msp

On a question of Etnyre and Van Horn-Morris

Tetsuya Ito Keiko Kawamuro

The purpose of this note is to answer Question 6.12 of Etnyre and Van Horn-Morris [*Monoids in the mapping class group*, Geom. Topol. Monographs 19 (2015) 319–365], asking when the set of mapping classes whose fractional Dehn twist coefficient is greater than a given constant forms a monoid.

57M07; 20F65

1 Introduction

Let *S* be a compact oriented surface with nonempty boundary. Let Mod(S) denote the mapping class group of *S*, the group of isotopy classes of homeomorphisms of *S* that fix the boundary ∂S pointwise. Let c(-, C): $Mod(S) \rightarrow \mathbb{Q}$ denote the *fractional Dehn twist coefficient* (FDTC) of $\phi \in Mod(S)$ with respect to the connected component *C* of ∂S . The FDTC plays a fundamental role in the study of (contact) 3–manifolds. See Honda, Kazez and Matić [4] and Ito and Kawamuro [7] for the definition and basic properties of the FDTC which are used in this paper. For $r \in \mathbb{R}$ we define the following sets (see Etnyre and Van Horn-Morris [2, page 344]):

$$FDTC_{r,C}(S) := \{ \phi \in Mod(S) \mid c(\phi, C) \ge r \} \cup \{ id_S \},$$

$$FDTC_r(S) := \{ \phi \in Mod(S) \mid c(\phi, C) \ge r \text{ for all } C \subset \partial S \} \cup \{ id_S \}.$$

Etnyre and Van Horn-Morris ask [2, Question 6.12]: For which $r \in \mathbb{R}$ does the set FDTC_r(S) form a monoid? The following theorem answers this question:

Theorem 1.1 Let *S* be a surface that is not a pair of pants and has negative Euler characteristic. Let *C* be a boundary component of *S*. The set $FDTC_{r,C}(S)$ — and hence $FDTC_r(S)$ — is a monoid if and only if r > 0.

Remark 1.2 In [2, page 344] it is shown that $FDTC_r(S)$ is a monoid for r > 1.

Remark 1.3 If S is a pair of pants then $FDTC_{r,C}(S)$ is a monoid if and only if $r \ge 0$.

Theorem 1.1 states that $FDTC_0(S)$ is not a monoid. But $FDTC_0(S)$ contains the monoid Veer⁺(S) of *right-veering mapping classes* (see [4] for the definition of right-veering mapping classes).

Corollary 1.4 We have

$$\bigcup_{r>0} \operatorname{FDTC}_r(S) \subsetneq \operatorname{Veer}^+(S) \subsetneq \operatorname{FDTC}_0(S).$$

Corollary 1.4 shows that the statement $\text{Veer}^+(S) = \text{FDTC}_0(S)$ in [2, page 345] does not hold.

As discussed in [2], given a surface S, the set of mapping classes in Mod(S) compatible with the contact 3-manifolds with a certain property, such as tight and fillable, often forms a monoid. Conversely, a contact 3-manifold has a certain property when the monodromy lies in a submonoid of Mod(S) which is not directly related to 3-dimensional topology such as Veer⁺(S).

The monoid Veer⁺(*S*) contains the tight monoid Tight(*S*), as shown in [4]. Corollary 1.4 shows a submonoid structure of Veer⁺(*S*). It is announced in Wand [8] that $\bigcup_{r>1} \text{FDTC}_r(S) \subset \text{Tight}(S)$; see also [6] for the planar surface case. In [5] we show that FDTC₁(*S*) $\not\subset$ Tight(*S*). Classification and detection of tight contact structures are central problems in contact topology, and the monoids FDTC_r(*S*) are expected to play important roles.

2 Basic study of quasimorphisms

As shown in [7, Corollary 4.17], the FDTC map c(-, C): Mod $(S) \rightarrow \mathbb{Q}$ is not a homomorphism but a homogeneous quasimorphism if the surface *S* has negative Euler characteristic. In order to prove Theorem 1.1 we first study general homogeneous quasimorphisms and obtain a monoid criterion (Theorem 2.2).

