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New topological methods to solve equations over groups

ANTON KLYACHKO

ANDREAS THOM

We show that the equation associated with a group word w 2G �F2 can be solved
over a hyperlinear group G if its content — that is, its augmentation in F2 — does
not lie in the second term of the lower central series of F2 . Moreover, if G is
finite, then a solution can be found in a finite extension of G . The method of proof
extends techniques developed by Gerstenhaber and Rothaus, and uses computations
in p–local homotopy theory and cohomology of compact Lie groups.

22C05, 20F70

Introduction

This paper is about the solvability of equations in groups. Let us start by briefly recalling
the analogous situation of polynomial equations with rational coefficients. Even though
not every nonconstant polynomial p.t/ 2QŒt � has a root in Q, there always exists a
finite field extension Q �K such that p.t/D 0 can be solved in K , ie there exists
˛ 2K with p.˛/D 0. Indeed, it is straightforward to construct some splitting field K

with the desired property using the machinery of commutative algebra. On the other
side, it is also well known that arguments from algebraic topology (using notions of
degree, winding number or the fundamental group) can be used to show that every
polynomial has a root in the topological field C , and historically this was the first way
to provide a field extension of Q in which p.t/ D 0 can be solved; this argument
essentially goes back to Gauss’ work from 1799. In the analogous situation, when one
wants to solve equations with coefficients in a group, the algebraic or combinatorial
approach fails to a large extent and the homotopy-theoretic approach has been used
by Gerstenhaber and Rothaus [14] to obtain positive results; see the next section for
definitions and more precise statements. As a particular consequence, Gerstenhaber and
Rothaus were able to prove the Kervaire–Laudenbach conjecture for locally residually
finite groups. First of all, we want to clarify a relationship between Connes’ embedding
problem and the Kervaire–Laudenbach conjecture that was observed by Pestov [36].
Moreover, we want to extend this study to cover a larger class of groups and also a
larger class of equations which can be handled by methods from algebraic topology.
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Our methods involve a detailed study of the p–local homotopy type of the simple
Lie group PU.p/ and the effect of word maps on the cohomology ring with mod p

coefficients.

Our first main result applies to any prime number p and any group word w2SU.p/�F2 .
If the augmentation of w in F2 does not lie in the second step ŒF2;F2�

p ŒF2; ŒF2;F2��

of the exponent-p central series, then the equation w.a; b/ D 1 can be solved in
SU.p/. This implies our second main result, which says that a two-variable equation
with augmentation not in ŒF2; ŒF2;F2�� can be solved over any hyperlinear group; see
Section 1 for details. Moreover, if the group G is finite, then a solution can be found in
a finite extension of G . This covers classes of singular equations which were intractable
by combinatorial methods or the topological methods developed by Gerstenhaber and
Rothaus. Our main results are stated explicitly as Theorems 1.5 and 1.6 in Section 1.2.

The paper is organized as follows. Section 1 collects various preliminaries and discusses
briefly the setup of group words and equations and the classes of hyperlinear and sofic
groups. Section 2 recalls some facts about the cohomology of SU.n/ and PU.n/,
localization theory of topological spaces, and computations of homotopy groups of
spheres. This section is the most technical part and also contains a review and extension
of results of Kishimoto and Kono [25]. Section 3 contains the proofs of our main
results and discusses related low-dimensional results and further directions.

1 The main results

1.1 Group words and equations

We denote by Fn the free group on generators x1; : : : ;xn . For any group G , an
element w in the free product G �Fn determines a word map wW G�n!G given by
evaluation. We denote by "W G �Fn! Fn the natural augmentation which sends G to
the neutral element and call ".w/ the content of w . We call w 2G �Fn a group word
in n variables with coefficients in G . Every group word w 2 G �Fn determines an
equation w.x1; : : : ;xn/D 1 in n variables with coefficients in G in an obvious way.
We say that w 2G �Fn can be solved over G if there exists an overgroup H �G and
g1; : : : ;gn 2 H such that w.g1; : : : ;gn/ D 1, where 1 denotes the neutral element
in H . Similarly, we say that it can be solved in G if we can take H DG . We denote
by hhwii the normal subgroup in G �Fn generated by the element w . It is clear that an
equation w 2G �Fn can be solved over G if and only if the natural homomorphism
G!G �Fn=hhwii is injective. Similarly, an equation can be solved in G if and only if
the natural homomorphism G!G �Fn=hhwii is split-injective, ie it has a left inverse.
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The study of equations over groups dates back to the work of Bernhard Neumann
[34]. There is an extensive literature about equations over groups, including work
by Baranov and Klyachko [1], Edjvet and Juhász [10; 9], Edjvet and Howie [8],
Juhász [24], Gersten [13], Gerstenhaber and Rothaus [14], Howie [20; 21], Ivanov
and Klyachko [22], Klyachko [26; 27], Klyachko and Trofimov [29], Levin [30], and
Neumann [34]. See also Roman’kov’s recent survey about this topic [39].

It is well known that not all equations with coefficients in G are solvable over G . For
example if G D ha; b j a2; b3i, then the equation w.x/D xax�1b with variable x is
not solvable over G . Indeed, a and b cannot become conjugate in any overgroup of G .
Another example is GDZ=pZDhai with the equation w.x/Dxax�1axa�1x�1a�2 .
However, in both cases we have ".w/D 1 2 Fn . Indeed, the only known examples of
equations which are not solvable over some G are equations whose content is trivial.
We call an equation w 2 G � Fn singular if its content is trivial, and nonsingular
otherwise. This lets us put forward the following conjecture:

Conjecture 1.1 Let G be a group and w 2G �Fn be an equation in n variables with
coefficients in G . If w is nonsingular, then it is solvable over G . In addition, if G is
finite, then a solution can be found in a finite extension.

