume q � 2. The following theorem gives a cabling
formula for the A–polynomial of a cabled knot K over a nontrivial knot C , in terms
of the A–polynomial AC . Nx; Ny/ of C .

Theorem 2.8 Let K be the .p; q/–cabled knot over a nontrivial knot C , with q � 2.
Then

AK.x; y/D Red
�
F.p;q/.x; y/Res Ny

�
AC .x

q; Ny/; Nyq �y
��

if the Ny–degree of AC . Nx; Ny/ is nonzero and

AK.x; y/D F.p;q/.x; y/AC .x
q/

if the Ny–degree of AC . Nx; Ny/ is zero.
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Proof For a polynomial f . Nx; Ny/ 2CŒ Nx; Ny�, define

ExtqŒf . Nx; Ny/�

D

�
Red

�
Res Ny

�
f .xq; Ny/; Nyq �y

��
if the degree of f . Nx; Ny/ in Ny is nonzero;

f .xq/ if the degree of f . Nx; Ny/ in Ny is zero:

Then Proposition 2.7 says that

fK.x; y/D Extw ŒfC . Nx; Ny/�;

and Theorem 2.8 says that

AK.x; y/D Red
�
F.p;q/.x; y/ExtqŒAC . Nx; Ny/�

�
:

Note that ExtqŒAC . Nx; Ny/� D Red
�Q

ExtqŒfC . Nx; Ny/�
�

where the product runs over
all balanced-irreducible factors fC . Nx; Ny/ of AC . Nx; Ny/ and thus by Proposition 2.7,
ExtqŒAC . Nx; Ny/� is a balanced factor of AK.x; y/. So we only need to show:

Claim 2.9 F.p;q/.x; y/ is a balanced factor of AK.x; y/. (Note that each irreducible
factor of F.p;q/.x; y/ is balanced.)

Claim 2.10 Besides F.p;q/.x; y/ and ExtqŒAC . Nx; Ny/�, the A–polynomial AK.x; y/
has no other balanced factors.

To prove the above two claims, let MK , MC , Y , �C , �C , �K , �K be defined as
in Lemma 2.6 with respect to K D .P; C; f; V / where P D T .p; q/ is embedded in V
as a standard .p; q/–cable. We have MK DMC [ Y and @Y D @MC [ @MK . For
convenience in the present argument, we give a direct description of Y as follows: We
may consider N DN.C/ as D�C , where D is a disk of radius 2, such that fxg�C
has slope zero for each point x 2 @D . Let D� be the concentric subdisk in D with
radius 1. Then N�DD��C is a solid torus in N.C/ sharing the same core circle C .
We may assume that the knot K is embedded in the boundary of N� as a standard
.p; q/–curve, where @N� has the meridian-longitude coordinates consistent with that
of @MC D @N (ie fxg �C is a longitude of @N� for any point x 2 @D� ). Then Y is
the exterior of K in N .

Note that Y is a Seifert fibered space whose base orbifold is an annulus with a single
cone point of order q , a Seifert fiber of Y in @MC has slope p=q , and a Seifert fiber
of Y in @MK has slope pq . Let C be a Seifert fiber of Y lying in @MC and K be
a Seifert fiber of Y lying in @MK . Up to conjugation, we may consider C and K as
elements of �1.Y /. Also note that C is conjugate to K in �1.Y /. It is well known
that each of C and K lies in the center of �1.Y /, which is independent of conjugation.
It follows that if � 2R.Y / is an irreducible representation then �.C /D �.K/D �I ,
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for some fixed �2f1;�1g, where I is the identity matrix. Hence if X0 is an irreducible
subvariety of X.Y / which contains the character of an irreducible representation, then
for every �� 2 X0 , we have �.C /D �.K/D �I , which is due to the fact that the
characters of irreducible representations are dense in X0 .

Now we are ready to prove Claim 2.9. If jpj > 1, then by Lemma 2.6 and (2-3),
F.p;q/.x; y/ is a factor of AK.x; y/. So we may assume that jpj D 1. Under this
assumption, one can see that the fundamental group of Y has the presentation

(2-5) �1.Y /D h˛; ˇ W ˛
qˇ D ˇ˛qi

such that
�K D ˛ˇ;

where ˛ is a based simple loop free homotopic in Y to the center circle of N and ˇ is a
based simple loop free homotopic in Y to �C in @MC . To see these assertions, note that
Y contains the essential annulus A2D @N�\Y with @A2� @MK of the slope pq (the
cabling annulus, consisting of Seifert fibers of Y ) and A2 decomposes Y into two pieces
U1 and U2 , such that U1 is a solid torus (which is N�\Y ) and U2 is topologically
@MC times an interval. The above presentation for �1.Y / is obtained by applying
the van Kampen theorem associated to the splitting of Y D U1[A2

U2 along A2 . We
should note that as jpj D 1, a longitude in @N� intersects K geometrically exactly
once. It is this curve pushed into U1 which yields the element ˛ and pushed into U2
which yields ˇ . Also because jpj D 1, we have that fC ; ˇg forms a basis for �1.U2/.
Therefore by van Kampen, �1.Y / is generated by ˛ , ˇ and C with relations ˛qD C
and CˇD ˇC , which yields presentation (2-5) after canceling the element C . With
a suitable choice of orientation for ˇ , ie replacing ˇ by its inverse if necessary, we
also have �K D ˛ˇ . See Figure 1 for an illustration when q D 3.

By [15, Lemma 7.2], NK.pq/, which denotes the manifold obtained by Dehn surgery
on K in the solid torus N with the slope pq , is homeomorphic to L.q; p/#.D2�S1/,
and MK.pq/, which denotes the manifold obtained by Dehn filling of MK with
the slope pq , is homeomorphic to L.q; p/ #MC .p=q/ (where the meaning of the
notation MC .p=q/ should be obvious). MC .p=q/ is a homology sphere since jpjD 1.
By [20], R.MC .p=q//�R.MC / contains at least one irreducible representation �C .
Note that the restriction of �C on �1.@MC / is not contained in fI;�I g. That is,
we have �C .C / D I and �C .ˇ/ ¤ ˙I (we may consider ˇ as the longitude �C
of �1.@MC /). If q>2, we can extend �C to a curve of representations of �1.MK/ with
one-dimensional characters. In fact for every A2SL2.C/, we may define �A 2R.MK/

as follows: On �1.MC /, let �A D �C , so that in particular �A.ˇ/ D �C .ˇ/, and
define �A.˛/D ABA�1 where B is a fixed order q matrix in SL2.C/. It’s routine to
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�c

A2
A1

A1

�k A2

A1
A2

the fat base point

the boundary of N�
the base point

˛
K the boundary of N�

the base point

ˇ
K

Figure 1: The cross section D\Y of Y and the elements ˛ and ˇ of �1.Y /
when q D 3

check that �A is well defined, the trace of �A.�K/D ABA�1�C .ˇ/ varies as A runs
over SL2.C/, and �A.K/D I . Hence we get a curve in X.MK/ whose restriction
on @MK is one-dimensional, and moreover this curve generates �1Cyxq as a factor
of AK.x; y/ if p D 1 or generates �xqCy as a factor of AK.x; y/ if p D�1.

We now show that 1C yxq is a factor of AK.x; y/ if p D 1 or xq C y is a factor
of AK.x; y/ if p D �1, for all q � 2. For the representation �C given in the last
paragraph, define ��C 2R.MC / by

��C ./D �./�C ./ for  2 �1.MC /;

where � is the onto homomorphism �W �1.MC / ! fI;�I g. As �C is a genera-
tor of H1.MC IZ/, we have that ��C .�C / D ��C .�C /. Similarly, as �C is triv-
ial in H1.MC IZ/, we also have that ��C .�C / D �C .�C /. Hence we have that
��C .C /D �

�
C .�

q
C�

p
C /D ��C .C /D �I . We can now extend ��C to ��A over MK

similarly as for �C to �A , only this time we choose B as a fixed order 2q matrix
in SL2.C/, so that the trace of ��A.�K/DABA

�1�C .ˇ/ varies as A runs over SL2.C/,
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and ��A.K/D�I . The existence of the factor of AK.x; y/ that we set to prove now
follows. This completes the proof of Claim 2.9.

Last we prove Claim 2.10. Given a balanced-irreducible factor f0.x; y/ of AK.x; y/,
let X0 be an irreducible component of X�.MK/ over C which produces f0.x; y/.
Let XY0 and XC0 be the Zariski closure of the restriction of X0 on Y and MC ,
respectively. Note that each of XY0 and XC0 is irreducible. Also, XY0 is at least one-
dimensional since its restriction on @MK is one-dimensional. If XY0 does not contain
irreducible characters, then the restriction of XY0 on @MC is also one-dimensional. So
the restriction of XC0 on @MC is one-dimensional and X0 is an abelian extension of XC0
(since the character of a reducible representation is also the character of an abelian
representation). It follows that XC0 cannot be the trivial component in X.MC / for
otherwise X0 would be the trivial component of X.MK/. Hence XC0 2X

�.MC / and
X0 is its abelian extension, which means that f0.x; y/ is a factor of ExtqŒAC . Nx; Ny/�.