Let G be a group. A map $q: G \to \mathbb{R}$ is called a *homogeneous quasimorphism* if

$$D(q) := \sup_{g,h \in G} |q(gh) - q(g) - q(h)| < \infty,$$
$$q(g^n) = nq(g) \quad \text{for all } g \in G \text{ and } n \in \mathbb{Z}.$$

The value D(q) is called the *defect* of q. A typical example of homogeneous quasimorphism is the *translation number* τ : Homeo⁺ $(S^1) \to \mathbb{R}$ defined by

$$\tau(g) = \lim_{n \to \infty} \frac{g^n(0)}{n} = \lim_{n \to \infty} \frac{g^n(x) - x}{n}.$$

Here $\widetilde{\text{Homeo}}^+(S^1)$ is the group of orientation-preserving homeomorphisms of \mathbb{R} that are lifts of orientation-preserving homeomorphisms of S^1 . The limit $\tau(g)$ does not depend on the choice of $x \in \mathbb{R}$. The following is an important property of τ we will use:

(*) If $0 < \tau(g)$ then x < g(x) for all $x \in \mathbb{R}$.

Algebraic & Geometric Topology, Volume 17 (2017)

Given a quasimorphism $q: G \to \mathbb{R}$ and $r \in \mathbb{R}$ let

$$G_r = G_r^q := \{g \in G \mid g = \mathrm{id}_G \text{ or } q(g) \ge r\}.$$

It is easy to see that:

Proposition 2.1 The set G_r forms a monoid if $r \ge D(q)$.

Remark 1.2 is an immediate consequence of Proposition 2.1.

The following theorem gives another a monoid criterion for G_r :

Theorem 2.2 Let $q: G \to \mathbb{R}$ be a homogeneous quasimorphism which is a pullback of the translation number quasimorphism τ ; namely, there is a homomorphism $f: G \to Homeo^+(S^1)$ such that $q = \tau \circ f$. Then $\max\{q(g), q(h)\} \le q(gh)$ if q(g), q(h) > 0. Consequently, for r, s > 0 and $t = \max\{r, s, r + s - D(q)\}$ we have

$$G_r \cdot G_s := \{gh \mid g \in G_r, h \in G_s\} \subset G_t.$$

In particular, G_r forms a monoid for r > 0.

Proof Assume to the contrary that there exist $g, h \in G$ such that 0 < q(h), q(g) but $q(gh) < \max\{q(g), q(h)\}$. We treat the case $q(h) \le q(g)$. A similar argument applies for the case q(g) < q(h).

Since q(gh) < q(g) there exists an integer n > 0 such that

(1)
$$q(g^{n}) - q((gh)^{n}) = n(q(g) - q(gh)) > D(q).$$

By the definition of the defect we have

(2)
$$|q(g^{-n}(gh)^n) + q(g^n) - q((gh)^n)| \le D(q).$$

By (1) and (2) we get

$$q(g^{-n}(gh)^n) \le -q(g^n) + q((gh)^n) + D(q) < -D(q) + D(q) = 0.$$

Letting G = f(g) and H = f(h), by the property (*) we have $(G^{-n}(GH)^n)(0) < 0$.

On the other hand, since $0 < q(h) = \tau(H)$ by the property (*) we have H(x) > x for all $x \in \mathbb{R}$. Thus, G(H(x)) > G(x). By induction on *n*, we have $(GH)^n(x) > G^n(x)$. Setting x = 0 we get $(G^{-n}(GH)^n)(0) > (G^{-n}G^n)(0) = 0$, which is a contradiction.

3 Proof of Theorem 1.1

Proof of Theorem 1.1 According to [7, Theorem 4.16], if $\chi(S) < 0$ then the FDTC has $c(\phi, C) = (\tau \circ \Theta_C)(\phi)$ for some homomorphism $\Theta_C \colon \operatorname{Mod}(S) \to \operatorname{Homeo}^+(S^1)$.

Figure 1

This fact along with Theorem 2.2 shows that $FDTC_{r,C}(S)$ is a monoid if $\chi(S) < 0$ and r > 0.

Since $FDTC_r(S)$ is the intersection of $FDTC_{r,C}(S)$ for all the boundary components of *S* the set $FDTC_r(S)$ is also a monoid if $\chi(S) < 0$ and r > 0.