The case n D 1 is the famous Kervaire–Laudenbach conjecture. The one-variable
case was studied in classical work by Gerstenhaber and Rothaus from 1962; see [14].
They showed that if G is finite, then every nonsingular equation in one variable can be
solved over G (in fact in some finite extension of G ). Their proof used computations
in cohomology of the compact Lie groups U.n/. It is this proof that inspired us to start
this work. The work of Gerstenhaber and Rothaus showed in fact that every nonsingular
equation in one variable with coefficients in the unitary group U.n/ can be solved
already in U.n/, for any n 2N . Their strategy was to use homotopy theory to say that
the associated word map wW U.n/! U.n/ has a nonvanishing degree (as a map of
oriented manifolds) and thus must be surjective. Any preimage of the neutral element
provides a solution to the equation w . The key to the computation of the degree is to
observe that the degree depends only on the homotopy class of w and thus — since
U.n/ is connected — does not change if w is replaced by ".w/. The computation of
the degree is now an easy consequence of classical computations of Hopf [19].

This property of solvability in a group is easily seen to pass to arbitrary Cartesian
products of groups and arbitrary quotients of groups. As a consequence, nonsingular
equations in one variable with coefficients in G as above can be solved over G if G is
isomorphic to a subgroup of a quotient of the infinite product

Q
n U.n/ — an observation

that is due to Pestov [36]. Groups which admit such an embedding are called hyperlinear
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groups; see [36] and Section 3.1 for more information on this class of groups. See also
Remark 3.3. Thus, the result of Gerstenhaber and Rothaus also holds for hyperlinear
groups, in particular for all amenable groups, or more generally, all sofic groups [36].
Connes’ embedding conjecture predicts (among other things) that every countable
group is hyperlinear and thus implies the Kervaire–Laudenbach conjecture; this was
also observed by Pestov in [36].

Actually, Gerstenhaber and Rothaus [14] studied the more involved question whether m

equations of the form w1; : : : ; wm 2G�Fn in n variables can be solved simultaneously
over G . Their main result is that this is the case if G is finite (or more generally,
locally residually finite) and the presentation two-complex

X WDKhx1; : : : ;xn j ".w1/; : : : ; ".wm/i

satisfies H2.X;Z/D0, ie the second homology of X with integral coefficients vanishes.
Here, the representation two-complex is the two-dimensional CW-complex associated
with the presentation of a group, obtained by gluing m two-cells to a bouquet of n

circles according to the relations. (This amounts to a certain algebraic condition on the
exponent sum matrix.) A system of equations which satisfies this vanishing condition
was called nonsingular by Jim Howie [20]; our terminology is not consistent with this,
but there will be no risk of confusion. Later, Howie [20] proved the same result for
locally indicable groups and conjectured it to hold for all groups. We call that Howie’s
conjecture. Again, Connes’ embedding conjecture implies Howie’s conjecture, and
more specifically, every hyperlinear group satisfies Howie’s conjecture.

Remark 1.2 Equations in one variable with at most three occurrences of the variable
are solvable by a result of Howie [21], which however also reduces this to the residually
finite case and uses the results of Gerstenhaber and Rothaus. Similar results have been
proved for nonsingular equations with four [8] and five [12] occurrences of variables.

Remark 1.3 Equations w 2 G � Fn with G torsion-free can be solved by more
combinatorial methods. A systematic study of the torsion-free case was started by
Levin [30] who conjectured that equations in one variable with coefficients in a torsion-
free group should always be solvable if w is conjugate to an element in G . A result
in this direction is due to the first author who proved that this is indeed the case for
one-variable equations with content ˙1 2Z; see [26]. Moreover, over any torsion-free
group, any several-variable equation whose content is not a proper power (and not the
neutral element) is solvable [28]. Again, due to the absence of any counterexamples, it
is conjectured that solvability in the torsion-free case is true even if the content of the
equation is trivial.
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Remark 1.4 Existence of nontrivial solutions can be a subtle issue too; see for exam-
ple [40]. For G D Z=pZD hai, the equation w.x/D axa�1xax�1a�1x�2 can be
solved in a finite overgroup of G only with x D 1, even though nontrivial solutions
exist in infinite extensions. The mechanism behind these kind of examples was first
discovered by Higman; see [18].

1.2 Statement of the main results

The main goal of this work is to provide examples of nonsingular equations in many
variables which are solvable over every hyperlinear group, where the condition on
the equation only depends on its content. This should be compared for example with
results of Gersten [13], where the conditions on w depended on the unreduced word
obtained by deleting the coefficients from w . For simplicity, we concentrate on the
two-variable case. Our main result is:

Theorem 1.5 Let G be a hyperlinear group. An equation in two variables with
coefficients in G can be solved over G if its content does not lie in ŒF2; ŒF2;F2��.
Moreover, if G is finite, then a solution can be found in a finite extension of G .

In order to prove our main result we have to refine the study of Gerstenhaber and
Rothaus on the effect of word maps on cohomology of compact Lie groups. Again, the
strategy is to show that such equations can be solved in SU.n/ for sufficiently many
n 2N . More specifically, we prove:

Theorem 1.6 Let p be a prime number. Let w 2 SU.p/�F2 be a group word. If

".w/ 62 ŒF2;F2�
p ŒF2; ŒF2;F2��;

then the equation w.a; b/D 1 can be solved in SU.p/.