Hence we may assume that XY0 contains irreducible characters. Then, as noted before,
we have �.K/D �I for each � with �� 2XY0 . If �D�1, then 1Cxpqy or xpqCy
is the factor contributed by X0 to AK.x; y/ corresponding to whether p is positive
or negative, respectively. That is, f0.x; y/ is a factor of F.p;q/.x; y/. Hence we may
assume that �D1. It follows that XY0 is a positive-dimensional component of NK.pq/.
Therefore q > 2 (because NK.pq/D L.q; p/ # .D2 � S1/) and X0 contributes the
factor �1C xpqy or �xpqCy to AK.x; y/ corresponding to whether p is positive
or negative respectively. That is, f0 is a factor of F.p;q/.x; y/. This proves Claim 2.10
and also completes the proof of the theorem.

Perhaps we should note that in the above proof a consistent choice of basepoints can
be made for all the relevant manifolds, such as MK , MC , Y , A2 , U1 , U2 , @MC ,
@MK , NK.pq/, MC .p=q/, MK.pq/, so that their fundamental groups are all well
defined as relevant subgroups or quotient groups. In fact we can choose a simply
connected region in D \ Y (as shown in Figure 1) so that its intersection with each
relevant manifold listed above is a simply connected region which is served as the “fat
basepoint” of that manifold.

Example 2.11 Let C be the figure 8 knot. Its A–polynomial is [8, Appendix]

AC .x; y/D x
4
C .�1C x2C 2x4C x6� x8/yC x4y2:

If K is the .p; 2/–cable over C , where p > 0, then

AK.x; y/D Red
�
F.p;2/.x; y/Res Ny

�
AC .x

2; Ny/; Ny2�y
��

D .1C x2py/
�
x16C

�
�1C 2x4C 3x8� 2x12� 6x16

� 2x20C 3x24C 2x28� x32
�
yC x16y2

�
:
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If K is the .p; 3/–cable over C , where p > 0, then

AK.x; y/D Red
�
F.p;3/.x; y/Res Ny

�
AC .x

3; Ny/; Ny3�y
��

D .�1Cx6py2/
�
x36C

�
�1C3x6C3x12�8x18�12x24C6x30C20x36

C 6x42� 12x48� 8x54C 3x60

C3x66� x72
�
yC x36y2

�
:

Finally we would like to give an explicit formula for the A–polynomials of iterated
torus knots. Let

K D Œ.p1; q2/; .p2; q2/; : : : ; .pn; qn/�

be an nth iterated torus knot, ie T .pn; qn/ is a nontrivial torus knot and when n>1, for
each i satisfying n> i � 1, the knot Œ.pi ; qi /; .piC1; qiC1/; : : : ; .pn; qn/� is a satellite
knot with Œ.piC1; qiC1/; : : : ; .pn; qn/� as a companion knot and with T .pi ; qi /, qi >1,
as a pattern knot lying in the trivial solid torus V as a .pi ; qi /–cable with winding
number qi , where jpi j may be less than qi and jpi j D 1 is also allowed.

Corollary 2.12 Let K D Œ.p1; q1/; .p2; q2/; : : : ; .pn; qn/� be an iterated torus knot.
If qi is odd for each 1� i < n, then

AK.x; y/

D F.p1;q1/.x; y/F.p2;q2/.x
q2

1 ; y/F.p3;q3/.x
q2

1q
2
2 ; y/ � � �F.pn;qn/.x

q2
1q

2
2 ���q

2
n�1 ; y/;

and if qi is even for some 1� i < n and we let m be the smallest such integer, then

AK.x; y/

D F.p1;q1/.x; y/F.p2;q2/.x
q2

1 ; y/F.p3;q3/.x
q2

1q
2
2 ; y/ � � �F.pm;qm/.x

q2
1q

2
2 ���q

2
m�1 ; y/

�G.pmC1;qmC1/.x
q2

1q
2
2 ���q

2
m ; y/G.pmC2;qmC2/.x

q2
1q

2
2 ���q

2
mC1 ; y/

� � �G.pn;qn/.x
q2

1q
2
2 ���q

2
n�1 ; y/

Remark (1) In the A–polynomial given in the corollary, each

F.pi ;qi /.x
q2

1q
2
2 ���q

2
i�1 ; y/ or G.pi ;qi /.x

q2
1q

2
2 ���q

2
i�1 ; y/

is a nontrivial polynomial even when jpi j D 1.

(2) The polynomial expression for AK.x; y/ given in the corollary has no repeated
factors.

(3) The boundary slopes detected by AK.x; y/ are precisely the following n integer
slopes:

p1q1; p2q2q
2
1 ; p3q3q

2
1q
2
2 ; : : : ; pnqnq

2
1q
2
2 � � � q

2
n�1:
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Proof The proof goes by induction on n, applying Theorem 2.8. When nD 1, the
proposition holds obviously. Suppose for n � 1 � 1 the proposition holds. Note
that K has C D Œ.p2; q2/; : : : ; .pn; qn/� as a companion knot and P D T .p1; q1/

as the corresponding pattern knot (which maybe a trivial knot in S3 , which occurs
exactly when jp1j D 1). By induction, the A–polynomial AC .x; y/ of C is of the
corresponding form as described by the corollary. Now applying Theorem 2.8 one
more time to the pair .C; P / we see that the corollary holds. We omit the routine
details.

For instance the A–polynomial of the .r; s/–cable over the .p; q/–torus knot is

A.x; y/D

�
F.r;s/.x; y/F.p;q/.x

s2

; y/ if s is odd;
F.r;s/.x; y/G.p;q/.x

s2

; y/ if s is even:

3 Proof of Theorem 1.1

Suppose that K is a knot in S3 with the same knot Floer homology and the same
A–polynomial as a given torus knot T .p; q/. Our goal is to show that K D T .p; q/.

By (2-3) and Corollary 2.4, K is not a hyperbolic knot. So K is either a torus knot or
a satellite knot.

Lemma 3.1 Suppose that T .r; s/ is a torus knot whose A–polynomial divides that of
the torus knot T .p; q/ and whose Alexander polynomial divides that of T .p; q/. Then
T .r; s/D T .p; q/.

Proof Since AT.r;s/.x; y/ jAT.p;q/.x; y/, from (2-3), we have rs D pq . From the
condition �T.r;s/.t/ j�T.p;q/.t/, ie

.trs � 1/.t � 1/

.tr � 1/.ts � 1/

ˇ̌̌̌
.tpq � 1/.t � 1/

.tp � 1/.tq � 1/
;

we have

(3-1) .tp � 1/.tq � 1/ j .tr � 1/.ts � 1/:

Now if T .r; s/¤ T .p; q/, then either q > s or jpj> jr j. If q > s , then from (3-1) we
must have q j r . By our convention for parametrizing torus knots, jpj> q � 2. Thus
we must also have p j r . But since p and q are relatively prime, we have pq j r , which
contradicts the earlier conclusion that rs D pq since s > 1. If jpj> jr j, again by our
convention jr j> s � 2, and we see that .tp � 1/ does not divide .tr � 1/.ts � 1/ and
so (3-1) cannot hold. This contradiction completes the proof of the lemma.
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By Lemma 3.1, we see that if K is a torus knot, then K D T .p; q/.

We are going to show that it is impossible for K to be a satellite knot, which will
complete the proof of Theorem 1.1. Suppose that K is a satellite knot. We need
to derive a contradiction from this assumption. Let .C; P / be a pair of associated
companion knot and pattern knot to K , and let w be the winding number of P in
its defining solid torus V (recall the definition of a satellite knot given in Section 2).
As T .p; q/ is a fibered knot, K is also fibered (because by assumption they have the
same knot Floer homology). According to [7, Corollary 4.15 and Proposition 8.23],
each of C and P is a fibered knot in S3 , the winding number w is at least 1, and the
Alexander polynomials of these knots satisfy the equality

(3-2) �K.t/D�C .t
w/�P .t/:

We may choose C such that C is itself not a satellite knot, and thus is either a hyperbolic
knot or a torus knot.

Lemma 3.2 The companion knot C cannot be a hyperbolic knot.

Proof Suppose that C is hyperbolic. Then AC . Nx; Ny/ contains a balanced-irreducible
factor fC . Nx; Ny/ whose Newton polygon detects at least two distinct boundary slopes
of C . As w � 1, by Proposition 2.7, fC . Nx; Ny/ extends to a balanced factor fK.x; y/
of AK.x; y/D AT.p;q/.x; y/. Moreover from (2-4) we see that the Newton polygon
of fK.x; y/ detects at least two distinct boundary slopes of K . But clearly the Newton
polygon of AK.x; y/D AT.p;q/.x; y/ only detects one boundary slope. We arrive at
a contradiction.

So C D T .r; s/ is a torus knot.

Lemma 3.3 The pattern knot P of K cannot be the unknot.

Proof Suppose otherwise that P is the unknot. Then as noted in [19] the winding
number w of P in its defining solid torus V is larger than 1. Equation (3-2) becomes
�K.t/D�C .t

w/ for some integer w > 1. On the other hand it is easy to check that
the degrees of the leading term and the second term of �T.p;q/.t/ differ by 1 and thus
�K.t/D�T.p;q/.t/ cannot be of the form �C .t

w/ with w > 1. This contradiction
completes the proof.