Next we show that $\text{FDTC}_{r,C}(S)$ is not a monoid for $r \leq 0$. For any nonseparating simple closed curve γ and any boundary component C' of S we have $c(T_{\gamma}^{\pm 1}, C') = 0$. Therefore, for every boundary component C we have

(3)
$$T_{\gamma}^{\pm 1} \in \text{FDTC}_{0,C}(S) \subset \text{FDTC}_{r,C}(S).$$

Case 1 Recall that for any surface S of genus $g \ge 2$ the group Mod(S) is generated by Dehn twists about nonseparating simple closed curves (see [3, page 114]). If $FDTC_{r,C}(S)$ were a monoid then this fact and (3) would imply that $FDTC_{0,C}(S) =$ $FDTC_{r,C}(S) = Mod(S)$, which is clearly absurd. Thus $FDTC_{r,C}(S)$ is not a monoid if $g \ge 2$ and $r \le 0$.

Case 2 If g = 0 and $|\partial S| = 4$, let a, b, c, d be the boundary components and x, y, z be the simple closed curves as shown in Figure 1 (left). Let $r \le 0$ and $C \in \{a, b, c, d\}$. Since x, y, z are nonseparating,

$$T_x^{\pm 1}, T_y^{\pm 1}, T_z^{\pm 1} \in \text{FDTC}_{0,C}(S) \subset \text{FDTC}_{r,C}(S).$$

By the *lantern relation*, for any positive integer *n* with -n < r we have

$$c((T_xT_yT_z)^{-n}, C) = c(T_a^{-n}T_b^{-n}T_c^{-n}T_d^{-n}, C) = -n;$$

thus, $(T_x T_y T_z)^{-n} \notin \text{FDTC}_{r,C}(S)$. This shows that $\text{FDTC}_{r,C}(S)$ is not a monoid for all $r \leq 0$ and $C \in \{a, b, c, d\}$.

Case 3 If g = 0 and $n = |\partial S| > 4$, add n - 3 additional boundary components a_1, \ldots, a_{n-3} in the place of a, as shown in Figure 1 (center). By a similar argument using the lantern relation, we can show that $\text{FDTC}_{r,C}(S)$ is not a monoid for all $r \le 0$

Algebraic & Geometric Topology, Volume 17 (2017)

and any C = b, c, d. By the symmetry of the surface we can further show that $FDTC_{r,C}(S)$ is not a monoid for all $r \le 0$ and $C = a_1, \ldots, a_{n-3}$.

Case 4 If g = 1 and $|\partial S| = 1$, the group Mod(S) is generated by Dehn twists about nonseparating simple closed curves. Thus this case is subsumed into Case 1.

Case 5 If g = 1 and $|\partial S| \ge 2$, applying the 3-chain relation [3, Proposition 4.12] to the simple closed curves in Figure 1 (right) we get

$$c((T_a T_b T_c)^{-4n}, d_1) = c((T_{d_1})^{-n} (T_{d_2})^{-n}, d_1) = -n$$

By the same argument as in Case 2 we can show that $FDTC_{r,d_1}(S)$ is not a monoid for all $r \leq 0$.

Parallel arguments show that $FDTC_r(S)$ does not form a monoid for $r \leq 0$.

Proof of Corollary 1.4 Let $\gamma \subset S$ be a nonseparating simple closed curve. By (3) we observe that

$$T_{\gamma} \in \operatorname{Veer}^+(S) \setminus \left(\bigcup_{r>0} \operatorname{FDTC}_r(S)\right) \text{ and } T_{\gamma}^{-1} \in \operatorname{FDTC}_0(S) \setminus \operatorname{Veer}^+(S). \square$$

Corollary 3.1 If $\chi(S) < 0$ then for r, s > 0 and $x = \max\{r, s, r + s - 1\}$ we have:

- (1) $FDTC_r(S) \cdot FDTC_s(S) \subset FDTC_x(S)$.
- (2) $\operatorname{FDTC}_r(S) \cdot \operatorname{Tight}(S) \subset \operatorname{FDTC}_r(S) \cdot \operatorname{Veer}^+(S) \subset \operatorname{FDTC}_r(S).$

Proof (1) follows from Theorem 2.2 and the fact that the defect of the FDTC is 1.

