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Veech groups of infinite-genus surfaces

CAMILO RAMÍREZ MALUENDAS

FERRÁN VALDEZ

We show that every countable subgroup G<GLC.2;R/ without contracting elements
is the Veech group of a tame translation surface S of infinite genus for infinitely
many different topological types of S . Moreover, we prove that as long as every end
has genus, there are no restrictions on the topological type of S to realize all possible
uncountable Veech groups.

20F65, 53A99

Introduction

A surface S endowed with an atlas whose transition functions are translations is called
a translation surface. To each such surface, we can associate the group AffC.S/
formed by all orientation-preserving homeomorphisms of S which are affine in local
coordinates. It is easy to see that the derivative of any affine homeomorphism of S is
constant; hence we have a well-defined map

(1) AffC.S/
D
��!GLC.2;R/:

The main purpose of this article is the study of the image �.S/ of this map. When S is
a compact translation surface,1 �.S/ lies in SL.2;R/, is Fuchsian, and hence acts on
the hyperbolic plane by Möbius transformations. In a milestone paper [12], W A Veech
proved the geodesic flow on a compact translation surface S for which �.S/ is a
lattice behaves, roughly speaking, like the geodesic flow on a flat torus. For this reason,
it is standard to call �.S/ the Veech group of the surface S . Aside from questions
regarding the dynamical properties of the geodesic flow, it is natural to investigate which
subgroups of GLC.2;R/ can be realized as Veech groups. For compact translation
surfaces, this is a difficult question. Moreover, simpler instances of this problem, such
as the existence of hyperbolic cyclic Veech groups, are still open.

1That is, when the metric completion of S with respect to the natural flat metric is a compact surface
of genus g � 1 .
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In this paper, we address the aforementioned realization problem from the perspective
of infinite-type tame translation surfaces.2 This kind of translation surface appears
naturally when studying irrational polygonal billiards (see [11] by the second author) or
infinite coverings of compact translation surfaces (see Hooper and Weiss [4]). Given that
translation surfaces are orientable, the topological type of an infinite-type translation
surface is determined by its genus gDg.S/2N[f1g and a couple of nested compact,
metrizable and totally disconnected spaces Ends1.S/�Ends.S/. Here Ends.S/ is the
space of ends of S and Ends1.S/ is formed by those ends that carry (infinite) genus.
Reciprocally, every couple of nested closed subspaces of the Cantor set X1 �X � 2!

can be realized as the space of ends and the space of ends with genus of some surface.
The following result describes in general terms what is to be expected from the Veech
group of a tame translation surface.

Theorem 0.1 (Przytycki, Schmithüsen and Valdez [8]) The Veech group �.S/ of a
tame translation surface is

(1) countable and does not contain contracting elements, or

(2) conjugated to P WD
˚�
1 t
0 s

�
W t 2R and s 2RC

	
, or

(3) conjugated to P 0 < GLC.2;R/, the subgroup generated by P and � Id, or

(4) equal to GLC.2;R/.

It is not difficult to see that condition (4) above implies that S is isometric to either
the plane or a ramified covering of the plane. Hence it is natural to ask if all other
expected groups can be realized within the same topological class of an infinite-type
tame translation surface:

Question 0.2 Let X1�X � 2! be a nested couple of closed subspaces of the Cantor
set. Is it possible to realize any subgroup of GLC.2;R/ satisfying (1), (2) or (3)
in Theorem 0.1 as the Veech group of some tame translation surface S satisfying
X1 D Ends1.S/ and X D Ends.S/?

For the simplest instance of this question X1 DX D f�g, the answer is positive:

Theorem 0.3 [ibid] Any subgroup of GLC.2;R/ satisfying (1), (2) or (3) in
Theorem 0.1 can be realized as the Veech group of an infinite-genus tame translation
with only one end.

2These are surfaces whose fundamental group is not finitely generated and whose natural flat metric
has only singularities of (possibly infinite) conic type. Compact translation surfaces are tame, but not all
translation surfaces of infinite type are tame. We refer the reader to Bowman and the second author [1] for
a general discussion on singularities of translation surfaces.
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Figure 1: The Loch Ness monster

Figure 2: The blooming Cantor tree

The main contribution of this article is to show that Question 0.2 has a positive answer
for a large topological class of infinite-type tame translation surfaces. For instance,
in Section 2, we show that within the topological class of infinite-type tame transla-
tion surfaces S for which Ends1.S/D Ends.S/, there are no restrictions to realize
uncountable Veech groups:

Theorem 0.4 Let X be any closed subset of the Cantor set and P;P 0 < GLC.2;R/
be as in Theorem 0.1. Then there exist tame translation surfaces S and S 0 for which

� Ends.S/D Ends1.S/D Ends.S 0/D Ends1.S 0/DX , and

� the Veech groups of S and S 0 are conjugated to P and P 0 , respectively.

The rest of the results we present deal with realizing countable subgroups of GLC.2;R/
without contracting elements as Veech groups of infinite-type tame translation surfaces
satisfying Ends1.S/DEnds.S/. We present them according to the following heuristic
picture: if one was to order infinite-genus surfaces satisfying Ends1.S/D Ends.S/
according to their topological complexity, the simplest surface would be the one for
which the space of ends is just a singleton and the most sophisticated would be the one
for which the space of ends is homeomorphic to the Cantor set. These surfaces are
called the Loch Ness monster and the blooming Cantor tree, respectively; see Figures 1
and 2. The nomenclature is due to Phillips and Sullivan [7] and Ghys [3].

Theorem 0.5 Let G < GLC.2;R/ be any countable subgroup without contracting
elements. Then there exists a tame translation surface S homeomorphic to the blooming
Cantor tree whose Veech group is G .

Algebraic & Geometric Topology, Volume 17 (2017)
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In other words, Question 0.2 has a positive answer if we move from the simplest topo-
logical type of an infinite-genus surface without planar ends to the most sophisticated
one. After this, we show that for infinitely many cases “in between”, Question 0.2 also
has a positive answer.

Theorem 0.6 Let X be a countable closed subspace of the Cantor set with characteris-
tic system .k; 1/, where k2N[f0g, and G<GLC.2;R/ any countable subgroup with-
out contracting elements. Then there exists a tame translation surface S whose spaces
of ends Ends1.S/D Ends.S/ are homeomorphic to X and whose Veech group is G.

Recall that a countable compact Hausdorff space X has characteristic system .k; n/

if its kth Cantor–Bendixson derivative, which we denote by Xk , is a finite set of n
points [6]. We remark that for k D 0, the statement of Theorem 0.6 is the statement of
Theorem 0.3 for countable subgroups of GLC.2;R/ without contracting elements.

On the other hand, we know from the Cantor–Bendixson theorem that every uncountable
closed subset of the Cantor set 2! is homeomorphic to a subset of the form BtU � 2! ,
where B is homeomorphic to 2! and U is countable and discrete.

Theorem 0.7 Let B tU be an uncountable closed subset of the Cantor set, where B
is homeomorphic to the Cantor set and U is countable, discrete and its boundary @U is
just one point. Then for any countable subgroup G < GLC.2;R/ without contracting
elements, there exists a tame translation surface S whose spaces of ends Ends1.S/D
Ends.S/ are homeomorphic to B tU and whose Veech group is G .

The proof of Theorem 0.4 is largely inspired by the proof of Theorem 0.3 found in
[8] and a convenient characterization of spaces of ends using binary trees that we
introduce in the next section. On the other hand, Theorems 0.5, 0.6 and 0.7 are a
consequence of an abstract and general construction that we call a puzzle and define in
Section 3. As a matter of fact, some of the main results found in [8] can be deduced
using this construction. Sadly, puzzles do not work to give an answer to all possible
instances of Question 0.2. For example, it is still unknown if every countable subgroup
G < GLC.2;R/ can be realized as the Veech group of an infinite-type translation
surface S whose spaces of ends Ends1.S/D Ends.S/ contain only n� 2 elements.
However, given the evidence provided by the results shown in this article we conjecture
that Question 0.2 always has a positive answer.