If wD1, then by Proposition 2.7, the A–polynomial AC .x; y/DAT.r;s/.x; y/ divides
the A–polynomial AK.x; y/ D AT.p;q/.x; y/, and by (3-2), �C .t/ D �T.r;s/.t/

divides �K.t/D�T.p;q/.t/. Hence by Lemma 3.1 we have C D T .r; s/D T .p; q/.
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By Lemma 3.3, P is a nontrivial knot. Hence from (3-2) we see that the genus
of C D T .p; q/ is less than that of K . But the genus of K is equal to that of T .p; q/
(because by assumption they have the same knot Floer homology). We derive a
contradiction.

Hence w > 1. By Lemma 2.6, AP .x; y/ divides AK.x; y/. Now if P is itself a
satellite knot with its own companion knot C1 and pattern knot P1 , then again each
of C1 and P1 is a fibered knot and the winding number w1 of P1 with respect to C1
is larger than zero. Arguing as above, we see that C1 may be assumed to be a torus
knot and that w1 > 1. Also we have

�K.t/D�C .t
w/�C1

.tw1/�P1
.t/;

from which we see that P1 cannot be the trivial knot just as in the proof of Lemma 3.3.

So after finitely many such steps (the process must terminate by [27]), we end up with
a pattern knot Pm for Pm�1 such that Pm is nontrivial but is no longer a satellite knot.
Thus Pm is either a hyperbolic knot or a torus knot. By Corollary 2.4 and Lemma 2.6,
Pm cannot be hyperbolic. Hence Pm is a torus knot. Again because APm

.x; y/

divides AK.x; y/DAT.p;q/.x; y/ and �Pm
.t/ divides �K.t/D�T.p;q/.t/, we have

PmDT .p; q/ by Lemma 3.1. But once again we would have g.T .p; q//<g.T .p; q//.
This gives a final contradiction.

4 The knots k.l; m; n; p/

In [12] a family of hyperbolic knots k.l;m; n; p/ in S3 (where at least one of p and n
has to be zero) was constructed such that each knot in the family admits one (and only
one) half-integral toroidal surgery. To be hyperbolic, the following restrictions on the
values for l , m, n and p are imposed:

(4-1)
If p D 0; then l ¤ 0;˙1; m¤ 0; .l;m/¤ .2; 1/; .�2;�1/;

and .m; n/¤ .1; 0/; .�1; 1/I
if nD 0, then l ¤ 0;˙1; m¤ 0; 1; and .l; m; p/¤ .�2;�1; 0/; .2; 2; 1/:

From now on we assume that any given k.l;m; n; p/ is hyperbolic, ie l , m, n and p
satisfy the above restrictions.

The half-integral toroidal slope r D r.l;m; n; p/ of k.l;m; n; p/ was explicitly com-
puted in [13, Proposition 5.3] as

(4-2) r D

�
l.2m� 1/.1� lm/Cn.2lm� 1/2� 1

2
when p D 0;

l.2m� 1/.1� lm/Cp.2lm� l � 1/2� 1
2

when nD 0:
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It turns out that the knots k.l;m; n; p/ are the only hyperbolic knots in S3 which
admit nonintegral toroidal surgeries.

Theorem 4.1 [17] If a hyperbolic knot K in S3 admits a nonintegral toroidal surgery,
then K is one of the knots k.l;m; n; p/.

Proposition 4.2 The knots k.l;m; n; p/ have the following properties:

(a) k.l;m; n; 0/ is the mirror image of k.�l;�m; 1�n; 0/.

(b) k.l;m; 0; p/ is the mirror image of k.�l; 1�m; 0; 1�p/.

(c) k.l;˙1; n; 0/D k.�l ˙ 1;˙1; n; 0/.

(d) k.2;�1; n; 0/D k.�3;�1; n; 0/D k.2; 2; 0; n/.

Proof This follows from [12, Proposition 1.4].

Explicit closed braid presentations for the knots k.l;m; n; p/ are given in [13]. Figure 2
shows the braids whose closures are the knots k.l;m; n; p/. The left two pictures are
a reproduction of [13, Figure 12], but the right two pictures are different from [13,
Figure 13]. Here an arc with label s means s parallel strands, and a box with label t
means t positive full-twists when t > 0 and jt j negative full-twists when t < 0. We
only give the picture for the case l > 0, since the case l < 0 can be treated by applying
Proposition 4.2.
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Figure 2: The braid whose closure is k.l;m; n; p/ , where l > 0
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Proposition 4.3 Suppose that l > 0. Let

N D

8̂̂̂<̂
ˆ̂:

2ml � 1 if p D 0; n¤ 0; m > 0;
�2ml C 1 if p D 0; n¤ 0; m < 0;
2ml � l � 1 if nD 0; m > 0;
�2ml C l C 1 if nD 0; m < 0:

Then the genus of k.l;m; n; 0/ is

g D 1
2
jnjN.N � 1/C

8̂̂̂<̂
ˆ̂:
m2l2� 1

2
ml.l C 5/C l C 1 if m> 0; n� 0;

�m2l2C 1
2
ml.l C 1/� l C 1 if m> 0; n > 0;

m2l2� 1
2
ml.l � 1/ if m< 0; n� 0;

�m2l2C 1
2
ml.l C 3/ if m< 0; n > 0;

and the genus of k.l;m; 0; p/ is

g D 1
2
jpjN.N � 1/C

8̂̂̂<̂
ˆ̂:
m2l2� 1

2
ml.l C 5/C l C 1 if m> 0; p � 0;

�m2l2C 1
2
ml.l C 1/C 1 if m> 0; p > 0;

m2l2� 1
2
ml.l � 1/ if m< 0; p � 0;

�m2l2C 1
2
ml.l C 3/� l if m< 0; p > 0:

Proof In [13], it is noted that k.l;m; n; p/ is the closure of a positive or negative
braid. Hence it is fibered, and the genus can be computed by the formula

g.k/D 1
2
.C �N C 1/;

where C is the crossing number in the positive or negative braid, and N is the braid
index.

When p D 0, m> 0 and n� 0, the braid is a negative braid, N D 2ml � 1, and

C D�n.2ml�1/.2ml�2/Cml.ml�1/

Cml � 2C l.ml�l�1/C .ml�l�1/.ml�l�2/;

and so
g D�n.2ml � 1/.ml � 1/Cm2l2� 1

2
ml.l C 5/C l C 1:

When p D 0, m> 0 and n > 0, we can cancel all the negative crossings in the braid
to get a positive braid of index N D 2ml � 1. We have

C D n.2ml � 1/.2ml � 2/

�
�
ml.ml � 1/Cml � 2C l.ml � l � 1/C .ml � l � 1/.ml � l � 2/

�
;

and so
g D n.2ml � 1/.ml � 1/�m2l2C 1

2
ml.l C 1/� l C 1:
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The computations for other cases are similar.

Using Proposition 4.3 and parts (a) and (b) of Proposition 4.2, we can compute the genus
of k.l;m; n; p/ when l < 0. For example, when p � 0, the genus of k.l;m; 0; p/ is

(4-3) gD

8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

�
1
2
p.2ml�l�1/.2ml�l�2/

Cm2l2� 1
2
ml.lC5/C l C 1 if l > 0; m > 0;

�
1
2
p.�2mlClC1/.�2mlCl/Cm2l2� 1

2
ml.l�1/ if l > 0; m < 0;

�
1
2
p.�2mlClC1/.�2mlCl/Cm2l2� 1

2
ml.l�1/ if l < 0; m > 0;

�
1
2
p.2ml�l�1/.2ml�l�2/

Cm2l2� 1
2
ml.lC5/C l C 2 if l < 0; m < 0:

The r–surgery on the knot J D k.l;m; n; p/ which was explicitly given in [12] is
the double branched cover of S3 with the branched set in S3 being a link shown
in Figure 3. From the tangle decomposition of the branched link one can see that
MJ .r/ is a graph manifold obtained by gluing two Seifert fibered spaces, each over a
disk with two cone points, together along their torus boundaries. For our purpose, we
need to give a more detailed description of the graph manifold MJ .r/ as follows:

Let .B; t/ denote a two string tangle, ie B is a 3–ball and t is a pair of disjoint
properly embedded arcs in B . Here we may assume that B is the unit 3–ball in the
xyz–space R3 (with the xy–plane horizontal) and that the four endpoints of t lie in
the lines z D y , x D 0 and z D �y , x D 0. Let D be the unit disk in B which is
the intersection of B with the yz–plane. Then the four endpoints of t divides @D
into four arcs, naturally named the east, west, north and south arcs. The denominator
closure of .B; t/ is the link in S3 obtained by capping off t with the east and west
arcs, and the numerator closure of .B; t/ is the link in S3 obtained by capping off t
with the north and south arcs.

Let .Bi ; ti /, for i D 1; 2, be the two tangles shown in Figure 3 and let Xi be the
double branched cover of .Bi ; ti /. The denominator closure of .B1; t1/ is the twisted
knot of type .2; p/ (which is the trivial knot when p D 0 or 1 and the trefoil knot
when p D �1) and therefore the double branched cover of S3 over the link is the
lens space of order j2p� 1j. The numerator closure of .B1; t1/ gives a composite link
in S3 and in fact the composition of two nontrivial rational links corresponding to the
rational numbers �l and

�
�lm.2p� 1/Cpl C 2p� 1

�
=
�
�m.2p� 1/Cp

�
.