If ".w/ 62 ŒF2;F2�, then this theorem is a direct consequence of the work of Gerstenhaber
and Rothaus. However, if ".w/ 2 ŒF2;F2�, then a new idea is needed. We show —
under the conditions on p which are mentioned above — that the induced word map
wW PU.p/� PU.p/! SU.p/ is surjective, where SU.p/ denotes the special unitary
group and PU.p/ its quotient by the center. The strategy is to replace w by the much
simpler and homotopic map induced by ".w/ and study its effect on cohomology
directly. This is done in Section 3.2 with the necessary preparations from Section 2.

In general, the assumption on ".w/ cannot be omitted in the previous theorem. Indeed,
the second author showed in previous work:
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Theorem 1.7 [46] For every k 2 N and every neighborhood V � SU.k/ of 1k 2

SU.k/, there exists w 2 F2 n feg such that the image of wW SU.k/�2! SU.k/ lies
in V . In particular, the equation w.a; b/D g is not solvable in SU.k/ for g 62 V .

The construction that proves the preceding theorem yields words in F2 that lie deep in
the derived series, so that there is no contradiction with Theorem 1.6.

The surjectivity of word maps without coefficients is an interesting subject in itself.
Michael Larsen conjectured that for each nontrivial w 2 F2 and n large enough, the
associated word map wW PU.n/�PU.n/! PU.n/ is surjective. This was shown (with
some divisibility restrictions on n) for words not in the second derived subgroup of F2

by Elkasapy and the second author in [11]. In a similar direction, we believe that for n

large enough — or again, with some divisibility restrictions — the word map w should
define a nontrivial homotopy class and not even be homotopic to a nonsurjective map.

In order to study words which lie deeper in the lower central series, we suspect that it
might be helpful to observe that the induced word map wW PU.p/�PU.p/! PU.p/
does not only lift to SU.p/ — which is the simply connected cover of PU.p/ — but
lifts even to higher connected covers of PU.p/. Indeed, for example one can show that
if w 2 ŒF2; ŒF2;F2�� then the associated word maps lifts to the complex analogue of
the string group. See [45] for a study of related groups.

2 The topology of SU.p/ and PU.p/

In this section we collect some standard results from algebraic topology that will be
used in the proofs of the main theorems. A classical result of Samelson says:

Theorem 2.1 [41] The commutator map c
SU.2/
2
W SU.2/�2 ! SU.2/ is not null-

homotopic. In particular, since SU.2/ is a sphere, any map homotopic to the commuta-
tor map must be surjective.

This easily implies that for every group word w 2 SU.2/ �F2 whose content is the
commutator of the generators of F2 , the equation w.a; b/D 1 can be solved in SU.2/.
This already has nontrivial consequences that (to the best of our knowledge) could not
be proved using combinatorial techniques. In order to treat SU.n/ for higher n, we
have to recall some aspects of algebraic topology. Our methods in the proof of the main
results follow closely ideas from Hamanaka, Kishimoto and Kono [16] and Kishimoto
and Kono [25].
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2.1 The cohomology of SU.p/ and PU.p/

Let n be a positive integer. We denote by SU.n/ the special unitary group and by
PU.n/ the projective unitary group, ie the quotient of SU.n/ by its center. We denote
the quotient map by � W SU.n/! PU.n/ and the coset of some u 2 SU.n/ in PU.n/
by �.u/ D xu. The cohomology rings of the simply connected classical Lie groups
were computed by Borel in [3]. For example, it is well-known that as a graded ring

H�.SU.n/;Z=pZ/Dƒ�Z=pZ.x2;x3; : : : ;xn/

with jxi j D 2i � 1. Here, we denote by ƒ�
k

the exterior algebra over a field k on a
certain set of generators of particular degrees. The product map mW SU.n/�SU.n/!
SU.n/ and the inversion turn H�.SU.n/;Z=pZ/ into a Hopf algebra. However, the
comultiplication turns out to be trivial in this situation, ie �.xi/D xi˝ 1C 1˝xi for
all 2 � i � n. We will be mainly interested in the case nD p . The computation of
the cohomology ring of PU.p/ is more involved than that of SU.p/ and was also first
studied by Borel in [4]. Later, the comultiplication on the cohomology of PU.p/ with
Z=pZ–coefficients was computed in work of Baum and Browder [2] and turns out to
be not cocommutative. It is this lack of cocommutativity which makes our approach
work. Let us summarize the situation:

Theorem 2.2 [2] Let p be an odd prime number. Then

H�.PU.p/;Z=pZ/Š .Z=pZ/Œy�=.yp/˝Zƒ
�
Z=pZ.y1;y2; : : : ;yp�1/

with jyj D 2, jyi j D 2i �1, ��.yi/D xi for 2� i � p�1, and ��.y/D ��.y1/D 0.
Moreover, the comultiplication takes the form

�.y/D y˝ 1C 1˝y; �.yi/D yi ˝ 1C 1˝yi C

i�1X
jD1

� j�1

i�1

�
�yj ˝yi�j :

We denote by I.n/ the kernel of the natural augmentation H�.PU.p/n;Z=pZ/!
Z=pZ. We start out by recalling the effect of various natural word maps on the
cohomology ring.

Lemma 2.3 Let n 2N and let p be an odd prime. Consider the map �nW PU.p/!
PU.p/ given by �n.u/D un . The map induced by �nW PU.p/! PU.p/ on cohomol-
ogy satisfies

��n.yi/D n �yi mod I.1/2

for all 1� i � p� 1.
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Proof The map �n arises as the composition of the diagonal embedding PU.p/!Qn
iD1 PU.p/ with the multiplication map mW

Qn
iD1 PU.p/! PU.p/. In cohomology,

this induces first the n–fold coproduct

�.n/W H�.PU.p/;Z=pZ/!
nO

iD1

H�.PU.p/;Z=pZ/

followed by the multiplication in cohomology
nO

iD1

H�.PU.p/;Z=pZ/!H�.PU.p/;Z=pZ/:

An easy verification shows that each generator is just multiplied by n, modulo sums of
products of at least two generators. This proves the claim.