Remark 0.8 All the translation surfaces constructed in this article will have infinite
area. We believe that this hypothesis is crucial to answer Question 0.2 positively. For
finite area infinite-type translation surfaces, little is known about the Veech group; see,
for example, [1].
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Reader’s guide In Section 1, we discuss the basic concepts needed to develop the
proofs of our main results. Namely, we recall the topological classification of all
orientable surfaces, the Cantor–Bendixson derivative and the notion of a characteristic
system. We also show that every closed subset X of the Cantor set is the space
of ends of a subgraph TX of an infinite (binary) tree. In particular, we introduce a
decomposition of TX into a countable union of infinite paths which is crucial to the
constructions we present. We finish this section by explaining the construction of the
“building block” used to define puzzles. In Section 2, we prove Theorem 0.4. Finally, in
Section 3, we introduce the so called puzzles and show how Theorems 0.5, 0.6 and 0.7
follow from the same general construction.

1 Preliminaries

We begin this section recalling the topological classification of orientable surfaces,
the Cantor–Bendixson derivative and the notion of a characteristic system. We then
introduce a model for spaces of ends of surfaces based on subgraphs of an infinite
(binary) tree. We finish by explaining the construction of the elementary piece that will
be used in the next section to define puzzles and give the proofs of Theorems 0.5, 0.6
and 0.7.

1.1 Topological classification of surfaces

Through this text we will only work with orientable surfaces S without boundary.
It is a well-known fact that any such surface with finitely generated fundamental
group is determined up to homeomorphism by its genus and number of punctures.
When the fundamental group of the surface is not finitely generated, new topological
invariants, namely the spaces of ends of S , are needed to determine the surface up to
homeomorphism. In what follows, we review these invariants in detail, for they will be
used in the proof of our main results. For more details, we refer the reader to [9].

A pre-end of a connected surface S is a nested sequence U1 � U2 � � � � of connected
open subsets of S such that the boundary of Un in S is compact for every n2N , and for
any compact subset K of S there exists l 2N such that Ul \K D∅. We shall denote
the pre-end U1 � U2 � � � � as .Un/n2N . Two such sequences .Un/n2N and .U 0n/n2N

are said to be equivalent if for any i 2N , there exists j 2N such that U 0j �Ui , and vice
versa. We denote by Ends.S/ the corresponding set of equivalence classes and call each
equivalence class ŒUn�n2N 2Ends.S/ an end of S . We endow Ends.S/ with a topology
by specifying a prebasis as follows: for any open subset W � S whose boundary is
compact, we define W � WD fŒUn�n2N 2 Ends.S/ W W � Ul for l sufficiently largeg.
We call the corresponding topological space the space of ends of S.

Algebraic & Geometric Topology, Volume 17 (2017)
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Proposition 1.1 [9, Proposition 3] The space of ends of a connected surface S is
totally disconnected, compact and Hausdorff. In particular, Ends.S/ is homeomorphic
to a closed subspace of the Cantor set.

A surface is said to be planar if all of its compact subsurfaces are of genus zero. An
end ŒUn�n2N is called planar if there exist l 2N such that Ul is planar. The genus of
a surface S is the maximum of the genera of its compact subsurfaces. We remark that
if a surface S has infinite genus, there exists no finite set C of mutually nonintersecting
simple closed curves with the property that S n C is connected and planar. We define
Ends1.S/� Ends.S/ as the set of all ends of S which are not planar. It follows from
the definitions that Ends1.S/ forms a closed subspace of Ends.S/.

Theorem 1.2 (classification of orientable surfaces [13, Chapter 5]) Let S and S 0 be
two orientable surfaces of the same genus. Then S and S 0 are homeomorphic if only if
both Ends1.S/� Ends.S/ and Ends1.S 0/� Ends.S 0/ are homeomorphic as nested
topological spaces.

Of special interest in this paper is the surface of infinite genus and only one end, and
the surface without planar ends whose ends space is homeomorphic to the Cantor set.
The former is known as the Loch Ness monster (Figure 1) and the latter as the blooming
Cantor tree (Figure 2). The nomenclature is due to [7] and [3], respectively. We remark
that a surface S has only one end if only if for every compact subset K � S there
exists a compact K 0 � S such that K �K 0 and S nK 0 is connected; see [10].

1.2 Cantor–Bendixson derivative

We recall briefly the Cantor–Bendixson theorem and how the Cantor–Bendixson rank
classifies countable compact Polish spaces up to homeomorphism.

Theorem 1.3 (Cantor–Bendixson [5]) Let X be a Polish space. Then X can be
uniquely written as X D B tU , where B is perfect and U is countable and open.

Corollary 1.4 Any uncountable Polish space contains a closed subset homeomorphic
to the Cantor set.

Given a topological space X , the Cantor–Bendixson derivative of X is the set X 0 WD
fx 2X W x is a limit point of Xg. For every k 2N , the kth Cantor–Bendixson deriva-
tive of X is defined as Xk WD .Xk�1/0 , where X0 DX . A countable Polish space is
said to have characteristic system .k; 1/ if Xk ¤∅, XkC1D∅ and the cardinality of
Xk is exactly one.
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Remark 1.5 Any countable Polish space with characteristic system .k; 1/ is home-
omorphic to the ordinal number3 !k C 1, where ! is the least infinite ordinal. In
particular, every two countable Polish spaces with characteristic system .k; 1/ are
homeomorphic. For further details, see [6].

The following results will be used in the proof of Theorem 0.7.

Theorem 1.6 Let X1DB1tU1 and X2DB2tU2 be two uncountable closed subsets
of the Cantor set. Suppose that both boundaries @U1 and @U2 are just singletons. Then
X1 and X2 are homeomorphic.

Proof The Cantor set 2! is identified with the topological group
Q
i2N Zi2 ; see [5,

page 50]. Recall that this group acts by homeomorphisms (freely and transitively) on
itself. Let us denote this action by

(2) ˛W
Y
i2N

Zi2 �
Y
i2N

Zi2!
Y
i2N

Zi2; .Œxn�n2N ; Œyn�n2N/ 7! ŒxnCyn�n2N :

By hypothesis, there are homeomorphisms fj W Bj !
Q
i2N Zi2 , j D 1; 2 and an

element Œzn�n2N 2
Q
i2N Zi2 such that the homeomorphism f �12 ı ˛jŒzn�n2N

ı f1
sends @U1 to @U2 . On the other hand, if we let Uj denote the closure of Uj in Xj for
j D 1; 2, there exists a homeomorphism hW U1! U2 . In particular, h.@U1/D @U2 .
Hence

F W X1!X2; x 7!

�
f .x/ if x 2 B1,
h.x/ if x 2 U1;

is a well-defined bijection. We claim that F is the desired homeomorphism. Let V be
an open set in X2 containing F.@U1/D @U2 . There are open sets W1 and W2 in X1
containing the point @U1 such that f .W1\B1/� V \B2 and h.W2\U1/� V \U2 .
Then F.W1\W2/�V . This proves that the function F is continuous at @U1 . Since F
is defined by gluing homeomorphisms at this point, this is sufficient to prove that F
is continuous. On the other hand, the function F is closed because every continuous
function from a compact Hausdorff space onto a Hausdorff space is closed; see [2,
page 226]. Therefore, F is a homeomorphism.

1.3 The Cantor binary tree

One of the fundamental objects we use in the construction of infinite translation
surfaces with prescribed Veech group is the infinite 3–regular tree. This graph plays a

3Recall that an ordinal number can be made into a topological space by endowing it with the order
topology.
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.0/ .1/

.0; 0/ .0; 1/ .1; 0/ .1; 1/

.0; 0; 0/ .0; 0; 1/ .0; 1 ; 0/ .0; 1; 1/

.1; 0; 0/

.1; 0; 1/ .1; 1; 0/ .1; 1; 1/

Figure 3: Cantor binary tree T 2!

distinguished role since the space of ends of any surface is homeomorphic to a subspace
of its space of ends. We give binary coordinates to the vertex set of the infinite 3–regular
tree, for we use these in a systematic way during the proofs of our main results.

For every n 2N , let 2n WD
Qn
iD1f0; 1gi and �i W 2n! f0; 1g be the projection onto

the i th coordinate. We define V WD fDs WDs 2 2n for some n2Ng and E as the union
of ..0/; .1// with the set˚
.Ds;Dt / WDs 2 2

n and Dt 2 2nC1 for some n 2N;
and �i .Ds/D �i .Dt / for every i 2 f1; : : : ; ng

	
:

The infinite 3–regular tree with vertex set V and edge set E will be called the Cantor
binary tree and denoted by T 2! ; see Figure 3.

