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Indecomposable nonorientable PD3;—complexes

JONATHAN A HILLMAN

‘We show that the orientable double covering space of an indecomposable, nonorientable
PD3; —complex has torsion-free fundamental group.

57P10; 57N10

One of the foundational results of Wall [12] on Poincaré duality complexes was the fact
that there is a well-defined notion of connected sum for such complexes. In dimensions
n > 2 the fundamental group of a connected sum of two PD,—complexes is the free
product of the groups of the summands. This notion is of particular interest when
n = 3 for, by the well-known work of Kneser and Milnor, every closed orientable
3—manifold has an essentially unique factorization into indecomposable 3—manifolds.
(The corresponding assertion for closed nonorientable 3—manifolds is slightly more
complicated.) Moreover, such a 3—manifold is indecomposable with respect to con-
nected sum if and only if its fundamental group is indecomposable with respect to free
product. It is perhaps less widely known that Turaev [11] has shown that each of these
results extends to the context of PD3—complexes.

Indecomposable, orientable 3-manifolds are either aspherical, have finite fundamental
group or have fundamental group Z. This is no longer true for PD3—complexes,
although Crisp [3] has shown that (in the orientable case) the indecomposables are
either aspherical or have virtually free fundamental group. There are examples of the
latter kind with fundamental group neither finite nor Z; see Hillman [9].

Let X be an indecomposable PD3—complex, with fundamental group m and orientation
character w. In [9] we showed that if w # 1 and 7 is virtually free then X is homotopy
equivalent to S2X S! or RP2 x S!, so 7 = Z or n = Z & 7 /27. In particular,
nT = Ker(w) is torsion-free. We shall show that this remains true if w # 1 and 7 is
not virtually free. This result is surely well-known for 3—manifolds. We give a short
proof for this case in Section 2, which uses the “projective plane theorem” of Epstein [6]
and a result from Hillman [9]. (The fact that RP? does not bound provides a further
restriction here which is not yet known in general.) Our main result is Theorem 6 in
Section 3:

Theorem Let X be an indecomposable, nonorientable PD3 —complex such that = has
infinitely many ends. Then w =~ 7+ x7Z /27~ and & is torsion-free, but not free.
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646 Jonathan A Hillman

By passing to Sylow subgroups of the torsion in 7, we may reduce potential counter-
examples to special cases, which are eliminated by Lemmas 3, 4 and 5. The arguments
are similar to those of [9].

1 Notation and major cited results

In order that this paper be reasonably self-contained we shall give here some of the
notation and results used in [9].

Let X be a PD3—complex, with fundamental group 7 and orientation character w,
and let Xt be the orientable covering space, with fundamental group 7+ = Ker(w).
If H < 7 then we shall write H+ = H N . It is convenient to say that such a
subgroup H is orientable if H = H™. (This usage depends upon the orientation
character w.) Let Z/27Z~ denote a subgroup of order two on which w # 1.

If G isagroup, |G|, G’ and {G shall denote the order, commutator subgroup and centre
of G, while if H < G then Cg(H) and Ng(H) are the centralizer and normalizer,
respectively. Let F(r) be the free group of rank r.

If R is aring, two finitely presentable left R—modules M and N are stably isomorphic
if M; @ R? = N @& R? for some a, b > 0. Let [M] denote the stable isomorphism
class of M.

A homomorphism w: G — {1} defines an anti-involution of Z[G] by g = w(g)g ™!

for all g € G. Tietze move considerations show that if A is any finite presentation
matrix for the augmentation ideal /g then the stable isomorphism class of the left Z[G]-
module Jg with presentation matrix the conjugate transpose A" is well-defined [11].

A graph of groups (G, ") consists of a graph I with origin and target functions o and ¢
from the set of edges E(I") to the set of vertices V(I"), and a family G of groups G,
for each vertex v and subgroups G, < G, ) for each edge ¢, with monomorphisms
¢e: Ge — Gy(e). (We shall usually suppress the maps ¢, from our notation.) In
considering paths in I' we shall not require that the edges be compatibly oriented.

The fundamental group of (G,I') is the group 7w G with presentation
(Go, te | tegte_l = ¢e(g) Vg € Ge, te = 1Ve € E(T)),

where T is some maximal tree for I". Different choices of maximal tree give isomorphic
groups. We may assume that (G, I') is reduced: if an edge joins distinct vertices then
the edge group is isomorphic to a proper subgroup of each of these vertex groups. The
corresponding w—tree 7 is incompressible in the terminology of [5], so 7" and G are
essentially unique, by [5, Proposition IV.7.4]. An edge e is a loop isomorphism at v if
o(e) = t(e) = v and the inclusions induce isomorphisms G, = G, .

Algebraic € Geometric Topology, Volume 17 (2017)



Indecomposable nonorientable PD3—complexes 647

Since fundamental groups of PD, —complexes are P, [12], 7 is the fundamental
group of a finite graph of groups (G, I'), where all vertex groups are finite or have one
end and all edge groups are finite. (See [5, Theorem VI.6.3].) We may assume that
7 is indecomposable as a proper free product, by the splitting theorem, so (G, ") is
indecomposable: all edge groups are nontrivial. A graph of groups (G, I') is admissible
if it is reduced, all vertex groups are finite or one-ended groups and all edge groups are
nontrivial finite groups.

Turaev gave the following characterization of the group pairs (77, w) which may be
realized by finite PD3—complexes [11]:

Theorem Let v be a finitely presentable group and w: w — {1} a homomorphism.
Then there is a finite PD3—complex K with 7{(K) =~ & and w{(K) = w if and only
if [I] = [Jx].

We wish to adapt the results from [9, Section 7] to the cases when & has infinitely
many ends and w # 1. In particular, we use the following two results to control the
possible edge groups:

(1) Crisp’stheorem [3, Theorem 17] If X isa PD3—complexand g e w =m((X)
has prime order p and infinite centralizer C(g) then p =2, g is orientation-
reversing and Cy(g) has two ends.

(2) The normalizer condition [10, Proposition 5.4.2] A proper subgroup of a
nilpotent group is properly contained in its normalizer.

Note also that if G is a finite subgroup of & then the centralizer C;(G) has finite
index in the normalizer N, (G).

The main result (Theorem 6 below) involves consideration of the finite groups with
periodic cohomology, of period dividing 4. A finite group has cohomological period
2 if and only if it is cyclic, and has cohomological period 4 if and only if it is a
product B x Z/d7Z with (|B|,d) =1, where B is a generalized quaternionic group
Z/aZ x Q(2') (with a odd), an extended binary polyhedral group Tk* (of order 23.3%),
Oy (of order 24.3K) or I* = SL(2,5) (of order 23 -3-5) or a metacyclic group
Z/aZ x_y Z./2¢7Z (for some odd a and e > 1).

There seems to be no one reference with a complete proof of the above assertion. The
six families of finite groups with periodic cohomology are determined in [1, pages
142-1501:

(1) Z/aZ xZ/bZ;
(2) Z/aZ x(Z/bZ x Q(2})) for i > 3;

Algebraic € Geometric Topology, Volume 17 (2017)



648 Jonathan A Hillman

(3) Z/aZ x(Z/DZ xT) for k > 1;
4) Z/aZx(Z/bZ x OF) for k = 1;
(5) (Z)aZ x7Z]bZ)xSL(2, p) for p > 5 prime;
6) Z/aZ x(Z/bZ x TL(2, p)) for p > 5 prime.

Here a, b and the order of the quotient by the metacyclic subgroup Z/aZ x Z./bZ
are relatively prime. See [1, pages 142-150] for further details on the groups TL(2, p)
(with TL(2, p)’ = SL(2, p), of index 2) and the actions in the semidirect products. If
such a group G contains a semidirect product Z/mZ xg Z./nZ , where 6 has image of
order k, then the cohomological period of G is a multiple of 2k . (See [2, Exercise 6,
page 159].) The class of groups of period dividing 4 follows on applying this criterion
to the groups of the above list.

2 3-manifolds

The result is relatively easy (and no doubt well-known) in the case of irreducible
3—manifolds, as we may use the sphere theorem, as strengthened by Epstein [6].

Theorem 1 Let M be an indecomposable, nonorientable 3—manifold with funda-
mental group 7. If  has infinitely many ends then w =~ 7+ x 7 /27~ and x™ is
torsion-free, but not free.

Proof Let P be a maximal set of pairwise nonparallel 2—sided projective planes
in M . Then P is nonempty, since M is indecomposable and 7 has infinitely many
ends. In particular, 7 = 7+ x Z /27, since the inclusion of a member of P splits
w=w;(M): m — Z/27Z. Let P be the preimage of P in M+ . Then PT is a set
of disjoint 2—spheres in M T, and the components of M ™\ PT each double cover a
component of M \ P. Each such component of M \ P is indecomposable [6].

Suppose that M \ P has a component Y with virtually free fundamental group. Then
the double DY is indecomposable (see [9, Lemma 2.4]), nonorientable and 71 (DY)
is virtually free. Moreover, 71(DY) = Z @& Z /27, since the inclusion of a boundary
component of Y splits w. (See [9, Theorems 7.1 and 7.4].) But then DY =~ RPZx S!,
so Y = RP? x [0, 1]. This is contrary to the hypothesis that the members of P are
nonparallel. Thus the components of M \ P are punctured aspherical 3—manifolds.

Let I" be the graph with vertex set wo(M \ P) and edge set P, with an edge joining
contiguous components. Then 7+ = G * F(s), where G is a free product of PD3—
groups (corresponding to the fundamental groups of the components of M \ P), and
s = B1(T"). Hence n* is torsion-free. O

Algebraic € Geometric Topology, Volume 17 (2017)



Indecomposable nonorientable PD3—complexes 649

We remark also that each component Y of M \ P has an even number of boundary
components, since x(dY) is even (for any odd-dimensional manifold Y'), by Poincaré
duality. Thus the vertices of the graph I' have even valence.

Example The canonical involution ¢ of the topological group 7° = R3/Z3 has 8
isolated fixed points (the points of order 2). Let X be the complement of an equivariant
open regular neighbourhood of the fixed point set, and let M = D(X/(t)). Then M
is indecomposable and nonorientable, and 7 = (Z3 x Z3  F(7)) X Z /27~

3 PDjs;-complexes

Suppose now that X is an indecomposable PD3—complex, with fundamental group =
and orientation character w. Then 7 is finitely presentable, so 7 = 7w G, where (G, I")
is an admissible graph of groups.

Lemma 2 Let X be an indecomposable, nonorientable PD; —complex with w =
m1(X) = G, where (G, ') is an admissible graph of groups.

(1) Ife is anedge with G,(c) or Gy () infinite, then G, = 7,/27,~ .

Q) IfFX#2S?>?%XS!thenm =nt xZ/27.

(3) If all finite vertex groups are 2—groups then they are nonorientable and all edge
groups are 7./27.~ .

Proof Suppose first that the vertex groups are all finite. Then X ~ S2X S (if all the
vertex groups are orientation-preserving) or RP? x S (otherwise), by Theorems 7.1
and 7.4 of [9], respectively, so the lemma holds. Hence we may assume that (G, I') has
at least one infinite vertex group G, and at least one edge e with o(e) = v or z(e) = v.
If w(g) =1 for some g € G, of prime order then both G;r(e) and G:Ee) would be
finite, by [3, Theorem 14]. But then G, would be finite, contrary to hypothesis. Thus
G, = 7./27~, and the inclusion of G, into 7 splits w, so 7 = 7+ xZ /27"

Suppose that all finite subgroups are 2—groups. Let f be an edge such that the vertex
groups G,(r) and G;(yy are finite. If Gy = G,(r) (or G4(ry) then f must be a loop
isomorphism, since (G, I") is reduced. But then C;(Gy) is infinite, so Gy = Z /27,
by Crisp’s theorem. Since (G, ") is reduced, f must be the only edge, contrary
to the assumption that there is an infinite vertex group. Thus we may assume that
Go(r) and Gy(y) each properly contain G¢. Since G,(r) and G,y are 2—groups
and hence nilpotent, N (Gy) is infinite, by the normalizer condition. Since C(Gy)
has finite index in N (G.) we must have Gy = Z /27, by Crisp’s theorem. Since I"
is connected it follows easily that every finite vertex group is nonorientable and every
edge group is Z /27~ . |

Algebraic € Geometric Topology, Volume 17 (2017)



650 Jonathan A Hillman

The next two lemmas consider two parallel special cases, involving a prime p, which
is odd or 2, respectively.

Lemma 3 Let X be an indecomposable PD; —complex with m = my(X) =k x W,
where « is orientable and torsion-free, and W has order 2p for some odd prime p.
Then X is orientable.

Proof Suppose that X is not orientable. Then 7 and « are infinite. Since & has a
subgroup W of finite order > 2, we may assume that 7 = 7 G, where (G, ') is an
admissible graph of groups with r > 1 finite vertex groups and at least one edge. Let

s =p1(T).

Each finite vertex group is mapped injectively by any projection from 7 onto W with
kernel k. If a vertex group G, has prime order then every edge e with one vertex
at v is a loop isomorphism, since (G, I') is reduced. But then I" has just one vertex
and 7 = G, x F, which contradicts the hypothesis. Hence all finite vertex groups
are isomorphic to W. If an edge e is a loop isomorphism then G, =~ Z/pZ has
infinite normalizer, contradicting Crisp’s theorem. If there is an edge e with G, of
order p then both of the vertex groups G, () and Gy, are finite, by Lemma 2. But
then [Gy(e) : Ge] = [Gy(e) : Ge] = 2, 50 Ny (G,) is infinite, which again contradicts
Crisp’s theorem. Since the orientation character w factors through W it follows that
every edge group is Z /27~ and w is nontrivial on every vertex group.

Since each edge groupis Z /27~ , w is nontrivial on each vertex group, so 7 - =Gt is
the fundamental group of a graph of groups (GT, I') with the same underlying graph I",
trivial edge groups and vertex groups Gt forall ve V(T'). Hence 7t =G * F(s) * P,
where G is a free product of orientable PD3;—groups and P is a free product of r copies
of Z/pZ. We have P =~ F(t)xZ/pZ forsome t > 0. (Infact, t = (p—1)(r — 1),
by a simple virtual Euler characteristic argument.)

Let a €  be such that a> = 1 and w(a) = —1, and let A = k x Z/2Z~ be the
subgroup generated by « and a. Then A is also the group of a PD3—complex, since it
has finite index in 7. The involution of 7T induced by conjugation by @ maps each
indecomposable factor which is not infinite cyclic to a conjugate of an isomorphic
factor [7]. However, its behaviour on the free factor F(s) may be more complicated.

Let w: Z[x] = R = Z[{a)] = Z[a]/(a® — 1) be the linear extension of the orientation
character. Then [, =~ 7Z =R /(a + 1). We may factor out the action of 7+ on a
Z[r]-module by tensoring with R. The derived sequence of the functor R ®, —
applied to the augmentation sequence

0> Iy > Zn]|—>Z

Algebraic € Geometric Topology, Volume 17 (2017)



Indecomposable nonorientable PD3—complexes 651

gives an exact sequence
0— Hi(m;R)=«k/kK' > RQ®y Iy — R—7Z —0.

The inclusion of (a) into 7 splits the epimorphism from R ®y I onto (), so
RQyl;=k/K'®Z.

Let y be the normal subgroup of = generated by G U F(s) and let H be the image
of y in «k/k’. Then similar arguments show that

RQu I = H@(R Ruw I]'[/]/)s
Ryl = H® (R Qy Ik/y)-

The groups P and its normal subgroup F(¢) have presentations

P=(bj, 1 <i<r|bl=1Vi)

and
Fit)=(x;j, 1<i<r—-1,1<j=<p—-1]),

where x; ; has image b{bi__gl inPforl<i<r—land1=<j<p—-1.Ifp=2
we shall write x; instead of x; 1 for 1 <i <r—1.)
The quotient 77/{G) is the fundamental group of the (possibly unreduced) graph of
groups (G, ") with vertex groups W (or Z/2Z~) and edge groups Z /27, obtained
by replacing each infinite vertex group Gy, of (G, T') by G,/ G;F =7Z/27Z~. Thusif W
is abelian (so has an unique element of order 2) then 7/{G) = (F(s) * P) X Z /27" .
Hence n/y =~ PxZ/2Z~ and A/y = F(t) X Z /27, so

R®u Iny = (R/(p.a—1) &L,
R®ylh, =(R/(a-1) @Z=2"&Z.

The quotient ring R/ pR = Fpy[a]/(a? — 1) is semisimple, so p—torsion R—modules
have unique factorizations as sums of simple modules. Since I; ®, R and [} ®, R
satisfy Turaev’s criterion (and projective R—modules are Z—torsion-free), the p—torsion
submodule of R ®,, I; has the same numbers of summands of types R/(p,a—1)
and R/(p,a+ 1), and similarly for R ®y, I} . Since R ®y I/, is p—torsion-free,
the number of summands of types R/(p,a—1) and R/(p,a + 1) in H must also be
equal. On the other hand, R ® I/, has r > 0 summands of type R/(p,a—1) and
none of type R/(p,a+ 1). These conditions are inconsistent, so 7 is not the group of
a nonorientable PD3;—complex.
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If W is not abelian then it has an unique conjugacy class of elements of order 2, and
w/y = PxZ/27Z" and A/y =~ F(t) x Z /27~ have presentations
(a, bij, 1 <i<r |a2=1,bip=1,ab,~a=bi_l‘v’i)
and
(a, xjj, 1<i<r—-1,1<j=<p-—1 la? =1, axjja = xi p—j Vi, j),

respectively. (In particular, A/y = F(t/2) * Z/27~.) In this case,

R®y In/y = (R/(p.a+1) &L,

R®y Iy =R SL.

Consideration of the p—torsion submodules again shows that R ®, I and R ®y, I,
cannot both satisfy Turaev’s criterion, and hence that 7 is not the group of a non-
orientable PD3—complex. Thus X must be orientable. O

The case p = 2 involves slightly different calculations.

Lemma 4 Let X be an indecomposable PD3 —complex with m = w1 (X) =k x W,
where k is orientable and torsion-free, and W has order 4. Then X is orientable.

Proof As in Lemma 3, we suppose that X is not orientable, so 7 and « are infinite,
and may assume that w = G, where (G, I') is an admissible graph of groups with
r > 1 finite vertex groups and at least one edge. We continue with the notation P, y,
a and R from Lemma 3.

The inclusions of the edge groups split w, by Lemma 2. In this case, W = (Z/27Z)? =
Z/27 & 7 /27~ and has two orientation-reversing elements. Note that P is now a
free product of r copies of Z/27..

The quotient 7r/y is the group of a finite graph of groups with all vertex groups W
and edge groups Z /27~ . Since P is a free product of cyclic groups, 7/y has a
presentation

(a, bi, 1<i <r|a*=1, b? = (aw;)* = (aw;b;)* = 1 Vi),

where w; = 1 and w; € F(¢) for 2 <i < r. The free subgroup F(¢) has basis
{xi |1 <i =<r—1}, where x; has image b;b;+ in P, and A/y has a presentation

(a,xi, 1<i<r—1|da*>=1, axja= xibi+1wi+1bi+1wi__ﬁl Vi).

In this case, _
R®y Iy = (R/2,a-1)" ®Z,

R®ylyy=7"""&Z.
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Indecomposable nonorientable PD3—complexes 653

Since R/(2,a+ 1) = R/(2,a — 1), torsion considerations do not appear to help. If
r > 1 we may instead compare the quotients by the Z —torsion submodules, as in [9,
Lemma 7.3], since finitely generated torsion-free R—modules are direct sums of copies
of R, Z and Z, by [4, Theorem 74.3]. We again conclude that 7 is not the group of a
nonorientable PD3—complex.

The case when p =2 and r = 1 requires a little more work. Let N be the R—module
presented by the transposed conjugate of ( a 2 1). If {e, f} is the standard basis for
R? then N = R?/R(2e + (a+ 1) f). The Z—torsion submodule of N is generated
by the image of (a — 1)e and has order 2, but is not a direct summand. The quotient
of N by its Z-torsion submodule is generated by the images of e and f — e, and
is a direct sum Z @ Z. In particular, it has no free summand. It now follows easily
that H® Z & R /(2,a—1) is not stably isomorphic to H & 7 @& N . Therefore I
and 7, cannot both satisfy Turaev’s criterion, so m is not the group of a nonorientable
PDj—complex. Thus X must be orientable. |

Our final lemma is needed to cope with three exceptional cases.

Lemma 5 Let G = H x7/2Z, where H = T[*, Of or I*. Suppose that every
element of G divisible by 4 isin H. Then G has a subgroup W of order 6 such that
(W:WnNH]=2.

Proof Let g be an element of order 2 whose image generates G/H .

Suppose first that H = T,*, with presentation

(x, pz|x>=(xp)> =12 23 =1, zxz" L =y, zyz~ 1 = xy).
Then (T = (x2) has order 2. The outer automorphism group Out(7" ") is generated by
the class of the involution p which sends x, y and z to y~!, x~! and 22, respectively.

(See [8, page 221].) Hence p preserves the subgroup S of order 3 generated by z.

If conjugation by g induces an inner automorphism of 7', there is an € T|* such
that gxg~™! = hxh™! for all x € T". Then gh = hg and h? is central in Ty, so
(h~'g)? = h? has order dividing 4. Therefore #~!g has order 2, by hypothesis.

Otherwise we may assume that there is an 4 € G+ such that gxg=! = hp(x)h™!
for all x € T}, so p is conjugation by h~lg. Since p is an involution, (h~!g)? is
central in 7. We again see that h~1g has order 2. In each case, 4! g normalizes S,
so the subgroup W generated by S and 4~ 'g has order 6, while 4/~ 'g & H, so
(W :WnNH]|=2.
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The commutator subgroup of OF is T". Since this is a characteristic subgroup, it is

preserved by g. The group 7" is a nonnormal subgroup of I*, of index 5. Since g acts
as an involution on the set of conjugates of 7", we may assume that it preserves 7*.
In each case the lemma follows easily from its validity for H = T *. O

We may now give our main result.

Theorem 6 Let X be an indecomposable, nonorientable PD3; —complex such that
7 = w1 (X) has infinitely many ends. Then:

(1) m = =G, where (G, T") is an admissible graph of groups with all vertex groups
one-ended and all edge groups 7./27.~ .

Q) m=atxZ/27".

(3) mT = G x H, where G is a nontrivial free product of PD3—groups and H is
free. In particular, =™ is torsion-free.

Proof Let m =~ nG, where (G, ') is an admissible graph of groups. At least one
vertex group is infinite, for otherwise 7 has two ends, by [9, Theorems 7.1 and 7.4].
Hence 7 =~ G * H, where G is a nontrivial free product of PD3—groups and H is
virtually free. Therefore 7t is virtually torsion-free. Let k be the intersection of the
conjugates in 7 of a torsion-free subgroup of finite index in 71, and let ¢: 7 — /K
be the canonical projection. Then « is orientable, torsion-free and of finite index, and
w factors through 7 /k.

If F is a finite subgroup then ¢ | is injective, and ¢! (¢(F)) has finite index in 7.
Hence ¢~ (¢(F)) has a graph of groups structure in which all finite vertex groups are
isomorphic to subgroups of F. In particular, if F is a nonorientable 2—group then at
least one of these vertex groups is a nonorientable 2—group, so there is a g € F' such
that g2 =1 and w(g) = —1, by Lemma 2(3). Hence, if, moreover, F is cyclic, then
it has order 2.

Assume that there is a nonorientable finite vertex group G,. Then G, has a non-
orientable Sylow 2—subgroup S(2), so there is a g € S(2) such that g2 = 1 and
w(g) = —1. The orientable subgroup G has periodic cohomology, with period
dividing 4, by [9, Theorems 4.3 and 4.6]. Moreover, every element of G, divisible
by 4 is in G, by the argument of the previous paragraph.

Let g be an element of order 2 whose image generates G,/G.". We may assume
that G = B x Z/dZ, where B is either Z/aZ x Q(2') (with a odd and i > 3),
T or Of (forsome k > 1), I* or Z/aZ x—y Z/2°Z (with a odd and e > 1), as in
the penultimate paragraph of Section 1 above. Suppose first that G is not a 2—group.
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Then it has a nontrivial subgroup S of order p for some odd prime p. If d > 1 we
may assume that p divides d, and then S is characteristic in G . This is also the
case if G;f =~ Z/aZ x Q(8) or Z/aZ x_y 7./2°Z with a odd (so p divides a), or
G =T or Of with k > 1 (so p =3). In these cases, S is normalized by g and
the subgroup H generated by S and g has order 2p. The remaining possibilities are
that G} ~ T xZ/dZ, Of xZ/dZ or I* xZ/dZ. For these cases we appeal to
Lemma 5 to see that G, has a nonorientable subgroup W of order 2p.

Since ¢~ '¢(W) has finite index in 7, it is again the group of a nonorientable PD3—
complex. This complex has an indecomposable factor whose group has W as one of its
finite vertex groups, so has fundamental group x x W . But this factor is nonorientable,
so contradicts Lemma 3.

Therefore we may assume that G is a 2—group. If S(2)* # 1 (ie if G is a
nontrivial 2—group) it is cyclic or generalized quaternionic, so has an unique central
element of order 2 (see [9, Lemma 2.1]). Hence G, has a finite index subgroup
W = 7/27 x 7.J27~ . As before, passage to ¢~ '¢(W) leads to a contradiction, by
Lemma 4.

Therefore all finite vertex groups are orientable. But the graph I' is connected, and any
edge connecting a finite vertex group to an infinite vertex group must be nonorientable,
as in Lemma 2. Since there is at least one infinite vertex group there can be no finite
vertex groups.

The second assertion follows from part (2) of Lemma 2, and 7t = nG™ is the
fundamental group of a graph of groups (G*, ") with the same underlying graph T,
trivial edge groups and vertex groups G, all PD3—groups. Hence 7™ is torsion-free,
but not free. O

As observed at the end of Section 2, when X is a 3-manifold and (G,T") is an
admissible graph of groups such that 7 = 7§, all vertices of I" have even valence.
Can this observation be extended to the case of PD3—complexes? Although there are
indecomposable PD3;—complexes which are not homotopy equivalent to 3—manifolds
[9; 12], it remains possible that every indecomposable, nonorientable PD3 —complex is
homotopy equivalent to a 3—manifold.

Corollary 7.5 of [9] follows immediately from Crisp’s theorem and Theorem 6. (The

argument in [9] assumed that 7 is virtually free.) We restate it here:

Corollary 7 Let X be a PD3—complex and g € m = 71(X) a nontrivial element of
finite order. If C;(g) is infinite then g has order 2 and is orientation-reversing, and

Cr(g) = (g) X Z. o
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Question Are there any examples other than RP? x S! of indecomposable PD3;—
complexes whose groups have a central element of order 2 with infinite centralizer?

Acknowledgements I would like to thank B Hanke for alerting me to the necessity
of considering the present case. I would also like to thank the referee for detailed
suggestions as to improving the exposition of this work.
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On the periodic v,-self-map of A4,

PRASIT BHATTACHARYA
PHILIP EGGER
MARK MAHOWALD

The spectrum Y := M, (1) A Cn admits eight v, -self-maps of periodicity 1. These
eight self-maps admit four different cofibers, which we denote by A;[ij] for i, j €
{0, 1}. We show that each of these four spectra admits a v;-self-map of periodicity 32.

55Q51

This paper is dedicated to the memory of Mark Mahowald (1931-2013)

1 Introduction

Convention Throughout this paper, we work in the stable homotopy category of
spectra localized at the prime 2.

Let K(n) be the n'™ Morava K —theory. Let Cy be the category of 2—local finite spectra,
Cn C Cyp the full subcategory of K(n—1)—acyclics and Coo the full subcategory of
contractible spectra. Hopkins and Smith [8] showed that the C,, are thick subcategories
of Cy (in fact, they are the only thick subcategories of Cg), and they fit into a sequence

CoDCiD+DCrD D Coo.
We say a finite spectrum X is of type n if X € C, \ Cp41.-
A self-map v: ¥4 X — X of a finite spectrum X is called a v,—self-map if
K(n)«(v): K(n)«(X) — K(n)+(X)

is an isomorphism. For a finite spectrum X, a self-map v: Y% X — X can also be
regarded as an element of 7z (X A DX), where DX is the Spanier—Whitehead dual
of X.

For any ring spectrum E, let

LEx: (L) = Ex()
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denote the E-Hurewicz natural transformation. Let k(7) denote the connective cover
of K(n). If v: Sk — X A DX is a v,—self-map, then Ueyx (V) € k(n) (X A DX) has
to be the image of v} € k(n)« = F,[v,], for some positive integer 7, under the map

k(n)stxapx: k(m)x = k(n)«(X A DX),

where txy px: S° — X A DX is the unit map. The value m is called the periodicity
of the v,—self-map v. We call v a minimal v,—self-map for X if v is a v,—self-map
with minimal periodicity. An easy consequence of [8, Theorem 9] is that the periodicity
of a minimal v, —self-map is always a power of 2.

Hopkins and Smith showed, among other things, that every type-n spectrum admits a
v, —self-map, and the cofiber of a v,—self-map is of type n + 1. However, not much is
known about the minimal periodicity of such v,—self-maps.

The sphere spectrum S© is a type-0 spectrum with a vo—self-map 2: S® — S°. The
cofiber of this vg—self-map is the type-1 spectrum M (1). The spectrum M(1) is
known to admit a unique minimal v;—self-map of periodicity 4. The cofiber of this
v1—self-map is denoted by M (1,4). In 2008, Behrens, Hill, Hopkins and the third
author [1] showed that the minimal v, —self-map on M (1,4) has periodicity 32.

Instead of S°, we can start with the type-0 spectrum C1, the cofiber of 7: ST — S°.
The spectrum C7 admits a nonzero vo—self-map 2 A I¢y: Cn — Cn, with cofiber
M(1) ACn:=Y. The type-1 spectrum Y admits eight minimal v;—self-maps of
periodicity 1. These eight maps are constructed by Davis and the third author [3] using
stunted projective spaces. The cofiber of any of the v; —self-maps is referred to as A.
Though there are eight different v; —self-maps, there are only four different homotopy
types of the cofibers A1 ; see [3, Proposition 2.1].

Let A(1) be the subalgebra of the Steenrod algebra A generated by Sq' and Sq?. It
turns out that the cohomology of any homotopy type of A is a free A(1)-module on
one generator. However, different homotopy types of 4; have different 4-module
structures, which are distinguished by the action of Sq*. We depict the cohomologies of
the four different spectra A; in Figure 1 where the square brackets represent an action
of Sq*, the curved lines represent an action of Sq?, and the straight lines represent an
action of Sq!. The subalgebra A(1) has four different A-module structures, each of
which corresponds to a homotopy type of A;. Any A-module structure on A(1) has a
nontrivial Sq* action on the generator in degree 1 forced by the Adem relations. How-
ever, there are choices for Sq* actions to be trivial or nontrivial on generators in degree 0
and degree 2, thus giving us four different A—module structures. We denote the differ-
ent homotopy types of A; using the notation 4[ij] where i and j are the indicator
functions for the action of Sq* on the generators in degree 0 and degree 2, respectively.
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Figure 1: The A-module structures of H*(A1[00]), H*(A[10]), H*(A1[01])
and H*(A4[11])

Remark 1.1 (determining A—module structure on Spanier—Whitehead duals) For
every finite spectrum X, there is an isomorphism

H*DX = DH*X,

where we have Spanier—Whitehead duality on the left hand side and 4-module duality
on the right hand side. Thus, finding out the Spanier—Whitehead duality relations
between the spectra A4[ij] boils down to finding the A-module duality relations
between the A—modules depicted in Figure 1. The naive guess is that dualizing these
A-modules is equivalent to merely “flipping them upside down”. Howeyver, this is not
the case. For an A-module M and its dual DM , there is a pairing

(—,—): M @ DM — F,
which is A -bilinear. Therefore, for elements x, y € M and a € A, we have

{ax, yx) = (x, x(@) y«).

where y: A — A is the antipode, and hence

(ax)x = Z gx-

{g:ax=x(a)g}

Because x(Sq') = Sq' and x(Sq?) = Sq?, the naive guess is correct when it comes
to actions of Sq' and Sq?. However, because we have x(Sq*) = Sq* +Sq>S¢!, the
naive guess breaks down when considering the actions of Sq*. Thus we find that
H*(A[00]) is dual to H*(A[11]), while H*(A[10]) and H*(A[01]) are self-dual.
It follows that the spectra A1[01] and A[10] are Spanier—Whitehead self-dual, whereas
A1[00] and A;[11] are Spanier—Whitehead dual to each other.
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It is worth noting that A is created in a way similarto M (1, 4), where Cn is analogous
to S, and Y is analogous to M (1). The minimal v —self-map of Y has periodicity 1,
which is less than the periodicity of the minimal v{—self-map on M (1), which is 4.
Hence, it is natural to ask if any of the four models of A; admit a v,—self-map of
periodicity less than that of M (1,4).

In [3, Theorem 1.4(ii)], Davis and the third author claimed, incorrectly, that the peri-
odicity of the minimal v,—self-maps on M (1, 4) and the two self-dual models of A1,
namely A1[01] and A4{[10], was 8. After successfully correcting the v, —periodicity of
M (1,4) in [1], the vy —periodicity of A; was called into question by the third author.
He conjectured that the minimal v,—self-map of A; should have periodicity 32, which
is also the periodicity of the minimal v,—self-map of M (1,4).

The goal of this paper is to prove the following correction of [3, Theorem 1.4(ii)], as
reported in Remark 1.4 of [1]:
Main Theorem For all four models of Ay, the minimal v, —self-map
v: X 192 A 1 — A 1
has periodicity 32.

Notation 1.2 To lighten the notations, we use Ext%t (X) to denote Ext%’ (H*(X),TF,),
where T is a subalgebra of the Steenrod algebra 4.

Notation 1.3 For any ring spectrum E, we denote the unit map by tg: S® — E. The
unit map (g induces the Hurewicz natural transformation

LEs: 5 (L) = Ex (L)

as introduced earlier. When £ = A A DA, we simply use ¢: SO > A, A DA, to
denote the unit map. Let i: S° < A4, be the map that represents the inclusion of the
bottom cell. Let j: Ay A DAy — A; denote the map 14, A Di. Given a map between
two spectra f: X — Y, the unit map (g induces a map in E-homology, which we
denote by

E«(f): ExX — E.Y,
and also a map of Adams spectral sequences, which we denote by

JEExt}*(E A X) - Ext*(EAY).
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Outline

The proof of Main Theorem consists of two parts, namely
¢ the nonexistence part, where we eliminate the possibility of a v, —self-map of A4
of periodicity lower than 32,

¢ the existence part, where we show that there exists a v,—self-map of A; of
periodicity 32.

The proof makes use of several important differentials in the Adams spectral sequence
that computes the homotopy groups of the spectrum tmf. As an A—module (see
Hopkins and the third author [7]),

H*(tmf) = AJ/A(2),

where A(2) is the subalgebra of A generated by Sq', Sq® and Sq*. Therefore, by a
change of rings formula, the E, page of that Adams spectral sequence simplifies to

(1.4) Ey' = Ext’l,)(S°) = s (tmf).

The E, page is periodic with the periodicity generator bg‘ o> Which lives in bidegree

(s,7) = (8,8 +48). The periodicity generator b;‘ o and its square b_,f o are not present
in the Eo, page of the above spectral sequence. There exist differentials

(1.5) d (b§,0) =e¢or and dj (bg,o) = wgr

in the Adams spectral sequence computing tmf, . But in that spectral sequence, b3160 is
a nonzero permanent cycle which detects the periodicity generator A% € 719, (tmf).
All the details mentioned above are well documented by Henriques [6].

The unit map tx(2): S 0 — k(2) factors through #mf (see [1, Remark 1.3]): ie we have
(1.6) ey SO L tmf L k(2).
The map induced by r in homotopy

Fs: tmfy, —> k(2)«

32n

maps A" v;“", which is why fmf can detect periodic v,—self-maps. This can be

observed through a map of Adams spectral sequences. Since

H*(k(2)) = AJ/E(Q>)
(due to Lellmann [9]), by a change of rings formula, we have

Ey' = Exti Qz)(SO) = 1_s(k(2)).
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The E, page is simply a polynomial algebra generated by v, in bidegree (s,?) =
(1,14 6). The spectral sequence collapses due to sparseness, giving us the expected
result 7. (k(2)) =IF,[v,]. The map r: tmf — k(2) induces a map of spectral sequences

E, = Extggz)(so) —— ;s (tmf)

Ey =Extil, (%) == m5(k(2))

which sends bg% to vgn in the E, page, and therefore sends b31,60” to vSZ” in
the Eo, page.
Next we study the commutative diagram of spectral sequences:
tmf .t
mf, mf, (A1 A DAy)
- 0/ . - /
ExtA’(z)(S ) — ExtA’(z) (A1 A DAy)
a7
k(2) 4t
k(2)« k(2)x(A1 A DAy)

e _—

*,% 0 *,%
ExtE(0n (57) —— G Bxtig,) (A1 A DAY

Since A is a type-2 spectrum, A® has a nonzero image under the composite

P k(2)xt
tmf, 25 k(2)x —5 k(2)5(A; A DAY).

Therefore, tmf,t(A%") € tmf, (A1 A DA;) is the lift of k(2)*L(v;2"). Similarly, at the
level of E, pages, we see that

(1" (b37%) € Ext (5 (A1 A DAy)

is the lift of L{:(Z)(vg”). In Section 3, we argue that the differentials in (1.5) induce a
d, differential and a d5 differential in the spectral sequence

Ethziiz)(Al A DAy) = tmf, (A1 A DAy),
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supported by LZ"f (b;‘ o) and ti,l"f (b§ o) respectively. This means that k(2)*t(v§) and
k(2)*t(v;6) do not lift to tmf, (A1 A DA;), thereby establishing the “nonexistence
part” of Main Theorem.

The proof of the existence part of Main Theorem can roughly be divided into two parts:
¢ the lifting part, where we show that
(17 (b37) € Ext§eirtin 4y A DAy)
lifts to an element Egﬁ € Exti”’48”+8”(A1 A DAy) under the map

Limfx: EXt;’*(Al VAN DAl) — Ext;’(’z)(Al 7AN DAl),

¢ the survival part, where we show that v?fn is a nonzero permanent cycle in the
Adams spectral sequence

E, =Eth4’t(A1 /\DAl) = JTt_s(Al /\DAI)

for all n > 0.

To achieve the lifting part, we use a Bousfield—Kan spectral sequence

ETH" = Ext s (H*(X) © A A(2)®",Fy) = Bxt’} (H*(X), Fy),

which is also otherwise known as the algebraic mf spectral sequence.

For the survival part of the argument, we show that the d, and d5 differentials of (1.5)
lift along the zigzag of spectral sequences:

wi—s(A1 A DAy)

EXtA (A1 A DAy) Limf

(1.8)

Limf %

tr—s (tmf) tmf;_s(Ay A DAy)

S T~

St 0 N
Eth‘I(Z) (S ) T EXtSA(2) (Al VAN DA])

Since Ug supports a d, differential and 1/1;5 supports a d5 differential, {1? can only
support a d, differential for » > 4 by the Leibniz rule. There is another d3 differential

(1.9) d3(v3°hy) = g°
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in the Adams spectral sequence for m«(tmf) which lifts along (1.8). The lifts of the
differentials in (1.5) and (1.9), along with the multiplicative structure, allow us to
deduce that there is no nonzero element in the E4 page of

Ext}' (41 A DAy) = mi—s(A1 A DAy)

for s > 36 and t —s = 191. As a result, 5;5 is a nonzero permanent cycle, which

detects a 32—periodic v,—self-map of A;.

Notation 1.10 Let 7" be any subalgebra of A4, for example, £(Q,), A(2) or A itself.
Let X be any spectrum with amap f: S® — X . Throughout the paper, we will denote
any nonzero image of a € Ext;»*(S?) under the map

Sot Ext2*(S%) — Ext3*(X)

using the same notation.

Use of Bruner’s Ext software

We will use Bruner’s Ext software [2] for two purposes. Given any A4(2)-module M
which is ﬁnitely generated as an [F,—vector space, the program can compute the
groups Ext;! A2 (M, TF,) to the extent of identifying generators in each bidegree within
a finite range, determined by the user. Since we are interested in Ext A(z)(X ) for
finite spectra X', such as A1 A DAy, whose cohomology structures as A4(2)-modules
are known, this suits our task perfectly. The second purpose is the following: As
any finite spectrum X is an S°—module, Ext’; (X ) is a module over Ext A(2)(S 0y,
Given an element x € Ext A(z)(X ), the action of Ext A(2)(S 0) can be computed using
the dolifts functionality of the software.

One should also be aware that Main Theorem is by no means a consequence of
the programming output. However, parts of the proof are reduced to pure algebraic
computation, which can be performed using Bruner’s program.

Organization of the paper

In Section 2, we use the May spectral sequence to compute Ext*: i (2) (A1). In particular,
we establish a vanishing line of slope + 5, which will be useful for subsequent use of
the algebraic tmf spectral sequence. In Section 3, we use the differentials in (1.5) to
conclude that 4; cannot admit a v, —self-map of periodicity less than 32. We then use
the algebraic #mf spectral sequence to lift the differentials in (1.5) along the zigzag
(1.8), so that in the Adams spectral sequence

Ext’) (A1 A DAy) = m;—5(A1 A DAy),
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we have nonzero differentials dz(gg) and d3(@g). In Section 4, we use the algebraic
tmf spectral sequence to lift the differential (1.9) along the zigzag (1.8). Finally, in
Section 5, we complete the proof of Main Theorem.

In the Appendix, we provide a description of Bruner’s Ext software to familiarize the
readers with its usage. A summary of the output of the Bruner’s program that is needed
for some of the results in Section 5 is listed in the tables from the online supplement.
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2 Computation of Ext’/’ AQ) (A1) and its vanishing line

J P May in his thesis [10] introduced a filtration of the Steenrod algebra called the
May filtration, which induces a filtration of the cobar complex C(IF,, A, F,). This
filtration gives a trigraded spectral sequence

EP™ =Tolhi ;i 21, j 2 0= Ext§'(S%),  |hij|=(1,272"=1),2i - 1),

with differentials d, of tridegree (1,0, 1—2r), which converges to the E, page of the
Adams spectral sequence

Ey' =Bxt§ (8% = m—s(S°).

The element /; j corresponds to the class [512]] in the cobar complex C(F,, A, F>).
We stick to the notation introduced by Tangora in his thesis [12]. For example, /1 ; is
abbreviated by /1. Meanwhile, there are many elements /; ; that are not d—cycles
in the May spectral sequence, however, even in these cases, the Leibniz rule means
that h2 j will be dj—cycles. To get around the awkwardness of talking about h

later pages of the May spectral sequence, where /; ; may not even exist, Tangora
uses b; j to denote hl, ; from the May E, page onwards.

One can use the same May filtration on the subalgebra A(2) of A4, to obtain a filtration
on the cobar complex C(F,, A(2)«,F,). Thus we get a May spectral sequence with
finitely many differentials

Falho, hy,ha,ha 0, h2 1, 73 o]=>EXtA(2)(SO),
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all of which have been computed using techniques of [12]. The bigraded ring Extj’(tz)(S 0)
is the Adams E, page for the homotopy groups of #mf .

We have obtained A; by a series of cofibrations

st oy cndcn—Y and v Y -4,

The maps 2, n and v; are detected by /g, h; and /3 o, respectively, in the May
spectral sequence. Using the fact that cofiber sequences induce long exact sequences
of E; pages of the May spectral sequence, we get that the £ page of the May spectral
sequence converging to EXtiizz)(Al) is

Falha, ha,1, h3,0] = Extii, (A1)

Alternatively, using a change of rings formula, we see that there is a quasi-isomorphism
of cobar complexes

C(F2, AQ2)«, A(1)+) = C(F2, (A(2)JA(1))+. F2).

Since, C(IF,, (A(2)//A(1))«,F) is a quotient of C(IF,, A(2)«, F,), the May filtration
on C(IF,, A(2)«,F,) induces a filtration on C(IF,, (4(2)//A(1))«,F,). As aresult, we
have a May spectral sequence

2.1) E}(A1) =TFalhy. hy o, hs0] = Eth{Zz)(Al)
that is a module over the May spectral sequence for S°,
(2.2) E7P(S) =TFalho. hy hy ha g, ho 1. hs 0]l = EXti{EZ)(SO)-

The d differentials in (2.2) come from the coproduct on A(2)«. It is well known that
di(hy)=0, d; (hz,l) =h1hy and d, (hj,,o) = h0h2,1 —I-hzhz,() . Under the quotient map

Falho, hi,ha ha 0, h2 1, 03,01 = Falha, ha 1, B3 o),

all the images of the above differentials map to zero. Therefore, there are no d;
differentials in (2.1).

One can use Nakamura’s formula to compute higher May differentials. The operations
Sq; on the cobar complex of C(IF,, A, F5), defined by Sq;(x) =xU; x +6x Uj4q x
(see [11]), satisfy

Sqo(hi,j) =hi ;. Sqo(bij)=b7; and Sq;(hij) = hiji1.

as well as Cartan’s formulas (see [11, Propositions 4.4 and 4.5])

Sqo(xy) =Sqp(x)Sqo(y) and Sqq(xy) = Sq;(x)Sqo(y) + Sqo(x)Sq; (»),
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whenever x and y are represented by elements in appropriate pages of the May spectral
sequence. In particular, we have

Sq;(x*) =0
for every x. The differential § in the cobar complex C(IF,, A, [F,) satisfies the relation
2.3) 3Sq; =Sq; 419
for i >0 (see [11, Lemma 4.1]), and is often called Nakamura’s formula in the literature.

Since the May spectral sequence (2.2) is obtained by filtering the cobar complex,
Nakamura’s formula (2.3) helps to find differentials in (2.2). Furthermore, because the
cobar complex C(IF,, (A(2)//A(1))«,F,) is a quotient of C(IF,, A(2)«,F,), (2.3) can
also help us to find differentials in (2.1).
Lemma 2.4 In the May spectral sequence

Falha, ha 1 hs0] = Extly) (A1),
we have the differentials

dy(bay) =h3. d3(bse) =h3hay and da(b3 ) = hab3 .

and the spectral sequence collapses at Es.

Proof In the May spectral sequence for S (2.2), there is a differential
dy(ba,1) = h3

which implies the corresponding d, differential in the May spectral sequence for 4,
(2.1). The element b3 ¢ is represented by the element [£3]£3] in the cobar complex
C(IF5, A(2)«,F2). Since b3 o = Sqgh3,0, we apply Nakamura’s formula (2.3) to obtain

Sqq(di(h3,0)) = Sqq(hohz,1 + hahs o)
= hZhy +h1h§,1 +h2hy +h3h§,0
= h3hy

in the May spectral sequence for 41 (2.1). Therefore, it must be the case that, in the
cobar complex C(IF;, (4(2)//A(1))x, ),

8([&3183) = [gf |’§f|§22] + elements of higher May filtration.

As aresult, in (2.1), we have

ds(b30) = h3hy ;.
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Since Sqq(b3,0) =
obtain

3 o» We can apply Nakamura’s formula (2.3) in a similar way to

d4(b3 0) 2 1

in the May spectral sequence for S° (2.2) as well as 4; (2.1).

For every r, we have that E;°**(A4,) is a differential graded module over E;***(S?).
Since b4 is a permanent cycle in (2.2), multiplication by b3 o commutes with differen-
tials in (2 1). The elements of E >k’*’*(Al) that are not multlples of b3 o are permanent
cycles by sparseness. Therefore, the elements of E **(A1) that are multiples of b 3.0

are permanent cycles as well, and thus (2.1) collapses at the Es page. O

In Figure 2, the solid line of slope 1 represents multiplication by /;, while the solid
line of slope % represents multiplication by /,. The element bg,o is the periodicity
generator of Ext:';’(*z) (A1) and the solid lines in that part (right) are simply a repetition
of the earlier pattern (left). This matches the output of Bruner’s program [2] for
Exti’iz) (Ay), though different models of 4; may have different hidden extensions
some of which might not be detected in the May spectral sequence.

We have thus computed the Eo, page of the May spectral sequence converging to
Ext’; (2)(A1) While Bruner’s program [2] shows that different spectra have different
hidden extensions, we are mainly interested in a vanishing line for Ext A(2)(A1) which
will not be affected by these hidden extensions.

Lemma 2.5 The group Ethq’Ez) (Ay) is zero if

s > %(Z—s)—l—l,

and for t —s > 29, it is zero if
1
s> 5(t—s).

In other words, there is a vanishing line
y= %x + 1.
Proof Of the three generators of the E; page h, has slope %, h»,1 has slope %

and /3 o has slope +. However, while Ext®;’ A2) (A7) contains infinitely large powers
of hy,1 and hs g, it only contams powers up to 2 of 4,. Hence, the vanishing line

of Ext’; (2)(A1) must have slope , determined by b . Now, since & 2b =0, the
vanishing line for stems greater than 291is y = —x and a glance at Flgure 2 gives us
the y—intercept of the overall vanishing line. |
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Figure 2: The E page of the May spectral sequence for Ext 40) (A1)
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3 A d, and a d; differential

In this section, we first show that bg o and b§ o in Extf‘ifz)(Al A DAy) support
a d, and a d5 differential, respectively. Then we show that these differentials lift to
Exti’t (A1 A DA1) under the map of spectral sequences:

EXtSA’t(Al A DA) =—— m;—5(A1 A DAy)

lttmf* lt,m,«’*

ExtS)l, (Ay A DAy) == tmf,_j(Ay A DAy)

Some of the proofs in this section as well as in the subsequent sections use Bruner’s
program [2]. We provide the Appendix to help readers familiarize themselves with
this software.

Lemma 3.1 In the Adams spectral sequence

Eg’t = Exti’zz)(z‘h A DAy) = tmf,_ (A1 A DAy),

we have d, (b3 ) = eor and d3 (b3 ;) = wgr.

Proof Recall the well known differentials (1.5) in the Adams spectral sequence
E3" = Ext}j(,)(S°) = mf,_,.
Using Bruner’s program, we see that egr and wgr both have nonzero images in

Extfﬁz) (A1 A DA1). Hence, in the map of Adams spectral sequences

l l

E)' = Ext}jiy) (41 A DAy) == mf,_ (A1 A DAy)

we have established that in the (abusive) Notation 1.3, we have

tmf

Ext}, (S%) — Ext’jl,, (41 A DA
XtA(z)( ) — XtA(z)( AN 1)
bg,o*"bg,w
8 8
b3 o> b3y,
eor = eopr,

wgr — wgr.
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Therefore, the d, differential of (1.5) forces a d, differential
dy (b3 ) = eor

in the Adams spectral sequence for tmf, (A1 A DAy). By the Leibniz rule, d; (bg 0)=0
and hence b§ o 1s nonzero in the E3 page. The ds differential in (1.5) will force a
nonzero d3 differential

d3(b5 o) = wgr

in the Adams spectral sequence for tmf, (A1 A DA1) as claimed, provided the image
of wgr is nonzero in the E3 page. Thus we have to show that there does not exist a
differential of the form d;(x) = wgr.

Using Bruner’s program [2], we check that wgr € Ext1149(’29)5 *T19(5%) maps nontrivially

to Ext}49(’2%5+19(A1). Therefore if we have d,(x) = wgr in

Ext;{z)(Al A DAy) = tmf,_;(A; A DAy),
then x must map to a nonzero element, say x’, under the map
Jut EXUZESTVT () A DAy — B 354174,
and we will have d,(x’) = wgr in
Ext}jp) (A1) = mif, _o(A1).

There is exactly one generator of Ext‘147(’29)6+17 (Ay), and that generator is bg oV under
the pairing

B (5D @ X (40) — BT (),

It is clear that d>(y) = 0 as Extzl(’z“)H“(Al) = 0; see Figure 2. Thus using the
Leibniz rule, we see that

dy (b3 47) = eor - .

Using [2], we check that egr - y = 0. Therefore, wgr is nonzero in the E3 page of the
spectral sequence

Ext§jl, (A1 A DAy) = tmf,_(Ay A DAy),

and therefore
d3(b5 o) = wgr

in this spectral sequence. |
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The fact that vé6 € k(2)x(A1 A DAy) does not lift to tmf, (A1 A DA;) implies that
v%k €k(2)x(A1ADAy) for 1 <k <4 does not lift to tmf,, (A1 ADA;). Indeed, suppose
that for k =0, 1,2 or 3 the element v%k € k(2)«(A1 A DA1) lifts to an element

x € tmf. (A1 A DAy),

then x2*™ would be a lift of v;6 as Ay A DAy is a ring spectrum. This would

contradict Lemma 3.1. Since the unit map for k(2) factors through the unit map of tmf
(1.6), Lemma 3.1 implies the following:

Theorem 3.2 The spectrum A; cannot admit a v, —self-map of periodicity 16 or less.
Next we describe an algebraic resolution which will allow us to lift the d, differential
and the d3 differential of Lemma 3.1 to the Adams spectral sequence

E5" =ExtS' (41 A DAy) = m;—5(A1 A DAy).

We will briefly recall the resolution described in [1, Section 5], and how it is used to
lift elements of Ext groups over A(2) to Ext groups over 4. Consider the A-module

AJJAQ2) := AR y42) 2,
and denote by 4//A(2) the kernel of the augmentation map
AJJAQ2) — .

When we consider the triangulated structure of the derived category of 4-modules,
we get maps
AJJAQ2) = F2 — A/ AQ2)[1]

and a resulting diagram

Fy ———— AJAQ)[1] AJARD) 2] —— -
A[AQ)  AJAQ@AJADN]  AJAQ)® AJAR)®(2]

to which we shall apply the functor Extf‘i’ (H*(X)® —,TF,) to get a spectral sequence,
which we shall refer to as the algebraic tmf spectral sequence to reflect the fact
that 4 // A(2) is the cohomology of #mf. This spectral sequence will be trigraded,
with E; page

EVM" = Ext$! (H*(X) ® Af/A(2) ® A A(2)®"[n]. F»)
= Bxt’; 55 (H* (X) ® AJAQ2)®", Fy).
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which converges to
Ext$}' (H*(X).F,).