It is also important for us to study the effect of the commutator map in cohomology.
We need the following result from the work of Hamanaka, Kishimoto and Kono [16],
which is an easy consequence of Theorem 2.2 above.

Lemma 2.4 [16, Proposition 6] The commutator map

cW PU.p/�PU.p/! PU.p/

induces the cohomology map c�W H�.PU.p/;Z=pZ/!H�.PU.p/�PU.p/;Z=pZ/
sending yi to .i � 1/.yi�1˝y �y˝yi�1/ modulo the ideal I.2/3 . The elements y1

and y map to zero.

Note that the commutator map

SU.n/�SU.n/! SU.n/; .u; v/ 7! uvu�1v�1

induces a well-defined map cW PU.n/� PU.n/! SU.n/, which we will also call the
commutator map.

Our first aim is to show that the commutator map cW PU.p/�PU.p/! SU.p/ is not
homotopic to a nonsurjective map. We will show this by showing that the image of the
top-dimensional cohomology class x2 � � �xp 2H p2�1.SU.p/;Z=pZ/ does not vanish
in the group H p2�1.PU.p/�PU.p/;Z=pZ/. As it turns out, the study of the images
of x2; : : : ;xp�1 in H�.PU.p/� PU.p/;Z=pZ/ is fairly straightforward, since these
generators are the images of generators y2; : : : ;yp�1 in the cohomology of PU.p/.
The study of the last generator xp is considerably more complicated and we have to
rely on some structure results on the p–local homotopy type of PU.p/. In fact, in the
final argument we will not rely on Lemma 2.4, but the required result is proved for
all xi with 2� i � p directly.
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2.2 The lens spaces

Since S2d�1 � Cp , there is a natural .Z=pZ/–action on S2d�1 given by scalar
multiplication with the complex number exp.2� i=p/. In our considerations, we only
study the case d D p . We denote by L the lens space S2p�1=.Z=pZ/ and let
�W S2p�1 ! L be the natural projection. The space L has a natural CW-structure
with one cell in each dimension; see [17, Example 2.43].

We denote by Lk WDS2k�1[p D2k the mod-p Moore space for 1�k �p�1. This is,
by definition, the space obtained by attaching D2k to S2k�1 along the attaching map

pW S2k�1
! S2k�1; .z1; : : : ; zk/ 7! .z

p
1
; z2; : : : ; zk/:

Note that the letter p is over-used here, but this will not cause any confusion. The
characteristic property of Lk (for 1 � k � p � 1) is that Hn.Lk ;Z/ D 0 unless
nD 2k�1 or nD 0, and H2k�1.Lk ;Z/DZ=pZ. See [17, Chapter 2, Example 2.40]
for more details. We set Lp WD S2p�1 .

For 1 � k � p � 1, we denote by qk W Lk ! S2k the so-called pinch map, which
collapses S2k�1 (and hence the boundary of D2k ) to a point. Note that the 2–skeleton
of L is just L1 . Indeed, L1 D S1[p D2 ; see [17, Example 2.43].

There is a fiber bundle SU.p� 1/ �!SU.p/ �!S2p�1 , where the embedding � sends
a matrix A to the matrix

�
1
0

0
A

�
and the projection � sends a matrix to its first row.

Similarly, the group PU.p/ admits a fiber bundle SU.p � 1/ �! PU.p/ �!L, where
the embedding � sends a matrix A to the class of matrices hexp.2� i=p/i

�
1
0

0
A

�
, the

projection � sends a matrix to its first row (which is defined up to multiplication by
exp.2� i=p/), and LD S2p�1=hexp.2� i=p/i is the lens space.

2.3 Localization at a prime

We will freely use the concept of localization of topological spaces (simply connected
or with abelian fundamental group) at a prime p ; see the work of Bousfield and Kan [7]
or Mimura, Nishida and Toda [33] for background and as general references. See also
[32] for a more recent presentation of this material.

Given a topological space X with abelian fundamental group, we denote by X.p/
its p–localization which comes equipped with a natural map �W X ! X.p/ . The p–
localization can be defined as a certain tower of spaces, and its defining properties
are

�i.X.p/; �.x//D �i.X;x/˝Z Z.p/ for all x 2X and all i � 1:

Here, Z.p/ denotes the p–localization of Z, ie the ring of those fractions in Q whose
denominator is not divisible by p . For a continuous map f W X ! Y (between
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topological spaces with abelian fundamental group), we denote by f.p/W X.p/! Y.p/
the induced map between the p–localizations. We will freely use that �W X ! X.p/
induces an isomorphism on cohomology with coefficients in Z=pZ. A map is called a
p–local homotopy equivalence if it is a homotopy equivalence after p–localization.

If X is a double suspension, then ŒX;Y � is an abelian group — here ŒX;Y � denotes as
usual the set of homotopy classes of maps from X to Y . We will use that if in addition
X is a finite CW-complex, then the natural maps

ŒX;Y �˝Z Z.p/! ŒX;Y.p/� ŒX.p/;Y.p/�

are isomorphisms; see for example [32, Chapter 6.6].

We will need the following computation of the homotopy groups of SU.n/, which is
due to Bott [5].