Remark 1.7 Let .vn/n2N , where vn 2 2! , be an infinite simple path in T 2! . If
we define Vn as the connected component of T 2! n fvng such that vnC1 2 Vn , then
ŒVn� 2 Ends.T 2!/ is completely determined by .vn/n2N . Hence, if we endow f0; 1g
and 2! WD

Q
i2Nf0; 1gi with the discrete and product topologies, respectively, the map

(3) f W
Y
i2N

f0; 1gi ! Ends.T 2!/; .xn/n2N 7! .vn WD .x1; : : : ; xn//;

is a homeomorphism between the standard binary Cantor set and the space of ends
of T 2! .

Remark 1.8 Sometimes we will abuse notation and denote by f ..xn/n2N/ both the
end defined by the infinite path .vn WD .x1; : : : ; xn//n2N and the infinite path itself
in T 2! .
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.0/ .1/

.0; 0/ .0; 1/ .1; 0/ .1; 1/

.0; 0; 0/ .0; 0 ;1/ .0; 1; 0/ .0; 1; 1/
.1; 0; 0/

.1; 0; 1/ .1; 1 ; 0/ .1; 1; 1/

Figure 4: Countable family of infinite paths T

Lemma 1.9 Let X be a closed subset of the Cantor set. Then there exists a connected
subgraph TX � T 2! such that its ends space Ends.TX / is homeomorphic to X .

Proof Without loss of generality we suppose that X �
Q
i2Nf0; 1gi . Define

(4) TX WD

� [
.xn/n2N2X

f ..xn/n2N/

�
[ ..0/; .1//� T 2! ;

where f is the map defined in (3).

The constructions of translation surfaces that we present follow at most a countable
number of steps. In order to integrate the graphs TX into these constructions, it is
important to be able to express them as a countable union of infinite paths which
intersect in at most a vertex.

Example 1.10 Define T as the union of

..0/; .1/; .1; 1/; .1; 1; 1/; : : : / and ..0/; .0; 0/; .0; 0; 0/; : : : /

with the countable set of infinite paths,˚
..Ds/; .Ds; x/; .Ds; x; x/; .Ds; x; x; x/; : : : / 2 T 2

!
W

Ds 2 2
n; x 2 f0; 1g; and �n.Ds/¤ x

	
n2N :

Then it is easy to see that T 2! D
S

2T 
 . Moreover, any two infinite paths in T are

either disjoint or intersect in just one vertex (see Figure 4).

Lemma 1.11 Let X � 2! be a closed subset of the Cantor set, and let TX be the
subgraph given by Lemma 1.9. Then there exists a countable set of infinite paths TX
such that TX D

S

2TX


 . Moreover, every two infinite paths 
; 
 0 2 TX intersect in at
most one vertex.
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Proof Let us first suppose that X is uncountable. By Theorem 1.3, Ends.TX /DBtU ,
where B is homeomorphic to the Cantor set and U is countable, discrete and open.
If U D∅, then without loss of generality, we can suppose that TX D T 2! and treat
this case as in Example 1.10. Let us suppose then that U D fungn2N . By Lemma 1.9,
we have

TX D

� [
x2BtU

f .x/

�
[..0/; .1//D

� [
x2B

f .x/

�
[

� [
k;n2N

f ..vnk//

�
[..0/; .1//� T 2!;

where f ..vn
k
/k2N/D un . From Example 1.10, we deduce that there exists a countable

family TB of infinite paths of the subgraph TB WD
�S

x2B f .x/
�
[..0/; .1//�TX such

that TB D
S

2TB


 , and any two different infinite paths belonging to TB intersect
in at most one vertex. Now we inductively construct the rest of the desired family of
infinite paths. For the infinite path f ..v1

k
/k2N/ WD ..v

1
1/; .v

1
1 ; v

1
2/; : : : /D u1 in TX ,

there exists j.1/ 2N such that .v11 ; : : : ; v
1
j.1// 2 TB ; however, for each i > j.1/, we

have that .v11 ; : : : ; v
1
i / … TB . We define 
1 WD .v1j.1/; v

1
j.1/C1

; : : : / and the subgraph

(5) T 1X WD TB [f
1g � TX :

We remark that T1X WD TB [ f
1g is a countable family of infinite paths in T 1X such
that T 1X D

S

2T1X


 , and any two different paths in T1X intersect in at most one vertex.
Now suppose we have found the desired countable family Tn�1X of infinite paths for
the subgraph T n�1X � TX , and let f ..vn

k
/k2N/ WD ..v

n
1 /; .v

n
1 ; v

n
2 /; : : : / D un in TX .

Then there exists j.n/ 2N such that .vn1 ; : : : ; v
n
j.n// 2 T

n�1
X , but for each i > j.n/,

.vn1 ; : : : ; v
n
i / … T

n�1
X . We define 
n WD .vnj.n/; v

n
j.n/C1

; : : : / and the subgraph

(6) T nX WD T
n�1
X [f
ng � TX :

The desired countable family of infinite paths is given by TX WD TB [ f
n W n 2Ng.
We finish the proof by remarking that if X is countable, the desired family of countable
infinite paths is obtained from the preceding recursive construction taking T 1X D f
1g
as base case.

Corollary 1.12 Let X be a countable closed subset of the Cantor set. Then the sets
Ends.TX / and TX are in bijection.

By the way we constructed the family TX (see Remark 1.7) we obtain the following:

Corollary 1.13 Let X DB tU be the decomposition of an uncountable subset of the
Cantor set given by Theorem 1.3. Suppose that the boundary @U � B is just one point.
Then there exists an infinite path z
 2 TX such that the end ŒVn�n2N of TX defined
by z
 is precisely @U .
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1.4 Translation surfaces and the Veech group

We recall some general aspects of translation surfaces. For more details, we refer the
reader to [8] and the references within. A translation surface is a real surface S whose
transition functions are translations. Every translation surface inherits a natural flat
metric from the plane via pull back. We denote by yS the metric completion of S with
respect to its natural flat metric.

Definition 1.14 [8] A translation surface S is called tame if for every point x 2 yS ,
there exists a neighborhood Ux � yS which is either isometric to some neighborhood of
the Euclidean plane or to the neighborhood of the branching point of a cyclic branched
covering of the unit disk in the Euclidean plane. In the latter case, we call x a cone
angle singularity of angle 2n� if the cyclic covering is of (finite) order n 2N , and an
infinite cone angle singularity when the cyclic covering is infinite.

We denote by Sing.S/ � yS the set of cone angle singularities of S . A geodesic
in S is called singular if it has one endpoint in Sing.S/ and no singularities in its
interior. A singular geodesic having both endpoints in Sing.S/ is called a saddle
connection. To every saddle connection 
 we can associate two holonomy vectors
fv;�vg �R2 by developing the translation surface structure along 
 . Analogously,
one can associate two unit vectors to every singular geodesic, which we will also call
holonomy vectors. Two saddle connections or singular geodesics are said to be parallel
if their corresponding holonomy vectors are parallel.

An affine diffeomorphism is a map f W S ! S which is affine on charts. We denote by
AffC.S/ the group of all orientation-preserving affine diffeomorphisms. Given that S
is a translation surface, the differential of every element in AffC.S/ is constant. Hence
we have a well-defined group morphism

DW AffC.S/! GLC.2;R/;

where D.f / is the differential matrix of f . The image of D , that we denote by
�.S/ WDD.AffC.S//, is called the Veech group of S ; see [12].

We finish this section by recalling that GLC.2;R/ acts on the set of all translation
surfaces by postcomposition on charts. For every g 2 GLC.2;R/, we let Sg WD g �S
and let xgW SId! Sg be the corresponding affine diffeomorphism.

1.5 Auxiliary constructions

In the following paragraphs we introduce some elementary constructions needed to
prove our main results. All these constructions are based on the same principle: to
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a b b a

0

Figure 5: Gluing marks

glue translation surfaces along parallel marks. A mark m on a translation surface S
is a finite length geodesic having no singular points in its interior. As with saddle
connections, we can associate to each mark two holonomy vectors by developing
the translation structure along them. Two marks on S are parallel if their respective
holonomy vectors are parallel.

Definition 1.15 (gluing marks) Let m and m0 be two disjoint parallel marks of the
same length on a translation surface S . We cut S along m and m0 , which turns S into
a surface with boundary consisting of four straight segments. We glue these segments
back using translations to obtain a tame translation surface S 0 different from the one
we started from. We say that S 0 is obtained from S by regluing along m and m0 .

We denote by m �glue m
0 the operation of gluing the marks m and m0 , and S 0 D

S=m�glue m
0 . In Figure 5, we depict the gluing of two marks on the plane. We remark

that the operation of gluing marks can also be performed for marks on different surfaces.
In any case, SingS 0 nSingS is formed by two 4� cone angle singularities; that is, S
tame implies S 0 tame.