For any element in the algebraic mf spectral sequence in tridegree (s,?,n), we will
refer to s as its Adams filtration, ¢ as the internal degree and » as the algebraic tmf
filtration. The differential d, has tridegree (1,0, r). It is shown in [4] that

A4)/A4Q2) = H* (=¥ bop),
i=0

where bo; denotes the i™ bo—Brown—Gitler spectrum of [5]. As a result the E; page
of the algebraic tmf spectral sequence simplifies to

EP" = @ Ext Tttt (X Aboy, A--- Aboy,) = ExtS (X)),

i1yeeesin>1

We will attempt to exploit the relative sparseness of the E; page, especially its vanishing
line properties, in the case when X = A A DA;.

Remark 3.3 (the cellular structure of bo—Brown—Gitler spectra) The spectrum bog
is the sphere spectrum. The cohomology of the spectrum bo; as a module over the
Steenrod algebra can be described through the following picture, with the generators
labeled by cohomological degree:

0 4 6 7

where the straight line, curved line and square bracket describe the actions of Sq', Sq>
and Sq* respectively. Note that the 4—skeleton of bo; is Cv. Indeed, the bo; fit
together to form the following cofiber sequence

boj_1 — bo; — S* B(i),

where B(i) is the i™ integral Brown—Gitler spectrum as described in [5]. Therefore
for every i > 1, the 7—skeleton of bo; is bo; and the 4—skeleton of bo; is Cv.

One can compute Extf, (41 A DAy A bo;) from Ext}j(, (A1 A DAy) using the
Atiyah—Hirzebruch spectral sequence or with Bruner’s program [2].

Lemma 3.4 The group
EXti{Ez)(Al A DAy Aboi, A--+ Aboj,)

is zero if s > %((Z—s) +6).
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Proof We showed in Lemma 2.5 that Extfjiz)(Al) has a vanishing line s = %(t —5)
for t —s > 30 and a vanishing line of s = (t — ) + 1 overall. The only generator
of Exts z (A1) with a slope greater than < 18 Ky, so if we k111 off /1, by considering
Ext®? A2 (A1 A Cv) then the vanishing hne is precisely s = (t —).

As we mentioned in Remark 3.3, the 4—skeleton of any bo; is Cv and the next cell is
in dimension 6. So we can build bo; by attaching finitely many cells of dimension at
least 6 to Cv. Hence by using the Atiyah—Hirzebruch spectral sequence and the fact
that —(x 6)+1< x one can see that the vanishing line of 41 Abo; is s = 5 Lit—s).
One can build A4 /\b0,1 A---Abo;, from A Abo;, , iteratively using cofiber sequences,
which depend on the cell structure of bo;, A---Abo;, . Since we have already established
that E’“iizz) (A1 Aboj,) has vanishing line s = %(l —s) and that bo;, A---Abo;, isa
connected spectrum, we conclude, using the Atiyah—Hirzebruch spectral sequence, that
the vanishing line for ExtA(z)(Al Aboj, A+ Nboj,) is s = %(l —5).

However, DA has cells in negative dimension, in fact the bottom cell is in dimen-
sion —6. Again by using the Atiyah—Hirzebruch spectral sequence, one concludes that
the vanishing line for ExtA(z)(Al A DAy Aboj, A--- Nboj,) is

s = %(t —5+6)
for any iz > 1, completing the proof. |
Corollary 3.5 The group Extil”(Al A DAy) is zero it
> %(l —5)+ 1—51
and for t —s > 23, it is zero if

s>t —s)+ 8.

The result is a straightforward consequence of Lemma 2.5, Lemma 3.4 and the algebraic
tmf spectral sequence.

Lemma 3.6 The element
b3, € ExtA(2)+8(A1 A DAy)
lifts to an element {1\5 under the map

tmpx: BT84 A DAy) — Exti’(“zs)Jrs(Al A DAY).
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Proof Consider the algebraic fmf spectral sequence:

EP" = @@ Exty SO (A A DAy Aboiy A boi,)

1
i1=1,...,ip>1 “

EXtil’t (A1 A DAy)

The element bgo has tridegree (s,¢,n) = (8,48 + 8,0) = (8, 56,0) in the above
spectral sequence. The element d, (bg‘ o) has tridegree (9, 56,n) and hence belongs to

Ext?, 136 =8Gt=Fin) (4 A DA} Aboi, A -+ Aboj,)

A(2)
for some (iy,...,i,) where iy > 1. We will show that the above group is zero for all
n > 1 and for all tuples (iy,...,iy) where ij > 1.

By Lemma 3.4 the above group is zero if
(3.7) $(56—8(i1 +-++in)—9+n+6)<9—n,
which is trivially satisfied for n > 4.

For n =1, (3.7) becomes
$(54—38iy) <38,

thus i1 > 1, so it suffices to verify that
Exti’(“;‘)(Al ADA; Aboy) = 0.

For n = 2, (3.7) becomes
$(55—8(i1 +1i2)) <7.

thus i1 + 1, > 2, so it suffices to verify that
Extj;g‘z‘))(Al A DA, Aboy Aboy) = 0.
For n = 3, (3.7) becomes
(56 —8(iy + i +1i3)) <6,
thus i1 + 1, + i3 > 3, so it suffices to verify that
Ext$25 (41 A DAy Aboy Aboy Aboy) = 0.
For n = 4, (3.7) becomes

(57 —8(i1 +ir + i3 +is)) <5,
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thus i} + iy + i3 +i4 > 4, so it suffices to verify that
EXtil(Z;)(Al A DAq{ Aboi Aboy Aboy Abor) = 0.

For all four models of A;, Bruner’s program [2] shows that all the groups we expected
to be zero are in fact zero. m

Corollary 3.8 For all n € N, the elements b4” € Exti’éz48"+8" (Ay A DAy) lift to an

element v8” € EXtS” A8nE8n( 4 A DAy) under the map tyfs .
Proof Since A1 A DA is aring spectrum, it follows that the map
tmf+: EXt (41 A DAy) — ExtA(z)(Al A DAy)
is a map of algebras. By Lemma 3.6, b4 lifts and thus b4” lifts for every n e N. O

Remark 3.9 The lift of vgn in Corollary 3.8 may not be unique. The indeterminacy
in the choice of vS” cons1sts of elements of higher algebraic mf filtration.

Lemma 3.10 In the Adams spectral sequence
E;’t = EXtil’t(Al 7AN DA]) = nt—S(Al 7AN DAI),

there is a d, —differential
dr(v§) = eor + R

and a ds —differential
d3(vI%) = wer + S

for some R and S in algebraic tmf filtration greater than zero.

Proof Recall that egr and wgr are elements in Ext’y*(S 9) (see [12]), which maps
nontrivially (see Lemma 3.1) under the composite

Exty*(S°) — Exty(S%) — Extlyy) (41 A DAy).

Therefore, by inspecting the commutative diagram

Ext%*(8%) —— Ext’*(4; A DA;)

(3 1 1) Limfx l Jltmf*
tmf

[
Ext;(*z)(so) — Ext’ys) (A1 A DAy)
we see that egr and wgr are nonzero image in EXtZ’*(Al A DAy). Since {)Vg and ;);g

are lifts of b;‘ and b3 o- respectively, the differentials of Lemma 3.1 force the differ-
entials as claimed. m
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4 Another d; differential

The goal of this section is to lift the d3 differential (1.9) in the spectral sequence for
tmf, to a dj differential

ds(v3%;) = g°
in the Adams spectral sequence
E5" =ExtS' (41 A DAy) = mx(A1 A DAy)
along the zigzag (1.8).

The element g € E)('[‘:I’ZO‘F4 (S9) is Tangora’s name [12] for the element detected
by b% , in the May spectral sequence

Falhi,j i >0, j > 0] = Ext’(S°).

In the literature, the same name is adopted for its image in Extj’é(;H(S 0y,

Lemma 4.1 In the Adams spectral sequence

Ey" = Bxtj(y) (41 A DAy) = tmf,_ (A1 A DAY).

the element g© is hit by a ds differential

d3(v3%h) = g°.

Proof From the calculation in Lemma 2.4, it is clear that g% = b;zl has a nonzero

image in Exti‘t’zl)m““ (A1). Since we have a factorization of maps

BxiZ 207 24(59) - BXA120028 (4 & DAy) — ExiZ120424 (4,

we have that g must also be nonzero in the Adams E, page for tmf, (A A DAy).

To show that it is also nonzero in the Adams E3 page, we must exclude the possibility

that g¢ Exti‘t’21)20+24(A1 A DA;) might be hit by a d, differential

da(X) =g 6
for some elements X € Extiz(,2121+22(A1 A DAy). In such a case, X would have to
map to a nonzero element x € Extiz(’zl)szz(Al) and there would exist a differential
(4.2) dy(x) = g°
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in the Adams spectral sequence
Ei,t = Eth‘l’EZ) (Al) = tmft—s(Al)

as g8 #£0e Exti‘t’21)20+24 (Ay). From the calculations of Lemma 2.4, there is exactly
one possible nonzero x € Extflz(’zl)ﬂ"'22 (Ay). Using Bruner’s program [2] (see (A.2))
we see that this x is a multiple of gbgt o under the pairing

BxE 250 @ B 04— BGER0), abd, T x
Clearly d,(X) =0 as Extilz(’zs)z“z(Al) = 0, and hence by the Leibniz rule, we get
dr(x) = gegr - X.

However, gegr =0 in Extﬁ’z?"'”(S 0), therefore d,(x) = 0. It follows that the d
differential in (4.2) cannot exist and g% is a nonzero element in the E3 page of the
spectral sequence

ExUj(y) (41 A DAy) = imf,_(Ay A DAy).
Thus the d5 differential of (1.9) in Adams spectral sequence
EXtiI,EZ) (SO) = tmft—s

forces the d5 differential
d3(v3°hy) = g°

in the Adams spectral sequence for tmf, (A1 A DA;) as claimed. a

Our next goal is to lift this d3 differential to the Adams spectral sequence
EXtit(Al A DAI) = ﬂt—s(Al VAN DA])

The main tool at our disposal is the algebraic #mf spectral sequence, described in
Section 3.

Lemma 4.3 The elements g® and v%ohl lift to Extil’t (A1 A DA1) under the map

Limfs Extii”(Al ADAy) — Extii’éz)(Al A DAy).

Proof In the proof of Lemma 4.1, we showed that g% is a nonzero element if
Exti‘t’21)20+24(A1 A DAy). Since g° is an element of Exti4’120+24(S0), from the
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commutative diagram

Ext**(S%) —— Ext%;*(4, A DA;)

Ltmf*J/ J]lsz*
tmf

Ext’y 5, (S°) L Ext’y (A1 A DAy)

it easily follows that g© lifts to Exti4’12°+24 (A1 A DAy) under the map tyfs .
It is known that v2°h1 = b3 0 v2h1 under the pairing

ExtE0F19(50) @ BxtE S (S) — Ex2l21721(50), b8 @ vdhy 1 3%,

Therefore the same relation v2°h1 b8 3.0 v2h1 is true in ExtAl( 1)21+21 (A1 ADAy) as
(37 Extsil, (S©) — Ext$fl, (Ay A DAy)

is a map of algebras. From Corollary 3.8, we already know that bg o lifts to
vI6 e Ext!9T16(4, A DAy).

Using the algebraic tmf spectral sequence

ESP" = @ Ex t;('” 8Urt+in) (4, A DAy Aboi, A--- Aboi,)

1
i1>1,. “

EXtil’t (A1 7AN DAI)

and the vanishing lines established in Lemma 3.4, we see v2h1 € Ext’ i (2)+5 (A1ADAy)
also has a lift

vfﬁzll € Exti’25+5(A1 A DAy).

Therefore,

vI8 - vy e Ext21 12121 (4, A DAY)

is a lift of vzohl, as
tmfs: BXCY' (A1 A DAy) — Ext3j(5) (A1 A DAy)

is a map of algebras. |
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We will denote any lift of v%’o_}ll_/by ﬁgafz’l € E)(till’lzl"'21 (A1 A DAy). One should
b/ezllvare that the choice of v39/ is not unique. The indeterminacy in the choice of
v30h; consists of elements of higher algebraic #mf filtration. This does not cause
problems later in the paper because of the following technical lemma.

Lemma 4.4 Suppose that we have a nontrivial differential d,(x) = y in the Adams
spectral sequence for a spectrum X ,

Ey' =Ext§ (X) = m—s(X).
If x has algebraic tmf filtration greater than zero, then so does y .

Proof If the algebraic fmf filtration of x is greater than zero then the map of spectral
sequences

Extf‘i’(X) — m;5(X)

Ltn;f*l J/lef*

Ext}j{,) (X) == tmf; _s(X)

sends x to 0. Therefore,
Limf# (V) = tumpx (dr (X))

=d, (Ltmf* (x))
=0,
which means that the algebraic #mf filtration of y is greater than zero. O
Lemma 4.5 In the Adams spectral sequence
EXtil’t(Al A DA ) = mi—s(A1 A DAy),

there exists a d5 differential
d3(v2Ohy) = gb.

Proof It is easy to check that Lemma 4.1, along with the map of Adams spectral
sequences

E;’t = Eth‘I’t(Al A DA]) _ nt—S(Al A DA])

| J

E;’t _ Ethiiz)(Al A DAy) == tmf,_;(A; A DAy)

induced by t,,s, forces a d3 differential (also see Remark 4.7)

(4.6) dy(v3h) = g° + R,
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where R is an element of algebraic #mf filtration greater than zero. Studying the
algebraic tmf spectral sequence for A A DAq, using the vanishing lines of Lemma 3.4
and using the fact that (checked using Bruner’s program)

Etj3(21)13+23(A1ADA1/\b01):0 and Extiz(’21)06+22(A1/\DAI/\bol/\bol)ZO,

we conclude that R is in fact zero. O

Remark 4.7 Lemma 4.4 in particular eliminates the possibility of a differential of the
form

dr(S) =

where S is in the higher algebraic #mf filtration. This is needed for the conclusion of
(4.6).

5 Proof of Main Theorem

Recall from Corollary 3.8 that there are candidates in the E, page of the Adams
spectral sequence

(5.1) E" = Ext§} (A1 A DAy) = m—s(A1 A DAy),

denoted by v87 | that can detect an 8n—periodic v,—self-map. Since v8 supports
a d, differential and v16 supports a d3 differential (see Lemma 3.10), by the Leibniz
formula v32 is a nonzero dz—cycle. The only way v32 can fail to detect a 32—periodic
v, —self-map is by supporting a nonzero d; dlfferentlal for r > 4 in the Adams spectral
sequence (5.1). So we look for candidates in the E, page of (5.1) that can potentially
be the target of a nonzero d, differential supported by l’)gi for r > 4. Such elements
will live in Extf‘i’ (A1 A DA7) with t —s = 191 and Adams filtration s > 36. We use
the algebraic tmf spectral sequence to detect such candidates. The goal of this section
is to argue that any such candidate is either zero or not present in the E4 page of the
spectral sequence (5.1).

From Section 3, we recall the algebraic tmf spectral sequence:

ESn — @ Etil(”’ 8Grt+in)(bo; A---Aboj, A Ay A DAy)

11 ..... ln “

EXtil’t (A1 7AN DAl)

An easy consequence of the vanishing line established in Lemma 3.4 is the following.
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Lemma 5.2 The only potential contributors to Extf‘it(Al ADAy) fort —s =191 and
s > 36 come from the following summands of the algebraic tmf E{ page:

Ext$jl, (41 A DA & @D Exti 3% (4, A DAy Aboy)
1<i<3
& P Ext$ 37578 (41 A DAy Aboy Aboy)
1<i<2

® Ext;—(§5’—24(A1 A DA Aboy Aboy Aboy).

While the result holds for all models of A4;, the computations will be slightly different
for different models, and so we will treat these models separately. Since A1[00] and
Aq[11] are Spanier—Whitehead dual to each other, we can treat the cases of 41[00] and
A1[11] as one case. We will then have to treat the cases of the self-dual spectra A1[01]
and A[10] separately. The completeness of the tables in this section will be justified
by the more detailed tables in the online supplement.

Notation 5.3 The elements of E f’t’", the E, page of the algebraic tmf spectral

sequence for A1 A DA, which are nonzero permanent cycles, will detect nonzero

elements of Ext’;’(4; A DA;). Therefore we place an element x € E5""" in bidegree

(t —s —n,s +n). Thus the elements that may contribute to the same bidegree of
Extfit (A1 A DAy) are placed together. With this arrangement any differential in the
algebraic tmf spectral sequence will look like Adams d; differential. The generators of

EV = P Exti‘(;’)”‘g(i1+"'+i")(A1 A DAy Aboj, A+ Aboj,)
D1 5eeey in=>1

will be denoted by dots in the following manner (recall that boy = S0y:

¢ elements with n = (0 are denoted by a e,

e celements with » = 1,i; = 1 are denoted by a ol,

e elements with n = 1,i; = 2 are denoted by a o2,

e celements with n =2,i; = 1,i, = 1 are denoted by a ©,

¢ and N/A stands for “not applicable,” ie coordinates of the table which are
irrelevant to our arguments.

5.1 The case A1 = A1[00] or A; = A4[11]

We begin by laying out, in Table 1, the elements of the E; page of the algebraic
tmf spectral sequence, in Notation 5.3. The table makes it clear that all elements
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s\t—s | 189 190 191
40 0 0 0
39 0 (oo) = Y309 (.oo) = X_“?9
38 N/A <ooooo) = Y308 <oo-) = XZ?8
xXxxx xXxXxx ::XO
37 N/A 1 (1 1 1)1 1 1.1 <1 1 1)1 1 137 1
(oooooo)(oooooooo)::X37
(o.o) = Xf?G
36 N/A N/A (olol) = X316

(OO0 060) =X

Table 1: E; page of the algebraic tmf spectral sequence for Extf‘l” (A1 A DAy),
where A; = A1[00] or A = A1[11], stem 189-191.

s\t—s 70 71
15 | (W) =gtYy (s00) = g75X
14 (s000e) = g—6y308 (s000) = g—6x308
" (s0ves) (s000cee) =g S X0

(o'ololololol)  (ololololol ol olo!) = g6 X}

11 .11 .11\ _ —6yl
. N/A (o' 0'o'ololol) =g X36

(000 000)=g5X}!

Table 2: E; page of the algebraic tmf spectral sequence for Extfq” (A1 A DAy),
where A; = A1[00] or A; = A4[11], stem 70-71.
with # —s = 191, with the possible exception of those in X 306, are permanent cycles in
the algebraic rmf spectral sequence. Our goal is to show that every linear combination
of elements in X'~ is either absent or zero in the E4 page of the Adams spectral
sequence. Using Bruner’s program (for details see Tables 1-4 from the online supple-
ment), we observe that a lot of these elements are multiples of g% in the E; page of

the algebraic tmf spectral sequence, which we record in Table 2.

Lemma 5.4 Every element of
0 0 0 1 1 1,1
X39 @ X35 © X357 © X537 @ X536 ® X3

is present in the Adams E, page, but is either zero or absent in the Adams E4 page.
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Proof Tables 1-4 of the online supplement make clear that multiplication by g
surjects onto X§)9 @ X3°8 @ X307 &) X317 b X316 &) X316’1 . Notice that for any

Xx=g%y e X ® X3 © X3 ® X3, ® Xy ® Xyg',

both x and y are nonzero permanent cycles in the algebraic fmf spectral sequence.
Indeed, the target of any differential supported by y, must have algebraic tmf filtration
greater than y and from Table 2 it is clear no such element is present in the appropriate
bidegree. Hence y is present in the Adams E, page. The same argument holds for x.

Casel When x =g%.y ¢ X§)9 @ X308 b X317 &, X316 &) X316’1, then both x and y
are permanent cycles in the algebraic #mf spectral sequence as the differentials must
increase algebraic mf filtration. In fact these elements are permanent cycles in the
Adams spectral sequence for either degree reasons or by Lemma 4.4. If y is a target of
a differential in the algebraic tmf spectral sequence or an Adams d, differential, then
y is zero in the E3 page. Consequently, x = g©- y is zero in the E3 page as well. If

y is not a target of such differentials, then we have
d3(v3h; - y) = v3Ohy - d3(y) + d3(v30hy) -y = g%y = x.
In either case, x is zero in the E4 page.

Case 2 When x = gb-ye X 307 and y is a permanent cycle, then we can argue
x = g%y is zero in the E4 page as we did in the previous cases. If

dy(y) =)',

then y’ must belong to g_6Y3°9. Since multiplication by g® is a bijection between

g7OYY and Yy, we get
dy(x) = da(g%-y) = - da(3) + da(°) -y = g%y #0.
Therefore, x is absent in the E4 page. a

Thus we are left with the case when x € X 306.
Lemma 5.5 Every element of X 306 is either zero or absent in the Adams E4 page.

Proof X 306 is spanned by three generators {s1,?1,%,}. Using Bruner’s program, we
explore the following relations in the E; page of the algebraic tmf spectral sequence:

— 14 0
s1=b3 o X1, Yig3eor-x1 #0, YO 5 wer-2; £0
4 8 39 ! ’
I =b3,o')’1 =b3,0'21, eor-y1 =0, yO £0
S wgr-zp
4 8 _ 39 ’
ty=b3o-y2=b34" 22, eor - y2 =0,
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sy t—s— | 94 95 s} t—s — 142 143
23 0 0 30 0 0
22 0 0 29 (ooooo) (ooooo)

<’=X1 =) ,o=y2) =21

21 0 0 28 N/A (olo1)

20 N/A (°=Zl,‘=Zg)Z=ZZ()

Table 3: E; page of the algebraic tmf spectral sequence for Extf‘i’ (A1 A DAy),
where 4; = A1[00] or A = A4[11].

and wgr-z; and wgr- z, are linearly independent. In Bruner’s notation, s; = 3644,
11 = 3665, 12 = 3666, X1 = 2832, eor - X1 = 385, y1 = 2833, y2 = 2834, z; = 20y,
wgr-z1 =391, z; =20, and wgr-z; = 39,; see Table 5 from the online supplement.

From Table 3, it is clear that any element in Z,y and Z,g are permanent cycles.
Casel If x =e€151 + 81t + 821, # 0 in the Adams E, page with €; # 0, then
dy(x) = €1d (V8 - x1) = €1 (eor - x1) # 0.
Thus x is not present in the £, page.
Case2 If x =81t + 8,1 # 0, then
dy(x) =0.
If x # 0 in the Adams E5 page, then
d3(x) = 81d3(v]6 - 21) + 82d3(vI6 - 25) = wgr- (8121 + 8222) # 0.

Thus x is not present in the £, page. |

This proves Main Theorem in the cases 4; = A1[00] or 4; = A4[11].

5.2 The case A1 = A1[01] or A1 = A4[10]

A priori, A1[01] and A{[10] are two different spectra and we must therefore give
two different proofs of Main Theorem. However, it turns out that Tables 4 and 5 are
identical for 4{[01] and A[10], and therefore the exact same arguments will apply to
both spectra. For A1[01], refer to Tables 6-9 of the online supplement, and for A4[10],
refer to Tables 10-13 of the online supplement, to observe that most of the elements in
Table 4 are multiples by g® of elements in Table 5.
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s\t —s 190 191
39 0 (o) 1= XY,
38 (soee) =Y (o) := X3
- (o0 00) (oosee) = X0,
(ololol ol olol) (ololololol ol olol) i= X1
36 N/A (0) = XL

Table 4: E; page of the algebraic tmf spectral sequence for Extf‘l” (A1 A DAy),
where A; = A1[01], stem 190-191.

s\t —s 70 71
15 0 (o) = g5 XY,
14 (oooo) = g_6Y308 (oo) = g_6X308
13 (oo.o.) (oo.o.oo):g_6X??7
(olololololol) (olololololololo )=g*6X317
(Ol Ol 01 01 0101)
12 N/A

(00) =g7%Xx}!

Table 5: E; page of the algebraic tmf spectral sequence for Extf‘i’ (A1 A DAy),
where A; = A1[01], stem 70-71.

Lemma 5.6 All elements of

(5.7) X0 ® Xig ® X3, @ X), @ X!

are present in the Adams E, page, but are zero in the Adams E, page.

Proof Differentials in the algebraic mmf spectral sequence increase algebraic mf
filtration. Therefore, as Tables 4 and 5 make clear, all elements of (5.7) are permanent
cycles in the algebraic mf spectral sequence and are therefore present in the Adams E

page. Furthermore, all these elements are permanent cycles in the Adams spectral
sequence, either for degree reasons or by Lemma 4.4.

Tables 613 of the online supplement make clear that multiplication by g© is surjective
onto (5.7). Therefore, any element x = g®-y in (5.7) which is not zero in the Adams E 3
page is a target of a d5 differential

d3(v3%%y - y) = d3(vFh1) -y + v30hy -d3(y) = g%y = x,

hence zero in the E,4 page. |
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Appendix: General remarks on the use of Bruner’s program

Since many of our proofs relied on the output of Bruner’s program, we append some
facts about the program to justify our claims.

The program takes as input a graded module M over A (or A(2)) that is a finite
dimensional I, —vector space and computes Extf‘i’ (M,IF,) (or Extil’éz) (M, Fy)) for ¢
in a user-defined range, and 0 <s <MAXFILT, where one has MAXFILT = 40 by default.
The structure of M as an A-module is encoded in a text file named M, placed in the
directory A/samples in the way we will now describe.

The first line of the text file M consists of a positive integer n, the dimension of M as
an [F,—vector space, whose basis elements we will call gg, ..., g,—1. The second line
consists of an ordered list of integers dy, . .., dy,—1, which are the respective degrees of
the g;. Every subsequent line in the text file describes a nontrivial action of some qu
on some generator g;. For instance, if we have
k
Sq*(gi) = gj1 +---+ g1
we would encode this fact by writing the line
ik1j1...31

followed by a new line. Every action not encoded by such a line is assumed to be
trivial. To ensure that such a text file in fact represents an honest 4-module, we must
run the newconsistency script, which will alert us if:

¢ the text file contains a line
ik1j1...51
and it turns out that one of the d; is not equal to d; + k, or

¢ the module taken as a whole fails to satisfy a particular Adem relation.

Example A.1 Consider the A—module given by Figure 3, where generators are de-
picted by dots and actions of Sq'!, Sq? and Sq* are depicted by straight lines, curved
lines and square brackets, respectively.

Based on this picture, we get the text file in Figure 4, which we call A1-00_def. We
go to the directory A2 and run:

./newmodule A1-00 ../A/samples/A1-00_def
cd A1-00
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e &7
f.gé
gs o >
g4.\-g3
/ lgz

* 8o
Figure 3: H*A1[00] as an A-module

Now we are ready to compute. Running the script
./dims 0 250

will compute EXti{éz)(Al [00]) for 0 < s <MAXFILT =40 and 0 <¢ < 250. To see the
Ext group, one runs

./report summary

./vsumm A1-00 > A1-00.tex

pdflatex A1-00.tex

to produce a pdf document A1-00.pdf as in the online supplement.

As this file makes apparent, the generators of the Ext group (as an [F, vector space)
are stored in the computer with names such as sg, where s is the Adams filtration of
the generator, and g is some way of ordering all generators of filtration s. It should
be emphasized that g is not the stem of the generator. In A1-00.pdf from the online
supplement, for instance, the generator 1, is the second generator of filtration 1, but it
is in stem 6. This file also tells us the action of the Hopf elements /¢ through /3, so
that in our example, /2, multiplied by the generator 1, equals the generator 2, .

By running
./display O A1-00_
to produce single-page pdf documents A1-00_1.pdf, A1-00_2.pdf, ..., it is also

possible to see the Ext group in the visually more appealing form of a chart, as shown
in A1-00_1.pdf from the online supplement.

The program is also capable of computing dual modules via the dualizeDef script, and
tensor products via the tensorDef script. Both executables are conveniently located in
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01233456

OO W WNNR, R, P, P, OOOO
R NP WNNEFE OO WD WwN -
I = e = T e T = T e S e = S Gy S Sy =Y
N NN 0w N o N WN -

Figure 4: The text file A/samples/A1-00_def

the A/samples directory where we put our module definition text files. Thus, running

./dualizeDef A1-00_def DA1-00_def
./tensorDef A1-00_def DA1-00_def ADA1-00_def

produces the text file ADA1-00_def, with which we proceed in the same way as earlier
with A1-00_def.

While ADA1-00.pdf only shows the action of the Hopf elements /¢ through /3, the
scripts cocycle and dolifts enable the user to input a specific generator and find
the action of much of Extjéz) (S°) on that specific generator. Let us do this with the
generator Og € Ext%’(oz)(Al [00] A DA1[00]) by going to directory A2 and running

./cocycle ADA1-00 O 6

which will create a subdirectory A2/ADA1-00/0_6. To find the action of all elements
of Extf{iz)(So) with 0 <5 <20 on 0Og, we go back to directory A2/ADA1-00 and run:

./dolifts O 20 maps
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Now ADA1-00/0_6 will contain several text files, among them brackets.sym (which
contains information about Massey products) and Map . aug (which contains information
about the action of Extil’éz)(So) on 0Og).

The generators of Extfizz)(S 0) are stored in the computer in the format sg . Here we

include a list of important elements of EXtiiEz) (S°) and their Sg representations:

g =4g e Exty (8%
b3 =819 € Extﬁg)”(s")
eor =105 € Extllzl(z’z“;"'lo(So)
B o = 1654 € ExtIE55H16(50)
wgr = 1956 € Ex‘[1149(’29)5+19(S0)
V20 = 21gs € Ext 2121 (s0)

¢ = 249 € EXZ120724(50)

We’d like to know what s¢(0¢) € ExtA(z) (A1[00] A DA[00]) is in the notation of
ADA1-00.pdf. Of course, s¢(0¢) is in filtration s, so we only need to specify which
of the generators in filtration s make up s¢(0¢). If, for instance, we have

5¢(06) = sg1 + -+ Sgn,
then ADA1-00/0_6/Map . aug will contain the lines:
sglg
sg2g

5 gn g

Now, in the Adams spectral sequence

Ext’(,,(S°) = mf, .

we have

dy (b3 o) =eor =1015 eExt;‘g;”lo(S") and  d3(b3 4) =19s6 eExtf(gH”(SO).

It follows that if
10,5(06) = 10, € Extj}fg”ml A DA;)

and
1956(06) = 19, € Ext1149(’21)9+95(A1 A DAY,
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then b3 ) € Extyy537* (41 A DAy) and b3, € Ext)75)°F1¢(4; A DAy) support a ds
differential and a d3 differential, respectively. By doing the above steps for all four
versions of A;, and checking the respective Map . aug files, each contain lines

10 x 18
19 y 56
justifying the claim in Lemma 3.1.

Using the tools we have so far described, it is easy to verify the claim from the proof
of Lemma 4.1, that for all four models of 4; we have

(A.2) gby o103 =22;.
It is similarly easy to verify that if 4; = A{[00] or A4; = A[11], we have
geor - 103 =0,
while if A7 = 4{[01] or A1 = A1[10], we have
geor - 103 =244 = g6.

Finally, in order to run the algebraic fmf spectral sequence, we will also need do
computations involving the bo—Brown—Gitler spectra. We give the A4(2)-module
definitions for the cohomologies of bo; and bo, in bol_def and bo2_def from the
online supplement.
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THH and base-change for Galois extensions of ring spectra

AKHIL MATHEW

We treat the question of base-change in THH for faithful Galois extensions of ring
spectra in the sense of Rognes. Given a faithful Galois extension A — B of ring
spectra, we consider whether the map THH(A4) ® 4 B — THH(B) is an equivalence.
We reprove and extend positive results of Weibel and Geller, and McCarthy and
Minasian, and offer new examples of Galois extensions for which base-change holds.
We also provide a counterexample where base-change fails.

55P43; 13D03, 55P42

1 Introduction

Let R be an [E;-ring spectrum. The topological Hochschild homology THH(R) of R
is a spectrum constructed as the geometric realization of a certain cyclic object built
from R, a homotopy-theoretic version of the Hochschild complex of an associative
ring. Topological Hochschild homology has been studied in particular because of its
connections with algebraic K—theory via the theory of trace maps. More generally, if
R is an [E;—algebra in A-modules for an [Eo,-ring A, then one can define a relative
version THH4(R).

Weibel and Geller [15] showed that Hochschild homology for commutative rings
satisfies an étale base-change result. Equivalently, if k& is a commutative ring and if
A — B is an étale morphism of commutative k—algebras with A flat over k, then
there is a natural equivalence

B ®, THH¥ (4) ~ THH* (B).

Weibel and Geller’s result also applies in the nonflat case, although it cannot be stated
in this manner.

One can hope to generalize the Weibel-Geller result to the setting of ring spectra. This
leads to the following general question:

Question Let 4 — B be a morphism of Ey,-ring spectra. When is the map
(1) THH(A4) ® 4 B — THH(B)

an equivalence?
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694 Akhil Mathew

Following Lurie, we will use the following definition of étaleness:

Definition 1.1 A morphism A — B of E-ring spectra is étale if wo(A) — mo(B)
is étale and the natural map 74 (A4) ®x,(4) To(B) — 7« (B) is an isomorphism.

McCarthy and Minasian [11] consider this question for an étale morphism! of connec-
tive Eoo—rings and prove the analog of the Weibel-Geller theorem, ie that (1) is an
equivalence (see [11, Lemma 5.7]). In fact, they prove the result more generally for
any THH—érale morphism of connective [, —rings.

In the setting of structured ring spectra, however, there are additional morphisms of
nonconnective ring spectra that have formal properties similar to those of étale mor-
phisms, though they are not étale on homotopy groups. The faithful Galois extensions
of Rognes [14] are key examples here.

This note is primarily concerned with the following analog of the Weibel-Geller and
McCarthy—Minasian question:

Question Let 4 — B be a G—Galois extension of [, —ring spectra, with G finite.
When is the comparison map (1) an equivalence?

We make two main observations here. Our first observation uses the fact that THH, like
algebraic K—theory, is an invariant not only of ring spectra but of stable co—categories.
We refer, for example, to Blumberg and Mandell [3] and Blumberg, Gepner and
Tabuada [2] for a treatment of THH in this context. Using Galois descent, we observe
that the map (1) is an equivalence if and only if the map THH(A) — THH(B)"C is
an equivalence. These maps are the comparison maps for the Galois descent problem
in THH. Consequently, the results of Clausen, Mathew, Naumann and Noel [4] provide
numerous examples in chromatic homotopy theory where (1) is an equivalence.

Our second observation is to reinterpret the base-change question for THH in terms of
the formulation THH(R) ~ S! ® R for Eso-rings, due to McClure, Schwinzl and
Vogt [12].

As a result, we obtain an example where (1) is not an equivalence.

Theorem 1.2 There is a faithful G —Galois extension A — B of E,—ring spectra
such that (1) is not an equivalence.

I'We note that McCarthy and Minasian use the word “étale” differently in their paper.
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Our counterexample is very simple; it is the map C*(S!;F,) — C*(S!;F,) induced
by the degree-p cover S! — S!.

We in fact pinpoint exactly what goes wrong from a categorical perspective, and why
this phenomenon cannot happen in the étale setting, thus proving a variant of the
Weibel-Geller—-McCarthy—Minasian theorem in the nonconnective setting:

Theorem 1.3 Let R be an E, —ring, and let A — B be an étale morphism of E,—R -
algebras (possibly nonconnective). Then the natural map THHR (4)® 4 B — THHR (B)
is an equivalence.

The use of categorical interpretation of THH in proving such base-change theorems is
not new; McCarthy and Minasian [11] use this interpretation in a different manner.

Acknowledgments I would like to thank John Rognes and the referee for several
helpful comments. The author is supported by the NSF Graduate Research Fellowship
under grant DGE-110640.

2 Categorical generalities

Let C be a cocomplete co—category, and let x € C. Given x € C, we can [5, Section
4.4.4] construct an object ST®x.

Choose a basepoint * € S'. Then we have a diagram:

X ———m )

g Ll

Slex — S'®y
As a result of this diagram, we have a natural map in C,
3) (S'®x)Uxy - S'®y.

In order for (3) to be an equivalence, for any object z € C, the square of spaces

Hom(S', Home(y. z)) —— Home(y. 2)

@ | l

Hom(S!, Home (x, z)) —— Home(x, z)

must be homotopy cartesian. This happens only in very special situations.
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Proposition 2.1 Let f: X — Y be a map of spaces. Then the diagram

Hom(S!, X) — X
(%) l l

Hom(S',Y) — Y
is homotopy cartesian if and only if, for every point p € X , the map from the connected
component of X containing p to that of Y containing f(p) is a homotopy equivalence.
Proof Without loss of generality, we may assume that X and Y are connected spaces.
In this case, choosing compatible basepoints in X and Y, we get equivalences

QX ~ fib(Hom(S', X) > X), QY ~ fib(Hom(S',Y)—Y),

and the fact that (5) is homotopy cartesian now implies that 22X — QY is a homotopy
equivalence. Since X and Y are connected, this implies that X — Y is a homotopy
equivalence. |

Definition 2.2 We will say that a map of spaces X — Y is a split covering space
if the equivalent conditions of Proposition 2.1 are met. In particular, X — Y is a
covering space that is trivial on each connected component of Y .

Observe that the base-change of a split covering space is still a split covering space.
Corollary 2.3 Suppose x — y is a morphism in C as above. Then the natural map
(S'®x)Uy y — S ® y is an equivalence if and only if, for every object z € C, the

induced map of spaces Hom¢(y, z) — Home(x, z) is a split cover.

Proof Our map is an equivalence if and only if (4) is homotopy cartesian for each z € C.
By Proposition 2.1, we get the desired claim. |

We now give this class of morphisms a name.
Definition 2.4 A morphism x — y in an co—category C is said to be strongly 0—
cotruncated if, for every z € C, the map Home(y, z) — Home(x, z) is a split covering

space.

Corollary 2.3 states that x — p has the property that (S' ® x) Uy y — S! ® y is an
equivalence if and only if the map is strongly O—cotruncated.

For passage to a relative setting, we will find the following useful:
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Proposition 2.5 Let C be a cocomplete co—category, let a € C, and let x — y be a
morphism in Cy. If x — y is strongly 0—cotruncated when regarded as a morphism
in C, then it is strongly O—cotruncated when regarded as a morphism in Cq .

Proof Suppose a — z is an object of C,/. Then we have

Home,, (, ) = fib(Home(y, z) — Home (d, 7)),
Home, , (x, z) = fib(Hom¢ (x, z) — Home(a, 2)).

Since Hom¢(y, z) — Home(x, z) is a split cover, it follows easily that the same holds

after taking homotopy fibers over the basepoint in Hom¢(a, z). In fact, we can assume

without loss of generality that Home(x, z) is connected, in which case Home(y, z) is

a disjoint union |_|g Home(x, ). Taking fibers over the map to Home (a, z) preserves
the disjoint union as desired, so the map on fibers is a split cover. a

3 [E-ring spectra
We let CAlg denote the oo—category of [E,-ring spectra. The construction THH in
this case can be interpreted (by [12]) as tensoring with .S 1. that is, we have

THH(A) ~ S'® A, A eCAlg.

If one works in a relative setting, under an Eoo—ring R, then THHR(4) ~ S' ® 4,
where the tensor product is computed in CAlgg,.

Given a morphism in CAlgg,, 4 — B, we can use the setup of the previous section
and obtain a morphism

THHR(4) ® 4 B — THHR(B),

which is a special case of (3). The base-change problem for THH asks when this is an
equivalence.

By Corollary 2.3, this is equivalent to the condition that the morphism 4 — B in
CAlgg, should be strongly 0—cotruncated. We can now prove Theorem 1.3 from the
introduction, which we restate for convenience.

Theorem Let R be an E,-ring and let A — B be an étale morphism (as in
Definition 1.1) in CAlg g, . Then the natural morphism THHR(4) ® 4 B — THHR (B)
is an equivalence.
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This is closely related to [15, Theorem 0.1] and includes it in the case of a flat extension
R — A of discrete [E,—rings. For connective [ o, —rings, this resultis [11, Lemma 5.7]
(who treat more generally the case of a THH—étale morphism).

Proof Given an étale morphism 4 — B in CAlgg,, we need to argue that it is
strongly O—cotruncated. By Proposition 2.5, we may reduce to the case where R = S°.
Given C € CAlg, we have a homotopy cartesian square

Homcaig(B, C) —— Homging(7o B, 19C)

l l

Homcajg(A4, C) —— Homging(7wo A4, 70C)

by eg [8, Section 7.5]. Here Ring is the category of rings. Since the right verti-
cal map is a map of discrete spaces and therefore a split covering, it follows that
Homcale (B, C) — Homcaje(A, C) is a split covering, as desired. O

We also note in passing that the étale descent theorem has a partial converse in the setting
of connective [Eo-rings. We note that this rules out nonalgebraic Galois extensions.

Corollary 3.1 Let A — B be a morphism of connective [, —rings which is almost
of finite presentation [8, Section 7.2.4]. Suppose the map THH(A) ® 4 B — THH(B)
is an equivalence. Then A — B is étale.

Proof Indeed, B defines a O—cotruncated object (Definition 5.1) of CAlg,, and it is
well known that this, combined with the fact that B is almost of finite presentation,
implies that B is étale. We reproduce the argument for the convenience of the reader.

In fact, since B is O—cotruncated, one finds that for any B-module M , the space of
maps? Homcalg, , (B, B @ M) is homotopy discrete, where the Eoo-ring B & M
is given the square-zero multiplication. Replacing M by XM , it follows that

HomCAlgA//B(Bv B M)~ QHomCAlgA//B(Bv B®XM)

is actually contractible. Thus the cotangent complex L g, 4 vanishes, which implies
that B is étale over A by [6, Lemma 8.9]. The connectivity is used in this last step. O
The above argument also appears in [14, Section 9.4], where it is shown that a map

A — B which is O0—cotruncated as in Definition 5.1 below (which Rognes calls

2For an co—category C and a morphism x — y, we let Cxy denote (Cx/)/y , where y € Cy/ via the
given morphism.
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formally symmetrically étale, and which has been called THH—érale in [11]) has to
have vanishing cotangent complex (which is called TAQ—étale); see [14, Lemma 9.4.4].
The key point is that in the connective setting, TAQ—étaleness plus a weak finiteness
condition is enough to imply étaleness. This entirely breaks down when one works
with nonconnective E,-ring spectra.

4 Connection with descent

In this section, we will show that the question of base-change in THH is equivalent to a
descent-theoretic question. We will then use some of the descent results of [4] to obtain
examples where base-change for THH holds. Let A — B be a faithful G—Galois
extension of [E,—rings for G a finite group.

To begin with, we will need to recall a fact about Galois descent.

Proposition 4.1 (see [13, Chapter 6], [1, Theorem 2.8] or [10, Theorem 9.4], for
example) If A — B is a faithful G —Galois extension, then we have an equivalence of
symmetric monoidal co—categories

Mod(A4) ~ Mod(B)"°,

where the left adjoint is extension of scalars along A — B and the right adjoint is given
by taking homotopy fixed points.

We can restate the above equivalence in the following manner:

Corollary 4.2 Let Fun(BG, Sp) be the symmetric monoidal oo—category of G —
spectra equipped with a G —action. Then we have a natural equivalence

MOdFun(BG,Sp) (B) i~ MOdSp (A)
given by taking homotopy fixed points.

Proof This follows from Proposition 4.1 using the fact that the construction of forming
modules in a symmetric monoidal co—category is compatible with homotopy limits of
symmetric monoidal co—categories. |

Let C = Fun(BG, CAlg) be the co—category of Eo,—algebras equipped with a G-
action, so that B defines an object of C. We have therefore have natural equivalences
of co—categories

(6) Cpy = CAlg(Fun(BG, Sp)) 5/ ~ CAlg(Modgun(a.sp) (B)) ~ CAlg(Mod(4)).

where the last equivalence is given by taking homotopy fixed points. We now obtain:
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Proposition 4.3 For a faithful G —Galois extension A — B, the following two state-
ments are equivalent:

e THH(A) ® 4 B — THH(B) is an equivalence.
e THH(A) — THH(B) is a faithful G —Galois extension.
e The map THH(A) ~ (THH(A) ® 4 B)"® — THH(B)"C is an equivalence.

Proof In this case, the maps B — THH(A) ® 4 B — THH(B) that we obtain are
G —equivariant, as they are natural in the E,-A—algebra B. Therefore, the map
THH(A) ® 4 B — THH(B) is naturally a morphism in CAlg(Fun(BG, Sp)) g,. By (6),
the map is an equivalence if and only if it induces an equivalence on homotopy fixed
points.

Finally, if the map THH(A4) ® 4 B — THH(B) is an equivalence, then the morphism
THH(A) — THH(B) is a base-change of the faithful G'—Galois extension 4 — B and
is thus a faithful G—Galois extension itself. Conversely, if THH(A) — THH(B) is
a faithful G —Galois extension, then the descent map THH(A) — THH(B)"C is an
equivalence. a

In particular, the map A — B is strongly O—cotruncated if and only if one has Galois
descent for THH along the map A — B. In [4], we give a general criterion for proving
descent in telescopically localized THH.

Theorem 4.4 [4] Suppose A — B is a G—Galois extension such that the map
Ko(B) ® Q — K¢(A) ® Q induced by restriction of scalars is surjective. Fix an
implicit prime p and a height n. Fix a weakly additive (see [4, Definition 3.11])
invariant E of k —compact small idempotent-complete A—linear co—categories taking
values in a presentable stable co—category. Then the natural morphisms

L} E(Perf(A)) — L} E(Perf(B))'¢ — (L E(Perf(B)))"°
are equivalences, where L,{ denotes finitary Ly—localization. In particular, one can

take E = K, THH or TC.

As a result, we can prove that the base-change map is an equivalence in a large class of
“chromatic” examples of Galois extensions.

Theorem 4.5 Suppose A — B is a faithful G —Galois extension of E o, —rings. Assume
that for every prime p, the localization A(p) is L,{ —local for some n = n(p). Suppose
the map Ko(B) ® Q — K¢(A4) ® Q is surjective (or equivalently has image containing
the unit). Then the base-change map THH(A) ® 4 B — THH(B) is an equivalence.
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Proof To check that the map THH(A) ® 4 B — THH(B) is an equivalence, it suffices
to localize at p, so we may assume A and B are p-local, and therefore L,{ —local.
Since L,{ is a smashing localization, it follows that all THH terms in sight are auto-
matically L ,{ —localized. In this case, the result follows by combining Proposition 4.3
and Theorem 4.4. O

Example 4.6 Most classes of examples of faithful Galois extensions in chromatic
homotopy theory satisfy the conditions of Theorem 4.4. We refer to [4, Section 5] for
a detailed treatment. For example:

(I) The C,—-Galois extension KO — KU or the C,_1—Galois extension L — KU p-

(2) The G-Galois extension E ,};G — E, if G is a finite subgroup of the extended
Morava stabilizer group (see [4, Appendix B] by Meier, Naumann and Noel).

(3) Any Galois extension of TMF[1/n], Tmfy(n) or related spectra.

It follows that the comparison map in THH is an equivalence for these Galois extensions.

S A counterexample

In this section, we will give an example over [, where the comparison (or equivalently
descent) map for THH is not an equivalence. We begin with a useful weakening of
Definition 2.4.

Definition 5.1 A morphism x — y in an co—category C is said to be O—cotruncated if,
for every z € C, the map Hom¢(y, z) — Home(x, z) is a covering space (ie has discrete
homotopy fibers over any basepoint). An object x € C is said to be O—cotruncated if
Home(x, z) is discrete for any z € C.

The condition that x — y should be cotruncated is equivalent to the statement that
y €Cx/ should define a O—cotruncated object. Note that an object x €C is O—cotruncated
if and only if the natural map x — S! ® x is an equivalence.

In the setting of E,—ring spectra, étale morphisms are far from the only examples of
O0—cotruncated morphisms. For example, any faithful G —Galois extension in the sense
of Rognes [14] is O—cotruncated. This is essentially [14, Lemma 9.2.6]. However, we
show that faithful Galois extensions need not be strongly 0—cotruncated. Equivalently,
base-change for THH can fail for them.
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Proof of Theorem 1.2 Consider the degree-p map S! — S, which is a Z/ p—torsor.
Let k be a separably closed field of characteristic p. For a space X', welet C*(X; k)=
F(X4; k) denote the Eo—rings of k—valued cochains on X . The induced map of
Eoo-rtings ¢: C*(S1;k) — C*(S!:; k) is a faithful Z/p—Galois extension of Eso—
ring spectra. This follows from [14, Proposition 5.6.3(a)] together with the criterion
for the faithfulness via vanishing of the Tate construction [14, Proposition 6.3.3]. See
also [10, Theorem 7.13].

We will show, nonetheless, that ¢ does not satisfy base-change for THH, or equivalently
that it is not strongly O—cotruncated. It suffices to show this in CAlg, in view of
Proposition 2.5.

By p-adic homotopy theory [9] (see also [7], which does not assume k = Fp), the
natural map
S — Homcalg, ,(C*(S': k). k)

exhibits Homcalg, , (C *(S';k), k) as the p—adic completion of S!. In particular,
Homcalg, , (C*(S'; k), k) ~ K(Zp, 1) and the map given by precomposition with ¢

Homeagg,, (C*(S': k), k) £ Homearg, , (C*(S'5K). k),

is identified with the multiplication by p map K(Zp,1) — K(Zp, 1). In particular,
while this is a covering mabp, it is not a split covering map, so that ¢ is not strongly
O—cotruncated. d

The use of cochain algebras in providing such counterexamples goes back to an idea
of Mandell [11, Example 3.5], who gives an example of a morphism of E,,—ring
spectra with trivial cotangent complex (ie is TAQ—étale) which is not THH—étale.
Namely, Mandell shows that if n > 1 then the map C*(K(Z/p,n);F,) — F, has
trivial cotangent complex.

We close by observing that it is the fundamental group that it is at the root of these

problems.

Proposition 5.2 Let X be a simply connected, pointed space and let A — B be a

faithful G —Galois extension of E ,—rings. In this case, the map of E,—rings
X®A)®4B—>X®B

is an equivalence.

In particular, one does have base-change for higher topological Hochschild homology
(ie where X = S” with n > 1).
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Proof Following the earlier reasoning, it suffices to show that whenever C € CAlg,
the square

Hom(X, Homcaig(B, C)) —— Homcalg(B, C)

| J

Hom(X, Homcajg(A4, C)) —— Homcaje(A4, C)

is homotopy cartesian. However, this follows since Homcajg (B, C) — Homcae (4, C)
is a covering space, and X is simply connected. O
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Thickness, relative hyperbolicity, and randomness
in Coxeter groups

JASON BEHRSTOCK
MARK F HAGEN
ALESSANDRO SISTO

APPENDIX WRITTEN JOINTLY WITH PIERRE-EMMANUEL CAPRACE

For right-angled Coxeter groups Wr, we obtain a condition on I' that is necessary and
sufficient to ensure that Wr is thick and thus not relatively hyperbolic. We show that
Coxeter groups which are not thick all admit canonical minimal relatively hyperbolic
structures; further, we show that in such a structure, the peripheral subgroups are
both parabolic (in the Coxeter group-theoretic sense) and strongly algebraically thick.
We exhibit a polynomial-time algorithm that decides whether a right-angled Coxeter
group is thick or relatively hyperbolic. We analyze random graphs in the Erd6s—Rényi
model and establish the asymptotic probability that a random right-angled Coxeter
group is thick.

In the joint appendix, we study Coxeter groups in full generality, and we also obtain
a dichotomy whereby any such group is either strongly algebraically thick or admits
a minimal relatively hyperbolic structure. In this study, we also introduce a notion
we call intrinsic horosphericity, which provides a dynamical obstruction to relative
hyperbolicity which generalizes thickness.

05C80, 20F55, 20F65

Introduction

The notion of relative hyperbolicity was introduced by Gromov [38], then developed
by Farb [35]. This notion is both sufficiently general to include many important classes
of groups, including all (uniform and nonuniform) lattices in rank-one semisimple Lie
groups, yet is sufficiently restrictive that it allows for powerful geometric, algebraic and
algorithmic results to be proven; see Arzhantseva, Minasyan and Osin [1], Drutu [27],
Drutu and Sapir [30] and Farb [35]. Further, relatively hyperbolicity admits numerous
geometric, topological and dynamical formulations which are all equivalent; see eg
Bowditch [12], Dahmani [21], Drutu and Sapir [29], Osin [44], Sisto [45; 46] and
Yaman [48].
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Let G be a finitely generated group and P a finite collection of proper subgroups
of G. The group G is hyperbolic relative to the subgroups P if collapsing the left
cosets of P to finite-diameter sets, in any (hence every) word metric on G, yields a
d—hyperbolic space, and if the collection P satisfies the bounded coset property which,
roughly speaking, requires that in the §—hyperbolic metric space obtained as above, any
pair of quasigeodesics with the same endpoints travels through the collapsed cosets in
approximately the same manner. The subgroups in P are called peripheral subgroups.
We say a group is relatively hyperbolic when there is some collection of subgroups for
which this holds. A collection P of peripheral subgroups of the relatively hyperbolic
group G is minimal if, for any other relatively hyperbolic structure (G, Q) on G, each
P € P is conjugate into some Q € Q. Relatively hyperbolic groups do not always
admit minimal structures; see Behrstock, Drutu and Mosher [5, Theorem 6.3]. We
will follow the convention of requiring the subgroups to be proper, which rules out
the trivial case of G being hyperbolic relative to itself. Note also that a group G is
hyperbolic relative to hyperbolic subgroups if and only if G is hyperbolic.

We will also be interested in the notion of thickness which was introduced by Behrstock,
Drutu and Mosher [5] as a powerful geometric obstruction to relative hyperbolicity
which holds in many interesting cases, including most mapping class groups, right-
angled Artin groups, lattices in higher-rank semisimple Lie groups, and elsewhere.
Thickness is defined inductively: At the base level, thick of order 0, it is characterized
by linear divergence. Roughly, a group is thick of order n if it is a “network of left cosets
of subgroups” which are thick of lower orders. This essentially means that the union
of these cosets is the entire space, and any two points in the space can be connected by
a sequence of these cosets which successively intersect along infinite-diameter subsets;
the precise definition appears in Section 1.2. Thickness has proven to be an important
invariant for obtaining upper bounds on divergence, and we shall utilize this below; cf
Behrstock and Charney [3], Behrstock and Drufu [4], Behrstock and Hagen [7], Brock
and Masur [13] and Sultan [47]. In a relatively hyperbolic group, any thick subgroup
must be contained inside a peripheral subgroup; see [5, Corollary 7.9, Theorem 4.1].
This fact yields the useful application that any relatively hyperbolic structure in which
the peripheral subgroups are thick is a minimal relatively hyperbolic structure; see [29,
Theorem 1.8] and [5, Corollary 4.7].