The double branched cover of the east arc (and also the west arc) is a simple closed essen-
tial curve in @X1 , which we denote by �1 , with which Dehn filling of X1 is a lens space
of order j2p� 1j. The double branched cover of the north arc (and also the south arc)
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Figure 3: The tangle decomposition of the branched link in S3 for the half-
integral toroidal surgery

is a Seifert fiber of X1 , which we denote by �1 , with which Dehn filling of X1 is a con-
nected sum of two nontrivial lens spaces of orders j�l j and

ˇ̌
�lm.2p�1/CplC2p�1

ˇ̌
.

Similarly the numerator closure of .B2; t2/ is the twisted knot of type .2; n/ and the de-
nominator closure of .B2; t2/ is a composite link of two nontrivial rational links that cor-
respond to the rational numbers �2 and

�
2.2n�1/.m�1/C4n�1

�
=
�
.2n�1/.m�1/Cn

�
.

So the double branched cover of the north arc of .B2; t2/ is a simple closed essen-
tial curve in @X2 , denoted �2 , with which Dehn filling of X2 is a lens space of
order j2n� 1j, and the double branched cover of the west arc is a Seifert fiber of X2 ,
denoted by �2 , with which Dehn filling is a connected sum of two nontrivial lens
spaces of orders 2 and

ˇ̌
2.2n� 1/.m� 1/C 4n� 1

ˇ̌
.

Finally MJ .r/ is obtained by gluing X1 and X2 along their boundary tori such that
�1 is identified with �2 and �1 with �2 .

Note that X1 is the exterior of a torus knot in S3 when p D 0 or 1, and X2 is the
exterior of a .2; a/–torus knot in S3 when nD 0 or 1.

Lemma 4.4 Let J D k.l;m; n; p/, let r be the unique half-integral toroidal slope
of J , and let MJ be the exterior of J . Up to isotopy, there is a unique closed orientable
incompressible surface in MJ .r/, which is a torus.

Proof As discussed above, MJ .r/ is a graph manifold with the torus decomposition
MJ .r/ D X1 [ X2 . We just need to show that any connected closed orientable
incompressible surface S in MJ .r/ is isotopic to @X1 . Suppose otherwise that S is
not isotopic to @X1 . As each Xi does not contain closed essential surfaces, S must
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intersect @X1 . We may assume that Fi D S \Xi is incompressible and boundary
incompressible, for i D 1; 2. As Xi is Seifert fibered, Fi is either horizontal (ie
consisting of Seifert fibers) or vertical (transverse to Seifert fibers) in Xi , up to isotopy.
So the boundary slope of Fi is either �i (when Fi is horizontal) or is the rational
longitude of Xi (when Fi is vertical). But �i is identified with �j , for i D 1; 2,
where fi; j g D f1; 2g. So the boundary slope of Fi must be the rational longitude
of Xi for each i . It follows that H1.MJ .r/IZ/ is infinite, yielding a contradiction.

Lemma 4.5 For each J D k.l;m; n; p/, its meridian slope is not a boundary slope.

Proof If the meridian slope of J is a boundary slope, then the knot exterior MJ

contains a connected closed orientable incompressible surface S of genus larger than
one such that S remains incompressible in any nonintegral surgery, by [9, Theorem
2.0.3]. But by Lemma 4.4, MJ .r/ does not contain any closed orientable incompress-
ible surface of genus larger than one. This contradiction completes the proof.

genus-2 surface

g1

g2

Figure 4: The elements g1 and g2 in @H

Last in this section we are going to show that the knots k.l�;�1; 0; 0/ form a class of
small knots.

Let H be a standard genus two handlebody in S3 and let g1 and g2 be oriented
loops in the surface @H as shown in Figure 4. As observed in [2, Figure 8], a regular
neighborhood of g1[g2 in @H is a genus one Seifert surface of a trefoil knot. Under
the basis fŒg1�; Œg2�g, the monodromy of the trefoil is represented by the matrix�

0 1

�1 1

�
:

From [13, Figure 11], the knot k.l�;�1; 0; 0/ has a knot diagram shown in Figure 5 (left),
which in turn can be embedded, as shown in Figure 5 (right), in the Seifert surface with
the homology class l�Œg1�C .l�C 1/Œg2�. For any knot J lying in the Seifert surface,
an algorithm to classify all closed essential surfaces in the knot exterior of J is given
in [1, Theorem 10.1(3)]. For simplicity, we only state the part that we need:
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Figure 5: The knot k.l�;�1; 0; 0/ (left) and corresponding embedding (right)

Theorem 4.6 Suppose that L is a simple closed curve on the genus one Seifert surface
of a trefoil knot in the homology class a1Œg1�Ca2Œg2�. The slope a1=a2 has continued
fraction expansion

a1

a2
D Œb1; : : : ; bk�D b1�

1

b2�
1

� � ��
1

bk

;

where the coefficients alternate signs, bi ¤ 0 when i � 2, and jbkj � 2. If b1 D 0 and
b2 D�1, then every closed essential surface in the complement of L corresponds to a
solution of the following equation:

(4-4) 0D
X
i2I

�bi C
X
j2J

bj C

�
0 if 3 2 J;
�1 otherwise,

where I and J are subsets of f3; :::; kg each not containing consecutive integers and
3 … I \J .

Lemma 4.7 Each knot k.l�;�1; 0; 0/ is small. Namely, the exterior of k.l�;�1; 0; 0/
contains no closed essential surfaces.

Proof In this case a1 D l� , a2 D l�C 1 and a1=a2 D Œ0;�1; l��. Clearly, (4-4) has
no solution. So k.l�;�1; 0; 0/ is small.

5 Information on A–polynomials of the knots k.l; m; n; p/

To obtain explicit expressions for the A–polynomials of the knots k.l;m; n; p/ could be
a very tough task. But we can obtain some useful information about the A–polynomials
of these knots without computing them explicitly.
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Lemma 5.1 Suppose a graph manifold W is obtained by gluing together two torus
knot exteriors X1 , X2 , such that the meridian of Xi is glued to the Seifert fiber of XiC1
for i D 1; 2, where X3 DX1 . Then �1.W / has no noncyclic SL2.C/ representations.

To prove this lemma, we will use the following well-known fact whose proof is
elementary.

Lemma 5.2 Suppose that A;B 2 SL2.C/ are two commuting matrices with A¤˙I .

(i) If there exists P 2 SL2.C/ such that

(5-1) PAP�1 D

�
� 0

0 ��1

�
for some � 2C n f0;˙1g;

then

PBP�1 D

�
� 0

0 ��1

�
for some � 2C n f0g:

(ii) If there exists P 2 SL2.C/ such that

(5-2) PAP�1 D˙

�
1 a

0 1

�
for some a 2C n f0g;

then

PBP�1 D˙

�
1 b

0 1

�
for some b 2C:

Proof of Lemma 5.1 As W has cyclic homology group, it is equivalent to show that
every SL2.C/ representation of �1.W / is abelian.

We choose a basepoint of W on the common boundary torus T of X1 and X2 .
Then �1.T /, �1.X1/ and �1.X2/ are naturally subgroups of �1.W /. Suppose that
�W �1.W /! SL2.C/ is a representation.

Let fi 2 �1.T / represent the Seifert fiber of Xi for i D 1; 2. We first consider
the case that one of �.f1/ and �.f2/, say �.f1/, is in f˙I g, which is the center
of SL2.C/. Since f1 represents the meridian of X2 , the Seifert fiber f1 normally
generates �1.X2/, hence �.�1.X2// is contained in f˙I g. Since f2 2 �1.X2/, we
see that �.f2/ is also in f˙I g, and thus for the same reason as just given �.�1.X1//
is in f˙I g. Hence �.�.W // is contained in f˙I g.

Now suppose that neither �.f1/ nor �.f2/ is in f˙I g. Then there exists P 2 SL2.C/
such that P�.f1/P�1 is in the form of either (5-1) or (5-2). Since f1 is in the center
of �1.X1/, by Lemma 5.2, P�.�1.X1//P�1 (including P�.f2/P

�1 ) is contained in
an abelian subgroup A of SL2.C/ (A is either the set of diagonal matrices or the set
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of upper triangular trace ˙2 matrices). Since f2 is in the center of �1.X2/, again
by Lemma 5.2, P�.�1.X2//P�1 is also contained in A. Hence �.�1.W //, being
generated by �.�1.X1// and �.�1.X2//, is an abelian group.

Corollary 5.3 The fundamental group of the half-integral toroidal surgery on the
knot J D k.l;m; 0; 0/ has no noncyclic SL2.C/ representations and has no noncyclic
PSL2.C/ representations.

Proof By the discussion preceding Lemma 4.4, the half-integral toroidal surgery,
MJ .r/, is a graph manifold satisfying the conditions of Lemma 5.1. Hence MJ .r/

has no noncyclic SL2.C/ representations. The manifold cannot have noncyclic
PSL2.C/ representations either since every PSL2.C/ representation of MJ .r/ lifts to
a SL2.C/ representation because the manifold has odd cyclic first homology.