Lemma 1.16 Let S1 and S2 be two translation surfaces homeomorphic to the Loch
Ness monster and M j WD fm

j
i W i 2 Ng a discrete4 family of marks on Sj , j D 1; 2

such that m1i and m2i are parallel of the same length for every i 2N . Then

S WD

� [
j2f1;2g

Sj

�.
.m1i �glue m

2
i /i2N

is a tame translation surface homeomorphic to the Loch Ness monster (see Figure 6).

4By discrete we mean that M j , as a set of marks, does not accumulate in the metric completion of the
surface.
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. . .

. . .

. . .

Figure 6: Gluing marks on the Loch Ness monsters

Proof Given that the family of marks M j does not accumulate in ySj , the quotient S
is a tame translation surface. Let K be a compact subset of S . We will show that
there exists a compact subset K � K 0 � S such that S nK 0 is connected. By the
remark after Theorem 1.2, this implies that S has only one end. Let f W S1! S2 be a
homeomorphism such that f .m1i /Dm

2
i for each i 2N , and define the projections

�1W
[

j2f1;2g

.Sj nM
j /! .S1 nM

1/; x 7!

�
x; if x 2 S1,
f �1.x/; if x 2 S2;

�2W
[

j2f1;2g

.Sj nM
j /! .S2 nM

2/; x 7!

�
x if x 2 S2;
f .x/ if x 2 S1:

We denote by � W S1[S2!S the standard projection. For each j 2 f1; 2g, the closure
of �j

�
��1.K/ n .M 1 [M 2/

�
in Sj is compact. We denote it by Kj . Since Sj has

only one end, there exists a compact subset K 0j � Sj such that Kj �K 0j and Sj nK 0j
is connected. Define K 0 as the closure of

�

� [
j2f1;2g

��1j
�
K 0j \ .Sj nM

j /
��

in S . By construction, K �K 0 and S nK 0 is connected. To conclude the proof, we
remark that, since cutting along marks does not destroy genus, for each j 2 f1; 2g,
the open surface Sj nM j with boundary of Sj has infinite genus and is naturally
embedded in S.

Construction 1.17 (elementary piece) Let X be a closed subset of the Cantor set,
TX the subgraph of T 2! given by Lemma 1.9, and TX a countable family of infinite
paths as in Lemma 1.11. Suppose that for each path 
 2TX , we have a tame translation
surface S.
/ homeomorphic to the Loch Ness monster and a countable family of marks
M WD fmk W k 2Ng � S.
/ which do not accumulate on the metric completion bS.
/.
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Suppose that the vertex set of 
 is labeled by .vk D .x1; : : : ; xk// as in (3). For
each k 2N , we label the kth mark mk of the family M with vk 2 
 and define the
elementary piece associated to X and the family of translation surfaces fS.
/g
2TX as

(7) Selem WD

� [

2TX

S.
/

�.
�;

where � is the equivalence relation given by gluing marks with the same labels.

Lemma 1.18 For every closed subset X of the Cantor set, SelemD Selem.X/ is a tame
translation surface with Ends.Selem/D Ends1.Selem/ homeomorphic to X .

Proof Tameness follows from two facts: any two infinite paths in TX intersect in at
most one vertex, and marks never accumulate on the metric completion bS.
/. The
rest of the proof goes as follows. First we prove that Ends.Selem/ is homeomorphic
to X . The idea is to define an embedding i W TX ,! Selem and show that it induces a
homeomorphisms between Ends.TX / and Ends.Selem/. Finally, we prove that Selem

has no planar ends.

The embedding Let ŒU.
/n�n2N be the end of S.
/. Up to making an isotopy
on S.
/, for every k 2 N , we can suppose that the marks fv1; : : : ; vkg � S.
/ are
contained in S.
/ nU.
/k . It is then easy to see that there exists an infinite simple
embedded path ıW Œ0;1/!S.
/ such that ı.0/ is an extremity of the mark labeled with
the vertex v1 , all marks M are contained in ı.Œ0;1�/, and ı�1.U.
/k/D .k;1/. In
other words, the image of ı goes only once over each mark and runs into the only end of
the surface. On the vertex set V.
/D .vk/k2N , we define i
 .vk/ as the only endpoint
in the mark labeled with vk satisfying the following property: if i
 .vk/i
 .vkC1/
is the segment in the image of ı going from i
 .vk/ to i
 .vkC1/ and pkC1 is the
endpoint on the mark vkC1 different from i
 .vkC1/, then pkC1 2 i
 .vk/i
 .vkC1/.
We extend the map i
 to all edges by declaring the image of the edge .vk; vkC1/ to
be i
 .vk/i
 .vkC1/. This defines an embedding

i
 W 
 ,! S.
/

by declaring that the image of the edge .vk; vkC1/ is precisely the subarc of ı joining
i
 .vk/ to i
 .vkC1/. Now consider two infinite paths 
; 
 0 2 TX sharing a vertex vk .
This means that S.
/ and S.
 0/ are glued along the mark labeled with vk when
constructing Selem . By the way we defined i
 and i
 0 , we have that their images
in Selem only intersect in i
 .vk/D i
 0.vk/. Therefore, we can glue the family of maps
fi
g
2TX to define an embedding

(8) i W TX ,! Selem:
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We remark that in general, we cannot use the set of paths in TX to characterize all
points in Ends.TX / because TX is always countable, but the cardinality of Ends.TX /
is the same as that of X , which may be uncountable. To overcome this difficulty, let
us define the family DX of descending paths of TX as the set of all infinite paths
.Dn/n2N of TX such that Dn 2 2n ; see Section 1.3. Every descendent path .Dn/n2N

defines an element ŒUn�n2N 2Ends.TX / as follows: for every vertex Dn , let Un� TX
be the connected component of TX nDn containing DnC1 . This defines a bijection
between Ends.TX / and DX . We use the family of descending paths of TX to define a
homeomorphism between Ends.TX / and Ends.Selem/.

Let .Dn/n2N 2DX be the descending path determining ŒUn�n2N 2 Ends.TX /. For
each vertex Dn , we consider two cases:

(1) Suppose that there exist two paths 
˛ , 
ˇ 2 TX such that Dn 2 
ˇ \ 
˛ . Let
k0; k

0
0 2 N be the smallest positive integers such that i
˛ .Dn/ 62 U.
˛/k0 2

ŒU.
˛/k�k2N and i
ˇ .Dn/ 62 U.
ˇ /k00 2 ŒU.
ˇ /k�k2N . Then we define Wn as
the connected component of Selem n@U.
˛/k0 [@U.
ˇ /k00

containing i.DnC1/.

(2) Suppose Dn 2 
˛ 2 TX but is not contained in any other infinite path of TX .
Let k0 be the least positive integer such that i
˛ .Dn/ 62U.
˛/k0 2 ŒU.
˛/k�k2N .
Then we define Wn as the connected component of Selem n@U.
˛/k0 containing
i.DnC1/.

It is easy to check that the map

i�W Ends.TX /! Ends.Selem/

given by i�.ŒUn�n2N/ WD ŒWn�n2N is well defined. We now prove that it is a closed
continuous bijection, hence a homeomorphism.

Injectivity Consider two different infinite paths .Dn/n2N and .D0n/n2N in DX
defining ends ŒUn�n2N and ŒU 0n�n2N of TX . Then there exists N 2 N such that
for all m > N , we have that Dm ¤ D0m . This implies that Wm \W 0m D ∅; hence
i�.ŒUn�n2N/D ŒWn�n2N ¤ ŒW

0
n�n2N D i�.ŒU 0n�n2N/.

Surjectivity Consider an end ŒWn�n2N of Selem . By the way the embedding (8)
was defined, Œi�1.Wn \ i.TX //� defines an end in TX . Let .Dn/n2N 2 DX be the
descending path defining Œi�1.Wn\ i.TX //� and ŒUn�n2N D Œi

�1.Wn\ i.TX //�. Then
i�.ŒUn�n2N/D ŒWn�n2N .
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Figure 7: Tame Loch Ness monster SP

The map i� is continuous Let W � Selem be an open set with compact boundary
and W � � Ends.Selem/ the basic open set it defines in the space of ends. Since (8) is
an embedding, we have that U WD i�1.W \TX / is an open set with compact boundary,
and i�.U�/�W � .