In this paper, we study thickness and relative hyperbolicity in the setting of Coxeter
groups. One reason to do so is that Coxeter groups have many interesting properties,
making them a standard testing ground in geometric group theory. For example, these
groups are known to act properly on CAT(0) cube complexes (see Niblo and Reeves
[43]), which allows them to be studied using the tools of CAT(0) geometry. In particular,
this connects them to the study of thickness of cubulated groups initiated in [7].
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We first specialize to the case of right-angled Coxeter groups, the class of which is
diverse; for instance, each right-angled Artin group is a finite-index subgroup of a right-
angled Coxeter group; see Davis and Januszkiewicz [24]. The right-angled Coxeter
group Wr is generated by involutions indexed by vertices of the finite simplicial
graph T'; the relations are commutation relations corresponding to edges. We prove
that, for every right-angled Coxeter group, either it is thick or it admits a canonical
relatively hyperbolic structure in which the peripheral subgroups are thick:

Theorem I (right-angled Coxeter groups are thick or relatively hyperbolic) Let T
be the class consisting of the finite simplicial graphs A such that Wy is strongly
algebraically thick. Then for any finite simplicial graph I", either I" € T or there exists
a collection J of induced subgraphs of I such that J C T, Wt is hyperbolic relative
to the collection {Wjy : J € J}, and this relatively hyperbolic structure is minimal.

One application of this theorem is to the quasi-isometric classification of Coxeter
groups. As thickness is a quasi-isometric invariant, this provides a way to distinguish
the thick Coxeter groups from many other groups. A more refined classification also
follows from this result using the theorem which states that the quasi-isometric image
of a group which is hyperbolic relative to thick peripheral subgroups is also hyperbolic
relative to thick peripheral subgroups, each of which is quasi-isometric to one of the
peripherals in the source; see [5, Corollary 4.8] and [27]. Prior to this application of
Theorem I, major methods of classifying right-angled Coxeter groups included using
classification theorems in right-angled Artin groups (ie Behrstock and Neumann [9],
Behrstock, Januszkiewicz and Neumann [8] and Bestvina, Kleiner and Sageev [10])
in conjunction with results about commensurability between right-angled Artin and
Coxeter groups (for instance, results in Davis and Januszkiewicz [24]) and, for some
hyperbolic right-angled Coxeter groups, applying a result in Crisp and Paoluzzi [20].

Additionally, Theorem I provides an effective classification theorem because 7 can be
characterized combinatorially as follows:

Theorem II (combinatorial characterization of thick right-angled Coxeter groups)
Let T be the class of finite simplicial graphs whose corresponding right-angled Coxeter
groups are strongly algebraically thick. Then T is the smallest class of graphs satistying
the following conditions:

(1) Ky, € T, where K, 5 is the complete bipartite graph on two sets of two
elements, ie a 4—cycle.

(2) LetI’ €T andlet A C T be an induced subgraph which is not a clique. Then
the graph obtained from I'" by coning off A isin T .
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Figure 1: A graphin 7 (left) and a graph not in 7 (right)

(3) LetTI'y,I'y € T, and suppose there exists a graph I' which is not a clique and
which arises as a subgraph of each of the I';. Then the union A of I'; and I',
along I' isin T, and so is any graph obtained from A by adding any collection
of edges joining vertices in I'y — T to vertices of T'; — T".

Theorems I and II together imply that any thick right-angled Coxeter group is strongly
algebraically thick. A special case of this is that WT is thick of order 0 if and only
if it is the product of two infinite right-angled Coxeter groups; see Proposition 2.11,
which generalizes a result of Dani and Thomas [22, Theorem 4.1].

Figure 1 illustrates examples of graphs in and not in 7. See also Remark 2.8. The
right-angled Coxeter groups with polynomial divergence constructed by Dani and
Thomas [22] are strongly algebraically thick; this was shown in [loc. cit.] and can also
be verified either by observing that the corresponding graphs are in 7, or by combining
the fact that they have subexponential divergence with Theorem I and the exponential
divergence of any relatively hyperbolic group.

An important consequence of the above characterization of the class 7 is that it allows
thickness/relative hyperbolicity to be detected algorithmically:

Theorem III (polynomial algorithm for relative hyperbolicity; Theorem 4.1) There
exists a polynomial-time algorithm to decide if a given graph is in T, and hence
whether a given right-angled Coxeter group is (strongly algebraically) thick or relatively
hyperbolic.

Random graphs

We consider right-angled Coxeter groups on random graphs in the Erd6s—Rényi model
[31]: G(n, p(n)) is the class of graphs on n vertices with the probability measure
corresponding to independently declaring each pair of vertices to be adjacent with
probability p(n). The results of this section are summarized in Figure 2.
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> quad. div.
[ Infinite div. Finite
Hyp. rel D2, Thick Thick of order 0
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Figure 2: The results of Section 3 illustrated on the same spectrum of densities
as addressed conjecturally in Figure 4. Each listed property occurs aas at the
given density, unless the specific asymptotic probability is stated.

An important result of Erdés and Rényi states that a random graph is asymptotically
almost surely (aas) connected when p(n) grows more quickly that (logn)/n, and is aas
disconnected when p(n) = o((logn)/n). This implies that for slowly growing p(n),
when I' € G(n, p(n)), the right-angled Coxeter group Wr is aas a nontrivial free
product, and hence relatively hyperbolic. In light of Theorem I, it is natural to wonder if
there are densities at which a random right-angled Coxeter group is relatively hyperbolic
but not a free product. The following gives a positive answer to this question; the
technical terms in this theorem will be defined in Section 3.

Theorem IV (low density, Theorem 3.4) Suppose p(n)n — oo and p(n)®n> — 0.
For T € G(n, p(n)), the group Wt is aas hyperbolic relative to a nonempty collection
of Do X Do subgroups; the same holds for Wy, where I/ C T is the giant component
of I'.

Intuitively, the probability of thickness should increase with the growth rate of p(n),
up to the point where I' is aas sufficiently dense that Wr is either finite or virtually
cyclic. The following result confirms this intuition.

Theorem V (high density, Theorem 3.9) Suppose that (1 — p(n))n? — a € [0, 00).

Then for I € G(n, p(n)), the group Wr is
(1) finite with probability tending to f = e~%/2,
(2) virtually Z with probability tending to y = %ae‘“/ 2,

(3) virtually Z¥ for k > 2, and thus thick of order 0, with probability tending to
I—(B+y).

The following describes the situation at a natural choice of “intermediate” p(n):

Theorem VI (intermediate density) For I' € G(n, 3), the group Wr is aas thick.
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We conjecture that for all p € (0, 1), the group Wr is aas thick for I' € G(n, p).! This
conjecture is strongly supported by computer experiments; for example, for n = 200
and for each of several values of p, we tested 50 random graphs and found all to
correspond to thick right-angled Coxeter groups. For any given p € (0, 1), we expect
the strategy used in the proof of Theorem VI will work. However, there are two serious
complications to implementing this strategy for any particular p: first, combinatorially,
the requisite set-up may be more intricate, and second, establishing the base case of
the induction is likely to be computationally prohibitive for some values of p, since it
involves checking all graphs of a size depending on p for membership in 7.

One of our motivations for our study of random Coxeter groups was the results of
Charney and Farber [18] on hyperbolicity of random right-angled Coxeter groups.
More recently, results have been obtained about cohomological properties of such
random groups by Davis and Kahle [25]. Together with our results, this represents the
beginning of a systematic study of random Coxeter groups.

General Coxeter groups

In the appendix, we generalize Theorems I and II to all Coxeter groups. Accordingly,
we recommend reading the first part of the appendix, Section A.1, concurrently with
Section 2 in order to see how the results on thickness versus relative hyperbolicity for
right-angled Coxeter groups generalize to arbitrary Coxeter groups, as well as the limi-
tations of the generalization. In the latter vein, as shown by the example in Remark 2.9,
there is no characterization of strongly algebraically thick Coxeter groups that are not
right-angled purely in terms of the underlying graph of the free Coxeter diagram.

Theorem I generalizes as follows:
Theorem VII (minimal relatively hyperbolic structures for Coxeter groups) Let

(W, S) be a Coxeter system. Then there is a (possibly empty) collection J of subsets
of S enjoying the following properties:

(i) The parabolic subgroup Wy is strongly algebraically thick for every J € J.
(ii) W is relatively hyperbolic with respectto P ={Wy | J € J}.

In particular, P is a minimal relatively hyperbolic structure for W' .

Theorem II takes the following form for general Coxeter groups. Note that thickness is
now described using a class of labeled graphs instead of a class of graphs.

I'While this paper was circulating as a preprint, a resolution of a strong form of this conjecture was
obtained by Behrstock, Falgas-Ravry, Hagen and Susse [6].

Algebraic € Geometric Topology, Volume 17 (2017)



Thickness, relative hyperbolicity, and randomness in Coxeter groups 711

Theorem VIII (classification of thick Coxeter groups) The class T of Coxeter sys-
tems (W, S) for which W is strongly algebraically thick is the smallest class satisfying:

(1) T contains the class Ty of all irreducible affine Coxeter systems (W, S) with S
of cardinality at least 3, as well as all Coxeter systems of the form (W, S1 U S>)
with Wg, and Wg, irreducible nonspherical and [Ws,, Ws,] = 1.

(2) Suppose (W, S U s) has the properties that s* is nonspherical and (Wg, S)
belongs to T . Then (W, S Us) belongsto T .

(3) Suppose (W, S) has the property that there exist S1, S, € S with S{US, =S,
(Ws,,S1), (Ws,,S>2) €T and Wg, s, nonspherical. Then (W,S) € T.

We also introduce the notion, which we feel will be of independent interest, of an
intrinsically horospherical group, ie one for which every proper isometric action of I"
on a proper hyperbolic geodesic metric space fixes a unique point at infinity. Any
group G admits a collection of maximal intrinsically horospherical subgroups, and any
relatively hyperbolic structure on G has the property that every maximal intrinsically
horospherical subgroup is conjugate into a peripheral subgroup. We show that any
thick group is intrinsically horospherical. In the case of Coxeter groups, we say more:

Corollary IX Let (W, S) be a Coxeter system. Then the following conditions are
equivalent:

O W,8)isinT.
() W is strongly algebraically thick.
(IIT) W is intrinsically horospherical.
(IV) W is not relatively hyperbolic with respect to any family of proper subgroups.

(V) W is not relatively hyperbolic with respect to any family of proper Coxeter-
parabolic subgroups.

Outline

In Section 1, we discuss background on Coxeter groups, thickness and divergence.
Sections 2, 3 and 4 are devoted to right-angled Coxeter groups: In the second section,
we treat Theorems I and II. In the third section, we study right-angled Coxeter groups
presented by random graphs, dealing in particular with Theorems IV, V and VI. In
the fourth section, we produce an algorithm for testing whether a given graph is in 7.
We also include source code containing an implementation of a refined version of this
algorithm; this program is needed for a computation in the proof of Theorem VI. (This
source code is available from the authors’ web pages and on the arXiv.) In the appendix,
we study arbitrary Coxeter groups and introduce the notion of intrinsic horosphericity;
in particular, we prove Theorems VII and VIII and Corollary IX.

Algebraic € Geometric Topology, Volume 17 (2017)



712 Jason Behrstock, Mark F Hagen and Alessandro Sisto

Acknowledgments Hagen and Sisto thank the organizers of the conference Geometric
and Analytic Group Theory (Ventotene 2013). We thank Kaia Behrstock for her help
making Figure 4. Finally, we are grateful to Tim Susse, Ha-Young Shin and the referees
for several helpful comments and corrections.

Hagen was supported by the National Science Foundation under Grant Number NSF
1045119. Behrstock was supported as an Alfred P Sloan Fellow and by the National
Science Foundation under Grant Number NSF 1006219.

1 Preliminaries

In this section, we review definitions and facts related to Coxeter groups, divergence
and thick metric spaces. A comprehensive discussion of Coxeter groups can be found
in [23]. The notion of divergence used here is due to Gersten [36]. Our consideration
of divergence in the setting of Coxeter groups was motivated largely by the discussion
in [22] and, to some extent, by questions about divergence in cubulated groups (of
which Coxeter groups are examples) raised in [7]. Thick spaces and groups were
introduced in [5], and we also refer to results of [4].

1.1 Background on Coxeter groups

Throughout this paper, we confine our discussion to finitely generated Coxeter groups.
A Coxeter group is a group of the form

(S| (st)™st .5t €S),

where each mgs =1, and for s # ¢, either mg; > 2 or there is no relation between s and ¢
of this form. Also, mg; = m;g for each s,¢ € S. The pair (W, S) is a Coxeter system.

The Coxeter group W is reducible if there are nonempty sets Sy, S, C S such that
S =81 US>, and for all 51 € S3,5, € S, we have my,5, = 2. If W is not reducible,
then it is irreducible. The Coxeter system (W, .S) is said to be (ir-)reducible if W has
the corresponding property.

To the Coxeter system (W, S), we associate a bilinear form (—, —) on R[S] defined
by (s,t) = —cos(;r/mys;) when there is a relation (s¢)”s*, and (s,¢) = —1 otherwise.
It is well known that this bilinear form is positive definite if and only if W is finite, in
which case the Coxeter system (W, S) is spherical. Otherwise, (W, S) is nonspherical
(or aspherical). If the bilinear form is positive semidefinite and (W, S) is irreducible,
then there is a short exact sequence Z" — W — Wy, where n + 1 = |S| and W} is a
finite Coxeter group. In this case, the Coxeter system (W, S) is (irreducible) affine.
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For any J C S, the subgroup Wy :=(J) C W is a parabolic subgroup. Evidently, W
is again a Coxeter group and (W, J) a Coxeter system. The subset J is spherical,
irreducible, daffine, etc. if the Coxeter system (W, J) has the same property.

Right-angled Coxeter groups If each relation in the above presentation has the form
(st)?, then W is a right-angled Coxeter group. In this case, let I' be the graph with
vertex set S and with an edge joining s, € S if and only if (s¢)? = 1, ie if and only
if the involutions s and ¢ commute. Then W decomposes as a graph product: the
underlying graph is I", and the vertex groups are the subgroups (s) = Z, and s € S.

Conversely, given a finite simplicial graph I" with vertex set S and edge set £, there
is a right-angled Coxeter group

Wr = (S |52, (s1)?:5,1€8,(s,1) €E).

For example, if I" is disconnected, then Wr is isomorphic to the free product of the
parabolic subgroups generated by the vertex sets of the various components, while
if I' decomposes as a nontrivial join, then Wr is isomorphic to the product of the
parabolic subgroups generated by the factors of the join. For J C .S, the parabolic
subgroup Wy < Wr is isomorphic to the right-angled Coxeter group Wy , where A is
the subgraph of I' induced by J.

Finally, we remark that if Wr is a right-angled Coxeter group, then there exists a
CAT(0) cube complex X T on which Wr acts properly discontinuously and cocom-
pactly. This CAT(0) cube complex is the Davis complex X, which is obtained from
the universal cover of the presentation complex of W by collapsing bigons to edges,
noting that each remaining 2—cell is a 2—cube, and then iteratively attaching a k—cube
whenever its vertex set is contained in the (k—1)—skeleton, for k > 3; see [23] for
details. We will make use of the existence of such a CAT(0) cube complex in the proof
of Proposition 2.11.

1.2 Background on divergence and thickness

Given functions f,g: Ry — R4, we write f < g if for some K > 1, we have
f(s) < Kg(Ks+K)+ Ks+ K forallse Ry,and f=<gif f<xgandg<x[f.

Definition 1.1 (divergence) Let (M, d) be a geodesic metric space, let § € (0, 1)
and y > 0, and let f: R4+ — R4 be given by f(r) = ér —y. Given a,b,c € M
with d(c,{a,b}) =r >0, let divs(a, b; c) = inf{| P|}, where P varies over all paths
in M joining a to b and avoiding the ball of radius f(r) about c¢. If no such path
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exists, dive(a, b; c) = oo. The divergence function Div}” R4 — R4 of M is then
defined by
Div}w(s) = sup{divr(a,b;c) :d(a,b) < s}.

Note that M has finite divergence if and only if M has one end.

Given a function g: R4y — R4, we say that M has divergence of order at most g if
for some f as above, Div}u (s) < g(s). Much of the interest in divergence comes from
the fact that the divergence function of M is a quasi-isometry invariant in the following
sense: if My and M, are quasi-isometric geodesic metric spaces and Div]}4 1 =< g, then
Div%2 = g for some f’. In particular, the divergence of a finitely generated group is
well defined up to the relation <. A group has linear divergence if and only if it does
not have cut-points in any asymptotic cone. Such spaces are called wide; see [2; 28].

One family of metric spaces which are particularly amenable to divergence computations
is the family of thick spaces, as introduced in [5]. Thickness is a quasi-isometrically
invariant notion, and this family of spaces is partitioned into quasi-isometrically invariant
subclasses by their order of thickness, which is a nonnegative integer. In the present
paper, we work with a refinement of the notion of thickness which is tuned for the
study of finitely generated groups:

Definition 1.2 (strongly algebraically thick [4]) A finitely generated group G is
said to be strongly algebraically thick of order 0 if it is wide. For n > 1, the finitely
generated group G is strongly algebraically thick of order at most n if there exists a
finite collection H of subgroups such that:

(1) Each H € H is strongly algebraically thick of order at most n — 1.

(2) (Ugey H) has finite index in G

(3) There exists C > 0 such that for all H, H' € H, there is a sequence H =
H, ..., H, = H with each H; € H such that for all i < k, the intersection

H; N H;y is infinite and the C—neighborhood of H; N H;; (with respect to
some fixed word metric on G) is path-connected.

(4) Forall H € H, any two points in H can be connected in the C—neighborhood
of H by a (C, C)—quasigeodesic.

G is strongly algebraically thick of order n if G is strongly algebraically thick of order
at most n but is not strongly algebraically thick of order at most n — 1.

As shown in [4], if G is strongly algebraically thick of order », then G, with any
word metric, is a (strongly) thick metric space. In the present paper, we are particularly
interested in the following consequences of strong algebraic thickness:
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Proposition 1.3 (upper bound on divergence [4, Corollary 4.17]) Let G be a finitely
generated group that is strongly algebraically thick of order n. Then the divergence
function of G is of order at most s" 1.

Proposition 1.4 (nonrelative hyperbolicity [5, Corollary 7.9]) Let G be strongly alge-
braically thick. Then G is not hyperbolic relative to any collection of proper subgroups.

Note that the above establishes that the divergence function of thick groups is qual-
itatively different from that of relatively hyperbolic groups, as the latter class has
divergence functions which are at least exponential; cf [45, Theorem 1.3].

2 Hyperbolicity relative to thick subgroups:
the right-angled case

In this section, I' will denote a finite simplicial graph and Wt will denote the associated
right-angled Coxeter group. We will postpone proofs of most of the results of this section
to the appendix, where we will consider them in the context of arbitrary Coxeter groups.
We focus on the right-angled case here, both for the benefit of readers specifically
interested in the right-angled case and because these groups are cocompactly cubulated,
which allow for more refined results, such as those in Proposition 2.11 and in Section 3.

We will adopt the following:

Convention 2.1 When we say graph, we will always mean a finite simplicial graph
(ie no multiedges or monogons). Graphs will often be denoted by Greek letters. When
we say A is a subgraph of I', or when we write A C I', we will mean the full induced
subgraph; ie a pair of vertices of A spans an edge in A if and only if they span one in I".

We begin by defining the class of graphs 7 that we discussed briefly in the introduction.

Definition 2.2 (new graphs from old) If T" is a graph and A CI", then we say that the
graph I" is obtained by coning off A if the graph I'’ can be obtained from I" by adding
one new vertex along with edges between that vertex and each vertex of A. Given
two graphs 'y and I', with isomorphic subgraphs I', we say the union of I'1 and 1",
along T is the graph obtained by taking the disjoint union of the graphs I'; and I',
and identifying the corresponding I' subgraphs of I'; by the given isomorphism taking
one of the I subgraphs to the other. Given two graphs I'y and I', with isomorphic
subgraphs I", we say that a graph '’ is a generalized union of Ty and Ty along T if
I’ can be obtained from the associated union by adding a collection of edges between
vertices of I'; \ " and vertices of I, \ I".
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Definition 2.3 (thick graphs) The set of thick graphs, T, is the smallest set of graphs
satisfying the following conditions:

(1) Kz’z eT.

2) If I' e T and A C T is any induced subgraph of diameter greater than one, then
the graph obtained by coning off A isin T .

(3) Let I'y,I'; € T with both I'; containing an isomorphic subgraph, I", which is
not a clique. Then any generalized union of the I'; along I" isin 7.

When W is a right-angled Coxeter group, there are no irreducible affine Coxeter
systems (W, S) with S of cardinality at least 3. In particular, it is straightforward
to check that a right-angled Coxeter group is defined by a graph in 7 if and only if
the group is in the class of right-angled Coxeter groups T which is defined at the
beginning of Section A.1. The next result is thus a consequence of Proposition A.2.

Theorem 2.4 Foreach I' € T, the right-angled Coxeter group Wt is strongly alge-
braically thick.

The main result of this section is the following, which provides an effective classification
theorem with our explicit description of 7.

Theorem 2.5 Let I' be a graph. The right-angled Coxeter group Wr satisfies exactly
one of the following:

e it is strongly algebraically thick and I € T, or

e it is hyperbolic relative to a (possibly empty) minimal collection A of parabolic
subgroups for which each W € A is strongly algebraically thick and with each
such A eT.

If a group is hyperbolic relative to the empty collection of subgroups, then it is hyper-
bolic; hence if A is empty, then Wt is hyperbolic.

Theorem 2.5 can now be proven considering the collection of all maximal subgraphs
of T that belong to 7 and checking that conditions (RH1)-(RH3) of [15, Theorem A’]
hold. We postpone the proof of this to the appendix.

Remark 2.6 An alternative way to prove Theorem 2.5 is to define 7 to be the set
of finite graphs whose corresponding right-angled Coxeter groups are thick. It would
then suffice to establish the following statements about induced subgraphs Jq, J, of T'
belonging to 7 :
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Figure 3: A length-6 geodesic in I" shows that I' € F.

(1) If Jy N J, is aspherical, then the subgraph induced by J; U J, belongs to 7T .

(2) If v eI' = J; and the link of v in J; is nonempty and aspherical, then
JiU{vteT.

(3) Joins of aspherical subgraphs belong to 7.

Our explicit definition of 7 allows us to characterize thick right-angled Coxeter groups,
as we do now.

Corollary 2.7 Wr is strongly algebraically thick if and only if I € T.

Proof If Wr is strongly algebraically thick, then I' is not relatively hyperbolic by [5,
Corollary 7.9]. Thus by Theorem 2.5, we must have Wt € T. In the other direction:
by Theorem 2.4, if I € T, then Wr is strongly algebraically thick. a

Remark 2.8 From Corollary 2.7, we know that all right-angled Coxeter groups which
are wide have corresponding graphs in 7. As we shall see in Proposition 2.11, these
graphs all decompose as nontrivial joins, and thus in particular, the number of squares
in these graphs is linear in the number of vertices. In the case of right-angled Coxeter
groups which are thick of order 1, it was proven in [22] that each vertex in the
corresponding graph is contained in a square; hence in that case as well, the number of
squares is at least linear in the number of vertices.

Accordingly, it is natural to expect that a graph in 7 contains “many” squares relative
to the number of vertices it contains. However, this is not the case in general. Indeed,
for all sufficiently large N € N, the set of graphs in 7 containing at most N squares
is infinite. We define a class of graphs F consisting of graphs I' such that I' € T
and I" contains vertices vy, ..., vs for which d(v;,v;41) > 3 foreach i. If I € F,
then the graph obtained by joining v; and v;4; by a path of length 2 is also in F, and
it has the same number of squares as I" and strictly more vertices. Any element of 7
of diameter at least 6 is in F, since it has an induced subgraph which is in F, namely,
the path of length 6 (as shown in Figure 3).

The claim now follows for some N since 7 contains graphs of arbitrarily large diameter,
as we shall now show. Begin with a graph 'y € 7 of diameter d > 3 with the additional
property that some vertex vy of Iy lies at distance d from nonadjacent vertices u¢
and wy (for example, the graph in Figure 1 (left)). Form I'; from I'y by adding two
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new vertices #; and w;, each joined by an edge to uy and wy. By Theorem 2.4,
I'; € T. By construction, the distance in 'y from each of #; and w; to vg is d +1, so
the diameter has increased. Finally, the triple vg, #1, w; shows that I'; has the property
needed to repeat this procedure. Hence, the existence of graphs in 7 of arbitrarily
large diameter follows by induction.

Remark 2.9 (Theorem 2.4 does not hold for general Coxeter groups) Given a (not
necessarily right-angled) Coxeter system (W, S), there is a naturally associated labeled
graph I', the free Coxeter diagram, with vertex set S and an edge labeled # > 2 joining
vertices s and ¢ that satisfy a relation (s¢)” = 1. Note that since mgg =1 forall s € S,
this graph is simplicial. Furthermore, if (W, S) is right angled, then all labels are 2,
and I" is the graph considered above.

If the Coxeter group W is not right-angled, the thickness of W cannot be characterized
by a purely graph-theoretic property of the free Coxeter diagram. Indeed, there exists a
hyperbolic Coxeter group W whose free Coxeter diagram is a 4—cycle: Consider the
Coxeter system determined by the presentation

W = (s.t,u,v|s% 1%, u? v% (s0)", (su)?, (uv)?, (tv)?),

with n > 3. The labeled graph I" is a 4—cycle, with the edge joining s, ¢ labeled n > 3
and all other edges labeled 2. However, the group W is a Fuchsian group, being
generated by reflections in the sides of a 4—gon in H? with angles Z z

/1 /1
R and e
Being hyperbolic, W cannot be thick.

Combining the upper bound on divergence of strongly thick spaces given in [4, Corol-
lary 4.17], the fact that relatively hyperbolic groups have exponential divergence (see
eg [45, Theorem 1.3]) and Theorem 2.5, we obtain:

Corollary 2.10 Let I be a connected graph. Then the divergence function of Wr is
either exponential or bounded above by a polynomial.

2.1 Characterizing thickness of order 0

As it turns out, the class Ty of graphs I' for which Wr is wide admits a simple
description as we shall see below. The triangle-free case of this result was previously
established using different techniques in [22, Theorem 4.1]. We note that since there
exist wide Coxeter groups which are not products (for instance the 3—3-3 triangle
group), the following result does not generalize beyond the right-angled case.

Proposition 2.11 7 is the set of graphs of the form (I'; x ;) x K, where I'{ and ',
are aspherical and K is a (possibly empty) clique.
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Proof If I decomposes as in the statement of the proposition, then Wt decomposes
as the product of infinite subgroups (Wr, x Wr,) x Z'K‘ whence Wr has linear
divergence and is therefore wide, ie I" € 7. Conversely, suppose that Wr has linear
divergence, and let Xp be the Davis complex (see [23]). Then Xr‘ is a CAT(0)
cube complex on which Wr acts properly and cocompactly by isometries. Each
hyperplane H of Xr is regarded as being labeled by a pair (v, g) € I'®©) x Wi, where
gvg ™! acts as an inversion in the hyperplane H .

Recall that Wr acts essentially, in the sense of [17], on Xr if for each hyperplane H,
the two components of Xr — H each contain points in some W —orbit which are
arbitrarily far from H. A hyperplane without this property is called inessential.

Suppose that the action of Wr on X, T is essential. Then since Wt is wide, it contains
no rank-one isometry of X, T, and hence the rank- r1g1d1ty theorem of [17] 1mphes that
there exist unbounded convex subcomplexes Y and Y’ such that X, r = Y x Y. It
follows that the link of the vertex in X, T decomposes as the join of aspherical subgraphs.
But this link is exactly I', and hence I" has the desired form.

Now we may assume Wt is not acting essentially on X r. Thus, by definition, there
exists an inessential hyperplane H(, 1), and it is easy to see that every generator
must commute with v. Indeed, if H,, 1) and H(, ) are disjoint hyperplanes, then
(v,w){H(y,1)} contains hyperplanes arbitrarily far from H(, ) in each of its half-
spaces. Let K be the clique in I' whose vertices label such inessential hyperplanes.
Then ' = TV « K, where I/ is an aspherical set whose vertices label essential
hyperplanes of X r. This provides the desired decomposition of I'" as the join of
aspherical subsets. |

3 Random right-angled Coxeter groups

We now consider the right-angled Coxeter group Wr, where I' is a random graph in
the following sense. Let p: N — [0, 1] be a function such that p(n)(g) has a limit in
R U {oco} as n — o0o. A random graph on n vertices is formed by declaring each pair
of vertices to span an edge, independently of other pairs, with probability p = p(n).
In other words, we define G(n, p) to be the probability space consisting of simplicial
graphs with n vertices where, for each graph I" on # vertices, P(I") = p£ (1— p)(g)_E ,
where E is the number of edges in I". This model of random graphs was introduced by
Gilbert in [37], and is both contemporaneous with and very similar to the Erd6s—Rényi
model of random graphs first studied in [31; 32]. For a survey of more recent results
on random graphs, see [19].
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Figure 4: Prevalence of thickness along the “spectrum” of densities p(n),
if the answer to Question is positive; bold intervals are where, conjecturally,
Wr is aas thick of a specified order.

Since the assignment I" — Wt of a finite simplicial graph to the corresponding right-
angled Coxeter group is bijective [42], it is sensible to define “generic” properties of
right-angled Coxeter groups with reference to the above model of random graphs. More
precisely, if P is some property of right-angled Coxeter groups and G is a class of
finite simplicial graphs such that Wt has the property P if and only if T" € G, then we
say that Wt satisfies P asymptotically almost surely (aas) if P(I' e GNG(n, p)) > 1
as n — 0o. We emphasize that the notion of asymptotically almost surely depends
on the choice of probability function p even though it is customary to not explicitly
mention p in the notation.

The following question describes the authors’ best guess regarding the behavior of
thickness and relative hyperbolicity for random right-angled Coxeter groups. In this
section, we will provide both theorems and computations that motivate this picture, but
we lead with it to contextualize the theorems that follow.

Question Let 7}, be the set of graphs I" for which Wr is thick of order m > 0, and
denote by T's the set of graphs for which Wr is hyperbolic relative to proper subgroups.
Do there exist functions f,,, f,f: N — [0, 1], for m > 0, such that f,, = o(f,}),
Jm = O0(f,_;) and

lim P(C €T, | T €G(n, pn)))=

n—oQ

{0 if p(n)/ fm (n) =0,

1 if p(n)/fy (n) — oo and p(n)/ f (n) — 0,
for all m > 0? Similarly, does there exist foo such that Wt is asymptotically almost
surely relatively hyperbolic when I € G(n, p(n)) and p = 0( foo)?

The situation that would occur in the event of a positive answer to Question is illustrated
heuristically in Figure 4. Given p1, p>: N — |0, 1], we place p; to the left of p, in the
picture of [0, 1] if and only if p; = o(p,). Compare also Figure 2, which summarizes
the results of this section.

In the interval where Wr is aas relatively hyperbolic, it is interesting to speculate
whether the order of thickness of the peripheral subgroups might be determined by p(#n),
especially in view of Theorem 3.4, which we will see below. In other words, one could
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a n  Prop. thick a n  Prop. thick
1.95 2000 0.53 3 4000 0.5
1.95 2100 0.515 3 5000 0
1.95 4000 O 4 4000 1
2 2000 0.8 4 10000 1
2 2500 0.46 5 4000 1
2 3000 0.19 5 10000 1
2 4000  0.025 10 4000 1
25 2500 1 10 10000 1
25 3000 0.53
25 4000 O

Table 1: Experimental proportion of I" € G(n, (alogn)/n) that are thick.
For each a, this proportion tends to 0 as # — oo by Theorem 3.4 but, as
illustrated, may do so quite slowly.

sensibly ask if there are functions g,j‘,: such that Wt is aas hyperbolic relative to groups
that are thick of order n for p between g,, and g;}, and if there is a function goo
such that Wr is aas hyperbolic —ie hyperbolic relative to hyperbolic subgroups —
when p = 0(gxo). In fact, Charney and Farber have established that we can take
Zoo(n) =n~!: when np(n) — 0, the group Wr is aas hyperbolic, and if p(n) — 0
and p(n)n — oo, then aas Wr is not hyperbolic [18]. However, identifying the
functions g,, appears to be an open question.

The results in this section are summarized in Figure 2. These results are consistent
with a positive answer to Question, but there are significant “gaps” in the spectrum
about which nothing is presently known.

Remark 3.1 (thickness and connectivity) If I' is disconnected, then Wt splits as a
nontrivial free product and is therefore not thick. Hence the function fo from Question,
if it exists, must satisfy logn/(nfeo) — 0, by Theorem 3.4 (as shown in Figure 2),
since (log®7)/n — 0. In other words, there are densities at which I is aas connected
but Wr is not aas thick. However, the convergence to 0 of the proportion of random
graphs at density O((logn)/n) is quite slow. This is illustrated in Table 1, which
shows data selected from the output of many computer experiments;> for correctly
chosen a > 0, even at » = 10000 it is not yet clear that Wr is not aas thick at density

(alogn)/n.

2Source code available from the authors and at arXiv.
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3.1 Behavior at low densities

In the next theorem, we collect a few facts about random right-angled Coxeter groups.
Recall from [23, Theorem 8.7.4] that Wt is one-ended provided I' has no separat-
ing clique.

Theorem 3.2 Wt asymptotically almost surely decomposes as a nontrivial free prod-
uct if and only if there exists € > 0 such that p(n) < ((1 —€)logn)/n. Hence, if
pn) < (1 —€)logn)/n, then the divergence of Wr is aas infinite.

If there exists € > 0 such that p(n) > ((1+¢€)logn)/n, and there exists k € N such that
nkp (n)k2 — 0, then aas I" has no separating clique, and hence Wr is aas one-ended
and has finite-divergence function.

Proof Wr admits a nontrivial free product decomposition if and only if T" is discon-
nected, and logn/n is the threshold for p(n) above which connectedness occurs aas
and below which disconnectedness occurs aas; see [32].

Let K,, = K(T") equal 1 or 0 according to whether I is disconnected. For 0 < j <n,
let K,fl' (I') = > A Ku—j(I' = A), where A varies over the size-j subgraphs of I'.
Then E(K}) = (;’) E(Kn—;)p(2) is an upper bound for the expected number of
separating j—simplices, and the expected number of separating simplices in I' is
therefore bounded by

S (1) K
j=0

Now, for p(n) > (1 4+ €)(log(n))/n and p = o(1), Theorem 1 of [31] implies that
>i<k (7) E(Kn—;)p(2) tends to 0 for any fixed k. If p(n) is sufficiently small to
ensure that aas all cliques in I" have size O(1), ie if there exists & such that (}) p(lﬁ) —0,
then the preceding sum bounds the limiting expected number of separating cliques of
any size, and the proof is complete. a

Because of the hypothesis that n¥p (n)k2 — 0 for some k € N, the second assertion
of Theorem 3.2 says nothing about how many ends Wt aas has when I' € G(n, p)
and p # o(1). This should be expected in light of Theorem 3.9 below, which shows
that if p(n) — 1 sufficiently quickly, the random right-angled Coxeter group Wr
will have 2 or 0 ends with positive probability. However, it is likely possible to
improve the second assertion to show that Wr is aas one-ended for a wider range
of p, provided we still have p 4 1 as n — o0, using the fact that aas all cliques
in T have size in O(logn) provided p ~ 1, by an application of Markov’s inequality.

Algebraic € Geometric Topology, Volume 17 (2017)



Thickness, relative hyperbolicity, and randomness in Coxeter groups 723

Indeed, under the assumptions that p(n) > 5(log(n))/n and p /4 1, it is proven in
[34, Lemma 4.1] that linearly many edges must be removed to disconnect I'; thus
the bound on the size of cliques, as noted above, implies that there are no separating
cliques. It would be interesting to know if this last comment can be improved to hold

when p(n) > (14 ¢)(log(n))/n and p A 1.

Theorem 3.3 If for some € > 0, we have 1 — p(n) > (1 + €)(logn)/n, then Wr is
not thick of order 0, and hence has at least quadratic divergence, aas.

Proof Let I'' be the complement of T, ie the graph with the same vertex set as ", but
with each pair of vertices adjacent if and only if they are nonadjacent in I". Observe
that I decomposes as a nontrivial join if and only if I’ is disconnected. Moreover, note
thatif T" € G(n, p), then I'" € G(n, 1 — p). Hence if 1 — p(n) > (1 +€)(log(n))/n for
some € > 0, then I/ is asymptotically almost surely connected; ie T" is asymptotically
almost surely not a nontrivial join for such p(n). In this case, we thus have that Wr is
not thick of order 0 and hence has superlinear divergence. By [17, Corollary B], since
Wr acts cocompactly on its Davis complex, it contains a periodic rank-one geodesic,
and thus by [40, Proposition 3.3], the divergence of Wr is at least quadratic. O

Theorem 3.4 If p(n)n — oo and p(n)®n® — 0, then the following holds asymptoti-
cally almost surely: T' has a component T such that Wy is hyperbolic relative to a
nonempty collection of proper subgroups each isomorphic to Do X Do . Hence Wr
is aas hyperbolic relative to a nonempty collection of proper Dy, X D subgroups, at
least one of which is not a proper free factor of Wr .

Remark 3.5 Of greatest interest are densities p(n) growing faster than (logn)/n
but slower than n~'/®. At such densities, Theorem 3.2 and Theorem 3.4 together
ensure that Wr is asymptotically almost surely one-ended and hyperbolic relative to
Do X Do subgroups.

Proof of Theorem 3.4 Since pn — oo, [33] together with [11, Theorem 2.2(ii)]
implies that aas I has a giant component T containing a positive proportion « € (0, 1)
of the vertices, and every other component I'; has no more than O(logn) vertices. It
suffices to show that, a.a.s, I’ contains K, » as an induced proper subgraph and T
does not contain K 3. Indeed, the second assertion together with Lemma 3.8 implies
that every element of 7 arising as an induced subgraph of I'” is isomorphic to K5 .
The first assertion, together with Theorem 2.5, will then complete the proof.

K, 3 is aas absent Since p(n)®n3 — 0 as n — oo by hypothesis, Corollary 5 of [32]
implies that, aas, I", and therefore I", does not contain K 3.
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Aninduced K3 > aasappearsin I'’ Let vy,..., v4 be distinct vertices in the random
size-n graph I', and let the random variable I(vq,...,v4) take the value 1 or 0
according to whether or not {vy,...,v4} is the vertex set of an induced K, in I'.
The random variable S, = Zvl,vz,vg,w I(vy,...,v4) counts each induced K3 > in I"
24 times, reflecting the eight automorphisms of K, ;> and the three ways of choosing
which pairs of vertices in K, > will be nonadjacent. Since there are (Z) such quadruples,
and each forms an induced copy of K3, exactly when there is some permutation
0:{1,2,3,4} — {1,2, 3,4} such that v, ;) is adjacent to v4(;)4; for each i, and the
remaining two possible edges are absent, we have E(S4) = 24(2) p*(1—p)2.

Let N € N and let € € (0, 1). The preceding discussion shows that since p(n)n — oo,

there exists Ny € N such that E(Sy) > N/e for all n > N;. The proof of Theorem 4.1
of [18] shows that since pn — oo and (1 — p)n? — oo,

E(Sn)?
— 9 y
E(S?)
so there exists N, € N such that
E(Sn)*
E(S?)
for n > N,. The Paley—Zygmund inequality implies that for all » > max{Ny, N,},
P(Sn = N) = IP)(Sn = GE(SH))
2 E(Sn)?
E(S?)
This implies that for each N € N, we have lim, P(S, < N) = 0. Lemma 3.7 below
states that aas, every component of I is either a tree or equal to I", so it suffices to

find squares in I". We have shown that P (S, < 48) — 0 as n — oo, so '’ aas contains
at least two induced copies of K3 5. O

>(l—¢) >(1—e)3.

Remark 3.6 The fact that Wt is hyperbolic relative to Do, X Do subgroups that are
not free factors can be seen slightly more easily as follows. First we produce induced
K> > subgraphs in I" and verify that I' aas does not contain K3 3, as in the proof of
Theorem 3.4. Then we observe that by Theorem 5.16 of [11], I aas has no component
which is a 4—cycle. Theorem 3.4 is, of course, a stronger conclusion since it rules out
the possibility that Wt/ is hyperbolic and every 4—cycle lies in a unicyclic component
that is not a 4—cycle.

Lemma 3.7 Let " € G(n, p(n)), with p(n) satistying the hypotheses of Theorem 3.4.
Asymptotically almost surely, each component of T" is either the giant component or
a tree.
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Proof of Lemma 3.7 This follows immediately from [11, Theorem 6.10(iii)] and [11,
Theorem 2.2(ii)]. O

Lemma 3.8 If A €T, then either A = K, » or A contains K; 3.

Proof Since A must contain the join of two subgraphs of diameter at least 2, we have
that |A°| > 4 and either A = K, , or |A| > 5. In the latter case, suppose that each
maximal join in A is isomorphic to K > and let A9 C A be such a join. Then no two
nonadjacent vertices in Ay have a common adjacent vertex, since otherwise Ay would
extend to a copy of K5 3. Hence A = K ,, a contradiction. O

3.2 Behavior at high densities

Charney—Farber showed in [18] that a random right-angled Coxeter group on n vertices
is aas finite when (1 — p(n))n? — 0 as n — oo. The following description of random
right-angled Coxeter groups for rapidly growing p(n) generalizes this result.

Theorem 3.9 Suppose (1 — p(n))n> — « as n — oo for some « € [0, 00), and let
the random variable M, count the number of “missing edges” in I € G(n, p), ie the
number of pairs of distinct vertices that are not joined by an edge. Then M, = O(1)
aas, and the following hold:

(1) With probability tending to e™%/2 M, =0 and the group Wr is finite.

(2) With probability tending to %ae“"/ 2
and thus hyperbolic.

(3) With probability tending to 1 — (1 + %oz)e_o‘/z, My, > 2 and the group Wr is
virtually Z™» | and is thus thick of order 0 and has linear divergence.

, M, =1 and the group Wr is virtually Z

Proof Finite and virtually Z If M, =0, then I is a complete graph, so W = Z7
is finite. Conversely, if Wr is finite, then since any two nonadjacent vertices together
generate a subgroup isomorphic to Dy, we see that M, = 0. Similarly, Wr is
virtually Z if and only if M, = 1.

For k > 0, we have

pot, =0 = () pot %

and .,
p(n)(z)_k ~ e_a/z.

Hence P(M, = 0) — ¢~*/2, while P(M, = 1) ~ (’;)(oz/nz)e_"‘/2 — %—ae‘“/z.
This establishes the first two assertions.
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Thick of order 0 Foreach vertex v eI, let [, be 1 or 0 according to whether or not v
belongs to exactly one missing edge, so that P(I, = 1) =E(/,) =n(1—p(n)) p(n)" 2.
Let E, =), I, count the number of vertices belonging to exactly one missing edge,
and observe that E(E,) =n*(1 — p(n)) p(n)* 2 ~ a.

Similarly, let J;, be 1 or 0 according to whether or not v belongs to at least one missing
edge, and let F, =), J, count the vertices appearing in at least one missing edge.
Note that P(J, = 1) =E(Jy) =1 — p(n)*~!. Hence

E(Fy) =n(1=pn)"™")

(12

_ an(n—1)

2 +o0(1) ~a.

Since F, > Ey, and E(F, — E,) — 0, aas F;,, = E},. In other words, aas every vertex
occurs in at most one missing edge. Therefore, aas there are pairwise-distinct vertices
V1,...,V, Wy, ..., W such that v; and w; are not adjacent for all i, and every other
pair of vertices spans an edge. This implies that Wr is virtually the product of k£ copies
of Deo.

The above argument shows that aas M, = %E . For distinct vertices v and w, we have
P(Iyly =1) = (n—1)*p*" (1= p)* + p*"~*(1 - p),

from which a computation shows that E(M,) — %a(a 4+ 1). It follows from Markov’s

inequality that M, = O(1) aas. |

3.3 Constant-density behavior

In this section, we prove:

Theorem 3.10 For I € G(n, 3), the group Wr- is aas thick.

The following lemma isolates the most crucial estimates we will use in the proof of the
theorem.

Lemma 3.11 Let 7, = IP’(F gT|T e G(n, %)) Then the following hold:

(1) 7w <72+ f(n), where f(n)=2n)1_, ('1.1)2_"_@.

() map <724 27mn(1—7n)(nc(n) /2"t (n)) + (1 — 7n)?, where c(n) is the number
of cliques in the disjoint union of all T —graphs on n vertices (with the 0—clique
counted once), and t(n) is the total number of T —graphs on n vertices.

) mpt1 =ma+ f(n).
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Proof LetI' e G(Zn, %) and let A LI B be a partition of I'©® into sets of size n. For
v € B, we denote by Link4(v) the set of vertices in 4 adjacent to v. Note that if
I' & T, then one of the following holds:

(i) The subgraphs generated by A and B are notin 7.

(i) There exists v € B [or v € A] such that Link4(v) [or Linkg(v)] is a (possibly
empty) clique.

To establish this dichotomy, first we assume (i) does not hold, and hence without loss
of generality, we may assume the subgraph generated by A is in 7. If additionally,
(i1) does not hold, we show this yields I" € 7, which is a contradiction. Condition (ii)
implies that for each vertex v of B, the set Link4(v) is nonempty and has diameter
exceeding 1. Now, for each v € B we have that the subgraph I'y, of I'" generated
by AU {v} isin 7 since it is obtained by coning off a set of diameter at least 2 and
applying Definition 2.3(2). Also, for each v, v’ € B, since the graphs T', and Ty are
both thick and their intersection is the thick graph generated by A, we see that the
graph generated by 4 U {v, v}, which is the generalized union of T, and Ty, is thus
thick by Definition 2.3(3). Thus, by adding one vertex from B at a time in the above
way we see that ' € T,

Next, we claim that P((i)) = Jr,f. Indeed, since in the construction of I", edges joining
pairs of vertices in 4 are added independently of those joining vertices in B, the events
“A generates a subgraph in 7 and *“ B generates a subgraph in 7 are independent.
Moreover, the subgraphs of F generated by 4 and B are in G(n, %) It follows that
(i) occurs with probability n , whence

Ton < 72 + P((ii)).

We finally show that P((ii)) < f(n). To this end, let V be the number of vertices
of B whose links in A are (possibly empty) cliques. Then P ((ii)) <2 P(V > 0) and
P(V > 0) < E(V). The initial factor of 2 reflects the fact that we are assuming that
A €T and counting vertices in B whose links in A are cliques; (ii) could just as easily
occur with the roles of 4 and B reversed.

For each v € B, if Linky4(v) has k vertices, then it is generated by one of ( )
subsets of A. Each such subset is a clique with probability 2~ (z) and such a subset
generates Link4(v) with probability 27K25K=" = 27" reflecting the fact that the k
vertices of the putative link must be adjacent to v, and the n — k remaining vertices
of A must not. Summing over k yields the probability that Link4(v) is a clique, so
EV)=n) % (Z)2_”_(§), and (1) follows.

To establish (2), write I'©) = AL B as above. If T & T , then one of the following holds:
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(a) The subgraphs generated by A and B are both not in 7. This event occurs with
probability 2.

(b) Exactly one of the subgraphs generated by A and B belongs to 7. In this case,
suppose that 4 generates a subgraph in 7. This subgraph is among the #(7)
graphs of its size in 7, and as above, B must contain a vertex v whose link in 4
generates one of the c¢(n) possible cliques. There are n choices for this vertex,
and each has a given clique as its link with probability at most 27". Hence this
situation occurs with probability at most 27, (1 — 7, )nc(n)2~"¢(n) L.

(c) The subgraphs generated by A and B both belong to 7. In this case, it must be
true that some vertex in A4 has link in B a clique (or vice versa), but we do not
use this fact; we just note that the probability of this event is certainly at most

(1 _7Tn)2-

Finally, to establish (3), regard the size-(n+1) graph I" as the subgraph of I' generated
by A U{v}, with v a vertex. If I" & T, then either A ¢ T or the link of v is a clique.
The claim now follows by arguing as in the proof of (1). Note that in this case, since
the two parts are not symmetric and we are looking at the link of only one point rather
than 7, this removes a factor of 2n from the second term in the sum, and actually
establishes the stronger fact that 7,1 < 7, + f(n)/2n. ad

Remark 3.12 The relation between the first two parts of the above lemma are as
follows. In the language of conditional probability, to prove Lemma 3.11(1), we use
the fact that

mon = P4, B ¢ T+ P[(ii)].
Whereas, for Lemma 3.11(2) we exploited the following:
Ton <P[A,BET)+2P[AcT,B¢T|-Pli)g | AcT,B&T|+P[A4,BeT],

where (ii) g is the same as (ii) except that we require only the condition on links of
vertices of B. We then sum over these probabilities to yield Lemma 3.11(2).

We will make use of the following estimate:

Lemma 3.13 Let X, be a binomial random variable with mean %n and variance %-n.
Then for all M < %n, we have

2
P(X, < M) <exp(—2 +2M — 2M ).
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Proof Viewing X, as the sum of n Bernoulli trials, this follows from Hoeffding’s
inequality [39]. o

Lemma 3.14 The function f of Lemma 3.11 has the following properties:
1 f(n) 20 exponentially, and in particular, ) -, f(n) < oo.

() f(n) <0.03760 for all n > 18.

Proof Let M = [n?%?] for natural numbers a < b, and define (I) and (II) by writing

f(n)= 2n|:§:(’;)2_”_(§) + 2’1: (’;)2—"—@].

i=0 i=M+1
D In

For each n,
M n
m =273 (1) =P, = M),
i=0

where X}, is a binomial random variable with mean 7 - % From Lemma 3.13, we have,
for M <n/2,

2
D =< exp[—% +2M — M ]

< e—n/ZeZI_na/bJe—2|_na/bJ2/n = g(n,M)
We also have

an < 27=(%) Xn: (’f )

i=M+1

M
—n—(M) (on _ (n
=27 (2 >(7)
i=0
<2~ (5) <P /P-1)/2,

Suppose now that ¢ and b also satisfy 2a/b > 1. Then the lemma follows from
summing the above estimates: f(n) decays exponentially and is hence summable. This
establishes the first assertion.

The second assertion requires a refinement of one of the above bounds. Let a = 2 and
b =3, and let M = |n%?|, X, and the expressions (I) and (II) be as above. As

before, we have
() < 27D/,
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We need to estimate (I) more carefully when n > 18. We thus write

5 .
(I) < 2‘”(2(’;)2—@) +27 O p(x, < n23))

i=0
5 . 6
< 2—n(2(?)2_(§)) 4+ 2_(2)g(n, |_n2/3J) = h(ﬂ).
i=0

The second inequality is an application of Lemma 3.13, justified by the fact that
n%/3 <n/2 for n > 18. Hence

f) <2n-h(n) +2n. 277 @F=D/2,

The second term is strictly decreasing for n > 8, as can be seen by differentiating, and
takes a value less than 3.09-107° at n = 18. Next, a straightforward computation gives

g(n, Ln2/3j) < exp(—% + 21?3 —op'/3 4 4n=13 - %),
which is decreasing for n > 12 and, for n = 18, yields
21270 . g(n, 1n2/3]) < 0.00273.

The remaining term can be shown by direct differentiation to decrease for n > 5,
and takes the value 0.3484 at n = 18. Combining the above shows that f(n) <
3.09-107° 4 0.00273 + 0.03484 = 0.03760 for n > 18. |

Remark 3.15 As we will see in the proof of Theorem 3.10, any bound sharper than
around f'(18) <0.06045 is sufficient.

Proof of Theorem 3.10 The idea of the proof is to use Lemma 3.11(1) and the fact
that f is small to get convergence to 0 of a subsequence of (7,). We then use this
in order to show that (77,) converges to 0, and then we apply Lemma 3.11(3) and the
summability of f.

Accumulation at (0 implies convergence to 0 For each n and &, Lemma 3.11(3)

yields
k—1 o0
Ttk < Tn+ ) Sl +n) <1+ ) Q).
i=0 i=n

Suppose that 0 is an accumulation point of (7). Then for each € > 0, we can choose n
so that 7, < %e and Y 12 f(n) < %e. The latter inequality follows from summability
of f,ie from Lemma 3.14(1). Hence for all k£, we have m, 1 <€, ie m, 0.
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Nonaccumulation at 0 implies convergence to 1 Suppose now that the subsequence
(7g.om)men does not have 0 as an accumulation point for some k& € N. Then we
claim that (;g.,m) converges to 1. Indeed, consider the smallest accumulation point 7
of the sequence, and suppose that it is the limit of the subsequence (7j.pm; )ijen. We
have to show 7 = 1. By Lemma 3.11(1) and the fact that f converges to 0, we get that
any accumulation point 7’ of (7 _,m;+1) satisfies 7’ < 2. As we also have 7 < 7/,
we get w < 72, so that 7 = 1.

A subsequence bounded away from 1 It is thus sufficient to show that the subse-
quence (7g.om)meN is bounded away from 1 for some k € N. In fact, if this is the case,
then (7ry.0m)meN does not converge to 1, hence it must have 0 as an accumulation point,
and hence (7r,;) converges to 0 as required. Suppose that for some &, we have mg € N
and constants «, 8 € [0, 1) such that f(k-2") < g for all m > my, and 7wg.,my < x.
Suppose, moreover, that ? + 8 < «. Then Tp.omo+1 < & by Lemma 3.11(1), and by
induction and the same lemma, we have my.,m <« for all m > my.

Let £ =9 and mo = 1. The computer program in the online supplement returned the
following data:

o 1(9) = 14853635863,
o ¢(9) = 683846354560,
o m9=1-1(9)/2G) ~ 0.78385.

Together with Lemma 3.11(2), this implies
1(9)\? (z(9) 2 ( t(9)\ t9) 9-¢(9)
< . _ — . . ~ U. .
g <= (1 —236> + 236) +2(1 236) 236 312:4(9) 0.93537

Lemma 3.14(2) gives f(n) < B = 0.03760 for all n > 18. The above discussion,
together with the fact that these values satisfy a? + 8 < «, implies that (7g.pm) is
bounded away from 1, whence 7, N 0;1ie I" isaasin 7. O

4 Detecting thickness algorithmically

In this section, we exhibit a polynomial-time algorithm for deciding whether a finite
graph is in 7. The construction of the algorithm presented in this section prioritized
simplicity over speed. We also provide a C++ implementation of a simple algorithm
to compute the constants needed in the proof of Theorem 3.10. The main part of
this computer program implements the algorithm for deciding if a given right-angled
Coxeter group is thick.
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Theorem 4.1 There exists an algorithm which decides, in polynomial time, whether a
graph I' is in T . Hence the problem of deciding whether a right-angled Coxeter group
admits a relatively hyperbolic structure is soluble in polynomial time.