Lemma 5.4 Let MJ be the knot exterior of a given hyperbolic knot J D k.l;m; 0; 0/.
Let X0 be a norm curve in X.MJ / and B0 the norm polygon determined by X0 . Then
the half-integral toroidal slope rDd=2 of J is associated to a vertex of B0 as described
in Theorem 2.2(3), ie 2=d is the slope of a vertex of B0 in the xy–plane H1.@MJ IR/.

Proof Suppose otherwise that r is not associated to a vertex of B0 . As the meridian
slope of MJ is not a boundary slope by Lemma 4.5, it follows from parts (4) and (5)
of Theorem 2.2 that � is contained in @B0 but r is not, which means that we have
Zv. zfr/ >Zv. zf�/ for some point v 2 zX0 . As MJ .r/ has no noncyclic representations
by Corollary 5.3, the point v cannot be a regular point of zX0 (by [9, Proposition 1.5.2]
or [4, Proposition 4.8]). So v is an ideal point of zX0 . As r is not a slope associated to
any vertex of B0 , we have that zf˛.v/ is finite for every class ˛ in H1.@MJ IZ/. Now
we may apply [4, Proposition 4.12] to see that MJ contains a closed essential surface S
such that if S compresses in MJ .r/ and MJ .˛/, then �.r; ˛/� 1. By Lemma 4.4,
S must compress in MJ .r/ and of course S compresses in M.�/. But �.r; �/D 2.
We arrive at a contradiction.

Lemma 5.5 Suppose that AJ .x; y/ is the A–polynomial of a given hyperbolic knot
J D k.l;m; 0; 0/. Let r D d=2 be the half-integral toroidal slope of J . If .x0; y0/ is
a solution of the system �

AJ .x; y/D 0

xdy2� 1D 0

then x0 2 f0; 1;�1g.
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Proof Suppose otherwise that x0 … f0; 1;�1g. Then by the constructional definition
of the A–polynomial, there is a component X1 in X�.MJ / which contributes a factor
f0.x; y/ in AJ .x; y/ such that .x0; y0/ is a solution of�

f0.x; y/D 0

xdy2� 1D 0:

Let Y0 be the Zariski closure of yi�.X1/ in X.@MJ /. Then Y0 is an irreducible curve.
We may find an irreducible curve X0 in X1 such that Y0 is also the Zariski closure
of yi�.X0/. Now it also follows from the constructional definition of the A–polynomial
that there is a convergent sequence of regular points fvig � zX0 such that zfr.vi /! 0

and zf�.vi /! .x0C x
�1
0 /2� 4, ie if v is the limit point of vi in zX0 , then

zfr.v/D 0 and zf�.v/D .x0C x
�1
0 /2� 4¤ 0:

Note that zfr is not constant on X0 . For otherwise X0 would be a seminorm curve
with r as the associated slope, which leads to a contradiction with Theorem 2.5(3)
when replacing ˛0 and ˛ there by r and � here respectively (note that by Lemma 4.5
� is not a boundary slope).

So we have Zv. zfr/ > Zv. zf�/D 0. Again v cannot be a regular point of zX0 by the
same reason given in the proof of Lemma 5.4. So v is an ideal point of zX0 such that
zfr.v/D 0 and zf�.v/D .x0Cx�10 /2� 4 is finite since x0 ¤ 0. Hence zf˛.v/ is finite

for every class ˛ in H1.@MJ IZ/. We can now get a contradiction with [4, Proposition
4.12] as in the proof of Lemma 5.4.

Lemma 5.6 Let K be a hyperbolic knot in S3 . For a given slope p=q , if every
solution .x0; y0/ of the system of equations�

AK.x; y/D 0

xpyq � 1D 0

has x0 2 f1;�1; 0g, then MK.p=q/ is not a hyperbolic manifold.

Proof Some of the ideas for the proof come from [3]. Suppose otherwise that
MK.p=q/ is a hyperbolic 3–manifold. Then �1.MK.p=q// has a discrete faithful
representation N�0 into PSL2.C/. By Thurston [10, Proposition 3.1.1], this represen-
tation can be lifted to an SL2.C/ representation �0 . It follows from Mostow rigidity
that the character ��0

of �0 is an isolated point in X.MK.p=q//. Note that �0 can
be considered as an element in R.MK/ and ��0

can be considered as an element
in X.MK/ since R.MK.p=q// embeds in R.MK/ and X.MK.p=q// embeds in
X.MK/. Of course we have �0.�p�q/D I but �0.�/¤˙I . Let X0 be a component
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of X.MK/ which contains ��0
. By Thurston [10, Proposition 3.2.1], X0 is positive-

dimensional.

Claim 5.7 The function f�p�q is nonconstant on X0 .

Suppose otherwise. Then f�p�q is constantly zero on X0 since f�p�q .��0
/D 0. So

for every �� 2 X0 , the image �.�p�q/ is either I or �I or is a parabolic element.
Let X1 be an irreducible curve in X0 which contains the point ��0

. For a generic
point �� 2 X1 , the image �.�p�q/ cannot be a parabolic element since otherwise
�.�/ is either I or �I or is parabolic for all �� 2X1 , and this happens in particular
at the point ��0

, yielding a contradiction (since �0 is a discrete faithful representation
of a closed hyperbolic 3–manifold, its image does not contain any parabolic elements).
For a generic point �� 2X1 , the image �.�p�q/ cannot be �I either for otherwise,
by continuity, �.�p�q/D�I for every point �� 2X1 , and this happens in particular
at the point ��0

, yielding another contradiction. So for a generic point �� 2 X1 ,
�.�p�q/ D I and again by continuity, �.�p�q/ D I for every point �� 2 X1 . So
X1 factors though the p=q–surgery on K and becomes a subvariety of X.MK.p=q//.
But this contradicts the fact that ��0

is an isolated point of X.MK.p=q//. The claim
is thus proved.

It also follows from the proof of Claim 5.7 that X0 is one-dimensional. For otherwise
there would be a curve X1 in X0 such that ��0

2 X1 and f�p�q is constantly zero
on X1 , which is impossible by the proof of Claim 5.7.

It follows from Claim 5.7 that the restriction of X0 in X.@MK/ is one-dimensional
and thus X0 2X�.MK/ and contributes a factor f0.x; y/ to AK.x; y/.

We may assume, up to conjugation of �0 , that

�0.�/D

�
x0 a

0 x�10

�
and �0.�/D

�
y0 b

0 y�10

�
:

Note that x0 ¤˙1 (as �0.�/¤˙I and cannot be a parabolic element of SL2.C/).
By the construction of AK.x; y/, the pair .x0; y0/ is a solution of the system�

f0.x; y/D 0

xpyq � 1D 0

and thus is a solution of �
AK.x; y/D 0

xpyq � 1D 0:

We get a contradiction with the assumption of the lemma.
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Proposition 5.8 If K � S3 is a hyperbolic knot whose A–polynomial divides the
A–polynomial of J D k.l;m; 0; 0/, then K has the same half-integral toroidal slope
as J and thus K is one of the knots k.l;m; n; p/.

Proof Since K is hyperbolic, X.MK/ contains a norm curve component X 00 which
contributes a balanced-irreducible factor f0.x; y/ to AK.x; y/ such that the Newton
polygon of f0.x; y/ is dual to the norm polygon determined by X 00 by Theorem 2.3.
By the assumption that AK.x; y/ divides AJ .x; y/, the factor f0.x; y/ is also a
factor of AJ .x; y/. Thus there is a curve X0 in a component of X�.MJ / which
contributes f0.x; y/ and X0 must be a norm curve whose norm polygon B0 is dual to
the Newton polygon of f0.x; y/. By Lemma 5.4, the half-integral toroidal slope rDd=2
of J is associated to a vertex of B0 and thus rDd=2 is also associated to an edge of
the Newton polygon of f0.x; y/. Hence r is also a boundary slope of K .

Again by the assumption that AK.x; y/ divides AJ .x; y/, together with Lemma 5.5,
we see that if .x0; y0/ is a solution of the system�

AK.x; y/D 0

xdy2� 1D 0

then x0 2 f0; 1;�1g. Now applying Lemma 5.6, we see that MK.r/ is not a hyperbolic
manifold. Applying [9, Theorem 2.0.3] and [16] we see that MK.r/ must be a Haken
manifold and thus must be a toroidal manifold (as it has finite first homology). Finally
K is one of the knots k.l;m; n; p/ by Theorem 4.1.

Lemma 5.9 The half-integral toroidal r–surgery on J D k.l;m; n; 0/ with n¤ 0; 1
is a manifold with an irreducible SL2.C/ representation �0 whose image contains no
parabolic elements.

Proof We know from Section 4 that MJ .r/DX1[X2 , where X1 is an .a; b/–torus
knot exterior and X2 is Seifert fibered with base orbifold D2.2; c/ for some odd
integer c > 1, such that the meridian slope �1 of X1 is identified with the Seifert fiber
slope �2 of X2 and the Seifert fiber slope �1 of X1 is identified with a lens space
filling slope �2 of X2 (and j2n� 1j is the order of the lens space).

Perhaps it is easier to construct a PSL2.C/ representation N�0 of �1.MJ .r// with the
required properties. As MJ .r/ has zero Z2–homology, every PSL2.C/ representation
of �1.MJ .r// lifts to an SL2.C/ representation.