The map i� is closed, for it is a bijection from a compact Hausdorff space into a
Hausdorff space. Finally, we remark that Selem has no planar ends, for each piece S.
/
used in its construction has infinite genus.

2 Proof of Theorem 0.4

The proof that we present relies on Construction 1.17 and Lemma 1.18. First we define
a tame translation surface SP homeomorphic to the Loch Ness monster whose Veech
group is exactly P . This surface comes with an infinite family of marks which do
not accumulate on the boundary; hence we are in shape to perform Construction 1.17
taking all S.
/ to be equal to SP and X an arbitrary closed subset of the Cantor set.
We then check that the Veech group of the resulting elementary piece Selem is P . The
case for P 0 is treated analogously.

Construction 2.1 Consider a copy E of the Euclidean plane equipped with a fixed
origin x0 and an orthogonal basis ˇ D fe1; e2g. On E, we define5 two infinite families
of marks,

L WDfliD ..4i�1/e1; 4ie1/ W i 2Ng and M WDfmiD ..4i�3/e1; .4i�2/e1/ W i 2Ng;

and the tame Loch Ness monster (see Figure 7)

(9) SP WD E=.l2i�1 �glue l2i /i2N :

Given that f˙e1g is the set of all holonomy vectors of SP and there are no saddle
connections on the half plane x < 0, the Veech group of SP is P . We remark that SP

5Marks are given by their ends points.
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comes with the infinite family of marks M D fmkgk2N , none of which has been glued
to another mark.

Let X be a closed subset of the Cantor set and

(10) Selem WD

� [

2TX

S.
/

�.
�

the tame translation surface obtained by performing Construction 1.17 with initial
data X and all S.
/ equal to SP . By Lemma 1.18, Selem has no planar ends, and its
ends space is homeomorphic to X . Since all marks M in SP are parallel, all saddle
connections in Selem are parallel as well. Hence we can define for each g 2P an affine
diffeomorphism f on SP whose differential is exactly g and which fixes all points
in the marks belonging to L and M . Since Selem is obtained by gluing copies of SP
along saddle connections, these affine diffeomorphisms can be glued together to define
a global affine diffeomorphism f 2 AffC .Selem/ whose differential is precisely g . In
other words, P is a subgroup of �.Selem/. To see that �.Selem/ is a subgroup of P ,
it is sufficient to remark that there is only one horizontal direction defining infinite
singular geodesics in Selem , and this direction has to be fixed by the (linear) action
of �.Selem/ on the plane. The construction of a tame translation surface having ends
space homeomorphic to X and Veech group equal to P 0 is done exactly as we did
for P , except that instead of taking all copies of S.
/ equal to SP , we take them
equal to the surface SP 0 defined in the following paragraph.

Construction 2.2 Consider a copy E of the Euclidean plane equipped with a fixed
origin x0 and an orthogonal basis ˇ D fe1; e2g. On E we define two infinite families
of marks,

MC WD fmCi D ..4i � 3/e1; .4i � 2/e1/ W i 2Ng;

M� WD fm�i D ..3� 4i/e1; .2� 4i/e1/ W i 2Ng;

and
LC WD flCi D ..4i � 1/e1; 4ie1/ W i 2Ng;

L� WD fl�i D ..1� 4i/e1;�4ie1/ W i 2Ng;

and the tame Loch Ness monster (see Figure 8)

(11) SP 0 WD E=.lC2i�1�glue l
C
2i ; l

�
2i�1�glue l

�
2i /i2N :

Corollary 2.3 There exists a tame translation surface S of genus zero with Veech
group P such that its space of ends is homeomorphic to X .

Indeed, consider the copy E of the Euclidean plane described by Construction 2.1 with
only the family of marks M , and proceed verbatim.
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Figure 8: Tame Loch Ness monster SP 0

3 Proofs of main results

In this section, we present the proofs of Theorems 0.5, 0.6 and 0.7. These follow from
a general construction that we introduce in the first section of this section.

3.1 Puzzles

Let .X;G;H/ be a triple where X is a closed subset of the Cantor set, and G

is a countable subgroup of GLC.2;R/, without contracting elements, generated6

by H . To the triple .X;G;H/ we will associate a family of tame translation surfaces
P.X;G;H/D fSg W g 2Gg. This set will be called a puzzle and each of its elements
a piece. As notation suggests, each piece of the puzzle is an affine copy of a fixed tame
translation surface, which will be called the elementary piece of the puzzle, for it is
obtained through Construction 1.17. The pieces Sg of the puzzle are endowed with
families of marks that do not accumulate in the metric completion; hence we can glue
them together to form a tame translation surface SP that we will call the assembled
surface. The Veech group of the surface SP is G . Moreover, this surface satisfies
Ends.SP/D Ends1.SP/, and we will give an explicit description of this space of ends
that will allow us to prove, for different instances of X , Theorems 0.5, 0.6 and 0.7.

The elementary piece of a puzzle As its name suggests, this piece is obtained using
Construction 1.17. Recall that this construction has as initial data a closed subset X
of the Cantor set and, for each path 
 in the countable family of paths TX given by
Lemma 1.11, a tame Loch Ness monster S.
/ endowed with an infinite family of
marks that do not accumulate. We build the surfaces S.
/ gluing together a series of
tame translation surfaces that we define in what follows. With this purpose in mind, we
choose an enumeration7 G WD fg1; : : : ; gjGjg and H WD fh1; : : : ; hjH jg for elements
in G and H respectively.

6We think of H as generator subset closed under inverse elements.
7By enumeration of these groups when jGj or jH j is infinite, we mean to write them as an infinite

sequence.
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Buffer Loch Ness monster For every hj 2H and g 2G , we construct a tame transla-
tion surface S.g; ghj / homeomorphic to the Loch Ness monster. The purpose of these
surfaces is to separate singularities during the construction of SP , thus guaranteeing
tameness. This idea already appears in Construction 4.4 in [8].

For each element hj 2H , consider two copies E.j; 1/ and E.j; 2/ of the Euclidean
plane equipped with origins x0 and an orthogonal basis ˇ D fe1; e2g for each. On
E.j; 1/, we draw the two families of marks

LM j
WD f Lm

j
i D .4ie1; .4i C 1/e1/ W i 2Ng;

L1 WD fl
1
i D ..4i C 2/e1; .4i C 3/e1/ W i 2Ng;

and similarly, on E.j; 2/,

hj LM
�j
WD fhj Lm

�j
i D .2ie2; e1C 2ie2/ W i 2Ng;

L2 WD fl
2
i D ..2i C 1/e2; e1C .2i C 1/e2/ W i 2Ng:

We define (see Figure 9) the buffer surface

(12) S.Id; hj / WD
� 2[
kD1

E.j; k/

�.
.l1i �glue l

2
i /i2N :

By Lemma 1.16, the surface S.Id; hj / is a tame translation surface with infinitely many
conic singularities of angle 4� homeomorphic to the Loch Ness monster. For each
g 2G , we define

(13) S.g; ghj / WD g �S.Id; hj /:

That is, S.g; ghj / is the affine copy of S.Id; hj / obtained by postcomposing every
chart by the affine transformation associated to the matrix g . The family of marks LM j

and hj LM�j on S.g; ghj / are relabeled as g LM j and ghj LM�j , respectively. These
marks will be used later to construct SP . As said before, the purpose of the surfaces
S.g; ghj / is to separate singularities during the construction of SP , thus guaranteeing
tameness. The following lemma is essential to assure this property.

Lemma 3.1 [8, Lemma 4.5] For every g 2 G and hj 2 H , the distance between
g LM j and ghj LM�j is at least 1=

p
2.

Decorated Loch Ness monster Using S.Id; hj / defined above, we construct a tame
translation surface S homeomorphic to the Loch Ness monster and having only one
conic singularity of angle 6� . This surface will be called the decorated Loch Ness
monster, and its purpose is to force the Veech group of SP to be exactly G . This idea
also appears in Construction 4.6 in [8].
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Figure 9: Buffer Loch Ness monster S.Id; hj /

Consider a copy E of the Euclidean plane equipped with an origin x0 and the same
orthogonal basis ˇDfe1; e2g as before. On E we draw the following families of marks:

M WD
˚
mi D ..4i�1/e1; 4ie1/ W i 2N

	
;

M j
WD
˚
m
j
i D ..2i�1/e1C .jC1/e2; 2ie1C .jC1/e2/ W i 2N; j 2 f0; : : : ; jH jg

	
:

Now, we shall recursively define new families of marks on E.