Proof The second assertion follows from the first by Theorem 2.5. The algorithm
takes as input the finite simplicial graph I" on » vertices and decides whether I" € T.
For ease of exposition, we provide an algorithm which admits an easy description, but
we note that there are more efficient algorithms; in particular, the code in the online
supplement contains an implementation of a more efficient algorithm for the same task.
The steps are:

(1) Make a list M of all induced K, subgraphs of I'. The running time is in
O(n*) and |[M| is in O(n*).

(2) Make a list A of pairs of nonadjacent vertices. The running time is in O(n?)
and || is in O(n?).

(3) Perform a union subroutine; ie for each pair M, M’ € M, determine whether
M N M’ contains some (v, v") € N. If so, modify M by removing M and M’
and adding the subgraph induced by M U M’. The running time of a union
subroutine is in O(n'!).

(4) Perform a coning subroutine; ie for each M € M and each vertex v, determine
whether there exists (w, w’) € N such that w, w’ € M and both are adjacent
to v. If so, replace M by the subgraph generated by M U {v}. The running
time of a coning subroutine is in O(n’).

(5) If M did not change during the coning and union subroutines, then we are
finished: the graph is thick if and only if |[M| =1, and the unique element of M
is I'.

(6) If M changed, then return to step (2).

The number of union subroutines that modify M is in O(n*) since each such union
subroutine decreases |M|. The number of coning subroutines that modify M is in
O(n®) since each such subroutine increases the size of some subgraph in M. Hence
the total running time is in O(n!?). m]

4.1 Computing 7(9) and c(9)

To obtain the values used in the proof of Theorem 3.10, one can use the C++ program
in the online supplement, which takes a single command line argument, namely the
number n of vertices. We have also checked the computations by hand up to n = 6
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beyond which they become infeasible. The reader seeking to reproduce our computer
computation for n = 9 should be aware that the program requires being run for several
days with typical 2013 hardware.

The efficiency of the program can be significantly improved. However, we decided
to keep the code as simple as possible. Source code for a much more efficient, albeit
more complex, version of this program can be obtained from the authors.

Appendix: Generalizing to all Coxeter groups
by J Behrstock, P-E Caprace, M F Hagen and A Sisto

All Coxeter groups considered here are assumed finitely generated. In this appendix,
we generalize Theorems I and II to Coxeter groups which are not necessarily right
angled. Further considerations are contained in Section A.3.

We can summarize the main result in this appendix as follows.
Theorem A.1 (minimal relatively hyperbolic structures) Let (W, .S) be a Coxeter

system. Then there is a (possibly empty) collection J of subsets of S enjoying the
following properties:

(1) The parabolic subgroup Wy is strongly algebraically thick for every J € J .
(i) If J # S forall J € J, then W is hyperbolic relative to P = {Wj | J € J}.

In particular, P is a minimal relatively hyperbolic structure for W .

A.1 Thick Coxeter groups

We consider the class T of Coxeter systems (W, S) defined as follows.

(1) T contains the class Tq of all irreducible affine Coxeter systems (W, S) with S
of cardinality at least 3, as well as all Coxeter systems of the form (W, S; U S5)
with Wg, and W, irreducible nonspherical and [Ws,, Wg,] = 1.

(2) Suppose that (W, S Us) is such that s+ is nonspherical and (Ws, S) belongs
to T. Then (W, S Us) belongsto T.

(3) Suppose that (W, S) is such that there exist Sy, S, € § with S{US, =S,
(Ws,,S1), (Ws,,S2) €T and Wg,ns, nonspherical. Then (W,S) € T.

Proposition A.2 For (W, S) e T, the Coxeter group W is strongly algebraically thick.

The proof requires the following subsidiary fact.
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Lemma A.3 Let (W, S) be a Coxeter system. Let s € S and set K = S \ {s}. Then
the group (Wxg U sWkgs) has index at most 2 in W .

Proof The group (Wg UsWkgs) is a reflection subgroup whose fundamental domain
for its action on the Cayley graph of (W, .S) contains at most two chambers, namely
the base vertex 1 and the unique vertex s—adjacent to it, see [26]. a

Proof of Proposition A.2 If (W,S) isin Ty then the group W is either virtually
abelian of rank at least 2 or a direct product of two infinite (Coxeter) groups. In
particular, W is wide and, hence, strongly algebraically thick of order 0.

Let (W, SU{s}) be of the form described in item (2) of the definition of T . Lemma A.3
then implies that W contains the group (Wg UsWgs) with index at most 2. Therefore
W is strongly algebraically thick, being an algebraic network with respect to the pair
of strongly thick groups {Wg,sWgs}.

Finally, let (W, S) be as in item (3) of the definition of T. Then W is strongly
algebraically thick, being an algebraic network with respect to the pair of strongly thick
groups {Wg,, Wg, }. |

A.2 Proof of minimal relatively hyperbolic structures theorem

We will use the following criterion for relative hyperbolicity of Coxeter groups, which
corrects [14, Theorem A], where a hypothesis on the peripheral subgroups was missing.

Theorem A.4 [15, Theorem A’] Let (W, S) be a Coxeter system and J a collection
of proper subsets of S. Then W is hyperbolic relative to {Wy | J € J} if and only if
the following conditions hold:

(RH1) For each irreducible affine subset K C S of cardinality at least 3, there exists

J € J such that K C J. Similarly, given any pair of irreducible nonspherical subsets
K, K, C S with [K, K;] =1, there exists J € J such that K; U K, € J.

(RH2) Forall Jy, J, € J with J{ # J,, the intersection J; N J, is spherical.
(RH3) Foreach J € J and each irreducible nonspherical K € J, we have K 1 cJ.

We are now ready to prove Theorem A.1. We will give an explicit description of J:

Theorem A.5 Let (W, S) be a Coxeter system and let J be the (possibly empty)
collection of all maximal subsets J C S such that (Wy, J) € T . Then we have:
(i) The parabolic subgroup Wy is strongly algebraically thick for every J € J.
(i) If J #{S}, then W is hyperbolic relative to P = {Wy | J € J}.

In particular, P is a minimal relatively hyperbolic structure for W .
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Proof By Moussong’s characterization of hyperbolic Coxeter groups [41, Theo-
rem 17.1] (and the fact that S is finite), J is not empty if and only if W is not
hyperbolic, which we assume from now on.

By Proposition A.2, (i) holds.

We are now left to show that J satisfies the three conditions (RH1)—(RH3) from
Theorem A.4.

It is clear that 7 satisfies (RH1).

If J1, J, € J are distinct, then Wy, 7, must be spherical. In fact, if it was nonspherical,
then we would have Jy U J, € J, contradicting the maximality of either J; or J,.
So J satisfies (RH2).

Let K be a nonspherical subgraph of some J € 7. We have to show that K= is
contained in J as well. Indeed, if there was an element s € K-\ J, then J U{s} would
be in T, contradicting the maximality of J.

We have now shown the peripherals are in T and hence thick by Proposition A.2. Thus,
as noted in the introduction, minimality now follows from [5, Corollary 4.7]. O

A.3 Intrinsic horosphericity and further corollaries

We say that a discrete group I' is (intrinsically) horospherical if every proper isometric
action of I" on a proper hyperbolic geodesic metric space fixes a unique point at infinity.
In particular, the group I' cannot be virtually cyclic, and every element of infinite order
acts as a parabolic isometry in any such I'—action. As one may expect, thickness and
horosphericity are related properties (compare Theorem 4.1 from [5]):

Proposition A.6 Every strongly algebraically thick group is intrinsically horospherical.

The proof requires the following result, which follows from the exact same arguments
as the proof of Lemma 3.25 in [28].

Lemma A.7 Let H be a finitely generated group (endowed with its word metric with
respect to a finite generating set), (X, d) a metric space and q: H — X a map which
is Lipschitz up to an additive constant. Given h € H , if the map 7. — X,n + q(h") is
a Morse quasigeodesic in X , then h is a Morse element in H . a

Lemma A.8 Let H be a group acting properly by isometries on a proper Gromov
hyperbolic metric space X . Assume that H has a unique fixed point £ at infinity of X .
Then every infinite subgroup of H has & as its unique fixed point at infinity.
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Proof The hypotheses imply that H does not contain any hyperbolic isometry. From
Proposition 5.5 in [16], it follows that every subgroup of H either has a bounded orbit
or has a unique fixed point at infinity of X . The desired conclusion follows since the
H —action on X is proper. O

Proof of Proposition A.6 We argue by induction on the order of thickness. In the base
case, let H be a finitely generated group which is wide. Suppose that H acts properly
by isometries on a proper Gromov hyperbolic metric space X. H can not contain a
hyperbolic isometry since otherwise, Lemma A.7 implies that some asymptotic cone
of H has cut-points, which would contradict the assumption that H is wide. Since H
is infinite and the H —action on X is proper, it follows from [16, Proposition 5.5]
that H fixes a unique point at infinity of X . This proves that strongly algebraically
thick groups of order O are intrinsically horospherical.

The inductive step is given by the following observation. Let G be an infinite group
which is an M —algebraic network with respect to a finite collection # of subgroups.
If each subgroup in # is intrinsically horospherical, then so is G.

Indeed, let G act properly by isometries on a proper Gromov hyperbolic metric space X .
Then each group H € H has a unique fixed point £z at infinity of X. Given H, H' € H,,

there is a sequence H = Hy, ..., Hy = H' in H in which any two consecutive groups
have an infinite intersection; see Definition 5.2 in [5]. From Lemma A.8, we deduce
that ég = &g, =+ = &p, = Em. Hence all groups in A have the same fixed point

at infinity, say &. By the definition of an algebraic network, this point £ must be fixed
by a finite-index subgroup of G . Thus the G —orbit of £ is finite.

If this orbit has exactly one point, then G fixes & (and no other point at infinity of X),
and we are done. If this orbit contains exactly two points, then G is virtually cyclic
and hence does not contain any intrinsically horospherical subgroups, which is absurd.
If |G&| > 3, then it follows from [38, Proposition-Definition 8.2.L] that G has bounded
orbits in X', contradicting the assumption that G is infinite and acts properly. a

Notice that the converse to Proposition A.6 does not hold in general: indeed, horo-
spherical groups include all amenable groups that are not virtually cyclic. In particular,
infinite locally finite groups are examples of horospherical groups that are not strongly
algebraically thick. By Zorn’s lemma, every intrinsically horospherical subgroup of I'
is contained in a maximal one. It is thus a natural question to determine all the maximal
intrinsically horospherical subgroups. Theorem A.1 yields the answer to this question
when I" is a Coxeter group.
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Corollary A.9 Let W be a Coxeter group. Then the maximal intrinsically horospheri-
cal subgroups of W are parabolic subgroups (in the sense of Coxeter group theory)
with respect to any Coxeter generating set. Those parabolic subgroups are precisely the
conjugates of the elements of the set P afforded by Theorem A.1.

Proof Every strongly algebraically thick group is intrinsically horospherical by
Proposition A.6. Moreover, a subgroup of W properly containing a conjugate of
an element of P cannot be intrinsically horospherical by Theorem A.1. Thus the
elements of P are indeed maximal horospherical subgroups. Since W is relatively
hyperbolic with respect to P, every intrinsically horospherical subgroup is conjugate
to a subgroup of an element of P. |

Corollary A.10 Let (W, S) be a Coxeter system. Then the following conditions are
equivalent:

@ (W,S)isinT.
(i) W is strongly algebraically thick.
(iii)) W is intrinsically horospherical.
(iv) W is not relatively hyperbolic with respect to any family of proper subgroups.

(v) W is not relatively hyperbolic with respect to any family of proper Coxeter-
parabolic subgroups.

(vi) For every collection J of subsets of S satistying (RH1)—(RH3), we have S € J.

Proof The implication (i) = (ii) is the content of Proposition A.2. The implication
(il)) = (iii) follows from Proposition A.6. The implication (iii) = (iv) is straight-
forward. Property (iv) trivially implies (v). That (v) is equivalent to (vi) follows from
Theorem A.4. Applying Theorem A.5, we get that (v) implies (i). |
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On RO(G)-graded equivariant ‘“ordinary” cohomology
where G is a power of Z /2

JOHN HOLLER
IGOR KRIZz

We compute the complete RO(G)—graded coefficients of “ordinary” cohomology
with coefficients in Z/2 for G = (Z/2)". As an important intermediate step, we
identify the ring of coefficients of the corresponding geometric fixed point spectrum,
revealing some interesting algebra. This is a first computation of its kind for groups
which are not cyclic p—groups.

55N91

1 Introduction

The notion of a cohomology theory graded by elements of the real representation ring
(RO(G)—graded cohomology) is a key concept of equivariant stable homotopy theory
of a finite or compact Lie group G . Like much of stable homotopy theory, perhaps one
of the first known examples was K-theory. Atiyah and Singer [4] introduced equivariant
K-theory of a compact Lie group G and proved that it is naturally RO(G)—graded. In
fact, Bott periodicity identifies many of the “dimensions” in RO(G), and relates others
to “twistings” (see Karoubi [7] and, for a more recent treatment, Freed, Hopkins and
Teleman [9]). Pioneered by Adams and Greenlees [10], the general RO(G)—graded
stable homotopy theory found firm foundations in the fundamental book of Lewis, May
and Steinberger [22].

Despite the clear importance of the concept, beyond K-theory, calculations of RO(G)-
graded cohomology are few and far in between. Perhaps the most striking case is “or-
dinary” RO(G)—graded cohomology. Bredon [5] discovered Z—graded G—equivariant
cohomology associated with a coefficient system which is “ordinary” in the sense that
the cohomology of a point is concentrated in a single dimension. It was later discovered
(Lewis, May and McClure [20]) that such a theory becomes RO(G)—graded when
the coefficient system enjoys the structure of a Mackey functor (see Dress [8]), which
means that it allows building in an appropriate concept of transfer. Strikingly, the
RO(G)—graded coefficients were not known in any single nontrivial case.
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Complete calculations of RO(Z/2)—graded coefficients, however, are important in
Real-oriented stable homotopy theory, because they exhibit the analogy with the
complex-oriented case. Real orientation was, once again, discovered first by Atiyah [3]
in the case of K-theory, and was subsequently extended to cobordism by Landweber [19].
RO(Z/2)—graded cohomology with coefficients in the Burnside ring Mackey functor
was calculated by Stong [21]. A systematic pursuit of real-oriented homotopy theory
was started by Araki [2], and developed further by Hu and Kriz [13] with many
calculations, including a complete calculation of the RO(G)—graded coefficients of
Landweber’s Real cobordism spectrum. In the process, Hu and Kriz [13] also calculated
the RO(Z/2)—graded ordinary cohomology of the “constant” Mackey functors Z
and Z /2 (ie the Mackey functors uniquely extending the constant coefficient systems).
A major development was the work of Hill, Hopkins and Ravenel [12], who partially
extended the calculations of [13] to Z/ (2K) (with special interest in k = 3), and applied
this to solving the Kervaire—-Milnor problem by showing the nonexistence of manifolds
of Kervaire invariant 1 in dimensions > 126. A still more complete calculation of
RO(G)—graded ordinary equivariant cohomology of the constant Mackey functors
for G = 7 /(2¥) was more recently given in Hu and Kriz [14].

Still, no calculations of RO(G)—graded cohomology beyond K-theory were known for
groups other than where G is a primary cyclic group. In a spin-off of their joint solution
with Ormsby [16] of Thomason’s homotopy limit problem for Hermitian K-theory,
Hu and Kriz [15] computed the RO(G)—graded coefficients of topological Hermitian
cobordism, which has G = Z /2 x Z /2. However, this is a rather special case, where
many periodicities occur.

The purpose of the present paper is to calculate the RO(G)—graded coefficients of
the ordinary equivariant cohomology of the “constant” 7Z/2 Mackey functor for
G = (Z/2)". There are several reasons to focus on this case. The group (Z/2)"
has an exceptionally simply described real representation ring, thus eliminating the
need to handle representation-theoretical exceptions such as distinguishing between
real and complex (let alone, quaternionic) representations. The coefficients Z /2 are
more convenient than 7, since they eliminate the need to consider extensions. Despite
all this, the complete answer is complicated, however, and in general, we are only able
to present it in the form of the cohomology of an n—stage chain complex.

Our method is based on isotropy separation, a term coined by Greenlees and May [11],
to mean considering separately the contributions of subgroups of G. An isotropy
separation spectral sequence was developed in Abram and Kriz [1], but we use a
different spectral sequence here. The reason is that in [1], we are not concerned
with RO(G)-graded coefficients, but rather with computing the complete Z—graded
coefficients of equivariant complex cobordism of a finite abelian group G as a ring.
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Based on generalizing the method of Kriz [17] in the case of G = Z/ p, in the case
of Z—graded equivariant complex cobordism, one can set up a spectral sequence of
rings which collapses to E£2 in a single filtration degree. This means that the complete
ring structure can be recovered, which is a special property of complex cobordism. It
is worth mentioning that the spectral sequence of [1] contains many “completed” (for
example, uncountable) terms.

The case of ordinary RO(G)—graded equivariant cohomology is quite different, however,
in that the spectral sequence fails to collapse to a single degree. Even for G =Z/p,
we observe that a part of the coefficients are in filtration degree 0 and a part in
filtration degree —1 (graded homologically). This caused us to give up, at least for
now, calculating the complete ring structure, and use a spectral sequence which is more
amenable to calculations instead.

Another key ingredient in our computation is the concept of geometric fixed points
of an RO(G)—graded equivariant cohomology theory. This concept was introduced
(using a different terminology) by tom Dieck [6], who calculated the geometric fixed
points of equivariant complex cobordism. As far as we know, the term geometric fixed
points was coined by Greenlees and May, and is recorded in Lewis, May, Steinberger
and McClure [22]. Unlike actual fixed points, the geometric fixed point coefficients
are periodic with respect to all nontrivial irreducible real representations of G . Thus,
instead of RO(G)—graded, the geometric fixed points are, again, only Z-graded. This
is a big advantage in expressing the answer. Note that the ring RO((Z/2)") is huge: it
is the free abelian group on 2" generators! On the downside, the term “geometric” fails
to carry the expected implications in the case of ordinary equivariant cohomology: we
know of no geometry that would help calculating them. Still, in the case G = (Z/2)",
a complete calculation of the geometric fixed point ring of HZ/2 is possible using
spectral sequence methods. This is our Theorem 2.

The main method of this paper is, basically, setting up another spectral sequence which
enables the calculation of the coefficients of HZ/2z,,)» by investigating how they
differ from the coefficients of the geometric fixed points. There results a spectral
sequence, which, in a fairly substantial range of RO(G)—graded dimensions, collapses
to E2 in degree 0. More precisely, the range is, graded homologically, suspensions by
elements of RO(G) where summands of nontrivial irreducible representations occur
with nonpositive coefficients. Alternately, graded cohomologically, this is the range
of suspensions by actual representations, possibly minus a trivial representation. (As it
turns out, however, in this case, when the trivial representation has a negative coefficient,
the cohomology group is 0.) In this case, we can both recover the complete ring struc-
ture, since the ring embeds into the ring of geometric fixed points tensored with RO(G).
We also have a nice concise formula for the Poincaré series in this case (Theorem 5).
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In the case of completely general RO(G)-dimension with G = (Z/2)", we are only
able to give a spectral sequence in 7 filtration degrees, which collapses to £2 and calcu-
lates the RO(G)—graded coefficient group of HZ /2¢ . Thus, this gives an algebraically
defined chain complex whose homology are the desired groups (Theorem 7). We give
an example of a complete calculation of the Poincaré series of the RO(G)—graded
coefficients of HZ/275x7,/2 (the case n = 2), which clearly shows that the answer
gets complicated, and additional complications arise for n > 3.

The present paper is organized as follows: In Section 2, we introduce the necessary con-
ventions and notation. In Section 3, we compute the geometric fixed points. In Section 4,
we compute the coefficients in dimensions involving elements of RO(G) where non-
trivial irreducible representations have nonpositive coefficients (graded homologically).
In Section 5, we calculate the chain complex computing the complete RO(G)—graded
coefficients of HZ /2g for G = (Z/2)". In Section 6, we treat the example of n = 2.
The authors apologize to the readers for not stating their theorems in the introduction.
Even in the prettiest cases, the theorems involve quite a lot of notation and technical
prerequisites. We prefer to state them properly in the text.

Recent developments: odd primes, and hyperplane arrangements While this pa-
per was under review, several developments took place. A generalization of the present
result to (Z/p)" for p an odd prime was found by Holler. The authors also found out
that the ring described in Theorem 2 is a previously known object in algebraic geometry,
related to a certain compactification of complements of hyperplane arrangements
referred to as the reciprocal plane.

More concretely, for a set S = {zy} of equations of hyperplanes through 0 in an affine

space Spec(F[uy,...,uy,]) of afield F, one considers the subring Rg of
-1
(1) (Hza) Flui,... un]
aeS

generated by the elements z, 1 (which correspond to our elements x4 ). The ring
was first described by Terao [24], and a particularly nice presentation was found
by Proudfoot and Speyer [23]. In the case of an odd prime p, one deals analogously
with the subring Eg of

-1
2) (HZ“) Fluy,...,uy] ®F A(duq,...,duy)

aeS

generated by z, ! and d log(zy), which are topologically in dimensions 2 and 1,
respectively. The analogues of the constructions of [23; 24] in this graded-commutative
case, and the reciprocal plane compactification, were recently worked out by S Kriz [18].
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Our emphasis is quite different form the authors of [23; 24], who, doing classical alge-
braic geometry, were mostly interested in characteristic 0. Their arguments, however,
work in general. The ring described in Theorem 2 (and its Z/ p analogue discovered by
Holler, ie the geometric fixed point ring of HZ/pg where G = (Z/p)") is related to
the hyperplane arrangement of all hyperplanes through 0 in the n—dimensional affine
space over Z/ p. It follows, however, from the descriptions of [23; 24; 18] that for a
subset S’ of a hyperplane arrangement S, the ring Rg/ (resp. Es/) is a subring of Rg
(resp. Eg). It follows in turn that for every hyperplane arrangement in G = (Z/ p)",
the Z—graded part of the coefficient ring of the spectrum
N\ S®*ANHZ/pg

aeS

is Rg for p =2, and Eg for any odd prime p.

2 Conventions and notation

Throughout this paper, let G = (Z/2)". Then the real representation ring of G is
canonically identified as
RO(G) = Z[G™],

where G* = Hom(G, Z/2). Recall [22] that for H C G, we have the family F[H]
consisting of all subgroups K C G with H € K. (In the case of H = G, we see that
F[G] is simply the family P of proper subgroups of G.) Recall further that for any
family F (a set of subgroups of G closed under subconjugation, which is the same as
closed under subgroups, as G is commutative), we have a cofibration sequence

E]-"+—>SO—>/E\]/-",

where EF is a G-CW-complex whose K-fixed point set is contractible when K € F
and empty otherwise. For our choice of G, we may then choose a model

3) EF[H] = N\ S°%

acG*

o|H#0
Here S°°% is the direct limit of S™* with respect to the inclusions
4) 50— s

given by sending the non-basepoint to 0. The other construction we use is the fam-
ily F(H) of all subgroups of a subgroup H C G. We will write simply

EG/H = EF(H).
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The cardinality of a finite set S will be denoted by |S|. We will also adopt a convention
from [13] where, for an RO(G)-graded spectrum FE, the Z-indexed coefficients
(= homotopy groups) of E are denoted by E, while the RO(G)—indexed coefficients
will be denoted by E, . As is customary, we will also denote by S(V') the unit sphere
of a representation V', while by SV we denote the 1-point compactification of V. The
RO(G)—graded dimension of a homogeneous element x € E, will be denoted by |x|.

3 The geometric fixed points

In this section, we compute the coefficients of the geometric fixed point spectrum
®C HZ/2. We have

5) ®°H7Z/2=(EF[G] AHZ/2)S.

By (3), suspension of HZ/2 by any nontrivial irreducible real representation of G
gives an isomorphism on coefficients, so the coefficients (@GZ?H 7/ 2) , are only
Z—graded, not RO(G)—graded. More specifically, we have a cofibration sequence

(6) EG/Ker(a)y — S° — 59,

so smashing over all nontrivial 1-dimensional representations «, using (3), we may
represent
EFIGIANHZ]2

as the iterated cofiber of a (2" —1)—dimensional cube of the form

(7 HZ/2An AN (EG/Ker(a)y — S9).
0£aeG*

Taking coefficients in (7) then gives a spectral sequence converging to ®C HZ/2,.
Now also note that

(8) EG/Hyx---x EG/Hy ~ EG/(Hy N---N Hy).

From this, we can calculate the spectral sequence associated with the iterated cofiber
of the cube (7). Let us grade the spectral sequence homologically, so the term HZ /2,
which equals Z/2, is in Eé,o- The rest of the E!—term is then given as

® EL, = @ Symz,((G/N{Ker(@) |« € S})") - vs.
Ses,

where S, is the set of all subsets of G* ~ {0} of cardinality p. (The last factor yg
of (9) is only a generator written to distinguish the summands.) Now the E2—term can
also be calculated using the following:
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Lemma 1 Consider the differential 0 on

On=12/2{ys | S S(Z/2)" ~{0}}

given by

(10) Ays)= D> Ysis}-
seS
(S~{s})=(S)

Then the homology is the 7./ 2—vector space (freely) generated by a set Fy, described
inductively as follows:

Fi ={yz. yiant
Fy = Fam1 U{ysuge | S € Fam1.x € (2/2)" 7 > {13
In other words, Fy, consists of the basis elements ys where S are all the Z /2-linearly

independent (in G* ) subsets in (not necessarily reduced) row echelon form with respect
to reversed order of columns (so the first pivot is in the last possible column etc).

Proof Consider a differential on Q, given by
(11) d(ys) = Ysis}-
SES

Then the homology is 0 for n > 0 and Z/2 for n = 0. Now consider an increasing
filtration on @, by making the filtration degree y(S) of a basis element yg equal to
rank(S), the rank of the Z /2-vector space generated by S. Then the E!-term is what
we are trying to calculate.

On the other hand, in the answer C = Z/2(F,) suggested in the statement of the
lemma (which, note, consists of elements of E 1y the formula for d! is the same as
the formula (11) for d . We claim that

(12) H.(C.d)=0.

To see this, note that for any fixed nonempty set .S in row echelon form, the subcomplex
Cys generated by ygs subsets of S’ C S is just a tensor product of copies of

(13) 7]2 =572,

and hence satisfies
H.(Cs,d)=0.

On the other hand, C for n > 0 is a sum of the complexes Cs where S ranges over
maximal linearly independent subsets of (Z/2)" in row echelon form (ie those which
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have exactly n elements), while the intersection of any subset of those complexes
Csin-ns, =Cs; N---NCg,
has zero homology because
(1,0,...,0) e S1N---NSg
and hence S1 N---N Sk # @. This implies (12).

Now the statement follows by induction on 7 using comparison theorems for spectral
sequences. More concretely, if we denote by C’ C C the subcomplex generated by
linearly independent subsets S with |S| <n, and Q' C Q, the subcomplex generated
by sets S which span a subspace of dimension < n, then the induction hypothesis
(given that an intersection of vector subspaces is a vector subspace), shows that the
embedding C C Q, restricts to a quasi-isomorphism

(14) c'co.

Since the homologies of both C and Q, are 0, we see that the homomorphism on
degree n subcomplexes must induce an isomorphism on homology, thus implying that
the degree n part of the E!—term of our spectral sequence for Q,, is just the degree n
part of C (which is, of course, isomorphic to Z/2). a

Now by Lemma 1, the E2—term of the spectral sequence of the cube (7) is

(15) E* = @ Symz»((G/ Ni{Ker(a) | € S})) - ys

SeF,

(where we make the identification G* = (Z/2)").
Now consider, for 0 # «: G — Z/2, the map
(16)  fo: ®F/Ke@ 17,15, — @G/Ker@) (g7 /0\K@ G 777,

It is fairly obvious that for n = 1 the spectral sequence associated with the (1-
dimensional) cube (7) collapses to E 1 and that in fact

a7 oO/Ker e g7 /2, = 7/2[x4].

where in the spectral sequence, the element x, is filtration degree 1 and is represented
by the set {(1)} if we make the identification G/Ker(o) = Z /2. We will also denote
the image under (16)

Ja(xa) € ®OHZ/2

by xg.
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Theorem 2 We have
(18) ®CHZ/2=17/2[xq | & € G*~{0}] /(XaXp + XXy +xpxy | @+ B4y =0),
where the classes x, are in dimension 1.

Before proving the theorem, it is useful to record the following algebraic fact:

Proposition 3 Let {«y,...,ar} be a minimal 7 /2-linearly dependent subset of
G* ~ {0}, where k > 3. Then the ring R,, on the right-hand side of (18) satisfies
(19) Ok—1(Xays .- s Xgy) =0.

(Here o; denotes the i elementary symmetric polynomial.)

Proof We will proceed by induction on k. For k = 3, this is by definition. Suppose
k > 3 and suppose the statement is true with k replaced by k — 1. Compute in R,
where we denote 8 = a1 + o :

(20) Uk—l(xalv""xak)

= (Xay +Xag_ ) (X" Xay—p) + Xay Xag— Ok =3 (Xay s -+ Xag—5)

= (Xay TXap_1) (X * Xape_5) + (X +Xoy— )XBOK—3(Xery s+ s Xape_»)

= (Xoy TXap_1)0k—2 (X8, Xty s+ s Xa_s)-
Now {8, a1,...,0,_»} is also a minimal linearly dependent set (note that minimal-
ity is equivalent to the statement that «g,...,ox—; are linearly independent and
a1 + -+ -+ o = 0). Therefore, the right-hand side of (20) is 0 in R, by the induction
hypothesis. a

Proof of Theorem 2 We know that ®¢ HZ/2 is a ring, since ®°HZ/2 is an
E -ring spectrum. By (16), we know that the elements x, represent elements of
®C H7 /2, and hence polynomials in the elements x do as well. Now it is important
to note that (15) is not a spectral sequence of rings. However, there are maps arising
from smashing n cubes (7) (over HZ/2) for n = 1, and from this, it is not difficult to
deduce that for S linearly independent, a monomial of the form

(21) 1_[ x5 where rg > 1
seS
is represented in (15) by
(22) S-[Txe"
seS

(Note that by Lemma 1, for S not linearly independent, (22) does not survive to E 2)
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By Lemma 1, we know that such elements generate the E2—term as a Z /2-module, so
we have already proved that the spectral sequence associated with the cube (7) collapses
to E2.

Now counting basis elements in filtration degree 2 shows that ®¢ HZ /2 must have a
quadratic relation among the elements xq, xg, Xy when

a+p+y=0.

(It suffices to consider n = 2.) The relation must be symmetric and homogeneous for
reasons of dimensions, so the possible candidates for the relation are

(23) XgXg + XaXy +Xgxy =0
or
24) XgXg + XaXy +XgXxy + xi + xé + x)% =0.

We will prove the theorem by finding a basis of the monomials (21) of the ring on the
right-hand side of (18) and matching them, in the form (22), with the E 2_term (15).

Before determining which of the relations (23), (24) is correct, we observe (by induction)
that the ring R, given by relation (23) satisfies (with the identification G* == (Z/2)")

(25) Ry =Ry—1®Z/2[x(,..0,1)]+ Z Ry—1® X¢+ Z/2[x4]
ac((Z/2)"~1~{0})x{1}

and that the ring R), obtained from the relations (24) satisfies a completely analogous
statement with R; replaced by R;. By the identification between (21) and (22), we
see that we obtain a Z/2-module of the same rank as the E?—term of the spectral
sequence of (7) in each dimension if and only if the sum (25) for each n is a direct sum
(and similarly for the case of R},). Since we already know that the spectral sequence
collapses to E,, we know that this direct sum must occur for whichever relation (23)
or (24) is correct, and also that the “winning” relation (23) (resp. (24)), ranging over
all applicable choices of &, 8 and y generates all the relations in dD*G HZ/2.

We will complete the proof by showing that (24) generates a spurious relation, and
hence is eliminated. This cannot be done for n = 2, as we actually have R = R/,
via the (nonfunctorial isomorphism) replacing the generators x4, xg and x, with
Xo +Xg, X + Xy and xg + xy.

We therefore must resort to n = 3. Let @y = (1,0,0), ap = (0, 1,0), a3 = (0,0, 1),
aq4 = (1,1,1). Applying the computation (20) in the proof of Proposition 3 to compute
03(Xa,, Xas, Xaz, Xay) in the ring R}, we obtain

03(Xay» Xz Xaz» Xag) = (Xay +Xan) (Xgy + %G, +35) + (Xas +Xay) (x5, + X4, +X5).
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As this is clearly not symmetrical in X, , X¢,, Xa3, Xa,, Dy permuting (say, using a
4—cycle) and adding both relations, we obtain a spurious relation in dimension 3 and
filtration degree 2, which shows that the analogue of (25) with R; replaced by R fails
to be a direct sum for n = 3, thereby excluding the relation (24), and completing the
proof. |

From the fact that (25) is a direct sum, we obtain the following:

Corollary 4 The Poincaré series of the ring R, is

1~ :
m 1_[(1 + (21_1 — I)X) O
i=1

4 The coefficients of HZ/2 suspended by a G—representation

In this section, we will compute explicitly the coefficients of HZ /2 suspended by

(26) V= Z Mo
a€G*~{0}
with mg > 0.

Theorem5 (i) Formg >0 and G* = (Z/2)", recalling (26), the Poincaré series of

sYHZ/2,
is
1 n—k .
(27) W( > (—1)k(]_[(1+(2’—1—1)x))x’)

(Z)2)k=~HCG* i=1

where

l=k+ Z M.

acH~{0}
(i) For mgy > 0, the canonical map
>VHZ)2 — EF[GIAHZ/2
(given by the smash product of the inclusions S™«%* — §°°% ) induces an injective
map on Z-graded homotopy groups.
We need the following purely combinatorial result. Let

ny_ 2" —=1)- 2" 1=1)...rk+1_1)
[k]_ Qk—1)-Qk1-1)...21=1)
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Note that this is the number of k—dimensional Z /2—vector subspaces of (Z/2)". The
following statement amounts to part (i) of Theorem 5 for m, = 0.

Lemma 6 We have

n n—k
Z(—l)k[Z]xk [Ta+@ " -y =a-2"
k=0

i=1

Proof Induction on n. We have

[E]=[" 220

so by the induction hypothesis,

n n—k
S [ TTa+e = =10
k=0 i=1

n—k

- Xn:(_uk([”;l] +2”—k[Z:i])xk [Ta+e " =1x.
k=0

i=1

Splitting the right-hand side into two sums, we get

n—1 n—k
S [Ta+ @ -1
k=0 i=1

n n—k
+kZ(—1>k2"—k[Zj]xk [T0+@1 =1
=1

i=1

n—k—1

n—1
=l —X)n + Z(_l)k[nzl]xk l_[ (1 + (2i—1 _ 1))C)2n_k_1
k=0

i=1

n n—k
+ Z(—l)kz"_k[z:i]xk [Ta+@ " =Dx)
k=1 i=1

=(1-x)". ad

Proof of Theorem 5 We will proceed by induction on . Assume (i) and (ii) are true
for lower values of n. Then, for the given n, we proceed by induction on

{=|{a € G* | mgy > 0}].
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For £ =0, (i) follows from Lemma 6 and (ii) is obvious (by ring structure of ®°HZ /2).
Suppose £ > 1 and (i), (ii) are true for lower values of £. Setting

14
(28) Ve=) maei.

i=1
we will study the effect on coefficients (?)« of the cofibration sequence
(29) S(mpag) s ANXVe-1HZ,)2 —— SVe1H7,/2 — 5 SVeHT7 /2.
First, we observed that the first map factors through the top row of the diagram:

(EG/Keray)y AXVe-1HZ7./2 — 5 SVe-1H7,/2

| l

—_—— —_—

(EG/Keray)+ ANEFIGIANHZ]/2 —— EF|GIAHZ/]2
Next, the right column of (30) is injective on (?)4 by (ii) for £ — 1, and hence the top
row, and hence also the first map (29), is 0 on (?).
Now the Poincaré series of
31) (S(mgag) 4 ARV HZ2)E

is
1—xme

1—x

times the Poincaré series of

(32) (SVIHZ/2) %

which, when multiplied by x and added to the Poincaré series of
(Y1 HZ2)].

is (27) by the induction hypothesis. This proves (i).

To prove (ii), we observe that the elements of (31) are generated by powers of x4,
multiplied by elements of (32), so again, we are done by the induction hypothesis. O

5 The complex calculating RO (G )—graded coefficients

To calculate the RO(G)—graded coefficients of HZ /2 in dimensions given by virtual
representations, we introduce another spectral sequence. In fact, we will again use the
cofibration sequence (6), but we will rewrite it as

(33) S0 — §%°%  YEG/Ker(a),..
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We will smash the second maps of (33) over all @ € G* ~ {0}, to obtain a cube

(34) A (%% —> ZEG/Ker(a),)

aeG*~{0}
whose iterated fiber is S°. Our method is to smash with HZ/2g and take RO(G)—
graded coefficients to obtain

(35) ( A (S°°“—>EEG/Ker(a)+)/\HZ/2)
aeG*~{0}

*’
thus yielding a spectral sequence calculating HZ /2, .

However, there is a key point to notice which drastically simplifies this calculation.
Namely, smashing (6) with £G/Ker(a) ., the first morphism becomes an equivalence,
thus showing that

(36) EG/Ker(a)y A S®Y > %,

Together with (8), this shows that the only vertices of the cube (34) which are nonzero
are actually those of the form where all the elements « for which we take the term
S$%°% in (34) are those not vanishing on some subgroup A C G, while those elements o
for which we take the term X EG/Ker(x), are those nonzero elements of G* which
do vanish on A, ie nonzero elements of (G/A)*. The corresponding vertex of (34) is
then a suspension of

(37) gr (8% = EG/A4 A EF[A].

We also put
gry(HZ/2) = gry(SOYAHZ)2.

Because of the high number of zero terms, the spectral sequence may be regraded
by rankgz ,(A), thus having only 7, instead of 2" — 1, filtration degrees. (Note that
the cube (34) may be reinterpreted as a “filtration” of the spectrum S from this point
of view, we have simply observed that many of the filtered parts coincide.)

It is now important, however, to discuss the grading seriously. Since we index coef-
ficients homologically, we will write the spectral sequence in homological indexing.
Additionally, we want the term grg (S°) be in filtration degree 0 (since that is where
the unit is). Thus, the (homologically indexed) filtration degree of (37) is

p =rank(A) —n

(a nonpositive number). Thus,

Y weG* (0} Ma 1
Tk (Z grA(HZ/Z)) = Erank(A)—n,k-l—n—rank(A)’
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or, put differently, for a given choice of the elements m,
38 Eyy= D  mgsp-ymeagra(HZ/2) for p=-—n.....0.
rank(A)=n+p

We will next describe explicitly the differential

1. 1 1
(39) d“:E),—EL |,

Let us first introduce some notation. To this end, we need to start out by describing the
E—term more explicitly.

In effect, we can calculate gry(HZ/2). by taking first the A—fixed points using
Theorem 2 with G replaced by A, and then applying the Borel homology spectral
sequence for G/A. This spectral sequence collapses because there exists a splitting:

C
A—G
(40) \ l
A

However, the splitting is not canonical, and this is reflected by the choice of generators
we observe. More explicitly, the splitting determines for each representation

0#£p: A—17/)2

an extension
B:G—17Z)/2.

One difficulty with describing Borel homology is that it does not naturally form a ring.
Because of that, it is more convenient to describe first the coefficients of

A1) va(HZ/2) = F(EG/Ay, EF[A)) AHZ/2.

This is an ( E~o—) ring spectrum, and its ring of coefficients is given by

42) ya(HZ/2)u = M[(youg" ) lye | @ € (G/A)* ~ {0}/ (Va+ar — Yo — Vo)

where

M =Z/2xg.uz' uzl | BeA”~{0}.a € (G/A)"~{0}]
[(xgxg + xgxy + xgxy [+ B +y =0)

and the RO(G)—graded dimensions of the generators are

luyl ==y, Ixy[=1 and [y,|=—-1
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We may then describe gry (HZ/2) as the (dimgz,,(G/ A))™ (= only nontrivial) local
cohomology module of the ring y4(H Z/2) with respect to the ideal generated by the
elements y, . Note that after taking A—fixed points first, this is the usual computation of
G/A-Borel homology from the corresponding Borel cohomology. Recall that H(R)
for a finitely generated ideal / of a commutative ring R is obtained by choosing finitely
many generators yp,..., yg of I, tensoring, over R, the cochain complexes

R—y'R

(with R in degree 0) and taking cohomology. It is, canonically, independent of the
choice of generators. In the present case, we are simply dealing with the power series
ring R in dimz/,(G/A) generators over a Z/2-algebra, and the augmentation ideal.
Taking the defining generators of the power series ring, we see immediately that only
the top local cohomology group survives.

We note that the basic philosophy of our notation is
43) “Vo = x;l”.

As a first demonstration of this philosophy, let us investigate the effect of a change of
the splitting (40). Writing metaphorically

(44) XF1o¥F t X5y gXe +XgXe =0,
we get
45) XGyaX G +x§+a+x§=0,

from which we calculate
o0

(46) XGiq =gl +x500) 7" = Zx’é.“y{;.
k=0

This formula is correct in y4(HZ/2), and hence can also be used in the module
gry(HZ/2).

Next, we will describe the differential d! of (38). These connecting maps will be the
sums of maps of degree —1 of the form

47 d*B: gry(HZ/2)s — grg(HZL/2)..

where B C A is a subgroup with quotient isomorphic to Z/2. Let 8: A — Z /2 be the
unique nontrivial representation which vanishes when restricted to A. The key point is
to observe that the canonical map

—_— —_—

(48) EG/AL NEF[BIAS®F = EG/A4 A EF[A]
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is an equivalence, and hence (47) can be calculated by smashing with HZ/2 the
connecting map

—_—— —_—

(49) EG/AL AEF[B|AS®F - SEG/Bs A EF[B].

Consequently, (47) is a homomorphism of y4 HZ /2,-modules, and is computed, just
like in dimension 1, by making the replacement

_ -1
X Vg
and multiplying by y g (Note that independence of the splitting ,g at this point follows

from topologys; it is a nontrivial fact to verify purely algebraically.)

We have thereby finished describing the differential d! of the spectral sequence (38).
The main result of the present section is the following:

Theorem 7 The spectral sequence (38) collapses to E?.

We will first prove some auxiliary results.

Lemma 8 The Borel homology spectral sequence of any cell HZ /2g-module with
cells

(50) >'Gy AHZ)2

collapses to EZ.

Proof Taking G-fixed points, we obtain a cell HZ /2-module with one cell for each
cell (50). Now the homotopy category of H 7 /2-modules is equivalent to the derived

category of [Fp—vector spaces, and a chain complex of [, —modules is isomorphic to a
sum of an acyclic module and suspensions of [, . O

Lemma9 Let G and H be finite groups, let X be an G —cell spectrum, and let Y be
an H —cell spectrum (all indexed over the complete universe). Then
(HZ/2Gxu NigX A jsY)OH ~ (HZ)26 A X)° Agz (HZ/25 AY)E.

Here on the left-hand side, iy is the functor introducing trivial H —action on a G—
spectrum and pushing forward to the complete universe, while jy is the functor
introducing trivial G-action on an H —spectrum and pushing forward to the complete
universe.
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Proof First consider Y = S°. Then we have the forgetful map
(s X NHZ/2)H - (X NHZ/2)C
which is an equivalence because it is true on cells.
In general, we have a map
ZUATY 5>z AT,
so take the composition
(XAHZ/2 ANY AHZ/2)H = (iyX AHZ/2)H A (yY AHZ)2)OH
— (yHZ/2 A jyY AHZ/2)9H
— (igX A jyY)OH
(the last map coming from the ring structure on H Z/2). Then again this map is an
equivalence on cells, and hence an equivalence. a
Lemma 10 Recalling again the notation (26), we have:
(a) The spectral sequence (35) for

(51 mSVHZ/2

with all mg > 0 collapses to the E%—term in filtration degree 0.

(b) Let my <0 forall ¢ and let
S ={a € G*~{0} | my #0}.

Suppose the subgroup of G* spanned by S has rank m. Then the spectral

sequence (35) for (51) collapses to E? in filtration degree —m .
Proof Recall the notation (28). Let G* ~{0} = {1, ...,a2n_1}. When oy is linearly
independent of oy, ...,a;_1, we have
(52) e SVCHZ )2 = (S HZ/2)C @ mo (S YHZ, ) 2)%/2,

where y is the sign representation of Z/2 by Lemma 9. Note that in the case (b), we
may, without loss of generality, assume m = n (ie that S spans G*) and that what we

just said occurs for k = 1,...,n and additionally that my, <O fori =1,...,n.
When oy is a linear combination of «y, . .., 0,1, and mg, 7# 0, we use the cofibration
sequence

(53) S(magax)+ NSV 1HZ/2 — SV \H7./2 - £V H7,/2
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in the case (a) and

(54) SVeHZ)2 - SYe-'H7,/2 — DS(—ma, )+ A SV 1HZ,/2

in the case (b). If we denote each of these cofibration sequences symbolically as
A— B —C,

then in the case (a), (53) gives a short exact sequence of the form

(55) 0—-E'A-E'B—-E'C—0

of the spectral sequence of (35) where in the A—term, we replace G by Ker(ay) and
HZ/2 by S(mpop)+ A HZ/2. By the induction hypothesis, however, the homology
of E'A is concentrated in the top filtration degree, which is —1 from the point of view
of G, and the homology of E!B is concentrated in filtration degree 0, so the long
exact sequence in homology gives

(56) 0—> E?—> E?>C > XE*4—0,
which is all in filtration degree 0, so our statement follows.

In the case (b), by our assumptions, we have k > n. Additionally, (54) gives a short
exact sequence

(57) 0> '"ElC > E'A—> E'B >0,

but by the induction hypothesis (using the fact that a set of generators of G* projects
to a set of generators of the factor group Ker(ay)*), the homology of the first and last
term is concentrated in filtration degree —n, so (57) translates to the same short exact
sequence with E! replaced by E2, which is entirely in filtration degree —n, and the
statement follows. O

To continue the proof of Theorem 7, let again

G* \{0} = {051, - ,0[211_1}.

Consider
(58) >V -1H7/2,
and let, this time, without loss of generality,
My, ..., Mg, <0 and Moy ys--sMayn_y > 0.

Let A = Ker(ay) N--- N Ker(ay). We will consider the sequence of cofibrations
(53) with ¢ <k < 2" — 1. Resolving this recursively, we may consider this as a cell
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object construction in the category of HZ /2g-modules, with “cells” of the form of
suspensions (by an integer) of

(59) G/(Ker(aj,)N---NKer(a;,))+ A SYeH7/2 where g<ji<---< Jp<2"—1.
By the degree of a cell ¢, we shall mean the number
deg(c) = n —rank(Ker(e, ) N---NKer(e;,)),
and by the A-relative degree of ¢, we shall mean
degy(c) = rank(G/A)—rank(Ker(ozj1 )N---NKer(a;,) / Ker(a;, )N---NKer(a;, ) ﬂA).

We see easily from the construction that cells of a given degree are attached to cells of
strictly lower degree, and that cells of a given A-relative degree are attached to cells of
lesser or equal A-relative degree. (Roughly speaking, “more free” cells are attached to
“less free” ones.)

Lemma 11 The spectral sequence arising from the cube (35) with HZ /2 replaced by
the complex formed by our “cells” of A-relative degree d collapses to E? concentrated
in filtration degree d —rank(G/A).

Proof Within a given A-relative degree d, attaching cells of each consecutive degree
results in a short exact sequence of the form (55) where the first two terms collapse
to E2 in filtration degree d —rank(G/A) — 1 and d —rank(G/A), respectively. Thus,
there results a short exact sequence of the form (56) in filtration degree d —rank(G/A),
as claimed. |

(The rest of) the proof of Theorem 7 Filtering cells of (58) by A-relative degree,
we obtain a spectral sequence £ converging to E2 of the spectral sequence of the
cube (35) for (58). By Lemma 11, all the terms will be of the same (35)-filtration
degree —rank(G/A), which is the complementary degree of £. (Note that in this
discussion, we completely ignore the original topological degree.) Thus, being con-
centrated in one complementary degree, £ collapses to E? in that complementary
degree.

However, by precisely the same arguments, we can write a variant £ of the spectral
sequence £ in homotopy groups (rather than (35) E'—terms) of the filtered pieces
of (58) by A-relative degree. By Lemma 11, £ gl ~ &1 and d ! dg ! have the same
rank (since they are computed by the same formula). It follows that £% ~ &2, both
collapsing to a single complementary degree. Therefore, it follows that E2 (of the
spectral sequence associated with (35) for (58)) is isomorphic to the homotopy of (58),
and hence the spectral sequence collapses to £2 by a counting argument. |
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6 Example: n =2

In the case n = 2, there are only three sign representations «, 8, y which play a
symmetrical role and satisfy

(60) a+pf+y=0eG",
which means that the Poincaré series of the homotopy
(61) me(ShetBrmy g7 12)
can be written down explicitly.

First recall that by Theorem 5, for k, £, m > 0, the Poincaré series is

(62) (l_lx)2 (1 4 x — x1He 1 lm 2tk bbmy)
If k,£ <0 and m <0, by the proof of Lemma 10, the formula (62) is still valid when
multiplied by x~2 (since all the homotopy classes are in filtration degree —2).

If k, £ <0 and m > 0, in the proof of Theorem 7, A =0, so the A-relative degree and the
degree coincide. Further, by (60) and our formula for the differential d! of the spectral
sequence of (35), the differential d 51 has maximal possible rank (ie “everything that
can cancel dimensionwise will””). We conclude that the E? is concentrated in filtration
degrees —1 and —2. By the cancellation principle we just mentioned, the Poincaré
series can still be recovered from the formula (62). If we write the expression (62) as

(63) Py (x) = P-(x),

where P4 (x) (resp. —P_(x)) is the sum of monomial summands with a positive
coefficient (resp. with a negative coefficient) then the correct Poincaré series in this
case is

x2Py(x)+x71P_(x),

the two summands of which represent classes in filtration degree —2 and —1, respec-
tively.

Similarly, one shows that if k, £ >0 and m < 0, the E? collapses to filtration degrees
0 and —1, and the Poincaré series in this case is

Pi(x)+x1P_(x).
All other cases are related to these by a symmetry of (Z/2)2.

Remark It might seem natural to conjecture that the classes of different filtration
degrees in E2 may be of different dimensions, with a gap between them (evoking the
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“gap condition” which was proved for Z /2 in [13], and made famous for the group Z /8
by the Hill, Hopkins and Ravenel [12] work on the Kervaire invariant 1 problem).
However, one easily sees that for n > 3, classes of different filtration degrees may
occur in the same dimension. For example, by Lemma 9 and by what we just proved,
such a situation always occurs for 7y X4 T48=2v+487 /2 where «, B, y are the
three sign representations of Z/2 x 7Z /2 x 7 /2 factoring through the projections to
the first two copies of Z/2, and § is the sign representation which factors through the
projection onto the last Z /2.
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Homotopy theory of cocomplete quasicategories

KAROL SZUMILO

We prove that the homotopy theory of cocomplete quasicategories is equivalent to
the homotopy theory of cofibration categories. This is achieved by presenting both
theories as fibration categories and constructing an explicit exact equivalence between
them.

55U35; 18G55

Introduction

There are a few notions that formalize the concept of a cocomplete homotopy theory,
but it is not clear how they compare to each other. We consider two of them: cofibration
categories and cocomplete quasicategories and prove that they are indeed equivalent.
More precisely, our main result (Theorems 1.10, 2.14 and 4.9) is as follows.

Theorem Both the category of cofibration categories and the category of cocomplete
quasicategories carry structures of fibration categories and these two fibration categories
are equivalent.

These two models of cocomplete homotopy theories exemplify two different approaches
to abstract homotopy theory: homotopical algebra and higher category theory. Homo-
topical algebra refers broadly to the theory of categories with equivalences and some
further structure which provides tools for constructing derived functors. It was started
by Quillen when he introduced model categories [17], but there are other notions of
a similar flavor, eg (co)fibration categories, first defined by K Brown [6], which are
crucial in the present paper. Higher category theory refers, in this context, to various
models of (oo, 1)—categories which provide the language to express homotopy coherent
universal properties. Examples of such models include guasicategories introduced
by Boardman and Vogt [5] and studied in detail by Joyal [14] and Lurie [16], Segal
categories introduced by Dwyer, Kan and Smith [9] and developed by Hirschowitz and
Simpson [12], and complete Segal spaces introduced by Rezk [18].

These (and other) notions of an (oo, 1)—category are known to be equivalent to each
other by the results of Bergner [4] and Joyal and Tierney [15]. An abstract axiomatiza-
tion was also developed by Toén [25] and Barwick and Schommer-Pries [3]. Moreover,

Published: 14 March 2017 DOI: 10.2140/agt.2017.17.765


http://msp.org
http://www.ams.org/mathscinet/search/mscdoc.html?code=55U35, 18G55
http://dx.doi.org/10.2140/agt.2017.17.765

766 Karol Szumito

Barwick and Kan [2; 1] established that these concepts are also equivalent to the notion
of a relative category, ie a category equipped with a class of weak equivalences and no
further structure.

Our main theorem can be seen as a structured version of the latter result that concerns
cocomplete homotopy theories as opposed to arbitrary ones. In particular, the compari-
son between cofibration categories and cocomplete quasicategories includes a direct
translation between homotopy colimits computed as derived functors of cofibration
categories and colimits in quasicategories characterized by homotopy coherent universal
properties. The result can be seen as an answer to a version of [13, Problem 8.2] which
asks for a comparison between the theories of model categories and complete Segal
spaces.