Theorem 2.5 The homotopy groups of SU.n/ are given by

�k.SU.n//D

8̂̂̂<̂
ˆ̂:

0; k D 0; 1; 2;

Z; k D 2i � 1; 2� i � n;

0; k D 2i; 2� i � n� 1;

Z=n!Z; k D 2n:

Let �k W S
2k�1 ! SU.n/ be a generator of �2k�1.SU.n// for 2 � k � n and con-

sider the map �W
Qn

kD2 S2k�1!SU.n/ given by �.x2; : : : ;xn/ WD �2.x2/ � � � �n.xn/,
where we use multiplication in the group SU.n/. The following theorem was first
proved by Serre [42, Proposition 7], though without using the language of localization
at the level of topological spaces.

Theorem 2.6 Let p be a prime number. If p � n, then the map

�W

nY
kD2

S2k�1
! SU.n/

is a p–local homotopy equivalence.

We will now concentrate on the case that n D p . For 2 � i � p , we denote by
�i W SU.p/.p/! S2i�1

.p/
the composition of the homotopy inverse of �.p/ with the pro-

jection onto S2i�1
.p/

. We also have the following computation of the p–local homotopy
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groups of odd spheres, which is also due to Serre [42, Proposition 11]:

(1) �k.S
2i�1
.p/ /D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

0; 0� k < 2i � 1;

Z.p/; k D 2i � 1;

0; 2i � 1< k < 2i C 2p� 4;

Z=pZ; k D 2i C 2p� 4;

0; 2i C 2p� 4< k < 2i C 4p� 7:

Here, the generator in �2iC2p�4.S
2i�1
.p/

/ is equal to †2i�4.˛/ for some generator
˛ 2 �2p.S

3
.p/
/. Here, †.?/ denotes as usual the suspension also on the level of maps.

Hence, Theorem 2.6 together with the computation above implies that there is a more
refined computation of the homotopy groups of SU.p/ localized at a prime p :

�k.SU.p/.p//D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

0; k D 0; 1; 2;

Z.p/; k D 2i � 1; 2� i � p;

0; k D 2i; 2� i � p� 1;

0; k D 2i C 1; p � i < 2p� 1;

Z=pZ; k D 2i; p � i < 2p� 1:

Note that this covers all dimensions up to 4p� 4, whereas Bott’s computation only
gives information up to dimension 2p . This fact will be used later.

Now, the commutator map on SU.p/ induces a secondary operation

h � ; � iW �i.SU.p//��j .SU.p//! �iCj .SU.p//;

the so-called Samelson product, which was originally introduced in [41]. Bott already
analyzed the Samelson products of the maps �k in [6]. He proved as a corollary to his
main result [6, Theorem 1] that the element h�i ; �p�iC1i in �2p.SU.p//D Z=p!Z is
divisible by precisely p!=..i�1/!.p�i/!/, ie it is equal to .i�1/!.p�i/! times some
generator of Z=p!Z. The maps �k induce natural maps x�k W S

2k�1 ! PU.p/ for
2� k � p . Note that we can also choose a natural map x�1W S

1! PU.p/ which yields
a generator of �1.PU.p//D Z=pZ, and that Bott’s result extends to the case i D 1.
In the light of our computation of �k.SU.p/.p// from above, Bott’s computation of
the Samuelson products implies:

Theorem 2.7 (Bott) Let p be a prime number and 1� i < p . The element

hx�p; x�ii 2 �2pC2i�2.SU.p/.p//D Z=pZ

does not vanish.

Proof Indeed, Bott’s result from above yields that the image of the map

hx�p; x�iiW S
2pC2i�2

! SU.pC i � 1/
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in �2pC2i�2.SU.pCi�1//DZ=.pCi�1/!Z is .p�1/!.i�1/! times some generator,
and hence does not vanish modulo p . Since hx�p; x�ii factors through SU.p/, the
assertion follows.

The nonvanishing of these Samuelson products modulo p will be the key to understand-
ing the nonvanishing of certain cohomology classes after application of the commutator
map.

2.4 The work of Kishimoto and Kono

In order to understand the effect of the commutator map on the cohomology of PU.p/,
we must now study the p–local homotopy type of PU.p/. We restate Proposition 2
from the work of Kishimoto and Kono [25].

Lemma 2.8 There exists a natural map �W L.p/! PU.p/.p/ such that the diagram

(2)

S
2p�1

.p/

�p.p/
//

�.p/

��

SU.p/.p/

��

L.p/
�
// PU.p/.p/

commutes up to homotopy.

Using the notation introduced in Section 2.2, we are now ready to state and prove an
extension of Lemma 4 of Kishimoto and Kono [25].

Lemma 2.9 For 1� i � p� 1, we have p–locally

�iC1 ı c.p/ ı .�jL1.p/
^x"i.p//D a � .q1 ^ 1S2i�1/.p/W L1.p/ ^S2i�1

.p/ ! S2iC1
.p/

for some a 2 Z�
.p/

.