The representation N�0 will send �1.X2/ to a cyclic group of order j2n� 1j, which is
possible by factoring through X2.�2/. So N�0.�2/D id. We claim N�0.�2/ is not the
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identity element. For otherwise N�0 factors through the group

hx; y W x2 D yc D 1; xy D 1i;

which is the trivial group as c is odd.

Hence the order of N�0.�2/ is an odd number q > 1 which is a factor of 2n� 1.

On the X1 side, we need to have N�0.�1/D id and N�0.�1/D N�0.�2/ of order q . So
N�0 factors through the triangle group

hx; y W xa D yb D .xy/q D 1i:

Such a representation exists and can be required to be irreducible. Also, as at least
one of a and b is odd and q is odd, we may require the image of N�0 to contain no
parabolic elements. In fact the triangle group is either a spherical or a hyperbolic
triangle group and so we may simply choose N�0 to be a discrete faithful representation
of the triangle group into SO.3/� PSL2.C/ (when the triangle group is spherical) or
into PSL2.R/� PSL2.C/ (when the triangle group is hyperbolic), and thus the image
of N�0 has no parabolic elements.

Lemma 5.10 For any given J D k.l;m; 0; p/ with p ¤ 0; 1 and l not divisible
by j2p� 1j, the half-integral toroidal surgery on J is a manifold with an irreducible
SL2.C/ representation �0 whose image contains no parabolic elements.

Proof The proof is similar to that of Lemma 5.9.

We know that MJ .r/D X1 [X2 , where X2 is a .2; a/–torus knot exterior and X1
is Seifert fibered with base orbifold D2

�
jl j; j�lm.2p� 1/Cpl C 2p� 1j

�
, such that

the meridian slope �2 of X2 is identified with the Seifert fiber slope �1 of X1 and
the Seifert fiber slope �2 of X2 is identified with a lens space filling slope �1 of X1
(and j2p� 1j is the order of the lens space).

As in Lemma 5.9, we just need to construct a PSL2.C/ representation N�0 of �1.MJ .r//

which is irreducible and whose image contains no parabolic elements.

The representation N�0 will send �1.X1/ to a cyclic group of order j2p� 1j, which is
possible by factoring through X1.�1/. So N�0.�1/D id. We claim N�0.�1/ is not the
identity element. For otherwise N�0 factors through the group

hx; y W xl D y�lm.2p�1/CplC2p�1 D 1; xy D 1i;

which is a cyclic group of order less than j2p� 1j since l is not divisible by 2p� 1
by our assumption.

Hence the order of N�0.�2/ is an odd number q > 1 which is a factor of 2p� 1.
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On the X2 side, we need to have N�0.�2/D id and N�0.�2/D N�0.�1/ of order q . So
N�0 factors through the triangle group

hx; y W x2 D ya D .xy/q D 1i:

Such a representation exists and can be required to be irreducible. Also, as both a and q
are odd, we may require the image of N�0 to contain no parabolic elements.

Lemma 5.11 The A–polynomial of any J D k.l;m; n; 0/ with n ¤ 0; 1 does not
divide the A–polynomial of any J 0 D k.l 0; m0; 0; 0/.

Proof Suppose otherwise that AJ .x; y/ jAJ 0.x; y/. Then, by Proposition 5.8, the
knots J and J 0 have the same half-integral toroidal slope r D d=2 with d odd.

Let �0 be an irreducible representation of MJ .r/ provided by Lemma 5.9. Then
�0.r/D I but �0.�/¤˙I . We know that ��0

is contained in a positive-dimensional
component X1 of X.MJ /. Let X0 be an irreducible curve in X1 containing ��0

.

Claim fr is not constant on X0 .

Otherwise fr is constantly equal to 0 on X0 . If f� is not a constant on X0 , then X0
would be a seminorm curve with r as its associated boundary slope, which is impossible
by Theorem 2.5 as � is not a boundary slope and �.�; r/D 2. So f� is a constant not
equal to 0 on X0 since �0.�/¤˙I and is not parabolic. So for any point �� 2X0 ,
�.r/ cannot be a parabolic element (for otherwise �.�/ is also parabolic and thus
f�.��/ D 0). So �.r/ D I for any �� 2 X0 . We now get a contradiction with [4,
Proposition 4.10], which proves the claim.

So fr is not constant on X0 which means that the component X1 � X0 belongs
to X�.MJ / and thus contributes a factor in AJ .x; y/. Moreover the point ��0

contributes a root .x0; y0/ to the system�
AJ .x; y/D 0

xdy2 D 1

such that x0 ¤˙1; 0. As AJ .x; y/ jAJ 0.x; y/, the pair .x0; y0/ is also a solution of
the system �

AJ 0.x; y/D 0

xdy2 D 1;

which contradicts Lemma 5.5.

With a similar proof replacing Lemma 5.9 by Lemma 5.10, we have:
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Lemma 5.12 The A–polynomial of any k.l;m; 0; p/ with p¤0; 1 and l not divisible
by 2p� 1 does not divide the A–polynomial of any k.l 0; m0; 0; 0/.

Lemma 5.13 Let K be a hyperbolic knot in S3 . For a given slope p=q with p odd,
if every solution .x0; y0/ of the system of equations�

AK.x; y/D 0

xpyq � 1D 0

has x0 2 f1;�1; 0g, then MK.p=q/ cannot be a Seifert fibered space whose base
orbifold is a 2–sphere with exactly three cone points.

Proof The proof is similar to that of Lemma 5.6. Suppose otherwise that MK.p=q/ is
a Seifert fibered space whose base orbifold is a 2–sphere with exactly three cone
points. As p is odd, the base orbifold is either spherical or hyperbolic. Hence
�1.MK.p=q// has an irreducible PSL2.C/ representation N�0 which factors through
the orbifold fundamental group of the base orbifold such that the image of N�0 contains
no parabolic elements. As p is odd, the PSL2.C/ representation N�0 lifts to an SL2.C/
representation �0 . It is well known that the character ��0

of �0 is an isolated point
in X.MK.p=q//. Considered as a point in X.MK/, the character ��0

is contained in
a positive-dimensional component X0 of X.MK/. Arguing exactly as in Claim 5.7 we
have f�p�q is nonconstant on X0 . Hence X0 is contained X�.MK/ and contributes
a factor f0.x; y/ to AK.x; y/. Exactly as in the proof of Lemma 5.6, the point ��0

provides a solution .x0; y0/ to the system�
AK.x; y/D 0

xpyq � 1D 0

such that x0 … f1;�1; 0g, giving a contradiction with the assumption of the lemma.

6 Distinguishing k.l�; �1; 0; 0/ from k.l; m; 0; p/

The goal of this section is to prove the following proposition:

Proposition 6.1 Suppose that two knots k.l�;�1; 0; 0/ and k.l;m; 0; p/ have the
same genus g and the same half-integral toroidal slope r , where l�>1 and .1�2p/ j l .
Then k.l�;�1; 0; 0/D k.l;m; 0; p/.

Let
s D r C 1

2
and d D�s� 2g:
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For k.l;m; 0; p/, by (4-2),

(6-1) �s D�p.2ml � l � 1/2C .2ml � l/.ml � 1/:

When p � 0, using (4-3) , we get

(6-2) d D

�
�p.2ml � l � 1/C 3ml � l � 2˛ if lm > 0;
�p.�2ml C l C 1/� 3ml C l if lm < 0;

where

˛ D

�
1 if l > 0; m > 0;
2 if l < 0; m < 0:

Consider the family of knots k.l�;�1; 0; 0/, where l� > 1. In this case, d and s are
given by

(6-3)
�
d D 4l�;

s D�3l�.l�C 1/;

so

(6-4) �
4
3
sC 1D

�
1
2
d C 1

�2
:

Lemma 6.2 Suppose that p < 0 and .1� 2p/ j l . Then the knot k.l;m; 0; p/ has
different .g; r/ from the knot k.l�;�1; 0; 0/, where l� > 1.

Proof Otherwise, assume k.l;m; 0; p/ has the same .g; r/ as k.l�;�1; 0; 0/. Using
(6-2), we see that

d C 2 > �pj2ml � l � 1jC j2ml � l � 1j:

Using (6-1) and (4-1), we have

�sC 3
4
< �p.2ml � l � 1/2C .2ml � l/.ml � 1/C 1 < .1�p/.2ml � l � 1/2:

Using (6-4) and the previous two inequalities, we get

1
4
.1�p/2.2ml � l � 1/2 <

�
1
2
d C 1

�2
D�

4
3
sC 1

< 4
3
.1�p/.2ml � l � 1/2:

So 1�p < 16
3

, and hence �p � 4.

If p D�1 or �4, then 3 j l . By (6-1), 3− � s , which contradicts (6-3).

If p D �3, then 7 j l . By (6-1), �s � 3 .mod 7/. It follows from (6-4) that 5 is a
quadratic residue modulo 7, which is not true.
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If p D�2, then 5 j l and �s � 2 .mod 5/. It follows from (6-4) that 2 is a quadratic
residue modulo 5, which is not true.

For the family of knots k.l;m; 0; 0/, the following proposition expresses l and m in
terms of s and d .