This paper is the last in the series of three that summarize the results of the author’s
thesis [21; 22] and relies heavily on the techniques of the previous two. The main
result of the first one [24] was existence of a fibration category of cofibration categories.
In the second one [23] we introduced the quasicategory of frames which is a new
construction of the (0o, 1)—category associated to a cofibration category. In the present
paper we construct a fibration category of cocomplete quasicategories and prove that
the quasicategory of frames functor is an equivalence of fibration categories.

Section 2 contains the basic theory of quasicategories, which is mostly cited from
Joyal [14] and Dugger and Spivak [8]. In particular, we establish fibration categories of
quasicategories and of cocomplete quasicategories. This section contains no new results,
except possibly for the existence of the latter fibration category. (The completeness of
the homotopy theory of cocomplete quasicategories is discussed in Lurie [16], but it is
not stated in terms of fibration categories.)

In Section 4 we prove that N¢ is a weak equivalence of fibration categories. To this
end we associate with every cocomplete quasicategory D a cofibration category Dg D
called the category of diagrams in D. This yields a functor Dg which is not exact but
is an inverse to Nf up to weak equivalence. This suffices to conclude that N¢ is an
equivalence of homotopy theories.

The results are parametrized by a regular cardinal number « and concern ¥ —cocomplete
cofibration categories and x —cocomplete quasicategories. In Section 4 the arguments
split into two cases. First, we consider the easier case of x > R, and then point out the
modifications necessary for the proof when x = Ry.

Acknowledgments This paper is based on a part of my thesis [21], which was written
while I was a doctoral student in the Bonn International Graduate School in Mathematics
and, more specifically, Graduiertenkolleg 1150 “Homotopy and Cohomology” and
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is partially based upon work supported by the National Science Foundation under
Grant No. 0932078 000 while the author was in residence at the Mathematical Sciences
Research Institute in Berkeley, California, during the Spring 2014 semester.

I want to thank Clark Barwick, Bill Dwyer, André Joyal, Chris Kapulkin, Lennart Meier,
Thomas Nikolaus, Chris Schommer-Pries, Peter Teichner and Marek Zawadowski for
conversations on various topics which were very beneficial to my research.

I am especially grateful to Viktoriya Ozornova and Irakli Patchkoria for reading an
early draft of my thesis. Their feedback helped me make many improvements and
avoid numerous errors.

Above all, I want to express my gratitude to my supervisor Stefan Schwede whose
expertise was always invaluable and without whose support this thesis could not have
been written.

1 Review of cofibration categories

Our results are based on the techniques of [24; 23] and we start by summarizing the
contents of the first of these papers. The central notion is that of cofibration categories
which are slightly modified duals of Brown’s categories of fibrant objects [6].

Definition 1.1 [24, Definition 1.1] A cofibration category is a category C equipped
with two subcategories: the subcategory of weak equivalences (denoted by =) and
the subcategory of cofibrations (denoted by > ) such that the following axioms are
satisfied. (Here, an acyclic cofibration is a morphism that is both a weak equivalence
and a cofibration.)

(C0) Weak equivalences satisfy the 2-out-of-6 property, ie if

wl oy Ly M,

are morphisms of C such that both g/ and /hg are weak equivalences, then
soare f, g and & (and thus also Agf).

(C1) Every isomorphism of C is an acyclic cofibration.
(C2) An initial object exists in C.

(C3) Every object X of C is cofibrant, ie if 0 is the initial object of C, then the
unique morphism 0 — X is a cofibration.
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(C4) Cofibrations are stable under pushouts along arbitrary morphisms of C (in
particular these pushouts exist in C). Acyclic cofibrations are stable under
pushouts along arbitrary morphisms of C.

(C5) Every morphism of C factors as a composite of a cofibration followed by a
weak equivalence.

(C6) Cofibrations are stable under sequential colimits, ie given a sequence of
cofibrations

Ao A A,

its colimit Ao, exists and the induced morphism 4g — Ao is a cofibration.
Acyclic cofibrations are stable under sequential colimits.

(C7-k) Coproducts of k—small families of objects exist. Cofibrations and acyclic
cofibrations are stable under x —small coproducts.

The last two axioms are optional. If we drop them, then cofibration categories can be
considered as models of finitely cocomplete homotopy theories. If we include (C6)
and (C7-«k) for a fixed regular cardinal x > Xy, we obtain models of k—cocomplete
homotopy theories; we call them (homotopy) Kk —cocomplete cofibration categories.
For k = Ry the name (homotopy) Rog—cocomplete cofibration category will refer to a
cofibration category satisfying the axioms (C0)—(C5). The definition readily dualizes
to yield fibration categories which are models of finitely complete homotopy theories
or k—complete homotopy theories depending on the choice of axioms.

First, we recall some classical results about cofibration categories, mostly following [20].
We fix a cofibration category C.

Definition 1.2 (1) A cylinder of an object X is a factorization of the codiagonal
morphism X IIX - X as YU X~ IX 5 X.

(2) A left homotopy between morphisms f, g: X — Y via a cylinder X II X >
IX 5 X is a commutative square of the form

yux Ly

S

X V4

(3) Morphisms f, g: X — Y are left homotopic (notation: f ~; g) if there exists a
left homotopy between them via some cylinder on X .
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The definition of left homotopies differs from the standard definition as usually given
in the context of model categories where the morphism Y >= Z is required to be
the identity. This modification is dictated by the lack of fibrant objects in cofibration
categories and makes the definition well-behaved for arbitrary ¥ while the standard
definition in a model category is only well-behaved for a fibrant Y .

We denote the homotopy category of C (ie its localization with respect to weak equiv-
alences) by HoC and for a morphism f of C we write [ f] for its image under the
localization functor C — HoC. The homotopy category can be constructed in two
steps: first dividing out left homotopies and then applying the calculus of fractions.

Proposition 1.3 The relation of left homotopy is a congruence on C. Moreover, every
morphism of C that becomes an isomorphism in C / >~ is a weak equivalence. Thus
left homotopic morphisms become equal in HoC and C / ~; comes equipped with a
canonical functor C / ~; — HoC.

Proof The first statement is [20, Theorem 6.3.3(1)]. The remaining ones follow by
straightforward 2-out-of-3 arguments. |

The next theorem is a crucial tool in the theory of cofibration categories and can be
used to verify many of their fundamental properties. It says that up to left homotopy all
cofibration categories satisfy the left calculus of fractions in the sense of Gabriel and
Zisman [10, Chapter I]. This fact was first proven by Brown [6, Proposition 1.2]. In
general, constructing HoC may involve using arbitrarily long zig-zags of morphisms
in HoC and identifying them via arbitrarily long chains of relations. However, the
previous proposition implies that C / ~; — HoC is also a localization functor and in
that case Theorem 1.4 says that it suffices to consider two-step zig-zags (called left
fractions) up to a much simplified equivalence relation.

Theorem 1.4 A cofibration category C satisfies the left calculus of fractions up to left
homotopy, ie

(1) Every morphism ¢ € HoC(X, Y) can be written as a left fraction [s]~![ f], where
f: X —>Y ands: Y > Y are morphisms of C.

(2) Two fractions [s]~![ f] and [¢t]~![g] are equal in HoC(X,Y') if and only if there
exist weak equivalences u and v such that

us>~;vt and uf ~jvg.

(3) Ifp €HoC(X,Y) and € HoC(Y, Z) can be written as [s]~![ f] and [t]™![g]
respectively and a square
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[}
~e——
N><72 N

g
_
~ u
—_—
h
commutes up to homotopy, then V¢ can be written as [ut]~'[hf].

Proof Parts (1) and (2) follow from [20, Theorem 6.4.4(1)], and (3) follows from the
proof of [20, Theorem 6.4.1]. O

We will need the following technical lemma. Even though cofibrations in a cofibration
category do not necessarily satisfy any lifting property, they can still be shown to have
a version of the “homotopy extension property” with respect to left homotopies.

Lemma 1.5 Leti: A>> B be a cofibrationinC. Let f: A— X and g: B — X be
morph1sms such that gi is left homotop1c to f. Then there exist a weak equivalence
s:X —> X and a morphism g: B — X such that g is left homotopic to sg and

gi=sf.

Proof Pick compatible cylinders on 4 and B, ie a diagram

ALl A IA—— 4
iHiJ J Ji
B1l B IB——- B

such that the induced morphism /A4 Il 4114y (B I B) — IB is a cofibration. Let J
and §; denote the two structure morphisms 4 > I A.

Pick a left homotopy

ana Ly

[50751]] /[N
X
H

1A

between f and gi. Then we have in particular jgi = H§; and thus there is an
induced morphism [H, jg|: IA U4 B — X so we can take a pushout:
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H,j ~
1A, B 8 g

1 -

IB X

H

Sets=7j and = H. Wehave sf = i, and H and id 5 constitute a left homotopy
between g and sg. ad

The main result of [24] establishes the homotopy theory of cofibration categories in
the form of a fibration category. We recall the prerequisite definitions before stating
the theorem.

Definition 1.6 A functor F: C — D between cofibration categories is exact if it pre-
serves cofibrations, acyclic cofibrations, initial objects and pushouts along cofibrations.

If C and D are k—cocomplete, then F is k —cocontinuous if, in addition, it preserves
colimits of sequences of cofibrations and «—small coproducts.

The category of (small) x—cocomplete cofibration categories and «—cocontinuous
functors will be denoted by CofCat, . It is equipped with classes of weak equivalences
and fibrations as defined below.

Definition 1.7 An exact functor F: C — D is a weak equivalence if it induces an
equivalence HoC — Ho D.

A typical way of proving that an exact functor is a weak equivalence is by using the
approximation properties of the following proposition. They were originally introduced
by Waldhausen [27, Section 1.6] in his work on algebraic K—theory and later adapted
to the context of cofibration categories by Cisinski.

Proposition 1.8 [7, Théoreme 3.19] An exact functor F: C — D is a weak equiva-
lence if and only if it satisfies the following properties:
(Appl) F reflects weak equivalences.

(App2) Given a morphism f: FA — Y in D, there exists a morphism i: A — B in
C and a commutative diagram

FAL>Y

Fil lw

FB —— 7

inD. O
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Definition 1.9 [24, Definition 2.3] Let P: £ — D be an exact functor of cofibration
categories.

(1) P is an isofibration if for every object A € £ and an isomorphism g: PA — Y
there is an isomorphism f: 4 — B such that Pf = g.

(2) It is said to satisfy the lifting property for factorizations if for any morphism
f: A— B of £ and a factorization

PA P PB
\ ~
7
there exists a factorization
A / B
N
C

such that Pi = j and Ps =t (in particular, PC = X).

(3) TIthas the lifting property for pseudofactorizations if for any morphism f: A — B
of £ and a diagram

P
PA*f> PB

L
X

there exists a diagram

7,

B

— D
N

A~

such that Pi = j, Ps =t and Pu = v (in particular, PC = X and PD =7Y).

(4) We say that P is a fibration if it is an isofibration and satisfies the lifting
properties for factorizations and pseudofactorizations.

Theorem 1.10 [24, Theorem 2.9] The category CofCat, of small k —cocomplete

cofibration categories with weak equivalences and fibrations as above is a fibration
category. m
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The goal of the paper is to prove that this fibration category is equivalent to the
corresponding fibration category of k —cocomplete quasicategories.

2 Cocomplete quasicategories

We will start with a concise summary of the theory of quasicategories. It is well covered
in [14] and [16] so we do not go into much detail. Our main goal is to establish a
fibration category of finitely cocomplete quasicategories in Theorem 2.14. We refer to
[24] for background on fibration categories. We cite [14] for the proof that the fibration
category of all quasicategories can be obtained without constructing the entire Joyal
model structure (Theorem 2.4) which makes the proof rather elementary. (A more
streamlined exposition of the same results can be found in the appendices to [8].) Then
we briefly introduce colimits in quasicategories and state their basic properties used in
the proof of Theorem 2.14.

We will denote the groupoid freely generated by an isomorphism 0 — 1 by E(1) and
its nerve by E[1]. Quasicategories are defined as certain special simplicial sets and
are to be thought of as models of (0o, 1)—categories where vertices are objects, edges
are morphisms and higher simplices are higher morphisms (or higher homotopies).
Functors between quasicategories are just simplicial maps. In particular, maps out of
E[1] are equivalences in quasicategories and E[l]-homotopies are natural equivalences
between functors. The account of the homotopy theory of quasicategories below closely
follows the classical approach to simplicial homotopy theory (see eg [11, Chapter I])
with Kan complexes replaced by quasicategories and usual simplicial homotopies
replaced by E[1]-homotopies.

Definition 2.1 (1) Let f, g: K — L be simplicial maps. An E[l]-homotopy from
f to g is a simplicial map K x E[1] — L extending [f, g]: K x dA[l]— L.
(2) Two simplicial maps f, g: K — L are E[l]-homotopic if there exists a zig-zag
of E[l]-homotopies connecting f to g. (It suffices to consider sequences
instead of zig-zags since E[1] has an automorphism that exchanges the vertices.)
(3) A simplicial map f: K — L is an E[l]-homotopy equivalence if there is a
simplicial map g: L — K such that fg is E[1]-homotopic to idz, and gf is
E[1]-homotopic to idg .
Definition 2.2 (1) A simplicial map is an inner fibration if it has the right lifting
property with respect to the inner horn inclusions.

(2) A simplicial map is an inner isofibration if it is an inner fibration and has the
right lifting property with respect to A[0] — E[1].
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(3) A simplicial map is an acyclic Kan fibration if it has the right lifting property
with respect to dA[m] — A[m] for all m.

(4) A simplicial set C is a quasicategory if the unique map € — A[0] is an inner
fibration.

We will refer to E[1]—equivalences between quasicategories as categorical equivalences
and use them to introduce the homotopy theory of quasicategories. (It is also possible
to extend this notion to maps of general simplicial sets, but we have no need to do it.) If
K is any simplicial set and C is a quasicategory, then the relation of “being connected
by a single E[l]-homotopy” is already an equivalence relation on the set of simplicial
maps K — C by [8, Proposition 2.3]. This simplifies the definition of categorical
equivalences since it is always sufficient to consider one-step E[l]-homotopies. The
following lemma provides a useful criterion for verifying that a functor between
quasicategories is a categorical equivalence.

Lemma 2.3 [26] A functor F: C — D between quasicategories is a categorical
equivalence provided that for every commutative square of the form

u

IA[m] —— ¢

]

Alm] —— D

there exists a map w: A[lm] — C such that w|0A[m] = u and Fw is E[1]-homotopic
to v relative to dA[m]. |

Theorem 2.4 The category of small quasicategories with simplicial maps as mor-
phisms, categorical equivalences as weak equivalences and inner isofibrations as
fibrations is a fibration category.

Proof Only two of the axioms require nontrivial proofs: stability of acyclic fibrations
under pullbacks, which follows from the fact that acyclic (inner iso-) fibrations coincide
with acyclic Kan fibrations by [14, Theorem 5.15], and the factorization axiom which
is verified in [14, Proposition 5.16]. O

This fibration category is a part of the Joyal model structure on simplicial sets established
in [14, Theorem 6.12]. Indeed, the theorem above is an intermediate step in the
construction of this model category.

Quasicategories are models for homotopy theories and as such they have homotopy
categories. Two morphisms f, g: x — y of a quasicategory D are homotopic if there
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exists a simplex H: A[2] — D such that Hd¢ = yog, Héy = g and Hé, = f. The
homotopy category of D is the category Ho D with the same objects as D, homotopy
classes of morphisms of D as morphisms and the composition induced by filling horns.

If f is a morphism of a quasicategory C, then we say that f is an equivalence if
the simplicial map f: A[l] — C extends to E[1] — C. (By [14, Proposition 4.22] a
morphism is an equivalence if and only if it becomes an isomorphism in the homotopy
category.) Two objects of C are equivalent if they are connected by an equivalence.

We proceed to the discussion of colimits in quasicategories. Such colimits are homotopy
invariant by design and they serve as models for homotopy colimits. However, in
quasicategories there is no corresponding notion of a “strict” colimit and thus it is
customary to refer to “homotopy colimits” in quasicategories simply as colimits. The
general theory of colimits is explored in depth in [16, Chapter 4]; here we only discuss
its most basic aspects.

The quasicategorical notion of colimit is defined using the join construction for sim-
plicial sets. As a functor x: A x A — A it is defined by concatenation: [m],[n] —
[m + 1+ n]. Then the general join is defined as the unique functor sSet x sSet — sSet
which agrees with the above on the representable simplicial sets and such that for
each K the resulting functor K x —: sSet — K | sSet preserves colimits. As such, the
functor K x — has a right adjoint which we will denote by (X: K > M) > X\ M.
(X \ M is called the slice of M under X.)

Lemma 2.5 Let P: C— D be a inner isofibration of quasicategories and X: K — C
a diagram. Then the induced map X \ € — PX \ D is an inner isofibration. In particular,
X \ C is a quasicategory.

Proof This follows from [14, Theorem 3.19(i) and Proposition 4.10]. O

For any simplicial set K we define the under-cone on K as K = K x A[0]. We also
fix a regular cardinal number « .

Definition 2.6 Let C be a quasicategory and let X: K — C be any simplicial map
(which we consider as a K-indexed diagram in C).

(1) A cone under X is a diagram S: K® — @ such that S|K = X .

(2) A cone S under X is universal or a colimit of X if for any m > 0 and any
diagram of solid arrows
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K+0A[m] —— ¢

-
-
-
-
-
-

K % Am]

where U|K" = S, there exists a dashed arrow making the diagram commute.
(3) An initial object of C is a colimit of the unique empty diagram in C.

(4) A simplicial map f: K — L is cofinal if for every quasicategory € and every
universal cone S: L® — C the induced cone S/ is also universal.

(5) The quasicategory € is k—cocomplete if for every k—small simplicial set K
every diagram K — € has a colimit.

(6) A functor F: € — D between finitely cocomplete quasicategories is said to be
k—cocontinuous if for every k—small simplicial set K and every universal cone
S: K¥ — C the cone FS is also universal.

Lemma 2.7 A cone S under X is universal if and only if it is an initial object of
X\ C.

Proof This follows directly from the fact that the slice functor is a right adjoint of the
join functor. O

We will now discuss the counterparts of a few classical statements of category theory
saying that colimits are essentially unique and invariant under equivalences. For a
quasicategory € and a diagram X: K — C we let (X \ C)" denote the simplicial
subset of X \ C consisting of those simplices whose vertices are all universal.

Lemma 2.8 The simplicial set (X \ )"V is empty or a contractible Kan complex.

Proof A simplicial set is empty or a contractible Kan complex if and only if it has the
right lifting property with respect to the boundary inclusions dA[m] < A[m] for all
m > 0. For (X \ €)' such lifting problems are equivalent to the lifting problems

K*0Alm] —2— ¢

-
-
-
-
-
-

K * A[m]

with U|(K * {i}) universal for each i € [m], which have solutions by the definition of
universal cones. o
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Corollary 2.9 If X: K — C is a diagram in a quasicategory and S and T are two
universal cones under X , then they are equivalent under X , ie as objects of X \ C.

Proof The simplicial set (X \ €)™ is nonempty and thus a contractible Kan complex
by the previous lemma. Hence it has the right lifting property with respect to the
inclusion dA[1] < E[1], which translates to the lifting property

[S.T]
K« 0A[l] — €

-
-
-
-
-
-
-

K x E[1]
which yields an equivalence of S and 7. |

Lemma 2.10 If C is a quasicategory and X and Y are equivalent objects of C, then
X isinitial if and only if Y is.

Proof Assume that X is initial and let U: dA[m] — C be such that U|A[0] =Y. We
can consider an equivalence from X to Y as a diagram f: A[0] x A[0] — C. Then by
the universal property of X there is a diagram A[0] x dA[m] extending both f and U .
(We can iteratively choose extensions over A[0] » A[k] for all faces A[k] — dA[m].)
This diagram is a special outer horn (under the isomorphism A[0]x dA[m] = A°[m +1])
and thus has a filler by [14, Theorem 3.14]. Therefore U extends over A[m] and hence
Y is initial. O

Our goal is to compare cofibration categories to quasicategories, but we expect k—
cocomplete cofibration categories to correspond to x —cocomplete quasicategories,
not to arbitrary ones. In the remainder of this section we will restrict the fibration
structure of Theorem 2.4 to the subcategory of k—cocomplete quasicategories and
k —cocontinuous functors.

First, we need two lemmas about lifting colimits along inner isofibrations.

Lemma 2.11 Consider a pullback square of quasicategories
G

P—2E

0| | »

C——D
F

where P is an inner isofibration, and let S: K — P be a cone. If all GS, 0S8 and
PGS = FQS are universal, then sois S .
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Proof Under these assumptions the square

\? 2. Gx\¢

| | »

OX\€ —— PGX\D

(where X = S|K) is also a pullback along an inner isofibration by Lemma 2.5. Hence
it suffices to verify the conclusion for initial objects.

Thus assume that K = @ and let m > 0 and U: dA[m] — P be such that U|A[0] = S.
Then we have
GU|A[0]=GS and QU|A[0]= QS

and since both GS and QS are initial we can find V¢ € &, and Ve € C, such that
Ve|dA[m]=GU and Ve|dA[m]= QU . Next, define V: dA[m+ 1] — D by replacing
the 1% face of PVeoy|dA[m + 1] with FVe and W: Al[m + 1] — & by setting it to
Veoq |A1[I’}’Z +1].

By the assumption PGS is initial and I7|A[O] = PGS so V extends to V € Dm+1-
Then we have a commutative square

Am+1] 2 e
I
which admits a lift W since P is an inner isofibration and 0 < 1 <m + 1. We have

FVe = PW§; and thus (Ve, Wé;) is an m—simplex of P whose boundary is U.
Hence S is initial. a

Lemma 2.12 Let P: C — D be an inner isofibration, X: K — € a diagram and
T: K® — D acolimit of PX . If X has a colimit in € which is preserved by P, then
there exists a colimit S: K¥ — C of X such that PS =T .

Proof Let S: K™ — C be some colimit of X . Since both 7 and PS are universal,
we have a simplicial map U: K x E[1] = D such that U|(K x dA[1]) = [T, PS] by
Corollary 2.9. The conclusion now follows from Lemmas 2.5 and 2.10. |

The homotopical content of the next proposition is the same as that of [16, Lemma

5.4.5.5]. However, we need a stricter point-set level statement. See also [19, Sections 3
and 4] for a systematic approach to results of this type.
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Proposition 2.13 Let F: C— D and P: & — D be k —cocontinuous functors between
k —cocomplete quasicategories with P an inner isofibration. Then a pullback of P
along F exists in the category of k —cocomplete quasicategories and k —cocontinuous
functors.

Proof Form a pullback of P along F' in the category of quasicategories:
G

P—2E

o s

C——D
F

We will check that this square is also a pullback in the category of k—cocomplete
quasicategories and « —cocontinuous functors.

First, we verify that P has k—small colimits. Let X: K — P be a diagram with K
k—small. Let S: K — € be a colimit of QX , then F'S is a colimit of FQX = PGX
in D. Lemma 2.12 implies that we can choose a colimit 7 of GX in € so that
PT = FS. Then it follows by Lemma 2.11 that (S, T') is a colimit of X = (QX, GX)
in P.

It remains to see that given a square

F——8

|l

C——D
F

of k—cocomplete quasicategories and x —cocontinuous functors, the induced functor
F — P preserves xk—small colimits. Indeed, this follows directly from Lemma 2.11. O

Theorem 2.14 The category QCat, of small k —cocomplete quasicategories with k —
cocontinuous functors as morphisms, categorical equivalences as weak equivalences
and (k —cocontinuous) inner isofibrations as fibrations is a fibration category.

Proof By Theorem 2.4 it suffices to observe:
(1) A terminal quasicategory is also a terminal ¥ —cocomplete quasicategory (which
is clear).

(2) A pullback (in the category of all quasicategories) of ¥ —cocomplete quasicate-
gories and « —cocontinuous functors one of which is an inner isofibration is also
a pullback in the category of k—cocomplete quasicategories, which follows by
(the proof of) Proposition 2.13.
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(3) For a k—cocomplete quasicategory €, the functor CEIl — @ x @ is a x—
cocontinuous functor between «x —cocomplete quasicategories. Indeed, CF (1 js
k—cocomplete since it is categorically equivalent to C (by Lemmas 2.7 and 2.10)
and € x € is kK —cocomplete by (2). Finally, € Msexe preserves k—small
colimits by (2) since both projections € (11 - @ do. a

3 The quasicategory of frames

In [23] we introduced a functor Ni: CofCat, — QCat,. Let us briefly recall the
construction. For each m let D[m] be the category of elements of A[m] with the
face operators as morphisms. It comes equipped with a functor py,): D[m] — [m]
that evaluates a map [k] — [m] at m. We consider D[m] as a homotopical category
with weak equivalences created by pp,,) (from the isomorphisms of [m]). Then for
a cofibration category C we define a simplicial set N¢C (called the quasicategory of
frames in C) whose m—simplices are homotopical, Reedy cofibrant diagrams D[m]—C.
See [23, Section 2] for full details.

Theorem 3.1 For a k —cocomplete cofibration category C, the simplicial set N¢C is a
k —cocomplete quasicategory and N¢: CofCat, — QCat, is an exact functor of fibration
categories.

Proof By [23, Theorem 2.3] N¢C is a k—cocomplete quasicategory. Moreover, [23,
Propositions 3.5, 3.8 and 3.9] imply that N is indeed exact. |

The results of the last section heavily depend on the methods of [24; 23] which in turn
involve a lot of notation useful in expressing properties of N¢C in terms of various
diagrams in C. In this section, we recall some of that notation and prove a few auxiliary
lemmas.

First of all, the categories D[m] introduced above generalize to homotopical categories
DK for all simplicial sets K. The underlying category of DK has all simplices of K
as objects and face operators between them as morphisms. The weak equivalences
in DK are induced from degenerate simplices of K in a manner described in [23,
Section 2]. The following fact is a fundamental tool for translating between properties
of C and N¢C.

Proposition 3.2 [23, Proposition 2.6] Let C be a cofibration category and K a
simplicial set. There is a natural bijection between

o the set of homotopical Reedy cofibrant diagrams DK — C, and
o the set of simplicial maps K — N¢C. O
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Moreover, this construction admits useful variations most conveniently described in
terms of marked simplicial complexes. A marked simplicial complex is a simplicial
set K equipped with an embedding K < N P, where P is a homotopical poset. In this
case DK stands for the same category as above but with (possibly) richer homotopical
structure, ie one created by the composite DK «— DP — P. Here, DP stands for
DN P and the latter functor evaluates an object [k] — P at k. Sd K stands for the
homotopical poset defined as the full homotopical subcategory of DK spanned by
the nondegenerate simplices of K. Diagrams over Sd K have the same homotopical
content as diagrams over DK, as made precise by the following lemma.

Lemma 3.3 [23, Lemma 3.12] Let K < L be an injective map of finite marked
simplicial complexes (which means that it covers an injective homotopical map of the
underlying homotopical posets). Then for every cofibration category C the inclusion
DK USd L < DL induces an acyclic fibration CP* — cPKYSIL, O

This lemma will be useful in various ways, for example in constructing E[1]-homotopies
between maps into N¢C. An E[1]-homotopy K x E[1] — N¢C corresponds to a homo-
topical Reedy cofibrant diagram D(K x E[1]) — C. Moreover, [23, Corollary 3.7] says
that in order to specify such a homotopy it is enough to give a diagram D (K x [T]) —C.
(Here, [T] stands for the poset [1] with all morphisms as weak equivalences.) These
observations allow us to state and prove the following lemma.

Lemma 3.4 Let K < L be an inclusion of marked simplicial complexes, X and Y
homotopical Reedy cofibrant diagrams DL — C, and f: X|Sd L — Y |Sd L a natural
weak equivalence such that f|Sd K is an identity transformation. Then X and Y are
E[1]-homotopic relative to K as diagrams in N¢C.

Proof By [23, Corollary 3.7] it suffices to construct a homotopical Reedy cofibrant
diagram D(L x[1]) — C that restricts to [X, Y] on D(L x dA[1]) and to the identity
on D(K x[1]), ie to a degenerate edge of (N;C)X .

First, observe that we have a homotopical diagram [ f,id]: (Sd L U DK) x [T] —C
which is Reedy cofibrant when seen as a diagram Sd L U DK — ¢!l Hence by
Lemma 3.3 it extends to a Reedy cofibrant diagram DL — ¢, We consider it as
a diagram DL x [T] — C and pull it back to D(L x [T]) — C. It restricts to [X, Y]
on D(L x dA[1]) and to the identity on D(K X [T]). Thus it can be replaced Reedy
cofibrantly relative to D(L x dA[1]U K x [T]) by [23, Lemma 1.9], which finishes the
proof. O

Another lemma that we will need says that up to equivalence all frames are Reedy
cofibrant replacements of constant diagrams.
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Lemma 3.5 Any object of X € N¢C is equivalent to a Reedy cofibrant replacement of
PioyXo-

Proof By [23, Lemma 3.2] there are homotopical functors f:[0] — D[0] and
s: D[0] — DI[0] such that ppo; / =id[o] and there are weak equivalences

id = s & Sfppoy-

These equivalences evaluated at X form a diagram D[0] x Sd [T] — C which we can
pull back along D[T] — DJ[0] x Sd [T] and then replace Reedy cofibrantly to obtain
a homotopical Reedy cofibrant diagram Y: D[T] — C such that Y§; = X by [23,
Lemma 1.9]. By [23, Corollary 3.7] Y is an equivalence and by the construction Y §q
is a Reedy cofibrant replacement of p["z)]X 0- |

Perhaps the most useful result of [23] characterizes universal cones K~ — N¢C in
terms of the corresponding diagram D(K") — C. It comes in two versions depending
on whether k¥ > Ry or k = R. First, we state it in the case of ¥ > Rg.

Theorem 3.6 [23, Theorem 4.6] Let C be a k —cocomplete cofibration category, K a
k —small simplicial set and S: K — N¢C. Then S is universal as a cone under S| K
if and only if the induced morphism

colimpg § — colimpge) S

is a weak equivalence (with S seen, by Proposition 3.2, as a homotopical Reedy
cofibrant diagram D(K") — C). O

Observe that the assumption k > R is necessary for the colimits in the statement
of the theorem to exist. If k = Ry, then K is a finite simplicial set, but DK is still
infinite (unless K is empty). This problem makes both the statement and the proof
more technical in the case of x = Ny.

We filter the category DK by finite subcategories
DOK < pWK s DAK s ...

as described in detail in [23, Section 5]. Then given a homotopical Reedy cofibrant
diagram X: DK — C the colimits of its restrictions to all DW K exist. The homotopy
type of these colimits stabilizes for k sufficiently large and this stable value is the
homotopy colimit of X . This allows us to state the remaining case of the theorem.
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Theorem 3.7 [23, Theorem 5.12] Let C be a cofibration category and K a finite
simplicial set. A cone S: K® — N¢C is universal if and only if the induced morphism

colimpw g S — colimD(k)(K>) S

is a weak equivalence for k sufficiently large (where S is seen as a homotopical Reedy
cofibrant diagram D(K") — C by Proposition 3.2). O

Both these theorems will be instrumental in the proof of our main result.

4 Cofibration categories of diagrams in quasicategories

In this section we will prove our main result, ie that Ny is a weak equivalence of fibration
categories. This will be achieved by defining a functor Dg, from the category of «—
cocomplete quasicategories to the category of xk —cocomplete cofibration categories.
The functor Dg,. fails to be exact (eg it does not preserve the terminal object), but it
will be verified to induce an inverse to Nf on the level of homotopy categories which
is sufficient to complete the proof.

Definition 4.1 Let sSet, denote the category of x—small simplicial sets. If € is a
k—cocomplete quasicategory we consider the slice category sSet, | C, we denote it by
Dg, C and call it the category of k—small diagrams in C. Then we define a morphism

/

~.

to be

* a weak equivalence if the induced morphism colimg X — colimg Y is an
equivalence in € (more precisely, if for any universal cone S: L® — € under
Y the induced cone S/ is universal under X ),

e acofibration if [ is injective.

In particular, a morphism of Dg, € as above is a weak equivalence whenever f is
cofinal, but there are of course many weak equivalences with f not cofinal. We will
make use of the class of right anodyne maps, which is generated by the right horn
inclusions A‘[m] < A[m] (ie the ones with 0 < i < m) under coproducts, pushouts
along arbitrary maps, sequential colimits and retracts.
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Proposition 4.2 With weak equivalences and cofibrations as defined above Dg,. C is
a Kk —cocomplete cofibration category.

Proof (C0) Weak equivalences satisfy 2-out-of-6 since equivalences in € do.

(C1) Isomorphisms are weak equivalences since isomorphisms of simplicial sets are
cofinal.

(C2)—(C3) The empty diagram is an initial object and hence every object is cofibrant.

(C4) Pushouts are created by the forgetful functor Dg,, € — sSet,, thus pushouts along
cofibrations exist and cofibrations are stable under pushouts. By [20, Lemma 1.4.3(1)] it
suffices to verify that the gluing lemma holds, which follows by [16, Proposition 4.4.2.2].

(CS5) It will suffice to verify that in the usual mapping cylinder factorization
K—>Mf—L

the second map is cofinal. Indeed, we have a diagram
KxAl] —
K x 80 \[ J J
idy,
KxA[ll — Mf

N

L

where the square is a pushout. The map K x §y is right anodyne by [14, Theorem 2.17]
and thus so is j. Hence it is cofinal by [16, Proposition 4.1.1.3(4)].

(C6)—(C7-k) The proof is similar to that of (C4). (But there is no analogue of [16,
Proposition 4.4.2.2] for sequential colimits explicitly stated in [16]. Instead, it follows
from the more general [16, Proposition 4.2.3.10 and Remark 4.2.3.9].) O

Lemma 4.3 A k—cocontinuous functor F: € — D induces a k —cocontinuous functor
Dg, F =Dg, € — Dg, D and thus we obtain a functor Dg,: QCat, — CofCat;.

Proof Colimits in both Dg, € and Dg, D are created in sSet, and thus are preserved
by Dg, F. Cofibrations are clearly preserved and so are weak equivalences since F

preserves k—small colimits. |

For the moment, we focus on the case of k¥ > 8. The case of k¥ = 8, will be dealt
with later.
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Definition 4.4 For a x—cocomplete cofibration category C we define a functor
(I)C: DgK Nf C—C

by sending a diagram X: K — N¢C to colimpg X .

Observe that DK is k—small since K is and « > 8¢, so the colimit used in this
definition exists in C. It is clear that ®¢ is a functor. While we may not be able to
choose colimits so that @ is natural in C, it is pseudonatural, ie natural up to coherent
natural isomorphism.

Lemma 4.5 The functor ®¢ is k —cocontinuous and a weak equivalence.

Proof Preservation of cofibrations follows by [20, Theorem 9.4.1(1a)] since if K < L
is an injective map of simplicial sets, then the induced functor DK < DL is a sieve.
Colimits in C are compatible with colimits of indexing categories and thus ®¢ is k—
cocontinuous. (Preservation of weak equivalences follows from the argument below.)

To see that it is a weak equivalence, it is enough to verify the approximation properties
of Proposition 1.8. Lemma 4.1 of [23] and Theorem 3.6 imply that a morphism f in
Dg, N¢C is a weak equivalence if and only if ®¢ f is. Therefore ®¢ preserves weak
equivalences and satisfies (Appl). It remains to check (App2), but it follows directly
from [23, Lemma 4.2]. O

Next, we need a functor D — N¢Dg, D for every x—cocomplete quasicategory D.
Let’s start with unraveling the definition of Ny Dg, D.

An m-simplex of NyDg, D consists of a Reedy cofibrant diagram K: D[m] — sSet,
and for each ¢ € D[m] a diagram X,: K, — D. These diagrams are compatible with
each other in the sense that they form a cone under K with the vertex D. Moreover, the
entire structure is homotopical as a diagram in Dg, D, ieif ¢,y € D[m] and x: ¢ —
is a weak equivalence, then the induced morphism colimg,, Xy — colimg,, Xy is an
equivalence in D.

If w: [n] — [m], then (K, X)pu = (K, X) is defined simply by (Ku)y, = Ky and
(X = Xpg-
We can now define a functor Wp: D — Ny Dg, D as follows.

Definition 4.6 For x € D,, we set the underlying simplicial diagram of Wpx to
¢ — Alk], where ¢: [k]— [m], and the corresponding diagram in D to x¢: A[k]— D.
Then Wpx is homotopical as a diagram D[m] — Dg, D since any weak equivalence
in D[m] induces a right anodyne (and hence cofinal by [16, Proposition 4.1.1.3(4)])
map of simplices.
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Clearly, Wy is a functor and is natural in D. We check that it is also a categorical
equivalence.

Proposition 4.7 For every k —cocomplete quasicategory D the functor Vo is a cate-
gorical equivalence.

Proof Consider a square as follows:

dA[m] D
e
A[m] N¢Dg, D

Y

By Lemma 2.3 it will be enough to extend x to a simplex X: A[m]— D and construct
an E[1]-homotopy from WX to Y relative to dA[m].

Let’s start by finding X. Consider Y},,,: Ay — D. Since Y agrees with Wpx over
dA[m] the [m]™ latching object of Y is x: dA[m]— D, ie we have an induced injective
map dA[m] < Ay and Y,,|0A[m] = x. Choose a universal cone

A e
Yy A[m] —-D
under Y}, and consider ﬁm]|8A[m]D. We have

IA[m]” = A" [m + 1]

which is an outer horn. However, f"[,,,]laA[m]> is special since Wpx is homotopical,

and thus extends to z: A[m]” — D by [14, Theorem 4.13]. We set X = z|A[m].

By Proposition 3.2, finding an E[1]-homotopy from WpX to Y translates into con-
structing a homotopical Reedy cofibrant diagram D([m]x E(1)) — Dg, D restricting
to [UpX,Y] on D(A[m] x dA[l]). By [23, Corollary 3.7] it will be sufficient to
construct such a diagram on D ([m] x [T]) and by Lemma 3.3 it will suffice to define it
on Sd([m] x[1]).

We form a pushout on the left in Dg, D:

Y1oAmP> —— ¥ IA[m] —— Apn)
z V4 Alm] —— B

Its underlying square of simplicial sets is (—)* applied to the square on the right.
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This yields the following sequence of morphisms of Dg, D (with morphisms of the
underlying simplicial sets displayed below):

x z z ¥im) Yim)

The first morphism is a weak equivalence since z is a filler of a special horn. So are
the middle two since the underlying maps of simplicial sets preserve the cone points.
The last one is also a weak equivalence since ﬂm] is universal. All these morphisms
are maps of cones under Y| Sd dA[m] = Wpx|Sd dA[m] and hence can be seen as
transformations of diagrams over Sd[m] which restrict to identities over Sd dA[m].
The conclusion follows by Lemma 3.4. a

Before we can prove the main theorem we need to know the following:
Lemma 4.8 The functor Dg, is homotopical.

Proof We begin by constructing a natural equivalence ®¢: HoNfC — HoC for
every cofibration category C. We send an object X: D[0] — C to X and a morphism
Y: D[1]— C to the composite [v;]~'[vg], where vy and v; are the structure morphisms

Vo U1

Yo Yo

Y.

~

This assignment is well-defined and functorial since C has homotopy calculus of
fractions, see Theorem 1.4.

We check that ®¢ is an equivalence. It is surjective and full since both Sd[0] < D][0]
and DJA[1]U Sd[1] = D[1] have the Reedy left lifting property with respect to all
cofibration categories by Lemma 3.3. For faithfulness, consider X, X: DJ[1] — C such
that X |DJA[l] = A7|D8A[1] and ©¢(X) = O¢(X). Since we have already verified
that ®¢ is essentially surjective, Lemma 3.5 allows us to assume that X'§, is a Reedy
cofibrant replacement of p[“z)] X so that the structure morphisms of X fit into a cylinder

XIHXI >—>X11 :>X1

By Theorem 1.4(2) we have a diagram
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where both squares commute up to left homotopy. By Lemma 1.5 we can assume that
the left square commutes strictly. Let

¥, ux, 2y
[50,51]] w]”
XY — Y

be a left homotopy. Then we can form a diagram

/N

Xor  ve ~ X1
,v\) A~ /
v x -
/ Ve[~ \
Xo Xo1 = X1

which is a homotopical diagram on Sd[2] and Reedy cofibrant over Sd d A[2]. Thus it can
be replaced Reedy cofibrantly without modifying it over Sd dA[2] by [23, Lemma 1.9].
Then X, X and X800 provide an extension over DdA[2]. We know that the inclusion
DOJA[2]USd[2] < DJ[2] has the Reedy left lifting property with respect to all cofibration
categories by Lemma 3.3, so we can find an extension to D|[2] which is a homotopy
between X and X in N¢C.

Since equivalences of quasicategories induce equivalences of homotopy categories, it
follows that Ny reflects equivalences. Thus Dg, is homotopical by Proposition 4.7. O

Finally, we are ready to prove the main theorem.

Theorem 4.9 The functor N¢: CofCat, — QCat, is a weak equivalence of fibration
categories.

Proof (for x > Ry) The functor Dg, is homotopical by Lemma 4.8 and thus
induces a functor on the homotopy categories. Since W is a natural categorical
equivalence by Proposition 4.7 the induced transformation Ho W is a natural iso-
morphism id — (Ho Nr)(Ho Dg, ). The transformation ® is merely pseudonatural, but
natural isomorphisms of exact functors induce right homotopies in CofCat, (by the
construction of path objects in the proof of [24, Theorem 2.8]). Therefore Ho ® is a
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natural transformation and by Lemma 4.5 it is an isomorphism (Ho Dg, )(Ho N¢) — id.
Hence Ho N¢ is an equivalence. |

The only part of the argument above that does not work for k = Ry is the construction
of a natural weak equivalence ®¢: Dg, NyC — C for every cofibration category C.
Indeed, &, was defined using colimits over categories DK which are infinite even
for finite simplicial sets K. Instead, we will define a zig-zag of (pseudonatural) weak
equivalences connecting Dgy, N¢C to C, namely,

° & N Yo
Dgxo Nfc CR > CR C.

Here, N is the homotopical poset of natural numbers with all morphisms as weak
equivalences so that C§ is the cofibration category of Reedy cofibrant homotopically
constant sequences. Similarly, CII;I stands for the cofibration category of Reedy cofibrant
eventually homotopically constant sequences; see [23, Section 5] for details.

It was verified in [23, Lemma 5.9] that C§ — C§ is a weak equivalence. Moreover,
evop: CEI — C is induced by a homotopy equivalence [0] — N hence it is a weak
equivalence, too.

It remains to define CD( ) and prove that it is also a weak equivalence. For each k& and
an object X: DK — N¢C we set <I> )X = colim pw) g X . This colimit exists since
D® K is finite if K is finite.

Lemma 4.10 For a cofibration category C the formula above defines an exact functor
CD( ). : Dgg, Nt C — CN Moreover, it is a weak equivalence.

Proof First, we need to verify that QD(_)X is an eventually constant sequence for all
(K, X) € Dgg, NiC. Consider X as a diagram in NyC and choose a universal cone
S: K®” — N¢C. Then [23, Lemma 4.8] implies that <I>( )s 1s eventually constant and
Theorem 3.7 implies that the induced morphism (I)( )S — <I> )S is an eventual weak
equivalence. Thus <I>( )S is eventually constant.

Preservation of cofibrations follows by [20, Theorem 9.4.1(1a)] since if K < L is an
injective map of simplicial sets, then the induced functors DO KuUp*k-D] - p®E
are sieves. Colimits in C are compatible with colimits of indexing categories and thus
CD((Z_) is exact. (Preservation of weak equivalences follows from the argument below.)

To see that it is a weak equivalence, it is enough to verify the approximation properties
of Proposition 1.8. Theorem 3.7 and [23, Lemma 5.8] imply that a morphism f in
Dgy, N¢C is a weak equivalence if and only if @é_) f is an eventual weak equivalence.
Therefore CID((Z_) preserves weak equivalences and satisfies (Appl). It remains to check
(App2), but it follows directly from [23, Lemma 5.10]. O
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This yields the proof of Theorem 4.9 in the remaining case of « = R¢ since the three
weak equivalences described above induce a natural isomorphism

(HoDg,)(HoNy) — id

and the rest of the argument applies verbatim.
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Turaev genus and alternating decompositions

CopYy W ARMOND
ADAM M LOWRANCE

We prove that the genus of the Turaev surface of a link diagram is determined by
a graph whose vertices correspond to the boundary components of the maximal
alternating regions of the link diagram. Furthermore, we use these graphs to classify
link diagrams whose Turaev surface has genus one or two, and we prove that similar
classification theorems exist for all genera.

57M25; 57TM27

1 Introduction

The discovery of the Jones polynomial [17] led to the resolution of the famous Tait
conjectures. In particular, Kauffman [18], Murasugi [26], and Thistlethwaite [31] use
the Jones polynomial to prove that an alternating diagram of a link with no nugatory
crossings has the fewest possible number of crossings. In Turaev’s [32] alternate proof
of this result, he associates a closed oriented surface to each link diagram D, now
known as the Turaev surface of D. Let D be a diagram of a nonsplit link L with
¢(D) crossings, let V7 (¢) be the Jones polynomial of L, and let g7 (D) be the genus
of the Turaev surface of D. Turaev shows that

(1-1) span VL (1) + g7(D) = ¢(D).

In recent years, the Turaev surface has been shown to have further connections to the
Jones polynomial (see Dasbach et al [11; 12]), Khovanov homology (Champanerkar,
Kofman and Stoltzfus [10], Dasbach and Lowrance [14]), and knot Floer homology
(Lowrance [23], Dasbach and Lowrance [13]).

Thistlethwaite [31] uses a decomposition of a link diagram into maximal alternating
pieces to compute a lower bound on crossing number similar to inequality (1-1).
Consider a link diagram D as a 4—valent plane graph with over/under decorations at
the vertices. An edge or face of D should be understood to refer to an edge or face of
the 4—valent plane graph. An edge of D is called nonalternating if both of its endpoints
are overstrands or both of its endpoints are understrands. An edge is called alternating
if one of its endpoints is an overstrand and the other is an understrand. Mark each
nonalternating edge of D with two distinct points, and in each face of D connect those
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Figure 1: Each nonalternating edge is marked with two points. Inside of each
face, draw arcs that connect marked points that are adjacent on the boundary
but do not lie on the same edge of D.

marked points with arcs as depicted in Figure 1. This process results in a collection
of pairwise disjoint simple closed curves {y1,..., % }. The pair (D, {y1,...,Vx}) is
called the alternating decomposition of D.

Thistlethwaite associates to D a graph G, which we call the alternating decomposition
graph of D, as follows. Suppose that D is a connected link diagram, ie when D
is considered as a graph, it is a connected graph. If D is an alternating diagram,
then G is a single vertex with no edges. Otherwise, the vertices of G are in one-to-one
correspondence with the curves yq,..., ¥ of the alternating decomposition of D.
The edges of G are in one-to-one correspondence with the nonalternating edges of D.
Let v; and vj be vertices of G corresponding to curves y; and y; respectively. An
edge of G connects v; to v; if and only if the corresponding nonalternating edge of D
intersects both y; and y;. If D is not a connected link diagram, then G is the disjoint
union of the alternating decomposition graphs of its connected components.

The plane embedding of D induces an embedding of each component of G onto a
sphere, as described in Section 3. Since each component of G can be embedded on a
sphere, the graph G is planar. Whenever we refer to G with the sphere embeddings of
its components induced by D, we use the notation G and call it the sphere embedding
induced by D. We also consider G as an oriented ribbon graph of genus zero. See
Section 3 for further discussion on oriented ribbon graphs. Each edge of G can be
labeled as + or — according to whether it corresponds to an overstrand edge of D
or an understrand edge of D respectively. Since the edges in each face of G rotate
between + and — edges, it follows that every face has an even number of edges in its
boundary. Therefore G is bipartite. Also, since every curve ); encloses a tangle, it
follows that every vertex of G has even degree. Proposition 3.3 shows that a graph
is an alternating decomposition graph if and only if it is planar, bipartite, and each
vertex has even degree. See Section 3 for examples of alternating decompositions of
link diagrams and their associated alternating decomposition graphs.
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If D has alternating decomposition curves {y1, ..., Yk}, then an alternating region
of D is a component of S? —{y,..., ¥} that contains crossings of D. As the name
suggests, if one follows a strand inside of an alternating region of D, then the crossings
will alternate between over and under. Let (D) be the number of alternating regions
in the alternating decomposition of D, and let ¢(G) be the number of edges in G.
Note that e(G) is also the number of nonalternating edges in D. Thistlethwaite [31]
proves that if D is a connected diagram of the link L, then

(1-2) span V(1) — ra(D) + 3¢(G) + 1 < ¢(D).

Bae and Morton [6] use Thistlethwaite’s approach to study the extreme terms and
the coefficients of the extreme terms in the Jones polynomial. Using combinatorial
data from the planar dual of G, a graph they call the nonalternating spine of D, they
recover inequality (1-1) and show that it is a stronger bound than inequality (1-2).

In this paper, we use Thistlethwaite’s alternating decompositions to study the Turaev
surface of a link diagram. We show that the genus of the Turaev surface of a link
diagram is determined by its alternating decomposition graph. If the Turaev surface is
disconnected, then its genus refers to the sum of the genera of its connected components.

Theorem 1.1 If D; and D, are link diagrams with isomorphic alternating decompo-
sition graphs, then g7 (D) = g7(D3).

Champanerkar and Kofman [8] prove a version of Theorem 1.1 in the case where the
two link diagrams are related by a rational tangle replacement. Lowrance [24] uses
this special case to compute the Turaev genus of the (3, g)—torus links and of many
other closed 3-braids; see also Abe and Kishimoto [2].

The Turaev genus of an alternating decomposition graph G, denoted g7(G), is defined
to be gr (D), where D is a link diagram with alternating decomposition graph G.
Corollary 3.9 gives a recursive algorithm to compute g7 (G) without any reference
to link diagrams. Theorem 1.1 coupled with our algorithm for computing g7(G)
show that the genus of the Turaev surface is determined by how the various alternating
regions of D are glued together along the nonalternating edges of D. The recursive
algorithm is at the core of our classification theorems.

A doubled path of length k in G is a subgraph of G consisting of distinct vertices

Vo, ...,V such that foreach i = 1,..., k there are two distinct edges ¢; 1 and e; >
in G connecting vertices v;—; and v;, and such that degv; =4 fori =1,...,k—1.
If G is a graph with a doubled path consisting of vertices vy, ..., vx, then let G’ be

G/{ei,1 Ue; 1}, the contraction of ¢; ; and e; » from G for some i with 1 <i <k.
Then G’ is called a doubled path contraction of G . The inverse operation of lengthening
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a doubled path inside of G is called a doubled path extension of G . Two alternating
decomposition graphs G and G, are called doubled path equivalent if there is a
sequence of doubled path contractions and extensions transforming G; into G,.
Doubled path contraction/extension can make a graph nonbipartite (and hence not
an alternating decomposition graph), but we do not require every graph in the sequence
from G to G, to be bipartite. Proposition 3.11 shows that if G; and G, are doubled
path equivalent, then g7(G) = g7(G>).

A graph is k—edge connected for some positive integer k if the graph remains con-
nected whenever fewer than k& edges are removed. An alternating decomposition
graph G is called reduced if G is a single vertex or every component of G is 3—edge
connected. In Section 3, we study the behavior of alternating decomposition graphs
under connected sum. We show that for any link L, there exists a diagram D of L
with reduced alternating decomposition graph such that D minimizes Turaev genus.
The classification theorems characterize all reduced alternating decomposition graphs
of a fixed Turaev genus.

Our main theorems give classifications of all reduced alternating decomposition graphs
of Turaev genus one and two. A doubled cycle Ci2 of length i is the graph obtained
from the cycle C; of length i by doubling every edge.

Theorem 1.2 A reduced alternating decomposition graph G is of Turaev genus one if
and only if G is doubled path equivalent to C?2, that is, if and only if G is a doubled
cycle of even length.

The previous theorem implies that every Turaev genus one link has a diagram D
obtained by connecting an even number of alternating 2—tangles into a cycle, as in
Figure 2. Dasbach and Lowrance [15] use Theorem 1.2 to compute the signature of all
Turaev genus one knots and to show that either the leading or trailing coefficient of the
Jones polynomial of a Turaev genus one link has absolute value one.

A link is almost-alternating if it is nonalternating and has a diagram D that can be
transformed into an alternating diagram with a single crossing change; see Adams
et al [4]. Abe and Kishimoto’s work [2] implies that all almost-alternating links have
Turaev genus one. It is unknown whether there is a link with Turaev genus one that
is not almost-alternating; see Lowrance [25]. The following corollary shows another
relationship between almost-alternating links and Turaev genus one links.

Corollary 1.3 If L is a link of Turaev genus one, then there is an almost-alternating
link L’ such that L and L’ are mutants of one another.
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Figure 2: Every diagram D where g7 (D) =1 and G is reduced has alter-
nating decomposition as above. Each 2—tangle 7; is alternating. A + sign
on an edge indicates that it is a nonalternating edge of D with endpoints both
over/under crossings respectively. The alternating decomposition graph G
associated to such a diagram is a doubled cycle of length 2k .

We present a similar classification theorem for reduced alternating decomposition
graphs of Turaev genus two. However, instead of only one doubled path equivalence
class, now there are five. Let G; and G, be two graphs. A one-sum G; &1 G, is
the graph obtained by identifying a vertex of G with a vertex of G,. Let e; be an
edge in G connecting vertices v; and v,, and let e, be an edge in G, connecting
vertices u; and u,. A two-sum G1 @, G, is the graph obtained by identifying the triple
(v1,va,e1) with (uy,us, e3), and then deleting the edge corresponding to ¢; and e, .
For example the two-sum of two 3—cycles C; @, Cs is a four cycle C4. Consider the
following five classes of graphs, depicted in Figure 3:

(1) Let Cl.2 ucC j2 denote the disjoint union of the doubled cycles Cl.2 and C ].2.

(2) Let Ci2 ®:1C ].2 be the graph obtained identifying a vertex of the doubled cycle Cl.2
with a vertex of C ].2.

(3) Let C; j x be the graph obtained by identifying two paths of length k in the
cycle Cjyx of length i + k and the cycle C; 4y of length j + k. Furthermore,
let Cizj  be the graph C; ; x with each edge doubled.

(4) Let K4(p,q) be the graph obtained by replacing two nonadjacent edges of the
complete graph K4 with doubled paths of lengths p and ¢ respectively.