Proof First of all, we know from [33, Proposition 9.6] that there exists a p–local
splitting

.L^S1/.p/ D

p_
kD1

.Lk ^S1/.p/:

Thus, .L^S2i�1/.p/ D
Wp

kD1
.Lk ^S2i�1/.p/ and the map

�^ 1S2i�1 W S2p�1
^S2i�1„ ƒ‚ …

S2pC2i�2

!L^S2i�1
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can be decomposed p–locally as

(3) .�^1S2i�1/.p/D

p_
kD1

fk ; with fk W S
2pC2i�2

.p/
! .Lk^S2i�1/.p/; 1�k�p:

Since the map �W S2p�1!L is a p–fold covering, fp is equal to multiplication by p .
Now, for 1� k � p� 1, the cofiber sequence S2k�1 p

!S2k�1!Lk (coming from
the definition of Lk ) induces a long exact sequence

� � � ! �2iC2k�1.S
2iC1/

p
! �2iC2k�1.S

2iC1/

! ŒLk ^S2i�1;S2iC1�! �2iC2k�2.S
2iC1/

p
! � � � :

From the computations of the p–local homotopy groups of spheres, we obtain for all
1� i � p that

ŒLk ^S2i�1;S2iC1�.p/ D

8<:
Z.p/; k D 1;

0; 2� k � p� 1;

Z=pZ; k D p:

Moreover, it follows that the group ŒLk ^S2i�1;S2iC1�.p/ is generated by the map
.q1 ^ 1S2i�1/.p/ . Consider now the map

�iC1 ı c.p/ ı .�^x�i.p//W L.p/ ^S2i�1
.p/ ! S2iC1

.p/
:

We obtain from (3) and the sentence after (1) that

(4) �iC1 ı c.p/ ı .�^x�i.p//D ai � .q1 ^ 1S2i�1/.p/ _ bi � .†
2i�2.˛//

for some ai ; bi 2 Z.p/ and 1� i � p� 1. Here, we consider †2i�2.˛/ as map

Lp.p/ ^S2i�1
.p/ D S

2pC2i�2

.p/
D S2i�2

.p/ ^S
2p

.p/

1^˛.p/

�����! S2i�2
.p/ ^S3

.p/ D S2iC1
.p/

:

Now is the point when we are going to use Theorem 2.7. Indeed, we have the follow-
ing identification of homotopy classes of maps from S2pC2i�2 to S2iC1 (note that
�2pC2i�2.S

2iC1/D Z=pZ by (1)):

0¤ �iC1 ı hx�p; x�ii.p/

D �iC1 ı c.p/ ı .x�p.p/ ^x�i.p//
(2)
D �iC1 ı c.p/ ı .�^x�i.p// ı .�.p/ ^ 1S2i�1/
(4)
D
�
ai � .q1 ^ 1S2i�1/.p/ _ bi � .†

2i�2.˛//
�
ı .�.p/ ^ 1S2i�1/

(3)
D ai � ..q1 ^ 1S2i�1/.p/ ıf1/_pbi � .†

2i�2.˛//

D ai � ..q1 ^ 1S2i�1/.p/ ıf1/I
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the ¤ comes from Theorem 2.7. Finally, this implies that .q1 ^ 1S2i�1/.p/ ı f1 is a
nonzero multiple of the class

†2i�2.˛/ 2 �2pC2i�2.S
2iC1/.p/ D Z=pZ;

and we can conclude that ai 2 Z�
.p/

. This finishes the proof.

The preceding proof followed closely the work of Kishimoto and Kono [25] and we do
not claim any originality for this computation.

2.5 Applications to cohomology

We will now apply the computation from the previous section to study the effect of the
commutator map on cohomology. Recall that

H�.PU.p/;Z=pZ/Š .Z=pZ/Œy�=.yp/˝Zƒ
�
Z=pZ.y1;y2; : : : ;yp�1/

with jyjD2, jyi jD2i�1. We denote by Ji the ideal in the ring H�.PU.p/;Z=pZ/˝
H�.PU.p/;Z=pZ/ generated by y2˝1, yj ˝1, 1˝yk , 1˝y for 1� j ; k � p�1

with k ¤ i .

Corollary 2.10 Let 2� i �p and let cW PU.p/�PU.p/!SU.p/ be the commutator
map. Then the induced map

c�W H�.SU.p/;Z=pZ/!H�.PU.p/;Z=pZ/˝Z H�.PU.p/;Z=pZ/

satisfies
c�.xi/D ai.y˝yi�1/ mod Ji�1

for some ai 2 Z�
.p/

.

Proof Note that

H�
�
L1.p/ �S2i�1

.p/ ;Z=pZ
�
Dƒ�.y/˝Zƒ

�.yi/

with jyj D 2 and jyi j D 2i � 1 such that the natural map

��x�i.p/W L1.p/ �S2i�1
.p/ ! PU.p/�PU.p/

induces the natural homomorphism from

.Z=pZ/Œy�=.yp/˝Zƒ
�
Z=pZ.y1;y2; : : : ;yp�1/

˝ .Z=pZ/Œy�=.yp/˝Zƒ
�
Z=pZ.y1;y2; : : : ;yp�1/
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to ƒ�.y/˝Z ƒ
�.yi/ which sends y ˝ 1 to y ˝ 1, 1˝ yi to 1˝ yi and the other

generators to zero. The kernel of this homomorphism is precisely the ideal Ji . Now,
Lemma 2.9 implies that the composition

L1.p/ ^S2i�1
.p/ ! PU.p/.p/ ^PU.p/.p/

c
�! SU.p/.p/

�iC1

���! S2iC1
.p/

is homotopic to ai.q1 ^ 1S2i�1/.p/ for some ai 2 Z�
.p/

. Since the map

q1 ^ 1S2i�1 W L1 ^S2i�1
! S2iC1

sends the generator xiC1 of the cohomology of S2iC1 to y˝yi 2ƒ
�.y/˝Zƒ

�.yi/,
this implies the claim.