For j D 1, we can choose a point .x1; y1/ 2 E where x1 > 0 and y1 < 0 such that
the family of marks

M�1 WD
˚
m�1i D .ix1e1Cy1e2; ix1e1C h

�1
1 e1Cy1e2/ W i 2N

	
� E

is disjoint from the families M and M j defined in the previous paragraph. For
jH j � j > 1, we can choose a point .xj ; yj / 2 E where xj > 0 and yj < 0 such that
the family of marks

M�j WD
˚
m
�j
i D .ixj e1Cyj e2; ixj e1C h

�1
j e1Cyj e2/ W i 2N

	
� E
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is disjoint from the families of marks defined in M and M j above, and in step j �1.

On the other hand, let � W zE! E be the threefold cyclic covering of E branched over
the origin, and �M 0

WD f�m0i W i 2Ng

one of the three (disjoint) families of marks on zE defined by ��1.M/. In addition,
consider preimages zt1 and zt2 of t1 WD .e2; 2e2/ and t2 WD .�e2;�2e2/, respectively,
which are in the same fold of zE as �M 0 . We define the decorated surface as

(14) S WD

�
E[ zE[

[
hj2H

S.Id; hj /
�.
�;

where � is the equivalent relation given by gluing marks as follows (see Figure 10):

(1) zt1 �glue zt2 on zE.

(2) m0i �glue �m0i on E and zE, respectively.

(3) m
j
i �glue Lm

j
i for each i 2N and for each j 2 f1; : : : ; jH jg, on E and S.Id; hj /,

respectively.

By Lemma 1.16, the decorated surface S is a tame translation surface homeomorphic
to the Loch Ness monster with infinitely many cone angle singularities of angle 4�
and only one singular point of angle 6� .

Remark 3.2 The decorated surface S has 2jH j C 1 families of marks left without
gluing. These are hj LM�j , M�j and M , where j 2 f1; : : : ; jH jg. These marks will
be used in what follows to define the elementary piece of the puzzle and to glue the
surfaces Sg forming the puzzle to form the surface SP .

Construction 3.3 (elementary piece associated to puzzle P.X;G;H/) Consider a
closed subset X of the Cantor set, the graph TX with ends space homeomorphic to X
given by Lemma 1.9 and the countable family TX of paths given by Lemma 1.11 and
decomposing TX . Pick an arbitrary path z
 2 TX . We define S.z
/ as a copy of the
decorated Loch Ness monster described above. We endow this tame translation surface
with the family of marks M (see preceding remark). Clearly, the family M does not
accumulate in the metric completion of S.z
/. Moreover, for each k 2 N , we label
the kth mark mk of the family M in S.z
/ with the vertex vk 2 z
 .

For each infinite path 
 in TX n fz
g, we define S.
/ as a copy of the Loch Ness
monster described in Construction 2.1. By construction, each S.
/ is endowed with a
countable family of marks which, abusing notation, we also denote by M . These marks
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Figure 10: Decorated Loch Ness monster S

do not accumulate on the metric completion. For each k 2N , we label the kth mark
mk of the family M in S.
/ with the vertex vk 2 
 . The elementary piece associated
to the puzzle P.X;G;H/, which we denote by Selem , is defined as the tame translation
surface obtained by performing Construction 1.17 on the initial data X and the marked
translations surfaces

S.z
/[

� [

2TXnz


S.
/

�
:
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Remark 3.4 The elementary piece Selem has the following properties:

(1) From Lemma 1.18, we can deduce that the surface Selem is a tame translation
surface with space of ends homeomorphic to X and no planar ends.

(2) The families of marks hj LM�j and M�j , for each j 2 f1; : : : ; jH jg, have (still)
not been glued to other marks.

(3) By construction, there is only one end ŒU elem
n �n2N of Selem having the following

property: for every n, there exists U elem
n such that U elem

n \.hj LM
�j [M�j / are

infinitely many marks. This end is defined by taking complements of large balls
centered at the origin in the Euclidean plane E defining the decorated Loch Ness
monster S.z
/. We will call this end the distinguished end of the elementary
piece Selem .

(4) On the other hand, every other end ŒUn�n2N 2 Ends.Selem/ n fŒU
elem
n �n2Ng

satisfies that there exists an n such that the intersections of Un with the families
of marks hj LM�j [M�j in S.z
/ are empty, for j 2 f1; : : : ; jH jg.

Definition 3.5 (puzzle and assembled surface) Let X be a closed subset of the Cantor
set, G a countable subgroup of GLC.2;R/, without contracting elements, generated
by H . For each g 2 G , let Sg WD g � Selem be the affine copy of Selem obtained by
postcomposing its translation atlas with the linear transformation defined by g . For
each j 2 f1; : : : ; jH jg, we denote by ghj LM�j and gM�j the families of marks
on Sg given by the image of the families of marks hj LM�j and M�j via the affine
diffeomorphism xgW Selem! Sg ; see Section 1.4. We define the puzzle associated to
the triplet .X;G;H/ as the set of marked surfaces,8

(15) P.X;G;H/ WD fSg W g 2Gg:

The assembled surface associated to the puzzle P.X;G;H/ is defined as

(16) SP WD

� [
g2G

Sg

�.
�;

where � is the equivalent relation given by gluing marks as follows. Given an edge
.g; ghj / of the Cayley graph Cay.G;H/, we glue9 for each i 2N , the mark ghj Lm

�j
i 2

ghj LM
�j � Sg to the mark ghjm

�j
i 2 ghjM

�j � Sghj .

8That is, on Sg we consider the families of marks ghj LM�j and gM�j .
9We remark that, by construction, marks we glue are indeed parallel.
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Remark 3.6 The pieces Sg of the puzzle inherit all affine invariant properties
from Selem , namely:

(1) Sg is a tame translation surface without planar ends whose space of ends is
homeomorphic to X .

(2) For every g2G , there is only one end ŒU gn � of Sg having the following property:
for every n, there exists U gn such that there are infinitely many marks of the
form U

g
n \ .ghj LM

�j [ gM�j /. We will call this end the distinguished end
of Sg .

(3) Every other end ŒUn�n2N 2 Ends.Sg/ n fŒU
g
n �n2Ng satisfies the following prop-

erty: there exists an n such that the intersection Un\ .ghj LM�j [gM�j /D∅
for each j 2 f1; : : : ; jH jg. We will call these kind of ends common ends.

Property (3) above tells us that every common end ŒUn�n2N 2 Ends.Sg/ has a rep-
resentative Un that avoids the families of marks used to assemble the surface SP .
Therefore, we can embed Un into SP (using the identity) and induce an embedding
for common ends,

(17) ig W Ends.Sg/ n fŒU gn �n2Ng ,! Ends.SP/; ŒUn�n2N 7! ŒUn�n2N :

We remark that the end ig.ŒUn�n2N/ of SP is not planar. The following proposition
describes the space of ends of the assembled surface as a set.

Theorem 3.7 The assembled surface SP is a tame translation surface without planar
ends, and its Veech group is G . Moreover,

(18) Ends.SP/D fŒ zUn�n2Ng[

� G
g2G

ig
�
Ends.Sg/ n fŒU gn �n2Ng

��
:

We insist that the preceding is an equality in the category of sets, not in the category
of topological spaces. In particular, this result says that all distinguished ends in the
puzzle P.X;G;H/ merge into a single end fŒ zUn�n2Ng when constructing SP . We
will call this end the secret end of SP .

Proof We begin by showing that the assembled surface SP is tame. This follows
from the following two facts:

� The surface SP is a complete metric space.10 Indeed, let .xn/n2N � SP be a
Cauchy sequence. Lemma 3.1 implies that the cost (in distance inside SP ) to

10This is with respect to the distance induced by the natural flat metric on SP .
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escape from a piece Sg of the puzzle is at least 1=
p
2. Hence the sequence .xn/

is eventually contained in the closure (in SP ) of the open subset

U.g/ WD Sg n

jH j[
jD1

.ghj LM
�j
[gM�j /;

and this closure is, by construction, a complete metric subspace of SP .

� The set of singularities of SP is discrete in SP . This follows from Lemma 3.1
and the fact that the set of singularities at each piece Sg of the puzzle is discrete.