(5) Let K4(p) be the graph K, with one edge replaced by a doubled path of
length p. Let K4(p) ©2 K4(q) be the two-sum of K4(p) and K4(q) taken
along the unique edge in each summand that is not contained in or adjacent to
the doubled path.

The graphs in the above families are not necessarily bipartite (depending on their
parameters). Informally, the subsequent theorem states that a reduced alternating
decomposition graph has Turaev genus two if and only if it is in one of the above five
families and is bipartite. The precise statement uses doubled path equivalence.
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0O OO ©

c2uc? @163
K4(2,2) K4(2) ®3 K4(2)

Figure 3: Representatives of the five doubled path equivalence classes of
reduced alternating decompositions graphs of Turaev genus two. Informally,
a Turaev genus two link diagram is obtained by inserting appropriate alter-
nating tangles inside of the vertices of these graphs. In the case of C22 u C22
one should insert an annular alternating region bounded by two curves that
correspond to vertices in distinct components. See Figure 9 for an example of
a connected link diagram with disconnected alternating decomposition graph.

Theorem 1.4 A reduced alternating decomposition graph G is of Turaev genus two if
and only if G is doubled path equivalent to one of the following five graphs:

C;UCy. C3@1Cy. CPyp. Ku2.2), or K4(2) @2 K4(2).

Seungwon Kim [22] has independently proved versions of Theorem 1.2 and Theorem 1.4.
The following theorem shows that for each nonnegative integer k, there exists a similar
classification of reduced alternating decomposition graphs of Turaev genus k.

Theorem 1.5 Let k be a nonnegative integer. There are a finite number of doubled
path equivalence classes of reduced alternating decomposition graphs G with Turaev
genus k.

This paper is organized as follows. In Section 2, we review background material on the
Turaev surface and discuss its connections to other areas of knot theory. In Section 3, we
give the algorithm to compute g7(G) and prove Theorem 1.1. In Section 4, we classify
alternating decomposition graphs of Turaev genus zero and show that all links have a
Turaev genus minimizing diagram whose alternating decomposition graph is reduced.
In Section 5, we prove the three main classification theorems (Theorems 1.2, 1.4,
and 1.5).

The authors thank Sergei Chmutov, Oliver Dasbach, Nathan Druivenga, Charles
Frohman, and Thomas Kindred for their helpful comments.
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)= A= X

Figure 4: The A and B resolutions of a crossing

Figure 5: In a neighborhood of each crossing of D, a saddle surface transi-
tions between the all-4 and all- B states.

2 The Turaev surface

In this section, we give the construction of the Turaev surface of a link diagram D
and discuss its connections to other link invariants. For a more in depth summary, see
Champanerkar and Kofman’s recent survey [9].

Each link diagram D has an associated Turaev surface F(D), constructed as follows.
Figure 4 shows the A and B resolutions of a crossing in D. The collection of simple
closed curves obtained by performing either an A-resolution or a B-resolution for each
crossing of D is a state of D. Performing an A-resolution for every crossing results in
the all-A state of D. Similarly, performing a B-resolution for every crossings results
in the all-B state of D. Let s4(D) and sp(D) denote the number of components in
the all-4 and all- B states of D respectively.

To construct the Turaev surface, we take a cobordism from the all-B state of D to the
all-A state of D such that the cobordism consists of bands away from the crossings
of D and saddles in neighborhoods of the crossing, as depicted in Figure 5. Finally, to
obtain F (D), we cap off the boundary components of the cobordism with disks. The
Turaev surface F(D) is oriented, and we denote the genus of the Turaev surface of D
by g7 (D). If the Turaev surface (or any oriented surface) is disconnected, then when
we refer to its genus, we mean the sum of the genera of its connected components.
Let k(D) be the number of split components of the diagram D, ie the number of graph
components of D when D is considered as a 4—valent graph whose vertices are the
crossings. Also, let ¢(D) be the number of crossings of D. It can be shown that

(2-1) gr(D) = 3(2k(D) + ¢(D) = 54(D) — sg(D)).
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//

Figure 6: A crossing ball shows how L is embedded near a crossing of D.

The Turaev genus g7 (L) of alink L is the minimum genus of the Turaev surface
of D, where D is any diagram of L; ie

g7 (L) =min{g7 (D) | D is a diagram of L}.

Turaev [32] constructs his surface in a slightly different, but equivalent way. Turaev’s
construction allows us to see that a diagram D of the link L can be considered as a
4—valent graph simultaneously embedded on the sphere and the Turaev surface F (D).
First consider D as embedded on a sphere S. Then L can be embedded into S by
replacing crossings of D with suitably small balls where one strand passes over the
other, as in Figure 6.

We construct the Turaev surface of D by first replacing each crossing of D with the
disk that is the intersection of the associated crossing ball and S'. Each alternating
edge of D is replaced with an untwisted band that lies completely in the projection
sphere S. Each nonalternating edge of D is replaced with a twisted band. One arc on
the boundary of the twisted band will be an arc in a component of the all-A4 state of D,
and one arc on the boundary of the twisted band will be an arc in a component of the
all-B state of D. The band can be twisted so that the arc corresponding to the all-A4
state lies in the union of S and its exterior, while the arc corresponding to the all-B
state lies in the union of S and its interior.

After replacing each crossing of D with a band, the boundary of the resulting surface
is the union of the all-A state of D and the all-B state of D. Moreover, the boundary
components corresponding to the all-A4 state lie in the union of S and its exterior, and
the boundary components corresponding to the all- B state lie in the union of S and
its interior. Therefore, the boundary components of this surface can be capped off
with disks embedded in S*, and the resulting surface is the Turaev surface F(D). By
projecting the link to S in the crossing balls, one can consider the diagram D to be
embedded on both S and the Turaev surface F(D); see Figure 7.
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Figure 7: The disks and band associated to an alternating edge (left), and the

1

disks and band associated to a nonalternating edge (right)

The Turaev surface of a link diagram and the Turaev genus of a link have the following
properties; proofs of these facts can be found in [32; 11]:

(1) The Turaev surface F(D) is a Heegaard surface in S3, thatis, S — F(D) is a
union of two handlebodies.

(2) The diagram D is alternating on F(D).

(3) The Turaev surface is a sphere if and only if D is a connected sum of alternating
diagrams. Consequently, g7 (L) = 0 if and only if L is alternating.

(4) The complement F(D)— D is a collection of disks.

The above conditions do not completely characterize Turaev surfaces. Let gq (L)
be the minimal genus of Heegaard surface F in S on which the link L has an
alternating projection such that the complement of that projection to F is a collection
of disks. Adams [3] studies knots and links where g,;;(L) = 1, and Balm [7] studies the
behavior of g, (L) under connected sum. Lowrance [25] constructs a family of links
where g,(L) = 1, but the Turaev genus is arbitrarily large. Armond, Druivenga, and
Kindred [5] show how to determine whether a surface satisfying the above conditions is a
Turaev surface using Heegaard diagrams. Indeed, the Heegaard diagrams corresponding
to Turaev surfaces of genus one first inspired Theorem 1.2 and the subsequent work in
this paper.

Like many link invariants defined as minimums over all diagrams, there is no algorithm
to compute the Turaev genus of a link. Instead, our computations rely on various

bounds of Turaev genus. The first bound follows immediately from inequality (1-2).
We have

gr(L) = c(L)—span VL(2),

where c¢(L) is the minimum crossing number of L. Several other bounds on Turaev
genus come from link homologies.
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Khovanov [19] constructs a categorification Kh(L) of the Jones polynomial, now
known as Khovanov homology. Khovanov homology is a bigraded Z-module with
homological grading i and quantum grading j, and one may write Kh(L) as a direct
sum over its bigraded summands Kh(L) = @i, j Kh’/ (L). Define

Smin(Kh(L)) = min{j —2i | Kh"/ (L) # 0},
Smax (Kh(L)) =max{j —2i | Kh"/ (L) # 0}.

Champanerkar, Kofman, and Stoltzfus [10] show that
(2'2) Smax (Kh(L)) - 8mln(Kh(L)) —-2< 2gT (L)

A link diagram D is adequate if the number of components in the all-4 (respectively
all-B) state is strictly greater than the number of components in every state containing
exactly one B-resolution (respectively exactly one A-resolution). A link is adequate
if it has an adequate diagram. Khovanov [20] studies the Khovanov homology of
adequate links, and Abe [1] proves that inequality (2-2) is tight when L is adequate.

Ozsvéth and Szabé [28] and independently Rasmussen [29] construct a categorification
HFK (K) of the Alexander polynomial of a knot K, called knot Floer homology. Knot
Floer homology is also a bigraded Z-module with homological (or Maslov) grading m
and Alexander grading s, and one may write HFK (K) as a direct sum over its bigraded
summands HFK(K) = ,,, ; HFK; (K, s). Define

Smin(HFK(K)) = min{s — m | HFK (K, s) # 0},

Smax (HFK(K)) = max{s — m | HFK,, (K, s) # 0}.
Lowrance [23] shows that

(2-3) Smax (HFK (K)) — 8min(HFK (K)) < g7(K).

Let o(K) be the signature of K, let 7(K) be the Ozsvith-Szabé t—invariant [27], and
let s(K) be the Rasmussen s—invariant [30]. Dasbach and Lowrance [13] show that

(2-4) [7(K) + 30(K)| < g7(K),
(2-5) |1(s(K) 4+ 0(K))| < gr(K),
(2-6) |7(K) = 3s(K)| < gr(K).

Essentially all known computations of the Turaev genus of a link rely on some inequality
among (2-2)—(2-6). Finding a new method for computing the Turaev genus remains a
challenging open question.
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Figure 8: A diagram D of 94, with its alternating regions shaded and its
alternating decomposition graph G = C22

3 Alternating decomposition graphs

Throughout this section, we assume that D is a link diagram, G is the alternating
decomposition graph of D, and G is the graph G with the sphere embedding induced
by D. We begin the section with some examples.

Example 3.1 Figure 8 shows a diagram D of the knot 94, from Rolfsen’s table, along
with its alternating decomposition curves {y1, ¥»}. Since the alternating decomposition
of D has two curves that both intersect the same four nonalternating edges of D, it
follows that the alternating decomposition graph of D is G = C22, the graph with
two vertices and four parallel edges between them. In this example, g7 (D) = 1 and
since 94, is nonalternating, it follows that g7 (L) = 1.

Example 3.2 Figure 9 shows a connected link diagram D with a disconnected alter-
nating decomposition graph G . The alternating decomposition graph G is disconnected
when D has an alternating region with more than one boundary component. In this
case, the alternating decomposition graph G is C22 U C22, the disjoint union of two
doubled 2—cycles. The disjoint union of two copies of the diagram from Figure 8 also
has C22 L C22 as its alternating decomposition graph.

The embedding of D into the plane induces an embedding of each component of the
alternating decomposition graph G onto a sphere. Each curve y; of the alternating
decomposition of D is incident to two regions, precisely one of which contains cross-
ings of D. In the examples of Figure 8 and Figure 9, the alternating regions with
crossings are shaded, and the regions without crossings are unshaded. If y; and y; are
different boundary curves of the same alternating region, then their associated vertices
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Figure 9: The alternating decomposition of D has an annular alternating
region. Hence its alternating decomposition graph G is disconnected.

belong to different components of G. Let y;,, ..., y;, be the curves of the alternating
decomposition graph associated to all of the vertices of a particular component of G .
One may consider the diagram D as being embedded on the sphere S, and thus the
curves ¥j,, ..., Yi, are also embedded on S'. The embedding of this component of G
onto the sphere S is obtained by considering the vertex associated to y;; to be the
disk with boundary y;; containing the alternating region incident to y;; . This disk
may contain other curves from the alternating decomposition of D, but these other
curves are associated to a different component of G. The edges of this component
are the segments of the nonalternating edges of D that go between two curves of the
alternating decomposition of D. Thus each component of G has an induced embedding
onto a sphere.

Thistlethwaite [31] proved that if G is an alternating decomposition graph of some
link diagram, then G is planar, bipartite, and each vertex of G has even degree. Our
first result of this section is the converse.

Proposition 3.3 Let G be a planar, bipartite graph such that each vertex of G has
even degree. Then G is the alternating decomposition graph of some link diagram D .
Moreover, D may be chosen to be adequate.

Proof Fix a planar embedding for G. For each vertex v; in G, choose an alternating
tangle 7; with degv; endpoints along the boundary. Each tangle 7; must contain at
least one crossing, and each face of the tangle 7; can only meet the boundary circle in
at most one arc. Assign to each endpoint the sign + or — based on whether the strand
emanating from that point is the overstrand or the understrand, respectively, of the
first crossing it meets. The signs 4+ and — will alternate around the boundary of 7;.
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Figure 10: Inserting the tangles 75; into an alternating decomposition

graph G results in an adequate link diagram D whose alternating decompo-
sition graph is G .

Since G is bipartite, the edges of G can also be assigned + or — in such a way that
the signs alternate around each vertex in the planar embedding. Replace v; with 7; in
the planar embedding of G so that each endpoint of an arc in 7; and the edge of G
which it gets connected to have the same sign. This produces a link diagram with the
property that the nonalternating arcs exactly correspond to the edges of G.

To make the link diagram adequate, appropriate tangles must be chosen for the 7;.
Choosing the tangles shown in Figure 10 will produce an adequate link diagram. This
is because the circles in the all-4 and all-B resolutions come in two types: those
completely contained in one of the tangles, and those that pass through multiple tangles.
Each crossing is either between two distinct circles of the first type, or between a circle
of the first type and a circle of the second type. Specifically, each crossing is always
between two distinct circles. Thus if one crossing is changed from the 4-resolution to
the B-resolution in the all-A state (or vice-versa in the all-B state), then the number
of circles will decrease by one. |

Abe [1] proves that if D is adequate, D minimizes Turaev genus, ie g7 (D) = g7 (L).
Consequently, we have the following corollary.

Corollary 3.4 Let G be a planar, bipartite graph such that each vertex has even degree.
Then there is a link diagram D whose alternating decomposition graph is G such that

gr(D)=gr(L).

An oriented ribbon graph is a graph G cellularly embedded in an oriented surface X.
The genus of an oriented ribbon graph is the genus of ¥. We often visualize the
vertices of an oriented ribbon graph as round disks and the edges of an oriented ribbon
graph as rectangular bands attached on opposite ends to the round vertices. The sphere
embedding G of an alternating decomposition graph G is a ribbon graph embedded
on a disjoint union of spheres. From G, we construct another ribbon graph G such
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Figure 11: The link diagram D, the sphere embedding G of its alternating
decomposition graph G and the twisted embedding G of G

that the genus of G is equal to g7 (D). The ribbon graph G has the same vertices and
edges as G . To obtain G from G a half-twist is applied to each edge band of G. We
say that G is the twisted embedding of the alternating decomposition graph G ; see
Figure 11. The operation of twisting some edges in a ribbon graph has been recently
studied by Ellis-Monaghan and Moffatt under the name partial petrials [16].

Proposition 3.5 Let G be the twisted embedding of the alternating decomposition
graph of a link diagram D. The genus of G is g7 (D).

Proof Each vertex in G corresponds to a curve in the alternating decomposition of D.
Suppose a collection of curves {y;,,...,y;;} bound an alternating region R in the
alternating decomposition of D, and let v;,, ..., v;; be their corresponding vertices
in G. The region R is a surface of genus zero w1th j boundary components. The
vertices vj,, ..., vj; all lie in different components G,l, .. G of G. Consider the
vertices vj, ... v;; as disks. Form the connected sum (G, . # #G, by identifying
disks inside of vertices v;,, ..., Vi - . What was a collection of j disks is now a single
planar surface with j boundary components, just like R. Repeat this process for each
collection of curves that bound an alternating region to form the surface .

We partially construct the Turaev surface F(D) as follows. Consider D as embedded
on a sphere S sitting inside of S*. Replace crossings of D with round disks, and
replace all edges of D with either flat or twisted bands according to whether the edge
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is alternating or nonalternating. The boundary components of the resulting surface
correspond to the union of the all-4 and all-B states of D. If one such boundary
component lies completely in S (ie each arc in the component contained in an edge
band is contained in a flat edge band), then cap that boundary component off with
a disk as follows. If the boundary component corresponds to a component of the
all-B state, the interior of the disk should be contained inside .S, and if the boundary
component corresponds to a component of the all-A state, the interior of the disk should
be contained outside S'. The resulting surface is X, and so g(@) =g(X)=¢gr(D). O

Proposition 3.5 implies that the genus of the Turaev surface of D is determined by
the sphere embedding G of its alternating decomposition graph G . Hence we define
g7 (G) to be gr(D) for any diagram D with sphere embedding G of its alternating
decomposition graph G. We give a recursive algorithm to compute g7(G) without
referring to the link diagram D. Our recurrence depends on the following lemma.

Lemma 3.6 Let G be a sphere embedding of a connected, alternating decomposition
graph G, and suppose the number of edges in G is nonzero.

(1) Either G contains a face bounded by exactly two edges or G contains at least
four vertices of degree two.

(2) Either G contains a pair of parallel edges or G contains at least four vertices of
degree two.

Proof The degree of a face is defined to be the number of edges in its boundary.
Suppose that G has no face of degree two and three or fewer vertices of degree two.
Since every vertex in G has even degree, it follows that the other vertices of G have
degree at least four. Let v(G), e(G) and f(G) denote the number of vertices, edges
and faces of G respectively. Also, let V(G) and F(G) be the vertex and face sets
of G. The handshaking lemma implies

4W(G)=3)+6=40(G)—6< >  degv =2e(G).
veV(G)

Thus v(G) < %e(G) + % Since G is bipartite, all of its faces have even degree, and
since G has no face of degree two, the handshaking lemma applied to the planar dual
of G implies

4f(G)< Y deg f =2e(G).

feFr(G)
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Thus f(G) < %e(G). Now since G is connected and planar, its Euler characteristic is
two. Therefore, we have

2=0(G) —e(G) + f(G) = 7¢(G) + 3 —e(G) + 7¢(G) = 3,

which is a contradiction. Therefore G must have at least four vertices of degree two.
The second statement follows immediately from the first. a

For any graph I" (or oriented ribbon graph), let k(I") denote the number of connected
components in I'. If e is an edge in ' incident to vertices v{ and v,, then the
contraction of e, denoted I'/e is the graph obtained by identifying the vertices v
and v, and deleting the edge e. Any graph that can be obtained from I" via a sequence
of edge contractions and edge or vertex deletions is called a minor of I'. The sphere
embedding of a graph induces a sphere embedding on any of its minors. If I is bipartite,
then I' —e is also bipartite. If T" is bipartite and k(I'") = k(I"—e)—1, then I'/e is also
bipartite. In the following proposition, whenever a set of edges is deleted or contracted,
the induced sphere embedding on the subgraph is assumed. Proposition 3.7 gives a
recursive algorithm to compute g7(G).

Proposition 3.7 Let G be a sphere embedding of an alternating decomposition
graph G .

(1) If G is a collection of isolated vertices, then g7(G) = 0.

(2) Suppose that G contains a face bounded by exactly two edges e; and e, . Let
G’ = G —{ey,ez}, and let G” = G/{e1,ey}. If k(G') = k(G), then G’
is a sphere embedding of an alternating decomposition graph and g7(G’) =
gr(G)—1.If k(G’) = k(G) + 1, then both G’ and G" are sphere embeddings
of alternating decomposition graphs and g7(G') = g7 (G") = g7 (G).

(3) Suppose that G contains a vertex v of degree two, incident to edges e; and e; .
Let G' = G/{eq,e,}. Then G’ is a sphere embedding of an alternating decom-
position graph, and g7 (G') = g7 (G).

Proof (1) Let D be the disjoint union of m alternating diagrams. Then g7 (D) =0
and G is m isolated vertices. Thus g7(G) = 0.

(2) Deleting or contracting two edges from a graph embedded on a disjoint union of
spheres results in a graph embedded on a disjoint union of spheres. Moreover, since e
and e, bound a face, they are incident to the same two vertices. Hence all vertices of G’
and G” have even degree. As G’ is obtained from G by deleting two edges, it follows
that G’ is bipartite. Also, since e; and e, are parallel, it follows that if the deletion of
e1 and e; increases the number of components in G, then G” is bipartite. Thus G’ is
a sphere embedding of an alternating decomposition graph, and if k(G’) = k(G) + 1,
then G” is a sphere embedding of an alternating decomposition graph.
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Let G, G’ and G” be the twisted embeddings of G, G’ and G” respectively. Define
f(G) to be the number of components of ¥ — G, where X is the surface on which G

is embedded. Note~that f (@)~is also the number of boundary components of G.
Similarly define f(G’) and f(G”).

We have v(G') = v(G), ¢(G') =e(G)—2 and f(G’) = f(G). If H is an oriented
ribbon graph, then its genus is

g(H) = 3 (2k(H) — v(H) + e(H) — f(H)).

Both G and G have the same underlying graph G, and so they have the same number
of components. A similar statement holds for G’ and G’. If k(G") = k(G) + 1, then

¢7(G) = g(G) = g(G) = g7(G),
and if k(G’) = k(G), then
¢gr(G)=g(G)=gG)-1=grG)—1.

Also, if k(G") = k(G) + 1, then G” can be obtained from G’ by taking a connected
sum along the two vertices incident with ¢; and e, in G. Hence g7(G") = g7 (G’).

(3) Asin the previous case, contracting two edges from a graph embedded on a disjoint
union of spheres leads to a graph embedded on a disjoint union of spheres. Let v,
and v, be the two vertices adjacent to v, and let vy, be the vertex in G’ corresponding
to vertices v; and v, in G. If vy # v,, then the degree of vy, is deg vy + degv, —2,
which is even. If v; = v;, then deg vy, = deg vy — 2, which is also even. All other
vertices in G’ have the same degree as their corresponding vertices in G. Also, the
bipartition of the vertices of G induces a bipartition of the vertices of G’. Thus G’ is
a sphere embedding of an alternating decomposition graph.

Let G and G’ be the twisted embeddings associated to G and G’, respectively.
Then k(G') = k(G) and e(G') = ¢(G) —2. If vy # vy, then v(G) = v(G) —2
and /(G') = f(G), and if v; = v,, then v(G’) = v(G)—1 and f(G') = f(G)—1.
Hence g7(G') = g7 (G). O

As the following theorem shows, the Turaev genus of the sphere embedding G of the
alternating decomposition graph G does not depend on its embedding at all.

Theorem 3.8 Let G and G, be sphere embeddings of the same alternating decom-
position graph G. Then g7(G1) = g7(Gy).

Proof We proceed by induction on the number of edges in G. If G has no edges, then
both G and G, are embeddings of a disjoint union of vertices. Hence g7(G;) =

gr(Gz) =0.
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Suppose that G has n edges and that any two embeddings of an alternating decomposi-
tion graph with fewer than n edges have the same Turaev genus. Suppose that G has a
vertex v of degree two incident to edges e; and e,. Since G, has the same underlying
graph G as G, the same statement holds for G, that is, the vertex v in G, has degree
two and is incident to edges e; and e;. Set G| = G /{ey, ez}, G, = G} /{e1. ez}
and G' = G/{ey,e,}. By Proposition 3.7, we have that g7(G/) = g7(G;) and
27(G)) =g7(G3). Since G and G, are sphere embeddings of the same graph G’, the
inductive hypothesis implies that er (G/ ) = g7(G)). Therefore g7(G;) = g7(G3).

Now suppose that G; does not have a vertex of degree two. By Lemma 3.6, G1 has
a face bounded by exactly two edges, say e; and e;. Let G| = G| —{e;.e,}. Then
Proposition 3.7 implies that if k(G}) = k(G,), then gT(Gl) = gT(G )+ 1, and
if k(G}) = k(Gy) + 1, then g7(G) = g7(G}). Since G and G, have the same
underlying graph G, the edges e; and e, are parallel in G,, but do not necessarily
bound a face of degree two. Let G}, = G, —{ey, e}.

The twisted embedding @2 is obtained from @’2 by adding the two twisted edges
corresponding to e; and e,. The twisted edges e; and e; contain four boundary
arcs that are pieces of boundary components of @2. Fix one of the boundary arcs
and fix an endpoint of that boundary arc. As one travels along the boundary of G,
starting from the fixed endpoint, one of the other seven endpoints of boundary arcs
of e; and e, must be encountered first. The planarity of G, lets us rule out four
of those endpoints. Furthermore, each edge in G, corresponds to a nonalternating
edge in some link diagram D. The two boundary arcs of that edge correspond to a
segment in a component of the all-A state of D and a segment in a component of
the all-B state of D. In particular, two boundary arcs of the same edge must belong
to different components of the boundary of the twisted embedding of the associated
alternating decomposition graph. This rules out one more of the endpoints as being the
next endpoint encountered. There are two remaining cases, each depicted in Figure 12.

The four boundary arcs of e; and e, lie in exactly two components of the boundary
of @2. Moreover, if the twisted edges e; and e, are removed, then the two boundary
components containing boundary arcs of e; and e are transformed into two boundary
components of the twisted embedding G/ Since no other boundary components
of Gz are changed by deleting e;_and e, it follows that f(G ) = f(G,). Since
U(G ) = v(Gz) and e(G ) = e(Gz) — 2, it follows that if k(G}) = k(G,), then
g7(G2) = gr(G)) + 1, and if k(G)) = k(G3) + 1, then g7(G3) = g7 (G)). The
embedded graphs (G’ and G/, have the same underlying graph, and hence the inductive
hypothesis implies that gr (G ) =g7(G}). Deleting e; and e, from G increases the
number of components if and only if deleting e; and e, from G, increases the number
of components. Therefore g7(G;) = g7(G,), and the desired result is proven. O
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Figure 12: The two figures on the left show the boundary components of G,
that contain the boundary arcs of e; and e, and the two figures on the right
show the corresponding boundary components of @’2 Other vertices and
edges of the graph lie inside the two shaded areas.

Proof of Theorem 1.1 Let D; and D, be two link diagrams with the same alternating
decomposition graph G . Let G be the sphere embedding of G induced by D, and
let G, be the sphere embedding of G induced by D,. Theorem 3.8 implies that

gr(D1) = gr(G1) = g7(G2) = g7 (D), as desired. O

Since the Turaev genus of an alternating decomposition graph G does not depend
on the sphere embedding of G, we can define g7 (G) to be g7 (D), where D is any
link diagram with alternating decomposition graph G. The recursive algorithm in
Proposition 3.7 can be restated without reference to embedding.

Corollary 3.9 Let G be an alternating decomposition graph.

(1) If G is a collection of isolated vertices, then g7(G) = 0.

(2) Suppose that G contains a set of parallel edges {eq,e>}. Let G' = G —{eq, ea}
and let G" = G/{ey,ex}. If k(G) = k(G'), then g7 (G’) = g7 (G) — 1, and if
k(G') = k(G) +1, then g7(G") = gr(G") = gr(G).

(3) Suppose that G contains a vertex v of degree two, incident to edges e; and e; .
Let G’ = G/{ey.es2}. Then g7 (G') = g7 (G).
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Figure 13: The graph G is transformed into C22 via the algorithm of
Corollary 3.9. The first step decreases Turaev genus by four, while the
second and third steps do not change Turaev genus. Since gT(sz) =1,it
follows that g7(G) = 5.

Example 3.10 Let G be the alternating decomposition graph on the top left of
Figure 13. One can apply the algorithm of Corollary 3.9 to G as follows. First, delete
four pairs of parallel edges as shown to obtain the graph G’. Since k(G) = k(G'), it
follows that g7(G) = g7 (G’)+4. Second, contract the remaining four pairs of parallel
edges to obtain G”, and note that g7(G”) = g7 (G’). Finally, apply operation (3) of
Corollary 3.9 to four degree-two vertices of G” to obtain C22. Since gT(sz) =1,
it follows that g7 (G) = 5. This example shows that it is not always possible to find
g7 (G) pairs of parallel edges in G whose deletion does not increase the number of
components.

Proposition 3.11 Suppose that G| and G, are doubled path equivalent alternating
decomposition graphs. Then g7(G1) = g7(G>5).

Proof Let G be an alternating decomposition graph with sphere embedding G and
twisted embedding G. A doubled path extension adds one vertex, two edges and one
face to G, and a doubled path contraction removes one vertex, two edges and one face
from G . Therefore the Euler characteristic of G is unchanged by either doubled path
extensions or doubled path contractions. If G; and G, are doubled path equivalent
alternating decomposition graphs with twisted embeddings @1 and @2, then the Euler
characteristics (and hence genera) of @1 and @2 agree. Thus g7(G1) = gr(Gy). O

We remind the reader that doubled path extensions and contractions can transform an
alternating decomposition graph into a nonbipartite graph whose associated twisted
embedding is nonorientable. However, the Euler characteristic argument in the proof
of Proposition 3.11 applies in both the orientable or nonorientable cases. We also warn
the reader that doubled path extensions and contractions only change the length of
existing doubled paths. Creating new doubled paths or entirely destroying doubled
paths will change the Turaev genus of the graph.

Algebraic € Geometric Topology, Volume 17 (2017)



Turaev genus and alternating decompositions 813

7 T h AN F2 4 T \\ \, , \
// ~ \ I \ // ~ \ / \
| D; E F3i Diyq ) —_— | D; | v Diyq )
\ ! \ i \ ! \ /

Figure 14: On the left is the disjoint union of 5,- and Dj+1, and on the right

is a connected sum of D; and D; ;. The diagram D;y; is alternating. For
k =1, 2 and 3, let Fy denote the indicated face of Dy Ll Dy 4.

4 Alternating decomposition graphs of Turaev genus zero

Turaev [32] showed that the genus of the Turaev surface of a link diagram D is zero
if and only if D is a connected sum of alternating diagrams. In this section, we use
Turaev’s result to give a classification of alternating decomposition graphs of Turaev
genus zero. In order to accomplish this, we will study the behavior of the alternating
decomposition graph under certain types of connected sums.

Suppose that D is a link diagram with g7 (D) = 0. Hence D = D #---# Dy, is
a connected sum of alternating diagrams D1, ..., Dy. Let 13,- = D #---# D; for
i=1,...,k. Then D = 5k and 13,-+1 = 13,- # D;41. Thus to classify connected
sums of alternating diagrams, it suffices to examine the connected sum of a (possibly
nonalternating) diagram D; and an alternating diagram D; 1 ; see Figure 14.

Let G; be the alternating decomposition graph of Dj,foreachi=1,... k. Since Dj
is alternating, its alternating decomposition graph is a single vertex. We examine
how 6,-+1 is obtained from G;. A face of a link diagram is said to be alternating if
every edge in the boundary of that face is alternating. Otherwise, the face is said to
be nonalternating. Let e; be the edge of D; and let e;j+1 be the edge of D;4, along
which we are taking the connected sum. The edge e;4; is necessarily alternating,
but e; can be either alternating or nonalternating. Figure 15 shows the alternating
decomposition curves in the seven relevant cases, which we describe in detail below.

Case 1 Suppose that ¢; is nonalternating. Figure 15 shows the endpoints of ¢; passing
under the crossing, but the case where the endpoints pass over the crossing is exactly
the same. Taking the connected sum merges the curve in the alternating decomposition
of D;41 with one of the curves in the alternating decomposition of D;. Therefore
Git+1=0Gi.

Case 2 Suppose that ¢; is alternating and the connected sum is taken as in Figure 15.
Also, suppose that both F; and F, are alternating faces of D;. Then there are no
alternating decomposition curves of 51‘ in either F; or F,. Hence G,-H = Gi uCy,
where C, is a 2—cycle.
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Figure 15: Taking the connected sum of D; = Dy#---#D; and the alternating
diagram D

Case 3 Suppose that ¢; is alternating and the connected sum is taken as in Figure 15.
Also, suppose that F; is an alternating face of Ei, while F, is a nonalternating face
of D;. Let y be the alternating decomposition curve in F, that runs along e;. After
performing the connected sum, the curve y transforms into a curve that runs along
the same portion of the boundary of F, and also along all of F;. Thus the connected
sum attaches the alternating decomposition curve of D;; to ¥ by two edges. Hence
G,'H = G,- @1 C,. The transformation G +— G @1 C, is called a doubled pendant
move and is depicted in Figure 16.
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G
Figure 16: A doubled pendant move on G results in the graph G &1 C;.

Case 4 Suppose that ¢; is alternating and the connected sum is taken as in Figure 15.
Also, suppose that F; is a nonalternating face of 5,~, while F, is an alternating face
of D;. Let y be the alternating decomposition curve in F; that runs along e;. After
performing the connected sum, the curve y transforms into a curve that runs along
the same portion of the boundary of F; and also along all of F,. Thus the connected
sum attaches the alternating decomposition curve of D;;1 to y by two edges. Hence
Git1 =G ® C.

Case 5 Suppose that ¢; is alternating and the connected sum is taken as in Figure 15.
Also, suppose that both F; and F, are nonalternating faces of 5,- and that the alter-
nating decomposition curves y; and y, that run along e are distinct curves. Since
the region bounded by y; and y, contains crossings of D, it follows that the vertices
of G; corresponding to y; and Y, lie in different components of G;. Performing the
connected sum operation merges y; and y;, and connects the alternating decomposition
curve of D;y; to the newly merged y; and y, with two edges. Therefore, 6,~+1 is
obtained from G; by taking a one-sum along two vertices in separate components
of éi and then an additional one-sum with Cj.
Case 6 Suppose that e; is alternating and the connected sum is taken as in Figure 15.
Also, suppose that both F; and F, are nonalternating faces of D; and that there
is a single alternating decomposition curve that runs along e; in both F; and F5.
Performing a connected sum operation splits this alternating decomposition curve into
two curves, each of which has a single edge attached to the alternating decomposition
curve of D; ;. Thus the graph 6,~+1 is obtained from @ by

(1) picking a vertex v of Gi,

(2) partitioning the edges incident to v into two sets A and B each of odd order,

(3) splitting the vertex v into two new vertices v{ and v, where, the edge set A4 is

incident to v{ and the edge set B is incident to v,, and

(4) creating a new vertex v3 of degree two adjacent to both vy and v,.

See Figure 17 for a depiction of this operation, which we call a two-path extension.

Case 7 Suppose that ¢; is alternating and the connected sum is taken as in Figure 15.
Note that this connected sum is different than Cases 2—6. In this case, it does not matter
whether either, neither, or both of F; and F, are alternating or nonalternating. In each
case, we have 6,~+1 = G,-.
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Figure 17: A two-path extension. The edge sets A and B must each be of odd order.

Theorem 4.1 Let G be an alternating decomposition graph with g7 (G) =0. Then G
can be obtained from a collection of isolated vertices via a sequence of doubled pendant
moves, two-path extensions and one-sums along vertices in different components.

Proof Suppose D is a link diagram with alternating decomposition graph G . Then
gr(D)=gr(G)=0,and hence D = D#---#Dy, is a connected sum of alternating dia-
grams D1, ..., Dy Let D, D #---#D;,and let G, be the alternatlng decomposmon
graph of Gi. Our analysis above shows that there is a sequence G, G, .. Gk =G
of alternating decomposition graphs such that G1 is a collection of 1s01ated vertices
and 6i+1 can be obtained from G; by either doing nothing, a doubled pendant move,
a two-path extension, a disjoint union with C5, or the multistep operation of Case 5
(which stipulated that we glue together two components of Gi along a vertex, and then
perform a doubled pendant move to the same vertex).

We modify the sequence Gi..... ék = G so that it still begins in a collection of isolated
vertices, still ends in G, and each graph can be obtained from the previous one via a
doubled pendant move, a two-path extension, or by identifying two vertices in different
components. For each i where éi_H is obtained from G; viaa disjoint union with C,,
we modify Gj for j <i by adding an isolated vertex v. Since GUC, = GU{v} P13,
we have changed adding a disjoint union of C; into doubled pendant move.

For each i where G,.H is obtained from G; via the operation in Case 5, we note
that G,_H is obtained from G; by taking a one-sum of vertices in different components
and then performing a doubled pendant move. In order to satisfy the conditions in the
theorem, these two operations must be completed in separate steps. Thus we modify
the sequence by increasing the index of each éj by one, with j >i + 1. Then we
set G, +1 to be the graph obtained from G by taking the prescribed one-sum of vertices
in different components, and then G,+2 can be obtained from G,+1 by a doubled
pendant move. O

Recall that an alternating decomposition graph G is reduced if it is a single vertex or if
each component of G is 3—edge connected. In the following proposition, we prove that
there exists a Turaev genus minimizing diagram of every nonsplit link with reduced
alternating decomposition graph.

Proposition 4.2 Every nonsplit link L has a diagram D with alternating decomposi-
tion graph G such that G is reduced and g7(G) = gr(L).
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Proof Equation (2-1) implies that for any choice of edge along which to take a
connected sum of D; and D,, we have g7 (D # Dy) = g7 (D) + g7 (D). Let
D’ be a diagram of L that minimizes Turaev genus, ie such that g7 (D’) = g7 (L).
Suppose that D’ can be written as a connected sum Dq #---# Dy where each D;
cannot be realized as a connected sum. Let G; be the alternating decomposition graph
of Dj.

Since each D; cannot be realized as a connected sum, there is no circle in the plane
that intersects D; exactly twice such that the two 1-tangles formed are nontrivial.
Therefore, there is no circle in the plane that intersects the alternating decomposition
graph of D; exactly twice in two distinct edges. Hence the alternating decomposition
graph G; is reduced.

However, the alternating decomposition graph G’ of D’ is not necessarily reduced. We
construct another diagram D of L such that g7 (D) = g7(D’) = g7 (L), and such that
the alternating decomposition graph G of D is reduced. Suppose the connected sum of
two diagrams l~)1 and l~)2 is formed in the same manner as Case 7 of Figure 15. Let ¢;
and e, be the edges along which the connected sum is being taken, and let Fy, F,
and F3 be the three faces with e; and e, in their boundary, as in Figure 14. If at least
two of F 1 F, and Fj are alternating faces, then the alternating decomposition graph
of D1 # Dz is either the one-sum or disjoint union of the alternating decornpos1t10n
graphs of Dy and D,. Therefore, if the alternating decomposition graphs of D,
and D, are reduced, then the alternating decomposition graph of Dy # D, is reduced.

For each summand Dy, ..., Dy in D = D{#.--# Dy, insert a small twist into the edge
on which a connected sum occurs, as in Figure 18. Inserting the twist does not change
the alternating decomposition graph of each D;, and thus does not change the genus of
the associated Turaev surface. Each new twisted edge is an alternating edge, and the face
bounded by that single alternating edge is an alternating face. Therefore, if all of the
connected sums are taken along these twisted edges, then the alternating decomposition
graph G of the resulting diagram D will be reduced. Moreover, since adding the twists
does not change the genus of the Turaev surface, g7 (D) = g7 (D) = g7 (L). a

S Turaev genus classification results

In this section, we classify all reduced alternating decomposition graphs of Turaev
genus one and two. We also show that for any nonnegative integer k, there are a finite
number doubled path equivalence classes of alternating decomposition graphs of Turaev
genus k. Hence there exists a classification of all reduced alternating decomposition
graphs of Turaev genus k for any nonnegative integer k .
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Figure 18: Inserting twists into edges where a connected sum is taken makes
the resulting diagram have reduced alternating decomposition graph.

Cy(1,1,1,1) Ki(1,1) @, K4(1,1)

Figure 19: The graphs C4(1,1,1,1) and K4(1,1) @, K4(1,1)

A graph G is called a doubled forest if it is obtained from a forest by doubling every
edge. A doubled tree is a doubled forest with one component. Let C4(p, ¢, r,5) be
the graph obtained by attaching doubled paths of lengths p, ¢, r and s to the vertices
of a four cycle. Also, let K4 (p, q) be the graph obtained by removing an edge of the
complete graph on four vertices K4 and then attaching doubled paths of lengths p
and ¢ to the vertices incident to the removed edge. Let K4 (p.q) &> K4 (r,s) be the
two-sum of K, (p,q) and K4 (r, s) taken along the unique edge in each summand that
is not contained in nor adjacent to a doubled path; see Figure 19.

Lemma 5.1 Let H be an alternating decomposition graph without isolated vertices
such that g (H) = 0 and H has at most four vertices of degree two. Then H is either

(1) adisjoint union of two doubled paths,
(2) adoubled tree with two, three or four leaves,
(3) C4(p.q,r, s) for nonnegative integers p, ¢, r and s, or

4) 1?4(p,q) &3P E4(r,s) for nonnegative integers p, q, r and s.
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Proof Each of the above graphs clearly has four or fewer vertices of degree two, and
the algorithm of Corollary 3.9 implies that each of the above graphs is indeed Turaev
genus zero. It remains to show that the above list is exhaustive.

Theorem 4.1 states that every Turaev genus zero alternating decomposition graph can
be obtained from a collection of isolated vertices via a sequence of doubled pendant
moves, two-path extensions and one-sums of vertices in distinct components. If H
is obtained from a collection of isolated vertices via a sequence of doubled pendant
moves and one-sums from distinct components, then H is a doubled forest. Since H
has four or fewer vertices of degree two and no isolated vertices, H is either a disjoint
union of two doubled paths or a doubled tree with two, three, or four leaves.

If a doubled tree H has a vertex of degree 2d for some positive integer d, then H
contains at least d vertices of degree two. A two-path extension always increases the
number of degree-two vertices in the graph. Therefore, we can only apply a two-path
extension to a vertex of degree two, four, or six. Let H’ be obtained from the doubled
tree H via a two-path extension applied at a vertex v where the set of edges incident
to v is partitioned into sets 4 and B of odd order, as in Figure 17. Without loss of
generality, assume |A| > | B|.

If the degree of v is two, then |A| = | B| = 1. Therefore, a two-path extension will
add two new vertices of degree two. Hence H must be a doubled path, and H’ is
C4(p,0,0,0) for some p. If the degree of v is four, then |[4A] =3 and |B|=1. A
two-path extension will again add two vertices of degree two, and hence [ must be a
doubled path. Thus H' is C4(p,q,0,0) for some p and ¢.

If the degree of v is six, then H already has at least three vertices of degree two. If
|A] =5 and | B| =1, then a two-path extension would create two new vertices of degree
two, resulting in at least five vertices of degree two. Therefore |A| = 3 and |B| = 3,
and H is a doubled tree with three degree-two vertices. Let A'(A) (respectively NV(B))
be the set of vertices adjacent to v and incident to an edge in A (respectively B). There
are two cases: either [N (A)| = [N(B)| =2 or |[N(A4)| = |N(B)| = 3. In the former
case, H' = C4(p. 0, r,0) for some p and r. In the latter, H' = K4(p,0) @5 K4(r, s)
for some p, r and s.

In each of the above instances, H' already has four vertices of degree two. Thus the
only allowable operation is a doubled pendant move applied to a vertex that is already
of degree two. Alternately, one could take a one-sum between H’ and a doubled
path that identifies two degree-two vertices. However, this is the same as a doubled
pendant move applied to a vertex of degree two. The only effect this has is changing the
parameters in C4(p, q,r,s) or K, (p,q) &2 K4 (r,s), and hence the result holds. O
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Figure 20: Applying two-path extensions to doubled trees. The short red
lines denote the partition of the edges incident to v into the sets 4 and B.

Figure 20 shows examples of a two-path extension being applied to a doubled tree with
two or three vertices of degree two.

The previous classification of alternating decomposition graphs of Turaev genus zero
with at most four vertices of degree two leads directly to the classification reduced
alternating decomposition graphs of Turaev genus one and two.

Proof of Theorem 1.2 If G is a doubled cycle of even length, then it is reduced and
Corollary 3.9 implies that g7(G) = 1.

Let G be a reduced alternating decomposition graph with g7(G) = 1. Lemma 3.6
implies G contains a pair of parallel edges {e1,e,}. Let G/ = G —{ey,e5}. Since G
is reduced k(G') = k(G) and thus g7(G’) = 0. Because G has no vertices of degree
two, it follows that G’ has at most two vertices of degree two. Lemma 5.1 implies
that G’ is a doubled path. Therefore G is a doubled cycle of even length. a

Suppose L is a link containing a 2—tangle 7 inside the ball B. A mutation of L is a
link L’ obtained by removing the ball B, rotating it 180° about any of its principle
axes, and gluing B back into the link. Two links that are related by a sequence of
mutations are said to be mutants of one another.
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Figure 21: The 2—tangle in the upper diagram is rotated 180° to obtain the
lower diagram. In the lower diagram, the 2—tangle containing 77 and 73 and
the 2—tangle containing 7> and 74 are alternating.

Figure 22: A diagram with alternating decomposition graph C22 is trans-
formed into an almost-alternating diagram by pulling one of the nonalternating
edges over one of the tangles. If the circled crossing is changed, then the
diagram will be alternating.

Proof of Corollary 1.3 Since L is Turaev genus one, it has a diagram D as in
Figure 2. The alternating decomposition graph of this diagram is szk’ a doubled cycle
of length 2k. Let T be a the tangle consisting of 7; and 7;4;. Rotating the tangle T’
by 180° in the plane of the diagram results in a new diagram whose alternating
decomposition graph is C22k—2’ a doubled cycle of length 2k — 2; see Figure 21.
Therefore, through a sequence of mutations, the diagram D can be transformed into a
diagram whose alternating decomposition graph is C22.

It remains to show that any diagram D’ with alternating decomposition graph C22
is an almost-alternating link. We may assume that D’ consists of two alternating
2-tangles 77 and T, connected together by four nonalternating edges. If one of those
nonalternating edges is pulled over the tangle 73 as in Figure 22, then the resulting
diagram is almost-alternating. |

Many Turaev genus one links are known to be almost-alternating. Kim and Lee [21]
show that nonalternating, three-stranded pretzel links are almost-alternating. If each
tangle 7; in Figure 2 is a rational tangle, then the link L is called a Montesinos link.
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In the appendix to [2], Jong shows that nonalternating Montesinos links are almost-
alternating. Non-alternating Montesinos links include nonalternating pretzel links on
arbitrarily many strands. The manipulation of Figure 22 is a key step in Jong’s work.
All almost-alternating links are Turaev genus one, but it remains open whether all
Turaev genus one links are almost-alternating.

Proof of Theorem 1.4 Suppose that
G e {C2UCE CI @1 C2.CE, | Ka(2.2). K4(2) @2 K4(2)}.

Corollary 3.9 implies that g7(G) = 2. Proposition 3.11 implies that any alternating
decomposition graph that is doubled path equivalent to G also has Turaev genus two.

Let G be a reduced alternating decomposition graph with g7(G) = 2. Since G is
reduced and g7(G) = 2, it follows that G contains a pair of parallel edges {e1,e>}
such that g7(G’) = 1, where G’ = G — {ey,e,}. The graph G’ has at most two
vertices of degree two. Lemma 3.6 implies that G’ contains at least one pair of parallel
edges. If the deletion of every pair of parallel edges in G’ increased the number of
components of G’, then every pair could be contracted to obtain the graph G'. Then
¢7(G")=gr(G’) =1, and the graph G’ has at most two vertices of degree two and no
pairs of parallel edges. Hence Lemma 3.6 implies G’ has no edges, which contradicts
gr (é/ ) =1. Thus G’ contains a pair of parallel edges {e3,e4} such that their deletion
results in a graph with no more components.

Let G = G —{e1,es,e3,e4}). Since G” is an alternating decomposition graph of
Turaev genus zero with at most four vertices of degree two, it is one of the graphs in
Lemma 5.1. It remains to show that if G is one of the graphs in Lemma 5.1, G can be
obtained from G” by adding two pairs of parallel edges, and G is a reduced alternating
decomposition graph of Turaev genus two, then G is doubled path equivalent to one of
the five graphs in the statement of the theorem.

Suppose that G” is a disjoint union of two doubled paths. Then G” has four vertices
V1, V2, v3 and vg of degree two, and thus each pair of parallel edges added to G”
must connect two of the degree-two vertices. There are two ways to add these parallel
edges, one that results in a disjoint union of two doubled cycles and the other that
results in a single doubled cycle. However, a doubled cycle only has Turaev genus
one, and so G must be a disjoint union of two doubled cycles, ie G is doubled path
equivalent to C22 W sz; see Figure 23.

Suppose that G” is a doubled path where v; and v, are its degree-two vertices. If
one adds a pair of parallel edges connecting v; and v,, then adds a pair of parallel

edges anywhere else to obtain G, then G is doubled path equivalent to C 121 |- If one
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Figure 23: If G” is a disjoint union of two doubled paths, then G is a disjoint
union of two doubled cycles of even length.

Figure 24: If G” is a doubled path, then G is doubled path equivalent to
either C22 D1 C'22 or C121 1

adds a pair of parallel edges connecting v; and some other vertex #; and a pair of
parallel edges connecting v, and some other vertex u, to obtain G, then there are three
possibilities for G. If u; is between vy and u,, then G is not reduced. If u; = u5,,
then G is doubled path equivalent to C22 B C22. If u, is between v; and uq, then G
is doubled path equivalent to C12,1,1 ; see Figure 24.

Suppose that G” is a doubled tree with three vertices vy, v, and v3 of degree two.
Let v be the unique vertex in G” of degree six. Since G” contains three vertices
of degree two, it follows that two of those vertices must be connected by a pair of
parallel edges in G. Without loss of generality, assume we add a pair of parallel edges
connecting vy and v,. Also, suppose that we add the other pair of parallel edges
connecting v; and some other vertex u. If v is between u and v;, then G is doubled
path equivalent to C 12 RE If u = v, then G is doubled path equivalent to C22 &P C22.
If u is between v and v3, then G is not reduced; see Figure 25.
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Figure 25: If G” is a doubled tree with three vertices of degree two, then G
is doubled path equivalent to either C 121 L or C22 @ C22.

Figure 26: If G” is a doubled tree with four vertices of degree two, then G
is doubled path equivalent to either C 121 L or C22 @ C22.

Suppose that G” is a doubled tree with four vertices of degree two. Then one must
add one pair of parallel edges connecting two of the degree-two vertices and another
pair of parallel edges connecting the other two degree-two vertices. Furthermore G”
either contains two vertices of degree six or one vertex of degree eight. If G” contains
two vertices of degree six, then G is either not reduced or doubled path equivalent
to C 12’1’1 . If G” contains a vertex of degree eight, then G is doubled path equivalent
to C22 @® C2; see Figure 26.

Suppose that G” = C4(p,q,r,s) for some nonnegative integers p, ¢, r and s.
Since G” has four vertices of degree two, each pair of parallel edges added to G”
must connect two of the degree-two vertices. The resulting graph is K4(p, ¢) for some
values of p and ¢. Thus G is doubled path equivalent to K4(2,2).

Suppose that G” = 124 (p.q9) @2 124 (r, s) for some nonnegative integers p, ¢, r and s.
Since G” has four vertices of degree two, each pair of parallel edges added to G” must
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connect two of the degree-two vertices. The resulting graph is K4(p) @, K4(G) for
some values of p and ¢. Thus G is doubled path equivalent to K4(2) ®, K4(2).

Hence if G is a reduced alternating decomposition graph with g7(G) = 2, then G
is doubled path equivalent to one of C22 L C22, C22 D1 C22, Clz1 . K4(2,2), or
K4(2) @2 K4(2). o

Suppose G has v(G) vertices, e(G) edges, and k(G) components. The nullity n(G)
of G is defined as
n(G) =e(G) —v(G) + k(G).

One can equivalently define the nullity of G to be the nullity of the incidence matrix
of G or to be the number of edges not in a maximal spanning forest of G. The
simplification si(G) of the graph G is the graph obtained from G by deleting loops
and replacing each set of multiple edges connecting two distinct vertices v and v,
with a single edge connecting v; and v,. As long as an alternating decomposition
graph G' does not have any vertices of degree two, its Turaev genus is bounded below
by the nullity of the simplification of G in the following manner.

Proposition 5.2 Let G be an alternating decomposition graph, and let si(G) be the
simplification of G . If G contains no vertices of degree two, then 3g7(G) > n(si(G)).

Proof Since G is assumed to have no vertices of degree two, the base case is G = C2,
a doubled cycle of length two, ie G contains two vertices with four parallel edges
between them. In this case g7(G) = 1 and n(si(G)) = 0, and so the result holds.

Now suppose that the desired inequality holds for all alternating decomposition graphs
with no vertices of degree two that have fewer edges than G. Since G does not
contain any vertices of degree two, Lemma 3.6 implies that G contains a pair of
parallel edges e; and e,. Let G’ = G — {eq, e,}, and let ey, be the edge in si(G)
corresponding to e¢; and e;.

Suppose that k(G') = k(G) + 1. Then g7(G’) = g7(G). The edge e, is a bridge
in si(G), and thus n(si(G’)) = n(si(G)). By induction, 3g7(G’) > n(si(G’)), and
hence 3g7(G) > n(si(G)).

Suppose that k(G’) = k(G). Then g7(G) = g7 (G’)+1 and n(si(G)) <n(si(G'))+1.
Let v; and v, be the two vertices incident to e; and e, in G. Fori =1 or 2, we
consider three cases:

(1) The degree of v; is greater than two.
(2) The vertex v; has degree two and two distinct neighbors.

(3) The vertex v; has degree two and only one distinct neighbor.
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In order to apply our inductive hypothesis, we eliminate all vertices of degree two
in G’ as follows. If degv; > 2, then nothing needs to be done. If degv; = 2 and v;
has two distinct neighbors, then perform a two-path contraction at v;. A two-path
contraction does not change the Turaev genus of the graph but could decrease the nullity
of the simplification of the graph by one. Suppose that degv; = 2 and v; has only
one neighbor. Let P; be the maximal doubled path embedded in G’ with endpoints v;
and u; such that every interior vertex of P; has exactly two neighbors. If every edge
in P; is contracted, then both the Turaev genus and the nullity of the simplification of
the resulting graph remain unchanged.

Let G” be the graph obtained from G’ by performing the above operations on v,
and v,. Then G” has no vertices of degree two. We have

gr(G")=gr(G") and n(si(G")) +2 = n(si(G")).
Therefore
27 (G)=g7(G")+1 and n(si(G)) <n(si(G")) + 3.
By the inductive hypothesis, we have n(si(G"”)) < 3g7(G"). Therefore
n(si(G)) < n(si(G")) +3 < 3gr(G") +3 =3g7(G). O

We use the next lemma in the proof of Theorem 1.5, which will conclude the paper.

Lemma 5.3 Let n; and n, be nonnegative integers. There are a finite number of
graphs G such that n(G) = ny and such that G contains n, vertices of degree two.