The first inclusion of (2) follows from $\text{Tight}(S) \subset \text{Veer}^+(S)$ [4]. To see the second inclusion of (2), we note that a right-veering $\phi \in \text{Mod}(S)$ has the property (*'), which is similar to (*), where < is replaced with \leq [4; 7]:

(*') With
$$\Phi := \Theta_C(\phi) \in \widetilde{\text{Homeo}^+}(S^1)$$
, if $\phi \in \text{Veer}^+(S)$ then $x \le \Phi(x)$ for all $x \in \mathbb{R}$.

The same argument as in the proof of Theorem 2.2 gives the second inclusion. \Box

Remark 3.2 Although Veer⁺(S) \subset FDTC₀(S), it is not true that

$$FDTC_r(S) \cdot FDTC_0(S) \subset FDTC_r(S).$$

Let A and B be simple closed curves on a torus S with one hole which form a basis of $H_1(S)$. We have $c(T_A^{\pm 1}, \partial S) = c(T_B^{\pm 1}, \partial S) = 0$ and $c(T_A T_B, \partial S) = \frac{1}{6}$. On the other hand, $c((T_A T_B) \cdot T_B^{-1}, \partial S) = 0 \neq \frac{1}{6}$.

We do not know, at the time of this writing, the contact and symplectic properties that are related to the monoid $FDTC_r(S)$ for $0 < r \le 1$. Moreover, in general, given

a quasimorphism $q: \operatorname{Mod}(S) \to \mathbb{R}$ and $r \in \mathbb{R}$, as the mapping class group admits a huge number of quasimorphisms [1], it would be interesting to know when the subset $\operatorname{Mod}(S)_r^q$ forms a monoid and how $\operatorname{Mod}(S)_r^q$ is related to the topology and geometry of the corresponding (contact) 3–manifolds.

Acknowledgements The authors thank John Etnyre for pointing out an error in an early draft of the paper and the referee for useful comments. Ito was partially supported by JSPS Grant-in-Aid for Young Scientists (B) 15K17540. Kawamuro was partially supported by NSF grant DMS-1206770.

References

- M Bestvina, K Fujiwara, Bounded cohomology of subgroups of mapping class groups, Geom. Topol. 6 (2002) 69–89 MR
- [2] JB Etnyre, J Van Horn-Morris, *Monoids in the mapping class group*, from "Interactions between low-dimensional topology and mapping class groups" (R I Baykur, J B Etnyre, U Hamenstädt, editors), Geom. Topol. Monographs 19 (2015) 319–365
- [3] **B Farb**, **D Margalit**, *A primer on mapping class groups*, Princeton Mathematical Series 49, Princeton University Press (2012) MR
- [4] **K Honda**, **W H Kazez**, **G Matić**, *Right-veering diffeomorphisms of compact surfaces with boundary*, Invent. Math. 169 (2007) 427–449 MR
- T Ito, K Kawamuro, Visualizing overtwisted discs in open books, Publ. Res. Inst. Math. Sci. 50 (2014) 169–180 MR
- [6] T Ito, K Kawamuro, Overtwisted discs in planar open books, Internat. J. Math. 26 (2015) art. ID 1550027 MR
- [7] **T Ito, K Kawamuro**, *Essential open book foliation and fractional Dehn twist coefficient*, Geom. Dedicata (online publication August 2016)
- [8] A Wand, Detecting tightness via open book decompositions, from "Interactions between low-dimensional topology and mapping class groups" (R I Baykur, J B Etnyre, U Hamenstädt, editors), Geom. Topol. Monographs 19 (2015) 291–317

Department of Mathematics, Osaka University 1-1 Machikaneyama Toyonaka, Osaka 560-0043, Japan Department of Mathematics, The University of Iowa 14 McLean Hall, Iowa City, IA 52242, United States tetito@math.sci.osaka-u.ac.jp, kawamuro@iowa.uiowa.edu http://www.math.sci.osaka-u.ac.jp/~tetito/

Received: 4 May 2016 Revised: 16 May 2016