We now prove that the Veech group of SP is G . For every g; g0 2G , there is a natural
affine diffeomorphism fgg 0 W Sg!Sg 0g whose differential is precisely g0 . These trans-
formations send parallel marks to parallel marks; therefore, one can glue all the fgg 0 to-
gether to induce an affine diffeomorphism in the quotient Fg 0 W SP! SP whose differ-
ential is precisely g0 . Since g0 was arbitrary, we have that G<�.SP/. When construct-
ing the elementary piece Selem , we added in purpose a decorated Loch Ness monster so
that Selem has only one 6� singularity x.Id/ and only three saddle connections 
1 , 
2
and 
3 issuing from it. Moreover, the holonomy vectors of these saddle connections are
f˙e1;˙e2g. This implies that every piece Sg in the puzzle P.X;G;H/ has only one
singularity x.g/ of total angle 6� and only three saddle connections 
1 , 
2 and 
3
issuing from it. The holonomy vectors of these are f˙g � e1;˙g � e2g. On the other
hand, suppose that an affine diffeomorphism f 2AffC.SP/ sends x.Id/ 2 SelemD SId

to x.g/. Its derivative Df must then send f˙e1;˙e2g to f˙g � e1;˙g � e2g and have
positive determinant. The only possibility is Df D g ; therefore, �.S/ < G .

We now address (18). Given that this is the most technical part of the proof, we divide
our approach in three steps:

(I) For any two different elements g ¤ g0 in G , we have that the embeddings defined
in (17) have disjoint images

(19) ig
�
Ends.Sg/ n fŒU gn �n2Ng

�
\ ig 0

�
Ends.Sg 0/ n fŒU g

0

n �n2Ng
�
D∅:

Therefore,
F
g2G ig

�
Ends.Sg/ n fŒU

g
n �n2Ng

�
is a subset of Ends.SP/. Indeed, con-

sider two ends

ŒWn�n2N 2 ig
�
Ends.Sg/nfŒU gn �n2Ng

�
and ŒZn�n2N 2 ig 0

�
Ends.Sg 0/nfŒU g

0

n �n2Ng
�
:

Without loss of generality we can suppose that ŒWn�n2N and ŒZn�n2N are ends of the
pieces Sg and Sg 0 , respectively. Given that ŒWn�n2N is different from the distinguished
ŒU
g
n �n2N , there exists a representative WN which does not intersect any of the buffer

surfaces in the decorated Loch Ness monster forming Sg . Since a path from Sg to Sg 0
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has to go through one of these buffer surfaces, there exists a representative ZM such that
WN \ZM D∅. Therefore, the ends ŒWn�n2N and ŒZn�n2N are disjoint in Ends.SP/.

(II) There exists an end Œ zUn�n2N , that we will call the secret end, in the complement
of
F
g2G ig

�
Ends.Sg/ n fŒU

g
n �n2Ng

�
in Ends.SP/. We construct this end inductively

in what follows. First, we choose an enumeration G WD fg1; : : : ; gjGjg and H WD
fh1; : : : ; hjH jg for elements in G and H , respectively. Since surfaces are � –compact
spaces, for every g2G , there exists an exhaustion of SgD

S
n2N gKn by compact sets

whose complements define the ends space of the surface. More precisely, we can write

(20) Sg ngKn WD gU
n
1 t � � � tgU

n
k.n/ t � � � tgU

n
in
;

where each gU nk.n/ with k.n/ 2 f1; : : : ; ing is a connected component whose closure
in Sg is noncompact, but has compact boundary, and for every k.nC1/2f1; : : : ; inC1g,
there exists k.n/2 f1; : : : ; ing such that gU nk.n/� gU

nC1
k.nC1/ . In other words, the space

Ends.Sg/ are all nested sequences .gU nk.n//n2N . Without loss of generality, we can
assume that ŒgU n1 �n2N defines the distinguished end ŒU gn �n2N of Sg for all g 2G .
Now consider g1 2G . By taking g1K1 big enough, we have the decomposition into
connected components,

SP ng1K1 D zU1 tg1U
1
2 t � � � tg1U

1
i1
;

where g1U 1j � Sg1 and g1U 1j \U
g1
n D∅ for all j D 2; : : : ; i1 and n big enough. By

definition, the connected component zU1 � SP contains U g11 D g1U
1
1 , has compact

boundary, and is not planar, for U g11 � zU1 has infinite genus. To define zUn for n > 1,
consider the “first” n elements g1; : : : ; gn in G . By taking gjKn big enough, we
have the decomposition in connected components

SP n

n[
kD1

gkKn D zUn t

� nG
kD1

.gkU
n
2 t � � � tgkU

n
k.n/ t � � � tgkU

n
in
/

�
;

where gkU nk.n/�Sgk and gkU nk.n/\U
gk
m D∅ for all kD 1; : : : ; n, k.n/D 2; : : : ; in ,

and m big enough. By definition, the connected component zUn contains
Sn
kD1 U

gk
n ,

has compact boundary and is not planar. Moreover, zUn�1 � zUn and, since fgKngn2N

is an exhaustion of Sg , for every compact subset K in SP , there exists N such that
zUN \K D∅. In other words, Œ zUn�n2N is an element of Ends.SP/ and is not planar.
In Figure 11, we depict this secret end when G is an infinite cyclic group.

Now let ŒVn�n2N 2
F
g2G ig

�
Ends.Sg/ n fŒU

g
n �n2Ng

�
. Without loss of generality,

we can suppose that ŒVn�n2N is an element in Ends.Sgk / n ŒU
gk
n �n2N for some

gk 2 G . Given that ŒVn�n2N is not a distinguished end, there exist m; l 2 N such
that Vm � Sgk n gkKl , and Vm is disjoint from all buffer surfaces in the decorated
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Figure 11: Secret end of SP when G D Z

Loch Ness monster in Sgk ; hence Vm\Sg 0 D∅ for every g0 ¤ g . This implies that
Œ zUn�n2N cannot belong to

F
g2G ig

�
Ends.Sg/ n fŒU

g
n �n2Ng

�
.

(III) The secret end Œ zUn�n2N and
F
g2G ig

�
Ends.Sg/n fŒU

g
n �n2Ng

�
is all there is in

Ends.SP/. Consider an end ŒWn�n2N of SP . For every n 2N , there exists l.n/ 2N
such that

Wl.n/ � SP n

n[
kD1

gkKn D zUn t

� nG
kD1

.gkU
n
2 t � � � tgkU

n
in
/

�
:

There are two cases to consider. First suppose that there exists N 2 N such that
Wl.N/ � gkU

N
j for some .k; j / 2 f1; : : : ; ng � f1; : : : ; ing. In this situation, we have

ŒWn�n2N 2 ig
�
Ends.Sg/ n fŒU

g
n �n2Ng

�
for some g 2G . Suppose now that for every

n 2N , there exists l.n/ such that Wl.n/ � zUn . If we fix n, there exists k.n/ such that
zUk.n/ \ @Wn D ∅. Hence, the open subset zUk.n/ � SP is contained in a connected
component of SP n @Wn . Given our assumption, there exists l.k.n// 2 N such that
Wl.k.n// � zUk.n/ . Now, since zUk.n/ is connected, we have that either Wn �Wl.k.n//
or Wl.k.n// � Wn implies that the connected component of SP n @Wn containing
zUk.n/ is precisely Wn . Then we conclude that for every n, there exists k.n/ such that
zUk.n/ �Wn , and hence the ends Œ zUn�n2N and ŒWn�n2N are the same.

To finish the proof, note that, by construction, all ends in (18) have infinite genus.

3.2 Proof of Theorem 0.5

Let 2! denote the Cantor set and consider the puzzle P.2! ; G;H/. Following
Theorem 3.7, it is sufficient to prove that Ends.SP/ has no isolated points. Then
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let W � be an open neighborhood of ŒUn�n2N 2 Ends.SP/. From (18), we have
two cases to consider. First, suppose that there exists g 2 G such that ŒUn�n2N 2

ig
�
Ends.Sg/ n fŒU

g
n �n2Ng

�
. In this case, there exists an open subset V of SP with

compact boundary such that Ul � V � W \ Sg . From Remark 3.4, we know that
Ends.Sg/ is homeomorphic to 2! . Hence V �nŒUn�n2N �W

�nŒUn�n2N is not empty.
Now suppose that ŒUn�n2N is equivalent to the secret end Œ zUn�n2N . We know that
there exists Ul � W and, by construction, Uk � Ul such that U �

k
� W � contains

Ends.Sg/ n ŒU
g
n �n2N for some g 2 G . Since the latter is homeomorphic to 2! , we

have that W � n ŒUn�n2N is not empty.