Proposition 6.3 For the family of knots k.l;m; 0; 0/, the pair .l; m/ is determined
by s and d by the following formulas:

If lm > 0, then

l D
d C 2˛C 3� 3

p
.d C 2˛� 1/2C 4s

2
;

mD
1

3

�
2d C 4˛

d C 2˛C 3� 3
p
.d C 2˛� 1/2C 4s

C 1

�
:

If lm < 0, then

l D
�d C 3C 3

p
.d C 1/2C 4s

2
;

mD
1

3

�
1�

2d

�d C 3C 3
p
.d C 1/2C 4s

�
:

Proof Using (6-2), we can express ml as a linear function of d and l . Substituting
such an expression of ml into (6-1), we get

(6-5) �s D

(
1
9
.�l C 2d C 4˛/.l C d C 2˛� 3/ if lm > 0;
1
9
.�l � 2d/.l � d � 3/ if lm < 0:

If lm > 0, by (6-5), l is a root of the quadratic polynomial

(6-6) .x� 2d � 4˛/.xC d C 2˛� 3/� 9s;

whose two roots are

d C 2˛C 3˙ 3
p
.d C 2˛� 1/2C 4s

2
:

By (6-2), d > 0 and j2l j � d C 2˛ , so

l D
d C 2˛C 3� 3

p
.d C 2˛� 1/2C 4s

2
:

Using (6-2) again, we can compute m as in the statement.

If lm < 0, then l is a root of the quadratic polynomial

(6-7) .xC 2d/.x� d � 3/� 9s;
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whose two roots are
�d C 3˙ 3

p
.d C 1/2C 4s

2
:

By (6-2), d > 0 and j2l j � d , so

l D
�d C 3C 3

p
.d C 1/2C 4s

2
:

Using (6-2) again, we can compute m as in the statement.

Lemma 6.4 Suppose that two knots k.l;m; 0; 0/ and k.l�; m�; 0; 0/ have the same g
and r . Suppose further that

lm > 0; l�m� > 0; l > 0 > l�:

Then the quadruple .l; m; l�; m�/ is either .2; 2;�3;�1/ or .6;m;�2;�3mC 1/ for
some m� 2.

Proof Using Proposition 6.3 and (4-1), we get

(6-8) l D
d C 5� 3

p
.d C 1/2C 4s

2
� 2

and

(6-9) l� D
d C 7� 3

p
.d C 3/2C 4s

2
� �2:

Hence

(6-10) 1
9
.d C 11/2� .d C 3/2 � 4s � �8

9
.d C 1/2;

which implies
1
9
.d � 7/2 � .d C 1/2C 4s � 1

9
.d C 1/2:

From (6-2) and (4-1), we can conclude that

(6-11) d � 8:

By (6-8), .d C1/2C4s is a perfect square which has the same parity as d C1, hence

(6-12) .d C 1/2C 4s D 1
9
.d C 1� 2c/2

for some c 2 f0; 1; 2; 3; 4g. Then

l D cC 2 and mD
d C cC 4

3.cC 2/
:
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Using (6-10), we also get

1
9
.d C 11/2 � .d C 3/2C 4s � 1

9
.d2C 38d C 73/ < 1

9
.d C 19/2:

By (6-9), .d C 3/2C 4s is a perfect square with the same parity as d C 3, so

(6-13) .d C 3/2C 4s D 1
9
.d C 11C 2c�/

2

for some c� 2 f0; 1; 2; 3g. Then

l� D�c�� 2 and m� D�
d � c�C 2

3.c�C 2/
:

Comparing (6-12) and (6-13), we get

(6-14) .4� c�� c/d D .5C c�C c/.6C c�� c/� 18:

Moreover, since both 1
3
.dC1�2c/ and 1

3
.dC11C2c�/ are integers, 1

3
.10C2c�C2c/

is an integer, so

cC c� 2 f1; 4; 7g:

If cC c� D 7, then c D 4 and c� D 3. By (6-14), d D�14, a contradiction to (6-11).

If cC c� D 4, using (6-14) we get c D 4 and c� D 0. Hence l D 6, mD 1
18
.d C 8/,

l� D�2 and m� D�16.d C 2/D�3mC 1.

If cC c� D 1, using (6-14) we get d D 6C 2.c�� c/. Using (6-11), the only possible
case is c D 0, c� D 1 and .l; m; l�; m�/D .2; 2;�3;�1/.

Proof of Proposition 6.1 When p < 0, this result follows from Lemma 6.2.

When p>0 , from (6-1) it is easy to see s >0 for k.l;m; 0; p/, but sD�3l�.l�C1/<0
for k.l�;�1; 0; 0/.

Now we consider the case p D 0. By Proposition 6.3, for any given .g; r/, there are
at most three knots, k.li ; mi ; 0; 0/ for i D 1; 2; 3, having this .g; r/. There is at most
one pair .li ; mi / in each of the three cases

� l > 0, m> 0,

� l < 0, m< 0,

� lm < 0.
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The pair .l�;�1/ is in the third case. By Proposition 4.2(c), k.�l��1;�1; 0; 0/ is
equal to k.l�;�1; 0; 0/, and the pair .�l��1;�1/ is in the second case. Suppose
that there is also a pair .l; m/ in the first case with the same .g; r/, then Lemma 6.4
implies that .l; m/D .2; 2/ and �l��1D�3. By Proposition 4.2(d), the three knots
k.2; 2; 0; 0/, k.�3;�1; 0; 0/ and k.2;�1; 0; 0/ are the same.

7 Proof of Theorem 1.2

Recall that the unique half-integral toroidal slope of k.l�;�1; 0; 0/ is r D 1
2
.2s� 1/,

where s D�3l�.l�C 1/. Hence the knots in the family fk.l�;�1; 0; 0/ W l� > 1g are
mutually distinct.

Suppose that K � S3 is a knot which has the same A–polynomial and the same knot
Floer homology as a given knot J� D k.l�;�1; 0; 0/ with l� > 1. Our goal is to show
that K D J� .

As J� is hyperbolic, K cannot be a torus knot by Theorem 1.1.

Suppose K is hyperbolic. Then by Proposition 5.8, K has the same half-integral
toroidal slope r as J� and K is one of the knots k.l;m; n; p/. Applying Lemma 5.11,
we have nD 0 or 1. Since the half-integral toroidal slope of k.l;m; 1; 0/ is positive
while the half-integral toroidal slope of J� D k.l�;�1; 0; 0/ is negative, we see that n
must be zero. Similarly applying Lemma 5.12, we have p is nonpositive, and 2p� 1
divides l . That is, we have KDk.l;m; 0; p/ with .2p�1/ j l . Now by Proposition 6.1,
we have K D J� .

It remains to show that K cannot be a satellite knot. Suppose otherwise that K is a
satellite knot. We are going to derive a contradiction from this assumption.

Lemma 7.1 The A–polynomial AJ�.x; y/ of J� D k.l�;�1; 0; 0/ does not contain
any factor of the form xjyC ı or yC ıx�j for j 2 Z and ı 2 f�1; 1g.

Proof Suppose otherwise that AJ�.x; y/ contains a factor of the form xjy C ı

or yC ıx�j . As this factor is irreducible and balanced, it is contributed by a curve
component X0 in X�.MJ�/. Moreover X0 is a seminorm curve with �j� as the
unique associated boundary slope.

We claim that �j� is either �s� or �s�1�. From Theorem 2.5(3) and Lemma 4.5, we
see that the meridian slope � has the minimal seminorm s0 . To prove the claim, we
just need to show, by Theorem 2.5(4), that for the half-integral toroidal slope r of J� ,

Algebraic & Geometric Topology, Volume 17 (2017)



Detection of knots and a cabling formula for A–polynomials 103

we have krk0 D k�k0 , which is equivalent to showing that

Zv. zfr/�Zv. zf�/

for every v 2 zX0 . As MJ�.r/ has no noncyclic representation by Corollary 5.3, at
every regular point v 2 zX0 we have Zv. zfr/ �Zv. zf�/. If at an ideal point v of zX0
we have Zv. zfr/ > Zv. zf�/, then zf˛.v/ is finite for every class ˛ in H1.@MJ� IZ/
(as both zfr and zf�j� are finite at v ). We can now derive a contradiction with [4,
Proposition 4.12] just as in the proof of Lemma 5.4, and the claim is thus proved.

On the other hand it is shown in [13, Proposition 5.4] that MJ�.s/ and MJ�.s � 1/

each are small Seifert fibered spaces. As J� is a small knot, each of �s� and �s�1�
cannot be a boundary slope by [9, Theorem 2.0.3] and thus cannot be the slope �j�.
We arrive at a contradiction.

Since J� is a fibered knot by [13], K is also fibered. Hence if .C; P / is any pair of
companion knot and pattern knot associated to K , then each of C and P is fibered
and the winding number w of P with respect to C is larger than zero.

Lemma 7.2 The satellite knot K has a companion knot C which is hyperbolic.

Proof As is true for any satellite knot, K has a companion knot C which is either a
torus knot or a hyperbolic knot. So we just need to rule out the possibility that C is a
torus knot. If C is a .p; q/–torus knot, then by (2-3), AC .x; y/ contains a factor of
the form yxkC ı or yC ıx�k for some integer k and ı 2 f1;�1g. As the winding
number w of the pattern knot P with respect to C is nonzero, by Proposition 2.7,
AK.x; y/ contains a factor of one of the forms yxw

2k � .�ı/w or y � .�ı/wx�w
2k .