3 Solvability of equations

3.1 Hyperlinear groups and related classes of groups

The unitary group U.n/ is equipped with a natural metric that arises from the normalized
Frobenius norm, ie

d.u; v/D
1

n1=2

� nX
i;jD1

juij � vij j
2

�1=2

:

Informally speaking, a group G is said to be hyperlinear if its multiplication table can
be modeled locally (that means on finite subsets of the group) by unitary matrices up
to small mistakes measured in the normalized Frobenius norm. More precisely:

Definition 3.1 A group G is called hyperlinear if for all finite subsets F �G and all
" > 0, there exists n 2N and a map 'W G! U.n/ such that

(1) d.'.gh/; '.g/'.h// < " for all g; h 2 F , and

(2) d.'.g/; 1n/ > 1, for all g 2 F n feg.

There are variations on this definition but they are all equivalent. A detailed discussion
of the class of hyperlinear groups can be found in [36]. If in the above definition
the unitary groups with their metrics are replaced by symmetric groups Sym.n/ with
the normalized Hamming metrics, then one obtains the definition of the class of sofic
groups. This important class of groups was introduced by Gromov [15] and Weiss [47]
in order to study certain problems in ergodic theory. Since the inclusion Sym.n/�U.n/
is compatible enough with the metrics, every sofic group is automatically hyperlinear;
see [36] for more details. It is not known if there are nonsofic groups.

We denote the set of prime numbers by P . We will need the following easy proposition.
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Proposition 3.2 Let G be a countable hyperlinear group. Then G is a subgroup of a
quotient of

Q
p2P SU.p/.

Proof Let .gi/i2N be an enumeration of G . Let nk be some integer such that the
definition of hyperlinearity is satisfied for the finite set fg1; : : : ;gkg with " D 1=k .
Let 'k W G! U.nk/ be the corresponding map. Without loss of generality, we may
assume that limk!1 nk D1. Indeed, the natural diagonal embedding U.n/�U.nm/

is isometric with respect to the normalized Frobenius metric, so that we can replace nk

by knk if necessary. Using the natural embedding U.n/� SU.nC 1/, we may now
assume without loss of generality that the image of 'k lies in SU.nk/. Similarly,
replacing nk again by a suitable number of the form mnk C 1, we may assume that
nk is a prime number (using Dirichlet’s theorem). Now, consider

N WD
�
.up/p 2

Y
p2P

SU.p/
ˇ̌̌

lim
k!1

d.1nk
;unk

/D 0

�
:

It is easy to see that N �
Q

p2P SU.p/ is a normal subgroup and ' D
Q

k2N 'k

defines a injective homomorphism from G to the quotient of
Q

p2P SU.p/ by N . This
proves the claim.

Remark 3.3 It is also true that any subgroup of a quotient of
Q

n2N U.n/ (or ofQ
p2P SU.p/ for that matter) is hyperlinear. This follows from results in [44], based on

ideas from work of Nikolov and Segal; see [35]. It is not known if there are any groups
that are not hyperlinear — essentially all groups that are known to be hyperlinear are
also known to be sofic.

3.2 Proofs of the main results

We can now prove the main theorems, ie Theorem 1.5 and Theorem 1.6. Let us first
study the commutator map again. It follows from Corollary 2.10 that

(5) c�.x2 � � �xp/D a � .yp�1
˝y1 � � �yp�1/ mod J

for some a 2 Z�
.p/

, where J is the ideal defined as

J WD
X

E¨f1;:::;p�1g

Y
i2E

.y˝yi/ �
Y
i 62E

J�.2;2i�1/
i ;

where J�.2;2i�1/
i denotes the subspace of Ji which is of bidegree .2; 2i�1/ or more.

Here we use the natural bigrading of the tensor product

H�.PU.p/;Z=pZ/˝Z H�.PU.p/;Z=pZ/:
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It is easy to see that yp�1˝y1 � � �yp�1 62J . Indeed, assume that yp�1˝y1 � � �yp�12J .
The element yp�1˝y1 � � �yp�1 is of bidegree .2.p�1/; 1C3C� � �C2p�1/ so all
contributions of J�.2;2i�1/

i must be of minimal possible degree .2; 2i � 1/. Note that
y˝yi 62 Ji by construction. This implies that for any E � f1; : : : ;p� 1g, a product
of p�1 factors of the form y˝yi for i 2E and otherwise in J .2;2i�1/

i cannot yield
a summand yp�1˝y1 � � �yp�1 unless E D f1; : : : ;p� 1g, but this is forbidden.

This proves as a first step that any continuous map which is homotopic to the commutator
map cW PU.p/�PU.p/!SU.p/ must be surjective. Indeed, the previous computation
shows that its effect on the fundamental class x2 � � �xp 2 H p2�1.SU.p/;Z=pZ/ is
nontrivial on cohomology, and this happens only if the map (and any map homotopic
to it) is surjective.

We now attempt to extend this result to other words in F2 . Later, we will also allow p

to vary and will see that our approach works for all elements which do not lie in
ŒF2; ŒF2;F2��. First, we need some preparations. Note that F .1/

2
WD ŒF2;F2� is a free

group with basis fŒxn
1
;xm

2
� j nm¤ 0g; see [43, Proposition 4 in Chapter I, §1.3].

Proposition 3.4 Let w D Œxn
1
;xm

2
�. Then

w�W H�.SU.p/;Z=pZ/!H�.PU.p/;Z=pZ/˝H�.PU.p/;Z=pZ/

satisfies w�.xi/D nm � ai � .y˝yi�1/ mod Ji�1 for some ai 2 Z�
.p/

independent of
n;m. More generally, if w D

Qs
kD1Œx

nk

1
;x

mk

2
�lk , then

w�.xi/D

� sX
kD1

nkmk lk

�
� ai � .y˝yi�1/ mod Ji�1:

On the other hand, if w 2 F
.2/
2

, the second derived subgroup, then we have w� D 0.