Proof Because nullity is additive with respect to disjoint union, it suffices to show the
above statement for connected graphs. Let 7" be a tree, and let d;,(7") be the number
of degree-one or degree-two vertices in 7'. Suppose that 7" is a spanning tree of a
graph G with n(G) =n; where G contains n, vertices of degree two. Hence G is
obtained from 7' by adding n; edges. Each of the n; edges added to 7" can make at
most two of the vertices of degree one or two in 7 have degree larger than two in G.
Also, every degree-two vertex in G 1is either a degree one or a degree-two vertex in 7.
Therefore di,(T) <2ny +n,.

Every tree can be obtained from a single vertex by repeatedly adding pendant edges.
Each pendant edge addition increases d1,(7T"), and for a given tree, there are only finitely
many ways to add a pendant edge. Thus the number of trees T with d1,(T) <2ny+n;
is finite. There are only a finite number of ways to add n; edges to such a tree, and
hence there exists a finite number of graphs G with nullity #; that contain n, vertices
of degree two. |
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We end the paper with the proof of Theorem 1.5.

Proof of Theorem 1.5 For each doubled path equivalence class ¢ of reduced alternat-
ing decomposition graphs G with g7(G) = k, let G, be a representative such that
no other representative of ¢ can be obtained from G, via a sequence of doubled path
contractions. Let V' be the set of vertices v in G such that degv = 4, each v has
exactly two distinct neighbors u and w, there are two edges incident to both # and v,
and there are two edges incident to both w and v.

For each vertex v € V', there are two pairs of parallel edges incident to v, say parallel
edges e, 1 and e, and parallel edges e, 3 and e, 4. Let E’ be a set of edges containing
exactly one pair of these parallel edges for each v € V', thatis, E' ={ey j,ey2|vEV'}.
We claim that the graph G, — E’, ie the graph obtained by deleting the edges set E’
from G, has the same number of components as G.

By way of contradiction, suppose that G, — E’ has more components than G.. Then
there exists a minimal subset E” of E’ such that G, — E” has one more component
than G, but G.—.S has the same number of components as G for any proper subset S
of E”. Note that if an edge e,,; is in E”, then its parallel edge e, > is also in E”.
Therefore if G = G./E", ie the contraction of the edges in E” from G, then G is
obtained from G, via a sequence of doubled path contractions.

Let C” be acycle in G/. Then there is a cycle C in G, such that C" =C/(CNE").
Since G, is bipartite, it follows that C has an even number of edges. Since adding any
single edge of E” to G — E” connects two components of G, it follows that C N E”
has an even number of edges. Therefore, C” has an even number of edges. Because
each cycle of G/ has an even number of edges, the graph G/ is bipartite. Thus G/ is
an alternating decomposition graph, which contradicts that no other representative of ¢
can be obtained from G via a sequence of doubled path contractions.

Therefore G.— E’ has the same number of components as G.. Hence deleting each pair
of parallel edges in E’ from G, decreases the Turaev genus by one, which implies that
|E’'| <2k and |V'| < k. Each vertex v € V' has degree two in the simplification si(G,).

Any other vertex of degree two in si(G.) arises from a vertex v in G with two distinct
neighbors v; and v, such that there are r edges between v and vy and s edges
between v and v,, where r + s is even and max{r, s} > 2. For each such vertex, there
are two parallel edges whose removal decreases Turaev genus by one and does not
change the simplification si(G.). Because pairs of such vertices could be adjacent,
there are at most 2k in G.

Therefore si(G.) has at most 3k vertices of degree two. Moreover 3k = 3gr(G.) >
n(si(G.)). Because the nullity and the number of degree-two vertices are bounded,
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Lemma 5.3 implies that there are only a finite number of candidates for the graph si(G¢).
Because adding arbitrarily many parallel edges to an alternating decomposition graph
increases its Turaev genus without bound, there are only a finite number of alternating
decomposition graphs of a fixed Turaev genus whose simplification is a given graph.
Therefore, there are only finitely many doubled path equivalence classes of alternating
decomposition graphs of Turaev genus k. a
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Constructing geometrically equivalent hyperbolic orbifolds

DAVID MCREYNOLDS
JEFFREY S MEYER
MATTHEW STOVER

We construct families of nonisometric hyperbolic orbifolds that contain the same
isometry classes of nonflat totally geodesic subspaces. The main tool is a variant of the
well-known Sunada method for constructing length-isospectral Riemannian manifolds
that handles totally geodesic submanifolds of multiple codimensions simultaneously.

51M10, 58J53; 11F06

1 Introduction

Classical spectra like the eigenvalue spectrum of the Laplace—Beltrami operator or the
primitive geodesic length spectrum have played an important role in dynamics, geometry,
and representation theory. We continue the investigation of higher-dimensional spectra
that encode the geometry of the nonflat totally geodesic submanifolds of a fixed
complete, finite-volume, Riemannian manifold M . We will refer to the set of such
submanifolds, counted with multiplicity, as the geometric spectrum.

To construct our examples, we restrict ourselves to closed arithmetic locally symmetric
orbifolds, where recent work shows that the geometric spectrum, when nonempty,
carries much information. In McReynolds and Reid [3] it was shown that if M, M,
are arithmetic hyperbolic 3—manifolds with the same geometric spectrum, provided the
geometric spectrum is nonempty, then M; and M, are commensurable. For higher
dimensions, Meyer [4, Theorem C] proved that if M; and M, are standard arithmetic
hyperbolic m—manifolds (see Section 2) with the same geometric spectrum, then M,
and M, are commensurable. It is well-known that the geometric spectrum of a standard
arithmetic hyperbolic m—manifold is nonempty with representatives in every possible
proper codimension.

For any finite-volume, hyperbolic 3—manifold M, there exist infinitely many pairs
of nonisometric finite covers (M, Nj) of M such that M; and N; have the same
totally geodesic surfaces [3]. This has two parts. First, there are infinitely many pairs
of finite covers (M, N j’ ) with the same geometric spectrum. It is a feature of this
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construction that Vol(M J’ ) = Vol(N j’ ), though we know no general reason why that
must hold. Secondly, there exist infinitely many pairs {M;, Nj} with the same set
of totally geodesic surfaces (ie without multiplicity) such that Vol(M;)/ Vol(N;) is
unbounded.

The main result of this article is the generalization of these covering constructions to
higher-dimensional hyperbolic manifolds. We use a variant of the well-known Sunada
method for producing length-isospectral Riemannian manifolds [11] that allows one
to handle totally geodesic submanifolds of varying codimensions. The case of totally
geodesic subsurfaces of a hyperbolic 3—manifold is handled by [3], and the challenge
we overcome is to address all codimensions simultaneously.

Define the fotally geodesic spectrum of a locally symmetric Riemannian orbifold M
to be the set
isometry classes of orientable nonflat finite-
(1) TG(M) = volume totally geodesic subspaces X C M = {(Xj,mx;)}.
with multiplicity my

We say that M| and M, are geometrically isospectral if TG(M1) = TG(M3). The
totally geodesic set of a locally symmetric, Riemannian orbifold is

isometry classes of orientable nonflat finite-

@) TG(M) = { volume totally geodesic subspaces X C M

b=t
We say that M, M, are geometrically equivalent if TG(M;) = TG(M,).

Theorem 1.1 For every commensurability class C of closed arithmetic hyperbolic
m—orbifolds with m > 3, we have the following:
(a) Foreach M € C, there exist nonisometric finite covers M’ and N’ of M such
that TG(M') =TG(N').
(b) Foreach M € C, there exist infinitely many pairs of nonisometric, finite covers
(Mj, Nj) of M such that
(i) TG(M;) =TG(Nj) forall j;
(ii) the ratio Vol(Mj)/ Vol(Nj;) is unbounded.

The orientability condition in (2) is a matter of taste, as a small modification of
our methods allows for nonorientable geodesic subspaces. Our methods can produce
examples modeled on other symmetric spaces of noncompact type, but the technicalities
would obscure the basic ideas behind our construction, which is general enough to
highlight the basic procedure (see Theorem 5.3 for a generalization of Theorem 1.1).

Acknowledgements The authors acknowledge support from the US National Science
Foundation grants DMS-1107452, 1107263, 1107367 “RNMS: GEometric structures
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NSF grants DMS-1105710 and DMS-1408458. Stover was supported by NSF grant
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2 Notation and overview

In this section, we outline the construction of the covers required to prove our main
results. Before providing this outline, we briefly set some notation and terminology
that will be used throughout the article.

2.1 Preliminaries

A finite-volume hyperbolic m—manifold M is arithmetic if its fundamental group T’
has a commensurator Comm(I") = {g € Isom™ (H™) | I", g['g~! are commensurable}
that is dense in Isom™ (H™) (see [5, (16.3.3)]). The subclass that exhibits the richest
collections of totally geodesic submanifolds is the subclass of so-called standard
arithmetic manifolds, which we now describe.

Throughout this paper, k& denotes a number field, Oy, its ring of integers, and ¢ a
nondegenerate quadratic form over k. For a prime ideal p of O, let k;, denote the
localization of k at p and Oy, is its ring of integers. Call (k, ¢) an admissible hyperbolic
pair when k is totally real and ¢ is positive definite at all but one real place of &, at
which it has signature (m, 1). Set G=S0(gq), fix a k —rational embedding :: G— GL,,
and define G(Ox) = =1 (1(G(k)) N GL4(O)). Since the k—isomorphism class of G
is independent of the similarity class of ¢, we can assume that the matrix representative
t(gq) for g lies in GL;(Oy).

An admissible hyperbolic pair gives rise to a commensurability class of m—dimensional
hyperbolic orbifolds as follows. Restriction of scalars followed by the appropriate
projection induces a map 7: G(k) — PSOg(m, 1) with finite kernel, and we call the
image I'y = m(G(Oy)) aprinciple arithmetic lattice in PSOg(m, 1). As PSOg(m, 1) =
Isom™ (H™), the lattice 'y is also the orbifold fundamental group of the orientable
hyperbolic orbifold M, = I';\H™.

We call hyperbolic manifolds commensurable with Mt standard arithmetic manifolds,
and emphasize that every even-dimensional arithmetic hyperbolic manifold is standard.
However, when m is odd, there are infinitely many commensurability classes of non-
standard arithmetic lattices. See [4] for more details on parametrizing commensurability
classes of arithmetic hyperbolic orbifolds.

For any lattice I in PSQq(m, 1), let T be the lift of T to SOg(m,1). When m is
even, the groups PSOq(m, 1), SOy (m, 1) are isomorphic and so I' = I"'. When m is
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odd, SOy (m, 1) is a two-fold covering of PSQq(m, 1), and hence we have a central
exact sequence
l—puy—I—0>T—1,

where 115, the group of 2™ roots of unity, is the center of SOq(m, 1). If this exact
sequence does not split, there is an index-two subgroup of I' for which the associated
sequence does split. In other words, possibly passing to an index-two subgroup when
m is odd, we can assume that ' embeds as a lattice in SOq(m, 1).

Associated with any totally geodesic embedding f: H"” < H" is an injection
fx: PSo(O(n, 1) x O(m —n)) — PSOy(m, 1),

and we will denote the image by Hy. Given a torsion-free lattice I' in POg(m, 1),
proper, totally geodesic, finite-volume submanifolds of M = I'\H™ are then associ-
ated with embeddings f* as above such that I'N Hy is a lattice in Hy. Notice that, while
M is an orientable manifold, a geodesic submanifold can be nonorientable. Moreover,
the submanifold is oriented if and only if (I' N Hy) C fx (Po (SO(n, 1) x SO(m —n))).

We now relate I' N Hy to the fundamental group of the geodesic submanifold. Let
Np = A\H”" be an oriented totally geodesic submanifold of M of dimension 7.
Then we have an injective homomorphism A — I". Choosing a lifting of Ny — Mt
to an embedding f: H” < H" of universal coverings, we see that A is a subgroup of
' N Hy. Assuming that I" lifts to SOg (2, 1), we obtain an injective homomorphism
fx: A —>SO0(n, 1) xSO(m —n). The real Zariski closure of f, (A) is then of the form
SOy(n, 1) x Hp for some closed subgroup Hp of SO(m —n).

As is well-known, an orientable finite-volume totally geodesic subspace Np of Mt is
also arithmetic [4, Section 3]. Associated with N is an (n+1)—dimensional quadratic
subform r of g with orthogonal complement ¢ (ie ¢ is k—isometric to r € ¢) such that
the k—groups H, = SO(r), H; = SO(¢) and H = H, x H; satisfy

H,(R) =SO(n,1), H;[R)=SO(m—n) and A = f,(A)C H(k).

The semisimple k—group H is naturally a k—subgroup of G. We call A a totally
geodesic subgroup of either T or the lift " of T to G(Oy); recall from above that A
is isomorphic to a subgroup of both I" and T".

2.2 Strategy of proof for geometric equivalence

We will find a finite group G, a surjective homomorphism p: I' — G, and two subgroups
C:1, Cy C G such that

3) p(A)NCr=p(A)NCy
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for all totally geodesic A C I'. It then follows from covering space theory that the
finite covers M, M, associated with Ty = p~1(C}), I', = p~1(C,) contain exactly
the same totally geodesic submanifolds (see [3, Lemma 4.1]). Thus, it suffices to
find a map p: G(Or) — G such that gcd([G(Og) : kerr N G(O)], |Ci]) = 1 and
such that (3) holds. Let Sy denote the set of nondyadic primes of Oy not lying over
a prime dividing the index [G(Ok) : ker w N G(Of)]. The candidates for G and p
are the natural reduction maps pp: G(Or) — G(O/p), where p is a prime ideal
of O. Set Fpr = Oy /p, where |0y /p| = p”. For a totally geodesic subgroup A, set
H, = py (/K), which sits inside of p,(G(Oy)). For our examples, C; will be the trivial
subgroup and C, will be a cyclic group of prime order £ such that £ does not divide
the order of H, for any totally geodesic subgroup. In that case, (3) will be satisfied
and the manifolds M; and M, associated with the pullbacks of C; and C; will be
geometrically equivalent. Furthermore, notice that, since our covering has odd degree,
nonorientable manifolds only lift to nonorientable manifolds, so TG(M7), which only
contains oriented submanifolds, indeed equals TG(My).

Finding the desired prime { requires two main steps:

(a) Compute |pp(G(O))|. This step uses structure theory of algebraic groups, basic
Galois cohomology, and strong approximation. We obtain the diagram

G(Or) —— G(Op)
) ""l ppl
| —— F(F,pr) — G(Fpr) —— G(Fpr) —— H'(Fpr,F) — 1

where G is the simply connected cover of G and F is a finite [F,r —group.

(b) Determine all possible divisors of | H,|. This step uses Bruhat-Tits-theoretic
computations associated with the diagram

AC—— H(kp) N G(Oy)
(5) ppl l
H,“——— H(F,r)

where H is a certain algebraic IFpr —group associated with H. We know the right
vertical map is surjective, and hence we can realize H, as a subgroup of H(F,r).
Recall that k;, denotes the localization of k at p and O, is its ring of integers.

Using the calculations for the orders of the groups p,(G(Ok)) and the subgroups H,,
we find the prime £ using Zsigmondy’s theorem [15].
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2.3 Strategy of proof for geometric isospectrality

Following [3], to produce geometrically isospectral manifolds we require two good
primes pi, p, where we can use the same prime £ for both p; and p, in the above
construction. The key observation in using the two primes p1, p is that, since M; is
a cyclic cover of degree £ to which every geodesic submanifold of M, has exactly £
distinct lifts, the geometric spectrum of the orbifolds satisfies

(6) TG(My) = {(X.mx,1)} = {(X. bmx )},

where TG(My) = {(X,my ¢)}. The validity of (6) follows from the argument used
in [3, page 178] to establish this for totally geodesic subsurfaces of a hyperbolic 3—
manifold. That there exists a prime £ that satisfies the necessary properties for both p,
and p, is a straightforward application of the Chebotarev density theorem. In particular,
there is a positive-density set of primes p for which our methods apply.

3 Step (a) Computing |0,(G(Ox))|

For each p € Sy, let g, denote the reduction of g to O /q =F,r. We will say ¢ has a
good reduction at p if g, is nondegenerate; note that the subset 1 C Sy where ¢ has
good reduction is cofinite. For p € Sy, set G, = SO(m + 1; p”) to be the [F,r —points
of SO(gp). Over a finite field, orthogonal groups are always quasisplit, and hence
come in one of three types (see [7, Table 1] for the orders of these groups):

* By, the only form of By, arises when dimg = 2n + 1. It has order

n
(7) S0@n +1; p")| = p"™ T] (0?7 - 1.
j=1

e Dy p, the split form of D, arises when dimg = 2n and discq is a square
in [Fpr . It has order

n—1

®) S0F 2n; p")| = p"" V(™ =) [T = 1),
j=1

* Dy 1, the nonsplit quasisplit form of Dy, arises when dimg = 2n and disc ¢
is not square in [Fr . It has order

n—1

) SO~ @2n: p")| = p"" " ™" + 1) [[(*7 = D.
j=1
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We have the exact sequence of algebraic k—groups (see [8, Section 2.3])
1 — pp —> Spin(g) —> SO(g) — 1,

where (1, is the cyclic group of order two. This sequence yields the exact sequence for
[Fpr —points

1 — py —> Spin(q) (Fpr) — SO(q)(Fpr) —> F i /(F 5 )* —> 1.
Strong approximation (see Lemma 1.1 and Theorem 2.3 in [10]) gives us that
Pp: Spin(q)(Ok) — Spin(q)(Fpr)
is surjective, and we obtain the following commutative diagram:
Spin(¢)(Ox) —— SO(¢)(Ok)

| |

I —— py —— Spin(q)(Fpr) —— SO(q)(Fpr) —— F 5 /(F )* —— 1
Using this commutative diagram and noting that |IF;, / (Fpﬁ)zl = 2, we obtain:
Proposition 3.1 The index [Gy, : pp(G(Ok))] is either one or two.

This result and the above list of group orders completes our calculation of |, (G(Og))|.

4 Step (b) Computing |H,| for a totally geodesic A

Our goal of this section is the computations of |H,| for a generic totally geodesic
AC G(Ok). We use the notation established in Section 2. Let p € S and G, = G(O,)
denote the parahoric of G(k,) with pro—p unipotent radical g+. It follows that
Hp = H(kp) N G, is a parahoric of H(kp) containing A, and 7-[+ = Q"' NHy is
the pro—p unipotent radical of H,. Set H to be the Fpr —group whose ]Fpr —points
are Hy/ ’H,‘f . We have the following commutative diagram where we know the right
two vertical arrows are surjections by [12, 3.4.4]:

Ac Hy G

] |

H, —— H(Fpr) —— SO(m+1, p")

Hence H,, is a subgroup of H(F,r), which is in turn a subgroup of SO(m + 1, p").
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4.1 A simplification

The group ﬁ(IFpr) fits into the exact sequence
(10) 1 — Ry (H)(Fpr) —> H(Fpr) — H*(Fpr) —> 1,

where H™ is a reductive group whose Dynkin diagram can be read off of local Dynkin
diagrams. From (10) we obtain

(11) [H(Fpr)| = [Ru(H)(Fpr)| - [H(Fpr )]

Therefore, computing |ﬁ(Fpr )| reduces to computing the size of unipotent IF,r —groups
and the size of H*4(F,r). We compute the former with the following proposition.

Proposition 4.1 If U is a unipotent group over a finite field Fr , then |[U(F,r)| = p°
for some s € Z>y.

Proof Since IFr is perfect, U splits [1, Corollary 15.5(ii)]. Therefore U admits a
composition series

U=Uy,DU; DUzD"'DUSZ{l}

of connected I, —groups such that U; /U; 4 is [Fpr —-isomorphic to G,. Since each
U; 4+ is connected, H L(EF,r, U;41) is trivial by Lang’s theorem [8, Theorem 6.1], and
hence

1 — Ui+1 (Fpr) —_— Uj(Fpr) —_— Ga(Fpr) — 1

is exact. We proceed by induction on the length of the composition series. If the series
has length 0, then U = G, and hence |U(F,r)| = p”. If the statement is true for
series of length j, then the above exact sequence implies it follows for series of length
Jj + 1, and the result follows. |

4.2 Computing |H™I(F )|

We are now left computing the orders of ITIred(IFpr). To do so, we use the classification
of local indices [12]. A p-adic group H is called residually split if ranky (H) =
rankju (H), where k" is the maximal unramified extension of k. The classification
of local Dynkin diagrams of simple ky—groups falls into two classes: residually split
and not residually split. As we explain later, we can restrict ourselves to computing
these orders for totally geodesic groups of maximal dimension for both Hi*d(FF ) and
HEY(Fpr).
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Proposition 4.2 Continuing the notation of the earlier sections, suppose Hy = SO(q)
for some quadratic subform gy C q of odd dimension 2n—1 >4 and let p C Sy. Then
|ITI{)ed(IFpr)| divides pXY , where X € Z>q and Y is one of the following:

(T T2 =1

(T2) (p*" =1DTI;Z (pz’f—l)

(T3) (p" - 1>j:1)( 1?7 —1)( ]_l(pz”—l)) for3<k<n-3
(T4) (p* —1)(p" = 2>i1)n;’;?<p2’f— 1)

(T5) (pr=D £ DTZHp* 7 1)

(T6) ,_l(p”f 1)

(T7) - DI =1

(T8) (l"[jzl(pz” D)(TZ (27 = 1)) for3 <k <n—3

Proof Since every parahoric lies in a maximal one it suffices to compute the orders of
all possible reductions of maximal parahorics. We analyze all possible local indices
of H and remove one vertex to obtain the Dynkin diagram of H™d [12]. We then use
the orders of Section 3, [7], and Proposition 4.1 to compute the size of each possible
quotient. For each case below, we give the local diagram, where we have distinguished
the nodes associated with similar reductions. We follow the diagram with a table listing
the Killing—Cartan type and order of the reduction group associated with each class of
node.

Case1 H is residually split of type B,_1:

T T2 T3 Ta = Ts

The Killing—Cartan types and orders of the reduction groups are given by:

type of H™ order of Hr

Ti | Bn—1 p’("—l)zl—[ (p2r] 1

To | AvxAix By (p7 (0¥ =1 (p O T2 (02 - 1)
T3 | Dg X Bp—j—1 (prk(k 1)(prk:|:1)l—[] 1(P2rj 1))

B<k=n-3) x (pr = 1)21—[" —k— 1(p2rj_1))
Ta | Duax Ay (pre=2=(pre=2 £ DT (P = D) (p* = 1)
Ts | Dp—1 pr(n 1)(n— 2)(pr(n D:I:l) l‘[} l(er] 1)
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Case 2 H is not residually split of type Bj,_1:

V1 U2 U3 Up—3 : Up—2 : Up—1
L \
@B, = feseecsen : =

Ts T7 Ts T7 Ts

The Killing—Cartan types and orders of the reduction groups are given by:

type of H™! order of Hrd
_9)2 — .
7~6 Bn_2 pr(n 2) l—[;1=% (pzr] B l)
2 _ .
Tr | Arx Bus " (P> = D)(p IS (0?7 = D)
—_1)2 _ .

Ts | Br—1 X Bp—r—1 (pr(k 1) njf:%(er] 1))

B=<k=n-3) X(pr(n—k—1)2 l—[n —k— 1(p2” ))

This concludes the proof. 5

Proposition 4.3 Continuing the notation of the earlier sections, suppose Hy = SO(qo)
for some quadratic subform qo C q of even dimension 2n > 4 and let p C S;. Then
|HE4(Fpr)| divides pXY, where X € Z>o and Y is one of the following:

SH (P Dz —1)

(S2) (P> =12 (p" "=V 1) n’-"3 2ri —1)

(S3) (PR LD (P P LD (T2 P> D) (T2 (p?7 =1)) for3<k <n-3
S4 Tl =1

S5 (P =D —1)

(S6) ( 1—1(P2r]— ))( 1—1(P2”—1)) for3<k=<n-2

or any of (T1)—(T8) listed in the previous proposition.

Proof The idea and presentation of this proof is the same as for Proposition 4.2.

Case 1 H is residually split of type D, and in fact H splits over k;:

Vo Un
U2
1
IDSI,')I "Ul
Sl 82 53 52 Sl
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The Killing—Cartan types and orders of the reduction groups are given by:

type of H™d order of Hd
St | Dy P (£ D2 (0 = 1)
Sy | Ay X Ay X Dpy (p"(p* —1))? (prnDn= 3)(17’(” DL D2 - 1))
Sy | Dg X Dyg (pr =D (prk £ 1) [TAZH (> — 1))

(3 fk Sn—3) (pr(n k)Y(n—k— l)(pr(n k) + 1) Hn —k— l(pzrj ))

Case 2 H is residually split of type D, and H is nonsplit quasisplit over both k,
and k)":
p

2D(1) —_t Ioeeeeennn. l [ S

n,n—1 I \ 1 1 I T 7 1

Sy Ss Se Ss Sa

The Killing—Cartan types and orders of the reduction groups are given by:

type of H™d order of H™?
12 — ;
Sa | Bumr PrO TS (02 =)
Ss | A1 x By (" (P> = 1) (P "D [T (0?7 - 1))
_1)2 k— : AV —k .
Ss | Bt x Bute (0" OIS (027 = D) (pr RIS (07 - 1))
B3=<k=<n-2

Case 3 H is not residually split of type D, and H is nonsplit quasisplit over k;, but
splits over k,":

N‘z U3 Un—3 ¢ Un—2 ! Un—1
2pM | I [

nn—1 v;/\ 1 I — 1

Ti T2 Ts Ta Ts

Case4 H is not residually split of type D, and H is not quasisplit over k,, but splits
over ky":

lD(l) —_ | | P

n,n—2 I \ T 1 I 1 7 i

Ts T Ts T Ts

These last two diagrams are precisely the same as the diagrams analyzed in the previous
proof, and hence the corresponding Killing—Cartan types and orders are the same. 0O
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5 Proof of Theorem 1.1

Recall that Gy, = G(Oy/p) = SO(m + 1, p”), and in the previous two sections, we
analyzed the orders of its subgroups p,(G(Ok)) and H,. To prove Theorem 1.1, we
need the following result of Zsigmondy:

Theorem 5.1 [15] Let p be an odd prime and d be an integer greater than one.
There exists a prime divisor of p® + 1 that does not divide p/ + 1 forall 0 < j < d
and does not divide p/ — 1 forall 0 < j <2d.

Lemma 5.2 Let (k,q) be an admissible hyperbolic pair and S the set of nondyadic
primes in O where q has good reduction. Then for each p € S, there exists a
subgroup C, < Gy, such that C, N H, = {1} for any H,.

Proof When dim(q) =2n-+1, we know that p"” +1 divides |G| for any prime p € S
by (7). For the groups H,, we know that | Hy| divides p* []; (p/ —1) ]_[j,(pj/ +1),
where j <2r(n—1) and j' <r(n—1). Consequently, p"" +1 is not a divisor of | H|
for any totally geodesic subgroup. By Theorem 5.1, there exists a prime divisor £,
of p™ + 1 that does not divide p/ 4+ 1 for 0 < j < nr or p?/" —1 for 0 < j <n.
It follows that £, divides |G| but not |H,| for any totally geodesic subgroup. By
Cauchy’s theorem, there exists g € G}, of order £, and it follows for C, = (g) that
C, N Hy = {1} for any totally geodesic subgroup.

When dim(g) = 2n and p € S;, we must modify the argument above. If det(g) is not
a square modulo p, then we can proceed as above since p"” + 1 divides |G,|. When
det(g) is a square modulo p, we have G, = SO (2n; p”). In this case, there exists
g € SOT(2n; p”) such that g has n/2 eigenvalues Apr and n/2 eigenvalues Ap, ,
where A,r € F X o is a generator for the group of units; we can take a generator for the
diagonal subgroup of (SOT (2, p”))"*. Taking £ to be an odd prime divisor of p” —1,

which exists by Theorem 5.1, and setting a = (p” —1)/£, we assert that C, = (g%)
is the desired subgroup. To see this, note that if y € PSOg(2n — 2, 1), then y has
an eigenvalue of +1 since 2n — 2 is even. As every totally geodesic m’—suborbifold
with m’ > 2 in a standard arithmetic orbifold is contained in a codimension-one totally
geodesic suborbifold (see [4]), it follows that p,(y) has £1 as an eigenvalue. As no
nontrivial element of C, has this property, C, N H, = {1}. m|

Proof of Theorem 1.1 for standard arithmetic orbifolds As Theorem 1.1 for m =3
was proven in [3], we will assume m > 4 and so dim(g) > 5. We first prove (b). By
definition, I' = 71 (M) is commensurable with G(QOy,) associated with some admissible
hyperbolic pair (k,q). Strong approximation implies that p,(I') = py(G(Ok)) for
all but finitely many p, hence by Proposition 3.1 there is an infinite subset S, of S
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such that [Gy : pp(I")] = 1 or 2 for each p € S,. By Lemma 5.2, there exists a
subgroup C, < G, such that C, N H, = {1}. Since C, is cyclic and of odd prime
order, it follows that C, < p,(I"). The subgroups C,, {1} satisfy (3) and so the
covers My, Mc, corresponding to the finite-index subgroups ker py, py 1(Cy) are
geometrically equivalent.

To produce geometrically equivalent covers with unbounded volume ratio, for each
odd prime £, we set Sy to be the subset of primes p € S, such that C, has order £.
We first assume that Sy is infinite for some £. In that case, for each j € N and for any
P1.....p; €Sy, the image of 71 (M) under reduction modulo []; p; has index 2% in
[1; Gy, for some s; € N. By our choice of ¢, the subgroup C; , = [[; Gy, of [[; Gy,
has trivial intersection with the image of any totally geodesic subgroup, and visibly this
property holds for any subgroup of C; 4. Setting M; and N; to be the finite covers
of M corresponding to the finite-index subgroups /)p_ll...pj (1) and Pp_ll...pj (Cjp)of T,
respectively, we obtain a pair of geometric equivalent finite covers of M with volume
ratio Vol(M;)/ Vol(N;) = 28

We now assume that |Sy| is finite for all odd primes £. Since S, is infinite and each
prime p € S, is in Sy for some odd prime £, there must be infinitely many odd primes
¢ with Sy # @ Fixing an infinite sequence {{;} of distinct odd primes with S¢, # &,
for any j and any p; € Sy, , we again have [Gy; : pp; (I')] =1 or 2. By our choice of
pj, we have a subgroup Cy; < Gy, that intersects the image of every totally geodesic
subgroup trivially. Setting the manifolds AM; and N; to be the finite covers of M
corresponding to the finite-index subgroups ,op_j1 (1) and ,op_j1 (Cy,) of T', respectively,
we obtain geometrically equivalent finite covers with volume ratio ¢; .

We now prove (a). As M is compact and dim(g) > 5, we see that k # Q by
Godement’s compactness criterion (see [5, Corollary 5.3.2]) and Meyer’s theorem
(see [5, Proposition 6.4.1]). Since k # Q, by the Chebotarev density theorem there
is a prime p with two overlying primes pi,p, € S, such that Oy /p; = Ok /p>.
For a pair of such primes py,p, we have G, = Gy,, and can apply Lemma 5.2
to both. We obtain finite-index subgroups ,op_llpz (Cp, x {1}) and ,()p_ll)32 ({1} x Cp,)
of I'. The associated finite covers My ; and M; ¢ of M have the same geometric
spectra. To see that TG(M, ¢) = TG(My, ), we first note that the finite cover My 4
associated with the finite-index subgroup ,op_llp ,(Cpy X Cp,) in 11 (M) is geometrically
equivalent to both My ; and M, and so TG(My ;) = TG(M; (). To see that the
multiplicities are equal simply note that both manifolds are cyclic covers of My 4 of
degree ¢ and thus separately satisfy (6) with M/ 4. That the manifolds are nonisometric
follows from an argument similar to one used in [3, page 179]. Briefly, each element
y € m1(Mj ) is trivial under reduction modulo p; while there are infinitely many
elements in 771 (Mp ;) with image that generates Cy, . Consequently, these elements in
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m1(My,;) with order £ image under modulo p; cannot be conjugate to any element
in (M, ) in Isom(H™). However, if M,y and My ; are isometric, by Mostow
rigidity, w1 (M ¢) and 7y (My ;) are conjugate in Isom(H™), and so M ¢ and My ;
are nonisometric. O

The proof for a nonstandard arithmetic hyperbolic orbifold M = I'\H"” is similar.
As in the standard arithmetic setting, there is an associated number field £ and an
algebraic k—group G for which I' is commensurable with the group G(Oy). There is
an infinite set of primes S of Oy such that for each p € S, the local group G(k) is
isomorphic to SO(V,, gy), where (V}, ¢p) is a quadratic space over k;. Restricting to
primes in S}, the proof then follows as in the standard arithmetic case. For (a), we
note that when M is a closed arithmetic hyperbolic m—orbifold with m > 4, the field
of definition of M is not QQ (see [5, Section 6.4]).

This method can be implemented for any finite-volume, complete, hyperbolic m—
orbifold when m > 4.

Theorem 5.3 If M is a complete, orientable, finite-volume hyperbolic m —orbifold
with m > 4, then the following holds:

(a) If the field of definition of M is not Q, then there exist finite, nonisometric
covers M’ and N’ that are geometrically isospectral.

(b) There exists a sequence (M;, N;) of pairs of nonisometric finite covers of M
such that M; and N; are geometrically equivalent and Vol(Mj)/ Vol(Nj) is
unbounded as a function of j .

Proof Given M with I' = (M), there exists an injective homomorphism p: I' —
PSOq(m, 1) such that the field generated by the matrix coefficients is a number field &
(see [13] or [2, Section 4.1]); this field is the so-called field of definition. If R is
the O —submodule of k generated by the entries of p(I'), there is a cofinite subset
of the set of prime ideals P of Oy such that R/P = O /p = F,r for each p € P,
where 8 = Rp. Since p(I') < PSOy(m, 1) is Zariski dense, we can apply Nori—
Weisfeiler strong approximation [6; 14]. When m + 1 is odd (resp. even), there exists
an infinite set of nondyadic primes S, C P such that the image of p,(I") contains the
commutator subgroup Q(m + 1; p”) (resp. QE(m + 1; p™)) of SO(m + 1; p”) (resp.
SO* (m+1; p")) for each B € S, (see [2, Theorem 5.3]). The argument now follows
as in the previous case of standard arithmetic hyperbolic m—orbifolds. a

Remark Our use of Zsigmondy’s theorem was inspired by [2], where Long and
Reid proved that any lattice I' < SO(n, 1) contains hyperbolic elements with infinite-
order holonomy. In [3], the use of Zsigmondy’s theorem was replaced by a direct
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argument. Prasad and Rapinchuk [9] have general results on the existence of semisimple
elements whose Zariski closure is dense in a maximal torus. It is possible to replace
our elementary counting argument with an argument based on [9], though one must
still determine the possible images of subgroups associated with totally geodesic
submanifolds as in Section 4.
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On phantom maps into co-H-spaces

JAMES SCHWASS

We study the existence of essential phantom maps into co-H—spaces, motivated by
Iriye’s observation that every suspension space Y of finite type with H;(Y; Q) # 0
for some i > 1 is the target of essential phantom maps. We show that Iriye’s
observation can be extended to the collection of nilpotent, finite-type co-H—spaces.
This work hinges on an enhanced understanding of the connections between homotopy
decompositions of looped co-H—spaces and coalgebra decompositions of tensor
algebras due to Grbic, Theriault and Wu.

55P45, 55837

1 Introduction

We will work in the category Top of spaces having the homotopy type of a pointed CW
complex and pointed maps between them. We will restrict our attention throughout
to simply connected spaces, or their loop spaces. A map X — Y is called a phantom
map if for every n the composite

Xy—>X—->Y

is nullhomotopic, where X,, — X is an n—skeleton for some CW structure of X . We
offer an alternative characterization of this concept to illustrate that the choice of a CW
structure X is insignificant; according to Bousfield and Kan [4], X — Y is phantom
ifandonlyif X - Y - Y ) s nullhomotopic for every n, where Y™ denotes the
n™ Postnikov approximation of Y .

From the definition and characterization given above, it is clear that a phantom map must
induce the zero map on homotopy groups, and on any homology theory, and so these
maps appear trivial upon passage to such common algebraic models for topological
spaces. On the other hand, phantom maps can be of genuine topological interest. The
theory of phantom maps has been used by Harper and Roitberg [12] and Gray [9],
among many others, to produce and study examples of distinct homotopy classes of
spaces X and Y which have the same n—-type, ie X ) ~ y® forall n. Roitberg [20]
has also used the theory of phantom maps to compute the homotopy automorphism
groups of particular spaces; in general the computation of homotopy automorphism

Published: 14 March 2017 DOI: 10.2140/agt.2017.17.847


http://msp.org
http://www.ams.org/mathscinet/search/mscdoc.html?code=55P45, 55S37
http://dx.doi.org/10.2140/agt.2017.17.847

848 James Schwass

groups is intractable. These examples serve to illustrate that phantom maps play a
significant role in Top. But, since these maps vanish under many of our favorite
functors, they prove difficult to study, or even to locate. The purpose of this work is to
locate new examples of phantom maps; the analysis of particular invariants of these
phantom maps and the structure of the collection of phantom maps will take place
elsewhere.

The constant map is an obvious example of a phantom map. Of more interest are
essential (ie homotopically nontrivial) phantom maps, which abound in Top. We offer,
as evidence of this fact, the following theorems of Iriye, and McGibbon and Mgller.
We will say a space X is of finite type (over Z) if each H,(X;Z) and 7,(X) is a
finitely generated group. We write Ph(X, Y) for the subset of [X, Y] consisting of
homotopy classes of phantom maps.

Theorem 1.1 [13] Suppose Y ~ XX is a nilpotent suspension space of finite type.
If H;(Y;Q) # 0 for some i > 1 then Y is the target of essential phantom maps from
finite-type domains.

Theorem 1.2 [17] If X and Y are of finite type and Ph(X, Y) is not the one point
set, then Ph(X, Y') is uncountably large.

In many senses, the concept of a co-H—space is a mild generalization of that of a
suspension space. As such, many statements that hold true for the collection of
suspension spaces are also true for the collection of co-H-spaces. We wondered if one
could replace the suspension space Y in Theorem 1.1 with any nilpotent co-H—space
of finite type. Our main result is a positive answer to this question.

Theorem 1.3 Suppose Y is a nilpotent co-H—space with H;(Y; Q) #£0 for some i > 1.
Then Y is the target of essential phantom maps from finite-type domains.

The proof of Theorem 1.3 is comprised of several pieces. For a co-H-space whose
rational homology is “large” we develop decomposition methods in phantom map
theory and appeal to recently developed highly structured decompositions of the loop
space of a co-H—space due to Selick, Grbi¢, Theriault and Wu. For a co-H-space with
“small” rational homology we exploit strong connections between phantom map theory
and rational homotopy theory discovered by McGibbon and Roitberg.

Through the theory of Lusternik—Schnirelmann category, this work can be viewed as
providing a solution to the case n = 1 of the following question. Our exposition of
Lusternik—Schnirelmann category here will be limited to the following three obser-
vations: cat(X) is a nonnegative integer, assigned to a space X, which we think of
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as a measure of the complexity of X; cat(X) = 0 if and only if X is contractible;
the spaces of Lusternik—Schnirelmann category one are precisely the noncontractible
co-H—spaces.

Question 1.4 Suppose Y has finite type, and cat(Y) =n < oco. If H;(Y;Q) # 0 for
some [ > 1,is Y the target of essential phantom maps from finite-type domains?

In Section 2.1 we lay out the preliminaries on phantom map theory. In Section 2.2
we describe recently developed connections between coalgebra decompositions of
tensor algebras and homotopy decompositions of looped co-H—spaces. In Section 3 we
develop techniques to bridge the gap between the decompositions of Section 2.2 and
the theory of phantom maps. Section 4 contains the proof of Theorem 1.3. Examples
and applications are given in Section 5.

Acknowledgements We would like to thank Jeff Strom, the author’s dissertation
advisor, for many helpful conversations regarding the content and preparation of this
paper. This work grew out of the author’s doctoral dissertation at Western Michigan
University. We are indebted to Kouyemon Iriye for supplying a critical insight into the
proof of Proposition 4.5, which helped this work reach its maturity. We would also
like to thank the referee for suggesting the inclusion of additional examples.

2 Preliminaries

Localization will play a central role in what is to follow. We assume familiarity with
the rudiments of localization; a detailed reference is [15]. Since a rationally nontrivial
p—local space is not of finite type over Z, we will have a need for a p—local analog of
the notion of a finite-type space; a space X is of finite type over Z,y if each Hy (X Z)
and 7, (X) is a finitely generated Z,)—module. We should note that a space of finite
type over Z(p) is necessarily p—local. Though we will be primarily interested in
phantom maps between finite-type spaces, we will have occasion to examine phantom
maps from finite-type domains into targets having finite type over Z ).

2.1 Background on phantom maps

In Section 2.1.1 we describe a critical identification of Ph(X, Y) with a particular
functor which factors through the category of towers of groups. In Section 2.1.2 we
describe connections between phantom map theory and rational homotopy theory that
are indispensable in discovering new examples of phantom maps from old, among
other things. Most of the material in this section can be found in the wonderful survey
article [16] of McGibbon.
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2.1.1 The tower perspective By a tower {G} of groups we mean a diagram
(1) oo Ll g, Py B3 Gy P2 G

in the category of groups. We mean something similar by a tower of abelian groups, or a
tower of sets, or really a tower of any sort of gadget— these are N°P—shaped diagrams
in various categories. A morphism of towers is a natural transformation of N°P shaped
diagrams. By lim G, we mean the limit of the diagram (1) in the appropriate category.

We now set about describing the functor lim!. On the category of towers of abelian
groups, by lim! we mean the first derived functor of lim; more concretely, if {G,} is
a tower of abelian groups, then lim G, is the kernel and lim' G, is the cokernel of the

map
l_[ Gn id—(pn) l_[ Gn

(ay,az,...) (a; — pa(az).a; — p3(as),...).

given by

Bousfield and Kan [4, pages 254-255] extend the definition of lim! to the category of
towers of arbitrary groups as follows: Given a tower {G,} of groups let [ [ G, act on
[1Gn by

(gn) - (xn) = (gnxn(Pn+1(gn+1)_l))»

where G, £+ G, is the structure map in the tower {G,}. Then lim' G, is the

orbit space of this action. This is important to us because we will have occasion to
refer to lim'! G, where {G,} is a tower of not necessarily abelian groups.

In particular, if X and Y have the homotopy type of CW complexes, then a CW structure
for X gives rise to a tower {{X.X,, Y]} of (generally nonabelian) groups; dually the
Postnikov tower for ¥ gives rise to a tower {[X, QY "]} of (generally nonabelian)
groups. We now arrive at a fundamental identification in phantom map theory.

Corollary 2.1 [4] For spaces X and Y there are bijections of pointed sets
lim'[SX,, Y] = Ph(X,Y) = lim'[X, QY ™).
The identification made in Corollary 2.1 allows for the introduction of algebraic methods

for characterizing the condition Ph(X,Y) = *. Given a tower of gadgets (groups,
sets, etc) {Gp} let G](C”) be the image in Gy of the composite of the structure maps

G, —> Gy —>---—> Gy

when n > k and for n < k set G(”) = 1. This defines, for each k£ > 1 a subtower {G(n)}
indexed by n, of the tower {Gn} Notice that for fixed k the sequence of images G( ")
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are nested; we say the tower {G,} satisfies the Mittag-Leffler condition if all of the
nested sequences G,(cn) satisfy a descending chain condition: explicitly, for each k
there is some N such that for all # > N one has G,(C") = G,(CN).

It is well known that if a tower {G,} satisfies the Mittag-Leffler condition, then
lim! G,, = . When the tower {G,} is comprised of countable groups, the converse of
this statement is also true:

Theorem 2.2 [17] Suppose G, is a tower of countable groups. Then lim' G,, = * if
and only if the tower G, satisfies the Mittag-Leffler condition. Moreover, if lim' G,, # x,
then lim! G,, is uncountably large.

It is worthwhile to note that, when X" and Y are of finite type over Z or Z,) for
some prime p, for each n the groups

[©X,,Y] and [X,QY®)]

are countable. Theorem 2.2 will be used to develop decomposition methods in phantom
map theory in Section 3.

2.1.2 Phantom maps and rational equivalences McGibbon and Roitberg have char-
acterized the finite-type spaces that are not the targets of essential phantom maps from
finite-type domains in terms of the existence of particular rational equivalences.

Theorem 2.3 [18] For a nilpotent, finite-type space Y , the following are equivalent:
(1) Ph(X,Y) = x for all finite-type domains X .
(i) Ph(K(Z,m),Y) = = forall m.

(iii) There is a rational equivalence [ [, K(Z,mq) — QY .

We should note that the direction of the rational equivalence in Theorem 2.3(iii) is
significant; for any space Y there is a rational equivalence QY — [[ K(Z,mp).

We will need a p—local version of the implication (i) => (iii) of Theorem 2.3, which
we record as Proposition 2.4. This will be used to establish a lemma in Section 3
required to develop decomposition methods in phantom map theory.

We have previously observed that if X and Y are of finite type over Z or Z,), then
the groups
[©X,.Y] and [X,QY®)]

are countable for all #. As such, Theorem 2.2 can be used to characterize the condition
Ph(X, Y) = * in terms of the Mittag-Leffler condition. This is the main point required
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to complete the construction of the rational equivalence [ [ K(Z,mg) — QY as given
by McGibbon and Roitberg, given the hypothesis Ph(X, Y) = * for all finite-type
domains X, and so we arrive at the following partial refinement of Theorem 2.3.

Proposition 2.4 Suppose Y is nilpotent and has finite type over Zp). If Ph(X,Y) =
for all finite-type domains X , then there is a rational equivalence

nK(Z’mﬂ) — QY.

The converse of this statement could feasibly hold, but we have not yet had occasion
to check this. Indeed, if conjugacy classes in [X, QY ] are of finite cardinality for
every n, then the converse of Proposition 2.4 can be established using the proof of
Theorem 2.3 given by McGibbon and Roitberg [18].

Theorem 2.3 only begins to hint at the connections between phantom map theory and
rational homotopy theory. The next result is another glimpse of these strong connections.
We should note that the result stated here is slightly stronger than in [18], though the
authors’ argument establishes the result in light of the observation that [X, QY ] is
a countable group when X and Y are of finite type over Z or Z,). Before stating
the result, we remark that Ph(X, Y) is a contravariant functor in X and a covariant
functor in Y .

Theorem 2.5 [18] Suppose Y and Y’ are of finite type over Z or Lpy. IfY — Y’
induces a surjection on 1y ® Q, then for every finite-type domain X the induced map

Ph(X,Y) — Ph(X, Y)

is surjective.

Note that for each prime p and each nilpotent space Y the p-localization ¥ — Y
is a rational equivalence, hence induces surjections on 7, ® Q, and so we arrive at a
corollary which has been well-known in the phantom map literature, and will be one
of our primary tools for detecting essential phantom maps.

Corollary 2.6 Suppose Y is a nilpotent, finite-type space. If Y(p) is the target of
essential phantom maps from finite-type domains, then sois Y .

2.2 Homotopy decompositions of looped co-H-spaces

Our jumping off point is the generalized Bott-Samelson theorem, due to Berstein.
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Bott-Samelson theorem [2] IfY is a simply connected co-H-space, then there is a
natural algebra isomorphism

Ho(QY) = T(E7 He(Y)),

where H,(2Y') is equipped with the Pontryagin product. (Here homology has coeffi-
cients in a PID k and H(Y) is a free k—module.)

For the rest of this section we fix a prime p; the ground ring for all algebraic objects
will be [, the field with p elements. All homology in this section has [, coefficients.
Many of the results of this section remain true if we replace I, with an arbitrary field,
though we will have no need for such generality. We write 7" for the free graded tensor
algebra functor taking the category of vector spaces to the category of graded algebras.

In the 1980s, F Cohen, Moore and Neisendorfer developed a technique fueled by
the Bott—Samelson theorem which they use to determine the homotopy exponents of
odd-dimensional spheres; the difficulty of drawing concrete conclusions regarding
homotopy groups of spheres is well documented, and illustrates the power of this
technique. We now loosely outline one component of this program. Cohen, Moore and
Neisendorfer sought out algebraic decompositions of 7' (X! H, (Y)), and showed that
these algebraic decompositions have geometric realizations in the form of homotopy
decompositions of QY for Y = S2"*! among a few other specific spaces.

In [22], Selick and Wu begin developing functorial analogs of the ad hoc decomposition
methods of Cohen, Moore and Neisendorfer, apparently motivated by the power of these
methods, along with a conjecture of Cohen. The functorial decomposition methods
reach maturity in [11], after contributions by Grbi¢, Theriault, Selick and Wu spanning
the course of about a decade. Before describing these functorial analogs, we lay out
some nomenclature and conventions.

Of course as vector spaces T'(V) = @, Ve where VOO =T p. This identifies
V' as a submodule of 7'(V'). The algebra T(V) is equipped with a unit I, — 7'(V')
and augmentation 7'(V') — [F,, defined by inclusion of and projection onto I, = yeo,
respectively. The tensor algebra 7'(V') is naturally endowed with the structure of
a Hopf algebra by declaring the elements of V' to be primitive. More explicitly,
since T(V) is the free algebra on V, the linear map V — T (V) ® T (V) given by
v 1 ®v+4v® 1 extends uniquely to a map of algebras A: T(V) - T(V)Q T(V),
giving a comultiplication on 7'(V'). One can check that the unit and augmentation are
morphisms of coalgebras and algebras, respectively, and so we have given 7'(V') the
structure of a Hopf algebra. This discussion serves to illustrate that we can think of the
tensor algebra functor 7' as taking its values in the categories of algebras, coalgebras
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or Hopf algebras. We will specify which category we mean to take for the target of the
functor T if there is potential for confusion.

A natural coalgebra retract of T is a functor A4 from vector spaces to coalgebras
equipped with natural transformations A L, 7 and T % A such that RI is the
identity natural transformation on A. A natural coalgebra decomposition of T is a
pair of functors 4, B from vector spaces to coalgebras equipped with natural coalgebra
isomorphisms 7" =~ A ® B. Since ® is the categorical product in the category of
coalgebras, which happens to be a pointed category, it follows thatif 7=~ A ® B is
a natural coalgebra decomposition, then both 4 and B are natural coalgebra retracts
of T'. A natural sub-Hopf algebra of T is a subfunctor B from vector spaces to
Hopf algebras. A natural sub-Hopf algebra B of T is coalgebra split if B is a natural
coalgebra retract of T when regarded as a functor into the category of coalgebras.

We will write CoH(,) for the category of p-local co-H-spaces and co-H-maps between
them. A natural homotopy retract of 2: CoH( ) — Top is a functor 4: CoH,) — Top
equipped with natural transformations 4 — Q and Q R, A such that RT is naturally
homotopic to the identity natural transformation on A. Such a functor A is a geometric
realization over CoH( ) of a natural coalgebra retract 4 of 7' if there is a natural
isomorphism of functors from Top to the category of coalgebras

H*OZEAOE_IFI*.

A natural homotopy decomposition of 2: CoH(,) — Top is a pair of functors Aand B
from CoH(,) — Top equipped with natural homotopy equivalences 2 >~ A x B. A
natural homotopy decomposition 2 >~ A x B is a geometric realization over CoH ) of
the natural coalgebra decomposition 7' = A® B if A and B are geometric realizations
of A and B, respectively.

We are now equipped to describe the functorial analogs of the decomposition methods
of Cohen, Moore and Neisendorfer. These results give a wonderful algebraic source of
homotopy decompositions of looped co-H—spaces.

Theorem 2.7 [21] Every natural coalgebra retract of T has a geometric realization
over CoH ).

Corollary 2.8 [21] Every natural coalgebra decomposition of T has a geometric
realization over CoH( ).

We will be interested in a particular natural coalgebra decomposition of the tensor
algebra functor known as the minimal decomposition, which we now set about describ-
ing. Beginning with Cohen, there was an interest in studying the minimal functorial
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coalgebra retract A™" of T for which ¥V € A™"(V) for every vector space V;
we should note that constructions of A™™ are theoretical, and concrete information
regarding this functor can be difficult to come by [23]. Cohen conjectured that the
primitives of 7'(V'), considered as a Hopf algebra, having tensor length not a power
of p must lie in the coalgebra complement of A™"(V') in T'(V). This was confirmed
by Selick and Wu, who discovered the minimal decomposition and began studying its
structural properties in [22].

Theorem 2.9 [22] There is a natural coalgebra-split sub-Hopf algebra B™* of T
and a natural coalgebra decomposition

(2) T =~ Amin ® Bmax

Moreover, L,(V) € B™(V) if n is not a power of p. Here L,(V) denotes the
submodule of homogeneous Lie elements of tensor length n in T (V). The natural
coalgebra decomposition (2) is known as the minimal decomposition.

By Corollary 2.8, the minimal decomposition has a geometric realization as 2 ~
A™iN 5 BMaX gver CoH(,). We can find more structure in this homotopy decomposition
of 2 by making use of the observation that B™®* is a natural sub-Hopf algebra
of T'. For a Hopf algebra M , write IM for the augmentation ideal of M , and write
OM = IM/(IM)? for the module of indecomposables of M . Suppose B is any natural
coalgebra-split sub-Hopf algebra B of T'. Since B(V') is a sub-Hopf algebra of 7'(V)
for each vector space V, it follows that B(1V') is also a tensor algebra. That is, there is
a natural isomorphism of algebras

B(V) = T(GB QnB(V)),
n>1

where Q, B(V) is the image of the submodule
B,(V)=IB(V)NV® CT(V)

of B(V') consisting of elements of tensor length 7 in 7°(V) lying in the augmentation
ideal of B(V') under the natural map B(V) — QB(V). The construction of each
0, B(V) is natural, so we obtain natural isomorphisms

B=TofP QuB.
n=>1

Ideally one can geometrically realize this additional structure as well; this is the content
of the following theorem of Grbi¢, Theriault and Wu:
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Theorem 2.10 [11] Suppose B is a natural coalgebra-split sub-Hopt algebra of T .
There exist functors O, B: CoH(,) — Top with

() ='H(0uB(Y)) = 0, B(E H(Y)),

(2) 0nB(Y) is naturally a retract of an (n—1)—fold desuspension of Y\* | the n'
smash power of Y,

(3) B(Y)=Q(V,2 0nB(Y)).