3.3 Proof of Theorem 0.6

Consider the ordinal number !kC1 for a fixed k 2N . Following Theorem 3.7, it is suf-
ficient to prove that Ends.SP/ is homeomorphic to !kC1. Roughly speaking, the idea
of the proof is the following: First, we properly choose the path z
 in Construction 3.3
so that the kth iterate of the Cantor–Bendixson derivative on Ends.Sg/ is precisely the
distinguished end ŒU gn � for all g 2G . Using this and some properties of the secret end
for this particular case, we will define a countable topological space Yk . Finally, we
will prove that Ends.SP/ is homeomorphic to Yk and that the characteristic system of
Yk is precisely .k; 1/.

Fix a topological embedding !kC1 ,!Ends.T 2!/, let T!kC1 be the graph with ends
space homeomorphic to ordinal number !kC 1 given by Lemma 1.9, and let T!kC1
be the countable family of paths given by Lemma 1.11. Given that !kC1 is countable,
the sets Ends.T!kC1/ and T!kC1 are in bijection; see Corollary 1.12. Let z
 2T!kC1
be the infinite path corresponding to the only point left in Ends.T!kC1/ after the kth

iteration of the Cantor–Bendixson derivative. We perform Construction 3.3 of the
elementary piece of the puzzle P.!kC1;G;H/ choosing the infinite path z
 2T!kC1 ,
associated to the decorated Loch Ness monster, as above. With this choice, we assure
that the kth iteration of the Cantor–Bendixson derivative on the space of ends of every
piece Sg of the puzzle P.!kC 1;G;H/ is precisely the distinguished end ŒU gn �n2N .
Let U � SP be a connected open subset with compact boundary defining an open
neighborhood U � of the secret end Œ zUn�n2N in Ends.SP/. Then there exists a finite
subset G.U �/�G such that:

(1) For every g 2G.U �/, we have @U \Sg ¤∅ and ig
�
Ends.Sg/ n fŒU

g
n �n2Ng

�
is not properly contained in U � .

(2) For every element g 2G nG.U �/, we have ig
�
Ends.Sg/ n fŒU

g
n �n2Ng

�
� U �

and @U \Sg D∅.
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Figure 12: The surface SP when G D Z and Ends.Sg/ is homeomorphic
to !C 1

To illustrate these properties, consider the nontrivial example G D Z and Ends.Sg/
homeomorphic to !C 1 as depicted in Figure 12.

For every g 2G , let !kg be a copy of the ordinal number !k , and define

(21) Yk WD fyg[

� G
g2G

!kg

�
;

where y is just an abstract point. We endow Yk with a topology as follows. Let U �

be an open neighborhood of the secret end Œ zUn�n2N of SP , and G.U �/�G a finite
subset with m.U �/ elements defined as above. For every f
gj1 ; : : : ; 
gjm.U�/ g 2Q
g2G.U�/ !

k
g , we define

(22) W
�
G.U �/; f
gj1 ; : : : ; 
gjm.U�/

g
�

WD fyg[

�m.U�/G
nD1

fˇ 2 !kgjn
W ˇ � 
gjn g

�
[

� G
g2GnG.U�/

!kg

�
� Yk :

Then

B WD
˚
W
�
G.U �/; f
gj1 ; : : : ; 
gjm.U�/

g
�	

[fW WW is an open subset of !kg for any g 2Gg

is the basis for the topology of Yk . We remark that Yk is a countable Hausdorff space
with respect to this topology.
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We now prove that Yk is homeomorphic to Ends.SP/. By the way we chose the infinite
path z
 2T!kC1 , there exists a homeomorphism fg W ig

�
Ends.Sg/nfŒU

g
n �n2Ng

�
!!kg

for every g 2G . Define F W Ends.SP/! Yk as

ŒVn�n2N!

�
fg.ŒVn�n2N/ if ŒVn�n2N 2 ig

�
Ends.Sg/nfŒU

g
n �n2Ng

�
for some g 2G,

y if ŒVn�n2N is the secret end Œ zUn�n2N .

To prove that F is a homeomorphism, it is sufficient to prove that it is continuous at the
secret end Œ zUn�n2N , for every continuous map from a compact and Hausdorff space into
a Hausdorff space is a closed map; see [2, page 226]. Consider an open neighborhood
W.G.U �/; f
gj1 ; : : : ; 
gjm.U�/

g/ of y as in (22). Since G.U �/ has m.U �/ < 1
elements, there exists a compact set K in SP such that its complement UK satisfies:

(1) U �K \ igjn

�
Ends.Sgjn / n fŒU

gjn
n �n2Ng

�
� F�1

�
fˇ 2 !kgjn

W ˇ � 
gjn g
�

for all
nD 1; : : : ; m.U �/,

(2) Œ zUn�n2N 2 U
�
K .

Therefore F.U �K/ � W
�
G.U �/; f
gj1 ; : : : ; 
gjm.U�/

g
�

as desired, and hence F is
continuous.

We claim that the characteristic system of Yk is .k; 1/. To see this, first note that for
each g 2G , the copy !kg of !k figuring in the right-hand side of (21) is (topologically)
embedded in Yk . On the other hand, given that !k is not a limit ordinal, y is a
limit point of the subset

F
g2G !

k
g . These two facts combined imply that the set of

accumulation points of Yk is precisely Yk�1 for every k� 2, and just the singleton fyg
when k D 1. Hence the .k�1/st iteration of the Cantor–Bendixson derivative on Yk
yields Y1 , which has characteristic system .1; 1/. This implies that the characteristic
system of Yk is precisely .k; 1/, and the proof is complete.

3.4 Proof of Theorem 0.7

Following Theorem 3.7, it is sufficient to prove that Ends.SP/ is homeomorphic to
BtU , where by hypothesis, B is homeomorphic to the Cantor set and U is a countable
discrete set of points such that @U D u 2 B . As in the proof of Theorem 0.6, we
first deal with the elementary piece of P.B t U;G;H/. From Corollary 1.13, we
know that there exists a path z
 2 TBtU that defines the end of TBtU corresponding
to u, the boundary of U in B tU . We perform Construction 3.3 of the elementary
piece taking the decorated Loch Ness monster as S.z
/, where z
 is chosen just as
mentioned before. This way, for every g 2 G , we have that Ends.Sg/ D Bg tUg ,
with Bg homeomorphic to the Cantor set, Ug is discrete and countable, and @Ug
is equal to the distinguished end ŒU gn �n2N . On the other hand, given that the map
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ig W Ends.Sg/ n fŒU
g
n �n2Ng ! Ends.SP/ defined in (17) is an embedding for every

g 2G , Ends.SP/ is uncountable, and

(23) ig
�
Ends.Sg/ n fŒU gn �n2Ng

�
D ig

�
Bg n fŒU

g
n �n2Ng

�
t ig.Ug/:

By the Cantor–Bendixson theorem (Theorem 1.3), we can write Ends.SP/DBPtUP ,
where BP is homeomorphic to the Cantor set and UP is discrete and countable. From
Theorem 1.6, it is sufficient to show that @UP is just a point to finish the proof. We
achieve this in what follows.

Recall that

(24) Ends.SP/D BP tUP D fŒ zUn�n2Ng[

� G
g2G

ig
�
Ends.Sg/ n fŒU gn �n2Ng

��
:

We claim that @UP D fŒ zUn�n2Ng. We first remark that, by the choices we made, the
secret end of SP is not an isolated point of Ends.SP/; hence Œ zUn�n2N 2 BP . From
(23) and (24), we obtain

(25) BP D fŒ zUn�n2Ng t

� G
g2G

ig
�
Bg n fŒU

g
n �n2Ng

��
and UP D

G
g2G

ig.Ug/:

Every neighborhood of the secret end Œ zUn�n2N intersects ig.Ug/, and therefore
Œ zUn�n2N 2 @UP . Now let’s prove by contradiction that if ŒVn�n2N 2 @UP , then
ŒVn�n2N D Œ zUn�n2N . By (25), if ŒVn�n2N ¤ Œ zUn�n2N , then we have ŒVn�n2N 2

ig
�
Bg n fŒU

g
n �n2Ng

�
for some g 2G . Without loss of generality, we can suppose that

ŒVn�n2N is actually an end in Bg n fŒU
g
n �n2Ng � Ends.Sg/. Therefore, there exist

l; n 2 N such that Vl \ U
g
n D ∅. But then the open set of SP given by V �

l
is an

open neighborhood of ŒVn�n2N which lies in the complement of UPD
F
g2G ig.Ug/,

which contradicts ŒVn�n2N 2 @UP .
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