Proof If w1W PU.p/�PU.p/! SU.p/ and w2W PU.p/�PU.p/! SU.p/ are word
maps, for w1; w2 2 ŒF2;F2�, such that the associated word map can be factored through
SU.p/, then

w1w2W PU.p/�PU.p/! SU.p/

is equal to

mSU.p/ ı .w1 �w2/ ı�PU.p/�PU.p/W PU.p/�PU.p/! SU.p/:

Hence, the effect on cohomology can be computed explicitly as follows:

xi 7! xi ˝ 1C 1˝xi

7! w�1 .xi/˝ 1C 1˝w�2 .xi/

7! w�1 .xi/Cw
�
2 .xi/:
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The results follow directly from Lemma 2.3 and Corollary 2.10. This finishes the proof
of the proposition.

Consider now the 3-dimensional Heisenberg group

H3.Z/ WD

( 
1 a b
0 1 c
0 0 1

! ˇ̌̌̌
a; b; c 2 Z

)
:

Sending x1 to the matrix with aD 1, bD c D 0 and x2 to the matrix with aD bD 0,
c D 1, we get that w D

Ql
kD1Œx

nk

1
;x

mk

2
�lk is sent to the matrix with aD c D 0 and

b D
Pl

kD1 nkmk lk . It is well known that H3.Z/D F2=ŒŒF2;F2�;F2�. Coming back
to the proof of Theorem 1.6, we see that we will succeed with our strategy if w can be
mapped nontrivially to the central quotient of H3.Z/ by pZ.

Proof of Theorem 1.6 The result is clear if ".w/ 62 ŒF2;F2�, so we may assume
that ".w/ 2 ŒF2;F2�. Now, the assumption on ".w/ implies that it can be mapped
nontrivially to the canonical central extension of Z2 by Z=pZ, which is just the central
quotient of H3.Z/=pZ. This happens if any only if ".w/ 62 ŒF2;F2�

p ŒŒF2;F2�;F2�.
Hence, by our main result above, the induced word map wW PU.p/�PU.p/! SU.p/
is nontrivial on the fundamental class x1 � � �xn 2H p2�1.SU.p/;Z=pZ/, and hence
the word map must be surjective. Since ".w/ 2 F .1/

2
, any lift to SU.p/ of a preimage

of the neutral element solves the equation.

Proof of Theorem 1.5 This is a straightforward consequence of Theorem 1.6 and
Proposition 3.2. The claim about finite groups follows from Mal’cev’s theorem [31],
stating that finitely generated linear groups are residually finite.

3.3 Related results and low-dimensional cases

Let us finish by mentioning a few low-dimensional results which go beyond the second
step of the lower central series. So far, we are unable to exploit the mechanisms behind
these examples in order to get satisfactory results for all hyperlinear groups. However,
we would also like to mention some further directions and possible extensions of the
techniques used in this paper

Recall we denote the commutator by Œx;y� WD xyx�1y�1 . The iterated commutators
cn 2 Fn D hx1; : : : ;xni are defined by induction: cn D Œxn; cn�1� and c1 D x1 . The
first result that goes beyond the second step in the lower central series is the following
result by Porter.

Theorem 3.5 [37] The map c
SU.2/
3
W SU.2/�3! SU.2/ is not null-homotopic.
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In order to treat cn for n � 4, we need to use some more sophisticated results from
algebraic topology related to homotopy nilpotence results. This was done by Rao in
[38], showing also that Spin.n/ is not homotopy nilpotent for n� 7.

Theorem 3.6 [38] The map c
PU.2/
n W PU.2/�n ! PU.2/ is not null-homotopic for

any n 2N .

As before, we obtain results concerning solvability of equations.

Corollary 3.7 Let G be any subgroup of SU.2/ and let w 2 G � Fn be such that
".w/ D cn for some n � 2. Then, w.x1; : : : ;xn/ D 1 can be solved in some group
containing G .

Proof Since SU.2/D S3 , every nonsurjective map is null-homotopic. Thus, using
the same arguments as before, we can conclude that for every w 2 SU.2/�Fn with
content cn , the induced word map wW SU.2/�n! SU.2/ is surjective.

Finally, we want to mention some questions that appear naturally at this interface
between homotopy theory and the study of word maps. Given a topological group, it
seems natural to study the group of words modulo those which are null-homotopic.
Let G be a compact Lie group, set

Nn;G WD
˚
w 2 Fn j wW G

n
!G is homotopically trivial

	
and define Hn;G WD Fn=Nn;G .

Question 3.8 Can we compute H2;SU.n/?

See [23; 49] for partial information about Hn;G in particular cases. In this direction,
the following result is implied by results of Whitehead [48, page 464].

Theorem 3.9 [48] Let G be a connected and simply connected compact Lie group.
Then HG is k–step nilpotent for some k � 2 � dim.G/.

Proof We denote the degree of nilpotency of a group � by nil.�/. Whitehead showed
that the homotopy set ŒX;G� is a group and

nil.ŒX;G�/� dim.X /:

For X D G �G , we obtain nil.ŒG �G;G�/ � dim.G �G/ D 2 � dim.G/. Now, the
subgroup generated by the coordinate projections is precisely HG . This proves the
claim.
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Let G be a topological group, eg a compact Lie group. We call w 2 Fn homotopically
surjective with respect to G if every map in the homotopy class of wW G�n! G is
surjective.

Question 3.10 Let w 2 Fn n f1g. Is wW PU.n/ � PU.n/ ! PU.n/ homotopically
surjective for large n?
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