But this contradicts Lemma 7.1.

We now fix a hyperbolic companion knot C for K which exists by Lemma 7.2 and
let P be the corresponding pattern knot.

Lemma 7.3 For any hyperbolic knot C in S3 , any surgery with a slope j=k , where j
and k are relatively prime, k>2 and j is odd, will produce either a hyperbolic manifold
or a Seifert fibered space whose base orbifold is S2 with exactly three cone points.

Proof MC .j=k/ is irreducible [16] and atoroidal [17], as k > 2. Thus MC .j=k/

is either a hyperbolic manifold or an atoroidal Seifert fibered space. In latter case,
the Seifert fibered space has noncyclic fundamental group [9]. As j is odd, the base
orbifold of the Seifert fibered space cannot be nonorientable. Thus the base orbifold is
a 2–sphere with exactly three cone points.
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Lemma 7.4 The integer d D 2s� 1 is divisible by w2 .

Proof Suppose otherwise. Let d1=q1 be the rational number d=.2w2/ in its reduced
form, ie d1 D d= gcd.d; w2/ and q1 D 2w2= gcd.d; w2/. Then q1 > 2 and d1 is
odd. So by Lemma 7.3, the surgery on C with the slope d1=q1 will yield either a
hyperbolic manifold or a Seifert fibered space whose base orbifold is a 2–sphere with
exactly three cone points. Applying either Lemma 5.6 or Lemma 5.13, we see that the
A–polynomial AC . Nx; Ny/ of C has a zero point . Nx0; Ny0/ such that Nxd1

0 Ny
q1

0 D 1 and
Nx0 … f0; 1;�1g. Now from Proposition 2.7 and its proof, we see that AC . Nx; Ny/ can be
extended to a factor f .x; y/ of AK.x; y/ with the variables of AC . Nx; Ny/ and f .x; y/
satisfying the relations Nx D xw and Nyw D y . In particular, for some .x0; y0/ we
have Nx0 D xw0 and Nyw0 D y0 , and .x0; y0/ is a zero point of f .x; y/. Obviously
x0 … f0; 1;�1g. From . Nx

d1

0 Ny
q1

0 /
w D 1, we have xw

2d1

0 y
q1

0 D 1, ie xd0 y
2
0 D 1.

As f .x; y/ is a factor in AK.x; y/D AJ�.x; y/, we see that the system�
AJ�.x; y/D 0

xdy2� 1D 0

has a solution .x0; y0/ with x0 … f0; 1;�1g. We get a contradiction with Lemma 5.5.

Note that s� 1 is a cyclic surgery slope of J� (provided by [13, Proposition 5.4]).

Lemma 7.5 If .x0; y0/ is a solution of the system�
AJ�.x; y/D 0

xs�1y � 1D 0

then x0 is either 1 or �1.

Proof If x0 is neither 1 nor �1, it follows that there is a curve component X0
in X�.M/ such that zX0 has a point at which zf�s�1� D 0 but zf� ¤ 0. This is
impossible as zf�s�1� has the minimal zero degree at every point of zX0 (because
J� is a small knot, the cyclic surgery slope s � 1 cannot be a boundary slope by [9,
Theorem 2.0.3]).

Lemma 7.6 The integer s� 1 is divisible by w2 .

Proof The proof is similar to that of Lemma 7.4, only replacing Lemma 5.5 by
Lemma 7.5. First note that s � 1 is an odd number (as s D �3l�.l� C 1/ is even).
So if s � 1 is not divisible by w2 , then the reduced form d1=q1 of the rational
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number .s�1/=w2 has denominator q1>2. Now arguing as in the proof of Lemma 7.4
starting from the d1=q1–surgery on C , we see that the system�

AJ�.x; y/D 0

xs�1y � 1D 0

has a solution .x0; y0/ with x0¤ 1;�1. This gives a contradiction with Lemma 7.5.

Corollary 7.7 The winding number w equals 1.

Proof This follows immediately from Lemmas 7.4 and 7.6

Lemma 7.8 The companion knot C has the same half-integral toroidal slope as J�
and C is one of the knots k.l;m; 0; p/ with p nonpositive and with .2p� 1/ j l .

Proof It follows from Corollary 7.7 and Proposition 2.7 that AC .x; y/ is a factor
of AK.x; y/ D AJ�.x; y/. So Proposition 5.8 says that r is also a toroidal slope
of C , and C is one of the knots k.l;m; n; p/. Now arguing as in the case when K
is hyperbolic, we see that C is one of the knots k.l;m; 0; p/ with p nonpositive and
with .2p� 1/ j l .

Lemma 7.9 For C D k.l;m; 0; p/ given by Lemma 7.8, we have m D �1 unless
C D k.2; 2; 0; 0/ or C D k.�2;m; 0; 0/.

Proof If m ¤ �1, then by [12, Theorem 2.1(d)], the .s � 1/–surgery on the knot
C D k.l;m; 0; p/ is a Seifert fibered manifold whose base orbifold is a 2–sphere
with exactly three cone points, except when C is one of the knots k.�2;m; 0; p/,
k.2; 2; 0; 0/, k.2; 3; 0; 1/, k.3; 2; 0; 1/ or k.2; 2; 0; 2/. As we know that p is non-
positive and 2p � 1 divides l , these exceptional cases can be excluded except for
k.2; 2; 0; 0/ or k.�2;m; 0; 0/. So we just need to deal with the case when the
.s� 1/–surgery on C is a Seifert fibered manifold whose base orbifold is a 2–sphere
with exactly three cone points. Note that s�1 is odd. Hence by Lemma 5.13, the system�

AC .x; y/D 0

xs�1y � 1D 0

has a solution .x0; y0/ with x0 ¤ 1;�1. As AC .x; y/ is a factor of AJ�.x; y/, the
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point .x0; y0/ is also a solution of the system�
AJ�.x; y/D 0

xs�1y � 1D 0;

which yields a contradiction with Lemma 7.5.

Lemma 7.10 js� 2j � 4g.C /:

Proof Recall that C is one of the knots k.l;�1; 0; p/ with p nonpositive, k.2; 2; 0; 0/,
or k.�2;m; 0; 0/ and has the same r slope as J� and thus has the same s slope as J� .
From (4-2) and (4-3) we have that for k.l;�1; 0; p/ with p nonpositive, its s slope
and genus g are given by

s D�3l.l C 1/Cp.�3l � 1/2

and

g D

�
�
1
2
p.3l C 1/3l C l2C 1

2
l.l � 1/ if l > 0;

�
1
2
p.�3l � 1/.�3l � 2/C l2C 1

2
l.l C 5/C l C 2 if l < 0I

for k.2; 2; 0; 0/, its s and g values are

s D�18 and g D 5I

and for k.�2;m; 0; 0/,

s D�2.2m� 1/.2mC 1/ and g D

�
4m2� 3m if m> 0;
4m2C 3m if m< 0:

In each case, one can check directly that js� 2j � 4g holds, keeping in mind some
forbidden values on l , m and p given by (4-1).

As noted in the proof of Theorem 1.1, when the winding number w equals 1, the
pattern knot P is a nontrivial knot. We also have, by Lemma 2.6, that AP .x; y/ is a
factor of AK.x; y/D AJ�.x; y/. Combining this fact with (2-3) and Lemma 7.1 we
know that P cannot be a torus knot. So P is either a hyperbolic knot or a satellite
knot.

If P is a hyperbolic knot, then arguing as in the proofs of Lemmas 7.8, 7.9 and 7.10,
we have that P has the same half-integral toroidal slope as J� , that P is one of
the knots k.l 0;�1; 0; p0/ with p0 nonpositive or k.2; 2; 0; 0/ or k.�2;m0; 0; 0/, and
that js� 2j � 4g.P /.

Now from
�J�.t/D�K.t/D�C .t/�P .t/

we have that the genus of the given satellite knot K (which is equal to that of J� )
is equal to the sum of the genus of C and the genus of P . So the genus of one
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of C and P , say C (the argument is the same for P ), is less than or equal to the half
of the genus of J� , ie

g.C /� 1
2
g.J�/:

So

(7-1) js� 2j � 2g.J�/:

But s D�3l�.l�C 1/ and g.J�/D l2� C
1
2
l�.l�� 1/, which do not satisfy (7-1). This

contradiction shows that P cannot be hyperbolic.

So P is a satellite knot. Let .C1; P1/ be a pair companion knot and pattern knot
for P . Once again, as P is fibered, each of C1 and P1 is fibered, and the winding
number w1 of P1 with respect to C1 is larger than zero. Making use of the fact that
AP .x; y/ jAJ�.x; y/, one can show, similarly as for the pair .C; P /, that C1 can be
assumed to be hyperbolic, that w1D 1, that C1 has the same r and s values as J� , that
C1 is k.l 00;�1; 0; p00/ for some nonpositive p00 or k.2; 2; 0; 0/ or k.�2;m00; 0; 0/,
and that js� 2j � 4g.C1/. Now from the equality

�J�.t/D�K.t/D�C .t/�C1
.t/�P1

.t/

we see that one of g.C / and g.C1/ is less than or equal to 1
2
g.J�/. This leads to a

contradiction just as in the preceding paragraph. So P cannot be a satellite knot, and
this final contradiction completes the proof of Theorem 1.2.
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