The statement (2) requires some justification. Theriault [24] has shown that if X and Y
are coassociative co-H—spaces then X A Y >~ ¥ Z for some co-H-space Z. Gray [10]
showed that the coassociativity requirement could be relaxed — we need only require
that one of the factors in the smash product be simply connected or a suspension space.
Inductively, it follows that an n—fold smash product of simply connected co-H—spaces
is an (n—1)—fold suspension of a co-H-space; symbolically, for simply connected
co-H-spaces X;,i=1,...,n,

n
3) A Xi~3"17
i=1
for some co-H—space Z. Of course there may be many choices for the space Z. For
example, the well-known decomposition

X XxY)EXVIEIYVE(XAY)
and the failure of the identity
AXXY>2XVYV(XAY)

witnesses the failure of a cancellation property for ¥. This ambiguity need not worry
us, since we will only have a need to describe the homology of a space Z fitting
in X"~1Z ~ Y That the space Z can be chosen to admit a co-H—structure also
illustrates that O, B(Y) can be endowed with the structure of a co-H—space, which
will be of importance in the proof of Theorem 1.3.

3 Decomposition methods in phantom map theory

In this section we develop tools which will be used to bridge the gap between the
decompositions of Section 2.2 and phantom map theory. The loop- and wedge-splitting
theorems (and their duals) have many applications outside our present scope, due
to the existence of a vast library of decompositions in the literature to which these
theorems can be applied. To substantiate this claim, we provide an application of the
loop-splitting theorem to special cases of Question 1.4 in Example 5.3.
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Theorem 3.1 (loop-splitting theorem) Suppose Y has finite type over Z or Zy for
some prime p, and QY >~ A x QB. If B is the target of essential phantom maps from
finite-type domains, then sois Y .

Proof Take X to be an arbitrary finite-type domain and write
Gn=[X,QY"™] and H,=[X,QB™].
We make use of the identification
Ph(X,Y) ~lim'G, and Ph(X, B)=Ilim'H,.

By Theorem 2.2 if Ph(X,Y) = * then {G,} is Mittag-Leffler. Since QY ~ A x QB
we have a natural projection f: QY — QB inducing surjections f,: G, — Hy of
pointed sets.

If we knew each f;, was a homomorphism of groups, we could conclude Ph(X, B) =~
lim! H, = * by noting lim! : lim' G,, — lim! H,, is surjective and lim' G, = *. In
general, however, we cannot expect the functions f; to be homomorphisms, and so we
must work marginally harder.

Fortunately, the Mittag-Leffler condition makes no reference to the group structure of
the individual stages of a tower, and is more a property of the underlying tower of sets.
In light of Theorem 2.2, to show lim' H,, = * it suffices to show the Mittag-Leffler
condition is preserved under epimorphisms of towers of pointed sets. This is the content
of the following lemma:

Lemma 3.2 If f: {G,} — {H,} is an epimorphism of towers of pointed sets, and
{Gy} satisties the Mittag-Leffler condition, then so does { Hy}.

Proof Since {G,} is Mittag-Leffler then for each k there is some N € N so that for
n > N one has

V) _ g
M =G

A quick diagram chase shows that the surjections fj: G — Hj induce surjections
fk(n): G](cn) — H,E"). In other words,

HP = {f(x) | x e G}

But, for n > N we have G,(Cn) = G,(CN) and so this shows H]E") =H IEN)' So, the tower
{H,} is Mittag-Leffler, which completes the proof of the lemma, and hence the proof
of the loop-splitting theorem. |
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Theorem 3.3 (wedge-splitting theorem) Suppose Y is simply connected and has
finite type over Z or Zpy and Y >~ AV B. If both A and B are rationally nontrivial,
then Y is the target of essential phantom maps from finite-type domains.

For the proof we will need the following variation of Iriye’s Corollary 1.5 from [13].
The proof is a simple modification of the argument there, replacing Theorem 2.1 with
our Proposition 2.4.

Lemma 3.4 Suppose Y has finite type over Zp). If either

(1) there is some o € my,41(Y) of infinite order whose image under the Hurewicz
map is also of infinite order, or

(2) there is some v € H?"(Y;Z) of infinite order whose square v? is also of infinite
order,

then XY is the target of essential phantom maps from finite-type domains.

Proof of the wedge-splitting theorem We note that since Y is simply connected, so
too are A and B. In the long fiber sequence induced by the inclusion i: AV B — AX B,

s QF L oavB) e axQB- L F L AvB-L AxB

we can identify F' ~ (Q2A4)*(2B), where X * Y denotes the join of topological spaces
X and Y, and we find that 0 ~ . It follows that Qi has a section, and 2/ has a
retraction, which gives a natural homotopy equivalence

@) Q(AV B) ~ QAx QB x Q((QA) * (2B)).

For a more complete account of this discussion we refer the reader to the work of
Porter [19]. We now proceed by cases.

Case I Suppose Y has finite type over Z. Then so do A and B. Now, if both A
and B are rationally nontrivial, then (24) * (2 B) is a simply connected, rationally
nontrivial suspension space, hence is the target of essential phantom maps from finite-
type domains by Theorem 1.1. Applying the loop-splitting theorem to the splitting,
(4) then implies AV B is the target of essential phantom maps from finite-type domains.

Case I In case Y has finite type over Zp) our goal will be, as above, to show that
QA % QB is the target of essential phantom maps from finite-type domains and appeal
to the loop-splitting theorem. But, since 24 * QB is not of finite type over Z we
must make use of Lemma 3.4. To do so we need to discover more about QA A QB.
Suppose conng(A) = n and conng(B) = m, where by conng(X) =k —1 we mean
(X)) ®Q =0 fori <k and (X)) ® Q # 0. Choose a € H"(Q2A;7Z) and
b e H™(QB;Z) of infinite order. We proceed by cases.
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Case A If n and m are both even, then @ and b2 can be seen to be of infinite order,
since H*(24;Q) contains Q[a] as a subalgebra, where @ is the image of ¢ under
rationalization, and similarly Q[b] is a subalgebra of H*(2B; Q). Then (¢ ® b)? has
infinite order in H*(2A A QB;7Z), since (@ ® b)? is nonzero in H*(QA A Q2B; Q)
and Lemma 3.4(2) applies. Here we use the Kiinneth theorem to embed H*(Q24;7Z) ®
H*(QB;Z) in H*(QA AQB;Z) as a submodule.

Case B If n is even and m is odd, then conng (24 A Q2B) =n+m —1 and, by the
Hurewicz theorem, 7,4+, (QAAQB) — Hyym(2A A QB) is an isomorphism, with
n + m odd, so Lemma 3.4(1) applies.

Case C Suppose n and m are both odd, and without loss of generality assume
n <m. Since conng (24 A Q2B) =n+m—1 the rational Hurewicz homomorphism
Tontm @ Q = Hapy 1y (—:; Q) is an isomorphism by the rational Hurewicz theorem.
Since n and m are odd, 2n + m is odd, while 73,4, (QAAQB)® Q # 0, and so
Lemma 3.4(1) applies. a

4 Proof of Theorem 1.3

We begin by showing it suffices to prove Theorem 1.3 when the nilpotent co-H—space Y
in question is simply connected, so that we may appeal to the decompositions of looped
co-H—spaces described in Section 2.2. To this end, assume Y is a co-H—space with
H;(Y;Q) # 0 for some i > 1. By Fox [6], Yisa co-H—space, and as a consequence
of the work of Iwase, Saito and Toshio [14] on homology of universal covers of co-
H-spaces we see that if H;(Y; Q) # 0 then H,-(IN’; Q) # 0. In light of these facts
and the upcoming Lemma 4.1 we replace Y with its universal cover for the proof of
Theorem 1.3.

Lemma 4.1 Suppose Y is a nilpotent co-H—space and let c: Y — Y be the universal
cover. If Y is the target of essential phantom maps from finite-type domains, then so
toois Y.

Proof By Theorem 2.3 if Y is the target of essential phantom maps from finite-type
domains, then Ph(K(Z,n), Y) # * for some n > 2. We argue that ¢ induces a weak
injection Ph(K(Z,n),Y) — Ph(K(Z,n),Y).

Suppose ¢: K(Z,n) — Y is an essential phantom map. The map c is the fiber of the
classifying map ¥ — Bm(Y). Since Y is a co-H-space 71(Y) is a free group, and
since Y is nilpotent 71 (Y") is either trivial or congruent to Z. Since the result is trivial
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in case m(Y) =1 we assume 71(Y) = Z. So Bm;(Y) ~ S' and we have a fiber
sequence
Qs' ¥ Sy

We proceed by contradiction. Suppose c¢ =~ *. Then there is a lift A: K(Z,n) — QS
of ¢ through §. But QS! ~ Z is discrete and K(Z,n) is connected so A ~ * and
@ >~ §A is trivial, a contradiction. Hence cp: K(Z,n) — Y is essential. |

We now derive Theorem 1.3 as a consequence of the following three propositions. We
begin with the case dimg H, (Y; Q) = 2. This condition ensures the decompositions
of Section 2.2 are algebraically rich enough to detect essential phantom maps into ¥
via techniques developed in Section 3.

Proposition 4.2 Suppose Y is a simply connected co-H—space with dimg H, (Y;Q)
at least 2. Then Y is the target of essential phantom maps from finite-type domains.

Proof Choose a homogeneous basis of integral classes {x1, x5,...} for H, (Y:; Q)
with |x;| < |x;4+1| for each i, where |x| denotes the homogeneous degree of x in
Hy(Y;Q). Write

a=S""x; e ' Hy (Y;Q) and b=3X"'x, e X7'H, 1 (Y;Q).
Choose a prime p > 5 such that
Hemint2(Y " Z) and  Heomyn3(Y":2)

have no p—torsion. We identify a and b as elements of H,,(RY;Q) and H,(RY;Q),
respectively, via that Bott—Samelson theorem. We will also write a, b € Hy(QY; Z)
for lifts of @ and b, and we will use the same notation for the mod p reductions of
these elements in Hx(2Y;IF,), making the context clear by indicating coefficient rings.

We replace Y with its p—localization to avoid cumbersome notation; that is, we write
Y for Y(,).

To show Y is the target of essential phantom maps from finite-type domains, we
consider the geometric realization

QY ~ QA" (¥)x 2 V. 0, B™(Y))
n=2
of the minimal decomposition from Section 2.2. We justify the indexing » > 2 by noting
that Q1 B™>* = 0, since V C A™"(V) for all vector spaces V. By the loop-splitting
theorem, it suffices to show that \/, -, 0, B™*(Y) is the target of essential phantom
maps from finite-type domains. By the wedge-splitting theorem, this will follow if

Q; B™¥(Y) is rationally nontrivial for at least two i. We will show this is the case.
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Write V = S~ H,(Y; F,) and identify
Ho(QY:F,) = T(V)

through the Bott—Samelson theorem. By Theorem 2.9, when i is not a power of p
one has L;(V) € B™*(V). So, since p > 5 we see that [a, b], [[b, a],a] € B™*(V).
Moreover, [a,b] is indecomposable in B™**(V), since the tensor length of [a, b]
in T(V) is two and B™*(V') contains no elements of tensor length one in 7'(V)
(again, since V € A™"(V)). Similarly, [[b, a], a] is indecomposable, and we have
[a,b]l € O, B™(V) and [[b, a],a] € Q3 B™*(V).

It follows that [a, b] is in the image of
Hy 1 (82 QzBmax(Y)§ Fp) = Hy1m(2Y; Fp),

$0 Hyim(QO,B™X(Y); Fp) # 0. Finally, we note 0, B™*(Y) is a co-H—space by
Theorem 2.10 and so, by the Bott—Samelson theorem,

Hy(Q0, B™™(Y):Fy) = T(Z7' Hi(Q2B™ (Y): Fp)).

Hence, we infer

%) Hemint1(02 B™(Y); Fp) # 0.
Similarly,
(6) Heymint1(03B™(Y); Fp) # 0.

Now, according to Theorem 2.10 for each i the space Q; B™*(Y) is a retract of
an (i—1)—fold desuspension of Y. In particular, Hy(Q; B™*(Y);Z) is a retract
of Hyi—1(YN:Z). So, if H<pyny1(0Q2B™(Y);Z) has p—torsion, then so does
Heppinir(Y"2:Z). Similarly, if H<spmyny1(Q3B™(Y);Z) has p—torsion, so
does H<pmini3(Y"3:7Z). So, since

Hemins2(Y"Z) and  Heymins3(Y";Z)
have no p—torsion we find
Hepmini2002B™ (Y);Q) and  H<ominy3(Q3B™(Y); Q)
are nonzero. d
In case Y is a simply connected, finite-type co-H-space with dimg fl*(Y; Q) =1 we
are unable to use the method of the proof of Proposition 4.2 to witness the existence of

essential phantom maps into Y from finite-type domains; we cannot expect to produce
rationally nontrivial commutators in H,(2Y'; Z), which ultimately were the driving
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force behind that argument. In this case, Y is rationally equivalent to a sphere. We
proceed by cases on the parity of the dimension of this sphere.

Proposition 4.3 Suppose Y is a nilpotent co-H-space with H?*"(Y ; Q) # 0 for some
n>1. Then Y is the target of essential phantom maps from finite-type domains.

Corollary 4.4 Suppose Y is a nilpotent co-H-space with Y ~q S*" for some n > 1.
Then Y is the target of essential phantom maps from finite-type domains.

Proof of Proposition 4.3 Let Y —£5 K(Z,2n) represent an element of H>"(Y;7Z)
of infinite order. According to Ganea [7], since Y is a co-H—space there is a lift A in
the diagram
YXK(Z,2n—1)
/ lp
Y —_— K(Z,2n)

where p: XK(Z,2n—1) ~ XQK(Z,2n) — K(Z, 2n) is the evaluation map. Since
g induces a surjection on 7,, ® Q and p induces an isomorphism on ,, we can be
sure 75, (1) ® Q is surjective. Since X K(Z,2n — 1) is rationally equivalent to S 2"
we have an isomorphism of vector spaces

7 Tx(XK(Z,2n—1)@Q=Q-adQ-[u, a],

where « € 75, (X2K(Z,2n — 1)) ® Q is a nonzero element and [—, —] denotes the
Whitehead product. Since « is in the image of 75, (), it follows from the naturality
of the Whitehead product that 74 (1) ® Q is surjective.

Finally, note that by Theorem 2.5 the map A: ¥ — X K(Z,2n — 1) induces surjections
Ph(X,Y) — Ph(X,XK(Z,2n—1))

for all finite-type spaces X . By Theorem 1.1 there is a finite-type space X for which

Ph(X, XK(Z,2n—1)) # %, so Ph(X,Y) # *. d

Proposition 4.5 If Y is a nilpotent co-H-space with Y ~q S*"T1, n > 1, then Y is
the target of essential phantom maps from finite-type domains.

Proof We first reduce to the case where Y is 2n—connected. According to Golasifiski
and Klein [8], if Y is a co-H-space, then one can choose compatible co-H-structures Y
and on each skeleton Y} so that the inclusion maps Yz < Y are co-H-maps. Berstein
and Hilton have shown the cofiber of a co-H-map is a co-H—space [3, Theorem 3.4],
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so Y/Y is a co-H-space. Finally, Y — Y/Y,, is a rational equivalence, so by
Theorem 2.5 this map induces a surjection Ph(X,Y) — Ph(X, Y/Y>,) for all finite-
type domains X . Hence, if Y/Y,, is the target of essential phantom maps from
finite-type domains, then so too is Y.

Henceforth we assume the space Y to be 2n—connected. We proceed by contradiction.
Suppose Y is not the target of essential phantom maps from finite-type domains. For
brevity, write K = K(Z,n). Then by Theorem 2.3 there is a rational equivalence
fi K— QY. Let u: QY — K represent a cohomology class of infinite order, and
write F for the homotopy fiber of u. Since f and u are rational equivalences we can
localize at a large enough prime p and find that f(,) and u(,) induce isomorphisms
on 1y, . For the rest of this section all spaces and maps will be localized at this large
prime p, though the notation will not be burdened with this assumption; we write Y
for Y(p).

Now uf is a self-equivalence of K by the Whitehead theorem, so K is a retract of QY .
Thus QY ~ K x F, which gives rise to a homotopy equivalence

YQY ~¥KVYEFVEKAF.

Choose a section s: ¥ — X QY of the evaluation map, ensured to exist since Y is a
co-H-space. Let i: Y — K be the composite

Y -5 3EQY SXKVEFVIKAF - XK
and let ¢ be the map
YK—>XYXKVIFVIKAF>XQY -7,

where the last map is the evaluation map. Then ¢i induces an isomorphism on
an+1(Y). Since Y is (2n)—connected and of finite type, it follows from the Hurewicz
theorem that

q*: H"*\(Y:Z) > H*"t (2K Z)
is an isomorphism.

We take a generator v e H*"T1(ZK;Z/p) andlet w = (¢*)" ' (v) e H>*"TV(Y;Z/ p).
Then v = X7 for ¥ a generator of H>"(K;Z/p), where

Y: H*(K) — H*"YY(SK:Z/p)

is the suspension isomorphism. We then consider the morphism of Bockstein spectral
sequences ¢*: E*(Y) — E*(ZK). Write P" for the n™ reduced p™ power map.
Then v” = P" (V) survives to E;‘;p (K), so P"(v) survives to E;‘;p_i_l(EK). Since
P"(v) =P"(¢*(w)) = ¢*P"(w), we infer P"(w) survives to ESy,(Y). It follows

that Happ41(Y; Q) # 0, contradicting the assumption ¥ ~g S *1. |

Algebraic € Geometric Topology, Volume 17 (2017)



8604 James Schwass

S Examples

In Examples 5.1 and 5.2 we describe co-H—spaces that satisfy the hypotheses of
Theorem 1.3, but not Theorem 1.1. More specifically, we construct nonsuspension
co-H—spaces whose rational homology is nontrivial. We prefer to present infinite-
dimensional examples, since Zabrodsky obtained much stronger results than we have
herein on phantom maps into finite complexes in [25].

Example 5.1 For each prime p > 3 write a,: S?? — S? for a representative of
an element of order p in 75, (S 3). The homotopy cofibers Cq, of these maps are
classical examples, due to Berstein and Hilton [3, page 444], of co-H—spaces that
do not have the homotopy type of suspension spaces. One key to establishing these
examples is to prove, via Berstein—Hilton—Hopf invariant techniques, that each map
ap is a co-H-map. By [3, Theorem 3.4], the cofiber of a co-H-map is a co-H—space.

Write o Vp>3 S2P — S3 where the wedge is taken over all odd primes, for the
map whose restriction to each summand S22 is ap. Since each @) is a co-H-map,
so is «. It follows that the homotopy cofiber C, of « is a co-H—space. Evidently
dimg Hy(Cy: Q) = o0.

We now argue that Cy is not a suspension space. Assume to the contrary that C, > X Z.
Then, by the proof of [3, Lemma 3.6], we can choose Z to be 1-connected, so that Z
has a homology decomposition, ie there is a diagram

M, M, M, My
bkl [
Ly —— 2Ly ——— - Ly —— Znt1
11 5] In

in which M; = M(H;4+1(Z),i) foreach i, M; — Z; — Z;4 is a cofiber sequence
and Z is the homotopy colimit of the tower along the bottom of this diagram. The
space Z; is called the i stage of the homology decomposition. It follows that £ Z
has a homology decomposition in which each stage is a suspension.

Suppose h: Cy — X Z is a homotopy equivalence. Write (Cy)j for the k" stage of
the homology decomposition for C, . According to Arkowitz [1, Proposition 3.4], since
Ext(Hy(Cy; Z); Hy41(2Z; 7)) = 0 for all n and ¥ Z is 2—connected, /& induces
homotopy equivalences /1,: (Cy)n — (£2), >~ X(Zy). But then (Cy)g >~ Cq, must
be a suspension space, a contradiction.

Example 5.2 By modifying the construction from Example 5.1 we can obtain an
infinite-dimensional, nonsuspension co-H-space Y with ¥ ~¢g S 3. Replace each
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map op: S?? — S3 with amap Bp: M(Z/p,2p) — S? representing an element of
T p(S 3.7/ p) of order p. The argument of Berstein and Hilton [3] shows that the
cofiber Cg, of each B, is a co-H-space which is not a suspension space, and so the
argument in Example 5.1 shows that Cg is a co-H-space which is not a suspension space.

Finally we present an application of the loop-splitting theorem to spaces that are not
necessarily co-H—spaces. For a space Y write Gp,,(Y) for the m™ space of Ganea
over Y (see [S]; the reader may more readily recognize this space as G, (Y) = B QY
where B, is the m" stage of Milnor’s classifying space construction). The spaces
G, (Y) can be thought of as prototypes for spaces of Lusternik—Schnirelmann category
at most m. We view this example as a test case for Question 1.4.

Example 5.3 We show that if H;(G,,(Y); Q) # 0 for some i > 1 then G, (Y) is the
target of essential phantom maps from finite-type domains.

There is a well-known homotopy decomposition
QGn(Y)~ QY x Q(QY)*" T,

where X*K denotes the k—fold join of X . Since H;(G(Y); Q) # 0 we must have
H;j(Y;Q) #0 for some j > 1 and similarly H,((2Y)*"*!;Q) is similarly nontrivial,
50, by Theorem 1.1, (QY)*™T1 is the target of essential phantom maps from finite-type
domains. The loop-splitting theorem then implies G, (Y) is the target of essential
phantom maps.
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Infinite loop spaces and nilpotent K—theory

ALEJANDRO ADEM
JOSE MANUEL GOMEZ
JOHN A LIND
ULRIKE TILLMANN

Using a construction derived from the descending central series of the free groups, we
produce filtrations by infinite loop spaces of the classical infinite loop spaces BSU,
BU, BSO, BO, BSp, BGL«(R)™ and Q((S°). We show that these infinite loop
spaces are the zero spaces of nonunital E,—ring spectra. We introduce the notion
of g-nilpotent K—theory of a CW—complex X for any ¢ > 2, which extends the
notion of commutative K—theory defined by Adem and Gémez, and show that it is
represented by Z x B(q, U), where B(g, U) is the ¢ term of the aforementioned
filtration of BU.

For the proof we introduce an alternative way of associating an infinite loop space to
a commutative [-monoid and give criteria for when it can be identified with the plus
construction on the associated limit space. Furthermore, we introduce the notion of a
commutative [-rig and show that they give rise to nonunital E,—ring spectra.

55N15, 55R35

1 Introduction

Let G denote a locally compact, Hausdorff topological group such that 1g € G is a
nondegenerate base point. It is well known that we can obtain a model for the classifying
space BG as the geometric realization of the classical bar construction BxG. Now
fix an integer ¢ > 2 and let T’} be the ¢ stage of the descending central series of
the free group on n letters F,, with the convention I'} = F,. Consider the set of
homomorphisms B, (¢, G) := Hom(F,/T¥,G). If ey, ..., e, are generators of Fy,,
then evaluation on the classes corresponding to ey, ..., e, provides a natural inclusion
B,(q,G) C G". Using this inclusion we can give B,(q, G) the subspace topology.
Therefore Bj(q,G) is precisely the space of ordered n—tuples in G generating a
subgroup of G with nilpotence class less than ¢g. For each fixed g > 2 the collection
{Bn(q, G)}n>0 forms a simplicial space with face and degeneracy maps induced by
those in the bar construction. The geometric realization of this simplicial space is
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denoted by B(g, G). These spaces were first introduced by Adem, Cohen and Torres
Giese [1], where many of their basic properties were established. They give rise to a
natural filtration of the classifying space

B(2,G)Cc B(3,G)c---C B(q,G)C B(g+1,G)C---CBG.

For ¢ = 2 we obtain B.,nG := B(2, G), which is constructed by assembling the
different spaces of ordered commuting n—tuples in the group G. Adem and Gémez [2]
showed that for Lie groups this space plays the role of a classifying space for commu-
tativity. More generally B(q, GG) is a classifying space for G—bundles of transitional
nilpotency class less than ¢.

For the infinite unitary group U = colim,— o U(n), it is well known that BU is the
infinite loop space underlying a nonunital E,-ring spectrum, namely the homotopy
fiber of the Postnikov section ku — HZ . In other words, BU 1is a so-called nonunital
E—ring space. A basic question is whether the above gives rise to a filtration of BU
by nonunital E,-ring spaces. The main purpose of this paper is to show that indeed
this is the case, not only for U but also for other linear groups.

Theorem 1.1 The spaces B(q,SU), B(q,U), B(q,SO), B(q, O) and B(g, Sp) pro-
vide a filtration by nonunital E ,—ring spaces of the classical infinite loop spaces BSU,
BU, BSO, BO and BSp, respectively.

The g-nilpotent K—theory of a space X is defined using isomorphism classes of bundles
on X whose transition functions generate subgroups of nilpotence class less than ¢.
We show that Ky _;i(X) = [X,Z x B(q, U)], from which we obtain:

Corollary 1.2 K,_,ii(—) is the zeroth term of a generalized multiplicative cohomology
theory.

In particular we obtain a sequence of multiplicative cohomology theories
Keom(X) = Ky ii(X) = Kzpif(X) = -+ = Kgnit(X) = --- — K(X).

We also show that B(g, U) — BU splits as a map of infinite loop spaces, whence we
see that topological K—theory is a direct summand in Kg_yj.

The infinite loop space structure on B(g, G) for G = U, SU, SO, O, Sp is obtained
by using the machinery of commutative [-monoids first introduced by Bokstedt and
developed by Schlichtkrull [19], Sagave and Schlichtkrull [18] and Lind [9]. Here I
is the category of finite sets and injections. In addition to the usual construction, we
associate an infinite loop space to a commutative I—-monoid by restricting the usual
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homotopy colimit construction to the subcategory P of finite sets and isomorphisms.
This allows us to identify the homotopy type of the homotopy colimit under certain
conditions. Another addition to infinite loop space theory is the introduction of the
notion of a commutative [-rig, which we show to give rise to a bipermutative category
and hence an E —ring spectrum.

Our main examples above all arise from commutative I-rigs where we can identify
the infinite loop space as the plus construction of the associated limit space. A more
complicated situation arises for Q¢(S®) ~ BE} and BGLx(R)™. Our methods give
rise to natural sequences of E,—ring spaces but the terms are not easy to describe.

The outline of this article is as follows. In Section 2 we use the machinery of com-
mutative [-monoids to produce two associated infinite loop spaces, one of which is a
nonunital Fs,—ring space when the I-monoid is an [-rig. In Section 3 we show that
these are homotopy equivalent and identify them under suitable assumptions. Then
in Section 4 we apply these results to prove Theorem 1.1 and show that the spaces
B(g,U) for g > 2 are infinite loop spaces and that BU splits off. Finally, in Section 5
we introduce the notion of g-—nilpotent K—theory and show that it is represented by
the infinite loop spaces Z x B(q, U), answering the question raised for commutative
K-theory in [2].

We would like to thank Christian Schlichtkrull for helpful conversations about commu-
tative [—monoids, Simon Gritschacher for drawing our attention to Fiedorowicz and
Ogle [6] and the referee for providing very useful comments.
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2 Commutative I-monoids and infinite loop spaces

The standard construction of the infinite loop space structure on BU from the per-
mutative category of complex vector spaces and their isomorphisms does not restrict
to give an infinite loop space structure on B(g,U). Instead we are going to use
certain constructions on commutative I—-monoids. More precisely, we will give two
constructions of permutative categories from commutative I-monoids. For the case
of interest the permutative categories are actually bipermutative and hence give rise
to E-ring spectra. We start by setting up some notations and basic definitions
following [19; 18; 9]. We will use [5] as a reference for bipermutative categories and
the associated multiplicative infinite loop space machinery.
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2.1 The category I and its subcategories P and N

These three categories are skeletons of the category of finite sets and injections, the
category of finite sets and isomorphisms, and the translation category associated to the
monoid of natural numbers. We will use the following notation.

For every integer n > 0, let n denote the set {1,2,...,n}. When n = 0 we use the
convention 0 := &. Let I denote the category whose objects are the elements of the
form n for all integers n > 0 with morphisms given by all injective maps. Note that in
particular 0 is an initial object in the category I and I is a symmetric monoidal category
under the concatenation m Lin := {1,2,...,m + n} with the symmetry morphism
given by the (m, n)—shuffle map

Tmp:mUn—nlm.
It is also symmetric monoidal under the Cartesian product
mxn.={1=(,1),2=(1,2),...,n+1=2,1),..., mn=(m,n)}

given by lexicographic ordering. By definition, 0 x n = 0 = n x 0. The associated
symmetry morphism is given by a permutation
X
T

mn. M XN —nXxXm.

The latter monoidal product is distributive over the former. More precisely, left dis-
tributivity
5£n,n,k: mxkUnxk — (muUn)xk

is given by the identity and right distributivity is given by a permutation
Sppnge: MXnUmxk —mx(nuUk).
These two structures make I into a bipermutative category, as in [5, Definition 3.6].

The category I has two natural subcategories. Let P be the totally disconnected sub-
category containing all objects and all isomorphisms o: n — n but no other morphisms,
and let N denote the connected subcategory containing all objects, their identities and
only the canonical inclusions j: n — m. While P is a bipermutative subcategory,
N does not inherit any monoidal structure from I.

2.2 Definitions of commutative [-monoids and [-rigs

An [-space is a functor X: I — Top. Every morphism in I can be factored as
a composition of a canonical inclusion j: n < m and a permutation o: m — m.
Therefore an I—space X: I — Top determines a sequence of spaces X (n) together
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with an induced action of the symmetric group X, for n > 0, and structural maps
Jn: X(n) - X(n + 1) that are equivariant in the sense that j, (o -x) =0 - j,(x) for
every o € 3, and x € X(n). On the right-hand side we see ¢ as element in X, via
the canonical inclusion %, < X, ;. Vice versa, given such a sequence of X,—spaces
X (n) and compatible structure maps j,, they give rise to an I—space if and only if for
m > n and any two elements o, o’ € X,, which restrict to the same permutation of n
we have o(x) = o’(x) for all x € j(X(n)). We note that this condition is not satisfied
by the sequence X(n) = X, with the left or right multiplication action, but is satisfied
by the sequence X (n) = n with the natural permutation action since n = [(1, n).

We say that an I—space is an [—-monoid if it comes equipped with a natural transfor-
mation

UWmn: X(m)x X(n) — X(mUn)
of functors defined on I x I and a natural transformation
Nn: * — X(n)

from the constant [—space *(n) = * to X satisfying associativity and unit axioms
for * € X(0). We say that X is a commutative [-monoid if p is commutative, meaning
that the diagram

Mm.n

X(m)x X(n) —— X(mUn)

tl Tm,nj{
Mn.,m

X(n)x X(m) —— X(nUm)
commutes, where t(x, y) = (, x).
An [ -rig is a commutative I-monoid equipped with a natural transformation
Tman: X(m)x X(n) — X(m x n)

of functors defined on P x P and an element 1 € X(1) satisfying associativity and unit
axioms, as well as left distributivity, ie that the diagram

Tmun .k ©(Um.nX1)
(X(m) x X(n)) x X(k) X((mUn)xk)
(lxrxl)o(lxle)l an.n’kT
X(m) x X (k) x X(n) x X (k) Lk 2Om T k) w0 kU x k)
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commutes, and right distributivity, which is given by an analogous commutative diagram.
Here A is the diagonal map. We emphasize that 7 is only required to be natural on
the subcategory P x P of I x 1.1

A commutative [-rig is an [-rig in which 7 is commutative in the sense that the
diagram
Tm.n
X(m)x X(n) —— X(m x n)

X
Tl 1"m.nl

X(n)xX(m)ﬂnY(nxm)

commutes. A natural transformation 7" between two I—spaces X and Y defines a map
of commutative I-monoids (I-rigs) if it commutes with p (and ) in the sense that
Topumn=pmnoT xT (and T oty np = TtmpoT x T). We have thus defined a
category of I—spaces, a category of commutative [—-monoids and a category of I-rigs.

2.3 Associated (bi)permutative translation categories

We will use the following notation for translation categories. If Y: C — Top is a
functor from a category C to the category of topological spaces, we let Cx Y denote the
translation category on Y . The translation category, also known as the Grothendieck
construction, is a topological category whose objects are pairs (¢, x) consisting of an
object ¢ of C and a point x € Y(c¢). A morphism in Cx Y from (c, x) to (¢/,x’) is a
morphism a: ¢ — ¢’ in C satisfying the equation Y (a)(x) = x’. For example, if C = G
is a group, thought of as a one object category, then the translation category G x Y
is the action groupoid for the G—space Y and its classifying space is the homotopy
orbit space B(G X Y) = EG xg Y. In general, the classifying space B(Cx Y) is
homeomorphic to the homotopy colimit hocolim¢ Y of Y over C defined using the
bar construction.

Suppose now that X is a commutative [-monoid. Then the translation category I x X'
is a permutative category, as we now explain. The monoidal structure @ is defined on
objects (m, x) and (n, y) by

(m,x)®(n,y)=(mUn, tmn(x,y))

!n fact, we do not know of any nontrivial examples where = may be extended to a natural transforma-
tion of functors defined on I x I. The examples of [-rigs that we discuss in Section 2.5 do not satisfy
this additional naturality condition. Indeed, as we will see in the following sections, an [ -rig that does
satisfy this condition and has each level X(n) a connected space would give rise to a connected E oo —ring
space hocolimy X'. An Es-ring space whose multiplicative unit and additive unit lie in the same path
component is contractible, so such examples would only give rise to trivial Es;—ring spectra.
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and on morphisms «: (m,x) — (m’,x’) and B: (n, y) — (n’, y’) by letting
a®pB: (m,x)® (n,y)— (m',x")& (', y')
be determined by the morphism
alUB:mun—m'un’

in the category I. Notice that X (U 8) (hm.n (X, ¥)) = m’ o (x’, y') by the naturality
of 1, so that this is well-defined. The associativity and unit conditions for X imply
that I x X is a strict monoidal category with strict unit object (0, *) determined by
the unit 1 of the I-monoid X . The commutativity of X implies that I x X is a
permutative category, see for example [5, Definition 3.1]. Note that the permutative
structure on I x X restricts to the subcategory P ix X .

Suppose now that X is a commutative [-rig. Then by the same reasoning as above,
there is another permutative category structure on P x X with product ® induced by =«
and strict unit object (1, 1). The distributivity axioms for X translate to distributivity
axioms for bipermutative categories [5, Definition 3.6].

Furthermore, a natural transformation 7" between two [—spaces X and Y induces a
functor [Ix X — I x Y. If X and ¥ are commutative [-monoids (I-rigs) and 7T is
a morphism of such then the induced functor of translation categories is a functor of
(bi)permutative categories.

We have thus proved the following result:

Proposition 2.1 The assignment X + I x X defines a functor from the category of
commutative 1 -monoids to the category of permutative categories, and the assignment
X +— P x X defines a functor from the category of commutative I —monoids (I —rigs)
to the category of (bi)permutative categories.

2.4 Construction of two infinite loop spaces

Let X be a commutative I-monoid. As explained in [12], the classifying space of a
permutative category is an E,—space structured by an action of the Barratt—Eccles
operad. We have proved the next theorem.

Theorem 2.2 Suppose that X: [ — Top is a commutative I-monoid. Then the
homotopy colimit
hocolimy X = B(I x X)

is an E,—space.
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Without further assumptions on X, this Es—space need not be grouplike (ie the
monoid g (hocolimy X)) need not be a group). However, we can always form the
group completion 2 B(hocolimy X') to get the associated infinite loop space. Note that
an algebra over the Barratt—Eccles operad has an underlying monoid structure that is
always strictly associative (and homotopy commutative) so that the usual functorial
construction of the classifying space for monoids built using the bar construction can
be applied. We will always use this model for B in defining the group completion
functor Q2 B(—). The consistency results in [12] guarantee that the group completion
Q B(hocolimy X) defines an infinite loop space weakly equivalent to that obtained
using any other delooping machine.

Schlichtkrull [19] defined a different infinite loop space associated to X', using the
language of I'—spaces. Schlichtkrull’s construction is the same as May’s construction
[14] of a I'—space applied to the permutative category I x X. By the uniqueness
result of [14], the infinite loop space 2 B(hocolimy X') is equivalent to that defined by
Schlichtkrull.

We now give a different construction of an infinite loop space associated to X . To start
note the decomposition of categories

IP’D(X:I_'ZHD(X(n),

n=0

where X, is seen as a category with one object. Thus PP x X is a topological category
with classifying space

M :=hocolimp X = B(Px X) =~ | | EX, x5, X(n).

n=0

As P x X is a permutative category, M = B(P x X) is an E,—space and thus its
group completion, QBM, is an infinite loop space. The reduction maps X (n) — *
define a map of permutative categories P x X — PP x % and hence a map of infinite
loop spaces

0% : QB(hocolimp X) — 2 B(hocolimp ).

In particular, the homotopy fiber hofib p¥ is naturally an infinite loop space.

When X is a commutative [-rig, we process the associated bipermutative category
P x X using the machinery of Elmendorf and Mandell. To a bipermutative category C,
they functorially associate a commutative symmetric ring spectrum [5, Corollary 3.9
and Theorem 9.3.8]. By [5, Theorem 4.6] and the original work of Segal [22], its
underlying infinite loop space is weak homotopy equivalent to 2BBC. By a theorem
due to Schwede [21] and later refined by Mandell and May [10, Section 1], the
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homotopy category of commutative symmetric ring spectra is equivalent to that of
E—ring spectra. We write KC for the Eo,—ring spectrum associated to C under
this equivalence of homotopy categories. The underlying infinite loop space of an
E—ring spectrum is an Eo,—ring space, as defined in [13, Chapter VI], so we may
functorially associate to each bipermutative category an E,-ring space Q®°KC.
Moreover, by [9, Theorem 1.2], the space 2°° KC is weak homotopy equivalent to the
group completion Q2 BBC.

We now apply this machinery to the morphism P x X — P x % of bipermutative
categories. We obtain a map of E,-ring spectra

KPxX)—> K(Pxx*)

which is equivalent to pX after applying ©°°. The homotopy fiber of a map of Eoo—
ring spectra is a nonunital Es,—ring spectrum. By a nonunital E,—ring space, we
mean the underlying infinite loop space of a nonunital E,—ring spectrum. Since °°
preserves homotopy fiber sequences, this means that the homotopy fiber of a map of
E o -ring spaces is a nonunital E—ring space. We have proved the next theorem.

Theorem 2.3 For any commutative 1 -monoid X the homotopy fiber hofib pX of
,oX : QB(hocolimp X') — Q B(hocolimp *).

is an infinite loop space. If furthermore X is a commutative I -rig, then hofib p¥X is a
nonunital E,-ring space.

2.5 The main example

For any group G, conjugation by G or action by any other automorphism of G induces
a well-defined action on By (¢, G) = Hom(F,/ T}, G) by postcomposition. The action
is also compatible with the simplicial face and degeneracy maps in the bar construction
and hence induces an action on B(q, G).

For every ¢ > 2 we define an I-space B(gq, U(—)) by setting n — B(g, U(n)) with
morphisms induced by the natural inclusions and the action of X, on B(g, U(n)) given
by conjugation through permutation matrices. Being induced by the natural action of
¥, on n, it can be checked that this compatible sequence defines indeed an I —space.

We give B(q, U(—)) the structure of an I-monoid by defining the unit map n,: * —
B(g, U(n)) to be the inclusion of the base-point and defining the monoid structure map

tnm: B(q.U(n)) x B(q.U(m)) — B(q,U(n+m))
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to be induced by the block sum of matrices. To see that (, m is well-defined note
that block sum defines a group homomorphism U(n) x U(m) — U(n + m). When
taking elements of the symmetric groups to permutation matrices, the disjoint union of
sets corresponds to block sum of matrices. Thus p defines a natural transformation of
functors defined on I x . One checks compatibility with 7 and hence B(g, U(—)) is
a commutative I-monoid.

Next we note that tensor product of matrices induces a well-defined map
Tn.m: B(q,Un)) x B(q,U(m)) — B(q, U(nm)).

To see this note that tensor product commutes with matrix multiplication and hence
induces a homomorphism U(n) x U(m) — U(nm). The map is equivariant for the
symmetric group actions because the permutation matrix associated to the product of
two permutations is the same as the tensor product of the corresponding permutation
matrices. Hence  is a natural transformation of functors defined on the category P xP.
Note, however, that 7 is not natural for proper injections. The map 7 is compatible
with 7 and the distributivity of block sum and tensor product of matrices induces
distributivity maps for w and 7. We have shown:

Theorem 2.4 B(q, U(—)) is a commutative I -rig.

As a consequence, we may apply Theorems 2.2 and 2.3 to get a pair of infinite loop
spaces, the latter of which carries a nonunital £, —ring structure. In the next section,
we will show that these two infinite loop spaces are equivalent.

3 Identifying and comparing the infinite loop spaces

Let X be a commutative I-monoid. We will first identify hofib pX under certain
assumptions and then show it is homotopy equivalent as an infinite loop space to
hocolimy X .

Consider the space
Xoo := hocolim,en X (n).

Note that Xoo >~ colimyen X(n) if the structural maps j,: X(n) — X(n + 1) are
cofibrations. In our applications this will always be the case. Let X denote Quillen’s
plus construction applied with respect to the maximal perfect subgroup of 71 (Xo)
(which we take to be understood to be done in each component separately, if X, is not
connected). Also recall that a space Z is abelian if 71(Z) is abelian and acts trivially
on homotopy groups 7«(Z). It is well known that H —spaces are abelian.
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Theorem 3.1 Let X: 1 — Top be a commutative 1 —-monoid. Assume that

o the action of X, on Hy(Xo) is trivial;

e the inclusions induce natural isomorphisms 1wy (X (n)) >~ m9(Xs) of finitely
generated abelian groups with multiplication compatible with the Pontrjagin
product and in the center of the homology Pontrjagin ring;

e the commutator subgroup of 71(Xo) is perfect (for each component) and X3,
is abelian.

Then hofib pX ~ X, S and, in particular, X, is an infinite lIoop space.
Proof Let M = hocolimp X = B(IP x X) and m be the point corresponding to the
base point in X (1) (in the identity component of 7¢(X(1))). Then

Tel(M -5 M -5 M -5 .) ~ Zx (EZe0 X5, Xoo)-

As P x X is a symmetric monoidal category, its classifying space M is a homotopy
commutative topological monoid. The hypotheses imply that 7o(M) is in the center
of Hy(M). Hence Hy(M)[o(M)~'] can be constructed by right fractions, so that
we may apply the group completion theorem [15; 17]. Therefore there is a map

S Zx(EX x5, Xoo) = QBM

which induces an isomorphism on homology with all systems of local coefficients
on 2BM . Furthermore, the fundamental group (of each component) of EX oo X5 Xoo
has a perfect commutator subgroup by [17], and f extends to a homology equivalence
between abelian spaces

[T Zx(EZs X3 Xoo)t — QBM,

which is thus a homotopy equivalence. This shows, in particular, that the space
Z % (E¥00 X5, Xoo)T is an infinite loop space as QBM is the group completion of
an E,,—space.

Consider now the fibration sequence
(1) Xoo = EXoo X3, Xoo 2> BZ oo
and the associated map of plus constructions

P Zx(EXso XS0 Xoo)t > Z x BE;.

Since f is a homotopy equivalence and 2 B(hocolimp %) >~ Z x BX1 , we can
identify the homotopy fiber of pT with hofib pX . By assumption the action of X, on
Xoo is homologically trivial. We are also assuming that X is abelian and in particular
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nilpotent. Under these conditions the fiber sequence (1) remains a fiber sequence after
passing to plus constructions; see [4, Theorem 1.1]. Thus we have a homotopy fibration

Xt > Zx(EXoo x5, Xeo)T = Zx BTL.

This shows that the homotopy fiber of pT is X and so X5 ~ hofib p*X . m|

Remark 3.2 For any commutative I-monoid X, the multiplication on My :=
| I,>0 X(n) is commutative up to the action of the shuffle maps Tm . These are
induced by the action of the symmetric group. So, assuming that these actions are
trivial in homology, it follows that the Pontrjagin product is commutative on the level
of homology. In particular 7o (My) is in the center of the Pontrjagin ring Hy«(My).
Thus by the group completion theorem [15], the map

7 x Xoo — QB(My)

is a homology isomorphism. In recent work, Gritschacher [7] has shown that without
any further assumption, the commutator subgroup of 71 (Xo) is always perfect and
that X is always an abelian space. In other words, the assumptions in Theorem 3.1
on 71 (Xoo) and X are actually consequences.?

In contrast, the condition that the symmetric groups act homologically trivially is
necessary. To see this consider the commutative [-space X with X (n) := Z" for
some pointed connected space Z. Then, by the parametrized version of the Barratt—
Priddy—Quillen theorem (see for example [12; 22]),

QB(hocolimp X) >~ Q(Z4)
and thus hofib pX ~hofib p* ~ Q(Z) while X, ~hocolim, Z". Here Q = QXX

and Z denotes the space Z with an additional base point.

We now turn to the question of comparing the infinite loop spaces hofib pX and
hocolimy X'. Suppose that X is a commutative [-monoid. Consider the following
commutative diagram of strict functors between permutative categories:

Pb(Xa—XHleX
pxl lpf‘
PK*LHIX*

The horizontal maps are induced by the inclusion P — I. In the above diagram = is
the terminal commutative I—monoid and the vertical maps p* and pf( are induced by

2 As we do not know whether My is homotopy commutative, the results of [17] cannot be applied
directly to conclude that the induced map Z x X, Ot — QB(My) is a homotopy equivalence.
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the projection maps to a point. Passing to the level of classifying spaces and applying
group completion we obtain a commutative diagram of infinite loop spaces:

Q B(hocolimp X) —2 Q B(hocolimy X)

2) pxl jpf{

Q B(hocolimp ) N Q B(hocolimy *) >~ *

Note that the empty set is an initial object for I and hence hocolimy * = BI ~ .

The above diagram induces an infinite loop map between the homotopy fibers of the
maps pX and ,on . By definition the homotopy fiber on the left is the space hofib p¥X .
Also, since hocolimy * is contractible, the homotopy fiber on the right can be identified
with Q B(hocolimy X'). This shows that we have a map of infinite loop spaces

hofib pX —£> Q B(hocolimy X).

Note that pX has a canonical splitting of permutative categories induced by the unit
* — X of the [-monoid X . Thus it follows from the following theorem that g is a
homotopy equivalence whenever the stated conditions on X are satisfied.

Theorem 3.3 Let X be a commutative [ —-monoid such that all maps j: X (n) — X (m)
induced by injections j: n — m are monomorphisms. Furthermore, assume that, for
all x € X(n) and y € X(m), the sum (tp m(x, y) is in the image of a map induced by
a nonidentity order preserving injection if and only if x or y is. Then

ay X ,oX : Q B(hocolimp X') — Q B(hocolimy X) x 2 B(hocolimp *)

is a weak homotopy equivalence of infinite loop spaces which is natural for commutative
I -monoids.

Notice that, when X is a commutative [-rig, we may use the theorem to transfer
the nonunital Es,—ring space structure on hofib pX along g to obtain a nonunital
E ~o—ring space structure on the group completion of hocolimy X .

A version of the theorem was proved by Fiedorowicz and Ogle [6] in the setting of
simplicial sets. This was revisited in Gritschacher [7, Section 4]. For convenience of
the reader we sketch a streamlined argument following [7].

Proof Given x € X(n) we can write it as x = jx(X), where X € X(n), jx:n—n
is an order-preserving injection and 7 is minimal. We call x reduced if x = x. Note
that X and j are uniquely determined. Denote by X (n) the set of reduced elements
in X(n). The assignment n— X (n) defines a P—diagram. By the assumption on /. the
commutative [-monoid structure of X induces the structure of a permutative category
on PxX.
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Assume now that X is discrete. Then the assignment (n, x) + (7, X) on objects
extends to define a functor
Ry:Ix X ->PxX.

It has a right inverse given by the inclusion ty: P x X — I x X . Furthermore, the
maps jx define a natural transformation from ty o Ry to the identity on I x X . Hence,
Ry defines a homotopy deformation retract on classifying spaces. We also note that
by our assumption on , the functor Ry is a strict symmetric monoidal functor.

The inclusions P x X — P x X and P — P x X combine via the monoidal product
functor to a functor
Ty: PxX)xP >PxX

that maps the object ((n, X), n) to (n+n, j(X)), where j is the canonical inclusion
n < n + n. We claim this is a homotopy equivalence on classifying spaces. Indeed,
an analysis of the effect of permutations on reduced points shows that the functor is
bijective on automorphism groups of objects. As both source and target categories are
groupoids and every isomorphism class of the target category has a representative in
the image, this is an equivalence of categories. We note that Ty is not a strict monoidal
functor (only up to conjugation by a block permutation). However, the left inverse
functor (n, x) — ((n, X),n —n) does commute strictly with the monoidal structure.
Hence, this defines a homotopy equivalence of monoids on classifying spaces, and
induces a homotopy equivalence of group completions. Compare [6, Lemma 1.7].

Consider now the map of permutative categories
aXpr:IP’D(X—>(I[1><X)xIP’

and take the group completion of their classifying spaces

3) ay x pX: QB(B(P x X)) —» QB(B( x X)) x QB(BP).

We claim that this is a weak homotopy equivalence which is natural in commutative
I[—-monoids. To see this precompose with the map of group completed classifying
spaces induced by Ty and postcompose with the map induced by Ry x Id. The
resulting composite is homotopic to the endofunctor of (P x X) x P given by

(n,x),m)+— ((n,x),n +m).

This map is the identity on the first component and an equivalence on the second
component because we are working with group-complete monoids.

Using the naturality of the weak homotopy equivalence in (3) and applying it to
boundary and face maps allows us to extend it to [—diagrams in simplicial sets. More

Algebraic € Geometric Topology, Volume 17 (2017)



Infinite loop spaces and nilpotent K—theory 883

precisely, for any commutative [-monoid X in simplicial sets that satisfies levelwise
the condition on p, we have a map of simplicial permutative categories which is a weak
homotopy equivalence on applying 2 B(B(—)) to each simplicial level, and hence a
weak homotopy equivalence on total spaces:

oy X ,oX dn—> QB(B(P x X(n)))| >~ |n+— QB(B(I x X(n))) x QB(BP)|.

As € commutes with Cartesian product, and as |[n+— QZ(n)| ~ Q|n+—> Z(n)| whenever
each Z(n) is connected (see [11, Theorem 12.3]), we also have

ax X pX :Q|n— B(B(P x X(n)))| ~ Q|n+— B(B( x X(n))) x B(BP)|.

Furthermore, as realizations of multisimplicial sets can be taken in any order, we deduce
that

ax x p%: QB(B(P x [n+> X(n)|)) ~ QB(B(I x |n+ X(n)])) x QB(BP).

Compare [6, Lemma 1.8]. Finally, by replacing every space by its singular simplicial
set, any [—diagram X in topological spaces gives rise to an [—diagram in simplicial
sets, taking commutative I-monoids to simplicial ones. Note that the conditions on u
are pointwise conditions and are automatically satisfied by the singular p-simplices
for each p. As a space is weakly homotopy equivalent to the realization of its singular
simplicial set, the theorem follows. |

Example 3.4 Consider the commutative T-space X with X(n) := Z", where Z
is a well-pointed connected space. Note that in this case ¥, does not act trivially
on H.(Z") and hence Theorem 3.1 does not apply. As before, by the parametrized
version of the Barratt—Priddy—Quillen theorem,

Q B(hocolimp X) ~ O(Z4+) ~ 0(S®) x 0(2)

and hence hofib p* ~ Q(Z). Thus, by Theorem 3.3 we also have hocolimy X ~ Q(Z),
which is in agreement with a result of Schlichtkrull [20].

4 Constructing filtrations by infinite loop spaces

In this section we use the results obtained in the previous sections to produce filtrations
of classical infinite loop spaces by sequences of infinite loop spaces arising from the
descending central series of the free groups.

Theorem 4.1 The spaces B(q,U), B(q,SU), B(q,SO) B(q, O) and B(q, Sp) pro-
vide a filtration by nonunital E ., -ring spaces of the classical nonunital E,-ring
spaces BU, BSU, BSO, BO and BSp, respectively.
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Proof Consider first the case of BU. Recall that the spaces B(g, U) provide a filtration
of the space BU

B2, U)c B3, U)C---C B(q,U)C B(g+1,U)C---CBU.

We will show that this filtration is a filtration by nonunital E,—ring spaces. For
this notice that by the main example in Section 2, each n — B(q, U(n)) for ¢ > 2
is a commutative [-rig. In what follows we are going to show that the conditions
of Theorem 3.1 are satisfied, and hence B(g, U) ~ hofib ,oB(q U)) is a nonunital
E5o—ring space by Theorem 2.3.

The conjugation action of ¥, on B(g,U(n)) is homologically trivial because this
action factors through the conjugation action of U(n). The conjugation action by any
element in U(n) is trivial, up to homotopy, since the action of the identity matrix is
trivial and U(n) is path-connected. This implies in particular that the action of ¥
on B(g,U) is homologically trivial.

Note that B(g, U(n)) and hence B(q,U) is path connected. Next, we argue that the
space B(gq,U) is an H—space under direct sum multiplication. To be more precise,
consider the injection N UN — N defined by (1,2,3,4,...)U(1’,2",3,4,...) >
(1,2,1',2,3,4,3,4,...). It defines a map of vector spaces C® x C*° — C*> and
hence a continuous homomorphisms U x U — U . The image of U(n) in U under
right or left multiplication by the identity matrix I differs from the image under the
standard inclusion by conjugation of an even permutation. As such a permutation is in
the path-component of the identity matrix, we see that the multiplication is unital up to
homotopy.

H —spaces have abelian fundamental group and hence Theorem 3.1 applies. We
conclude that B(g, U) = hofib pB@-U) for every ¢ > 2 and is a nonunital Eq,—ring
space by Theorem 2.3. The very same arguments can be used to prove analogous
statements for the commutative 1-rig n — B(g,SU(n)), and n +— B(q, Sp(n)) for
any g > 2.

In case of the commutative [-rig n +— B(g,SO(n)) we note that X, is not a subgroup
of SO(n). Nevertheless, the alternating group A, is contained in SO(n) and by the
same argument as above acts therefore trivially on the homology of B(g,SO(n)).
Furthermore, when » is odd, any odd permutation is represented by a matrix with
determinant equal to —1. Hence it can be path-connected to the diagonal matrix
—1I with constant entry —1. As —/ is in the center of O(n) it acts trivially by
conjugation on B(g,SO(n)) and hence also on its homology. But then so does any
odd permutation. This proves that when 7 is odd the action of X, on B(g,SO(n))
is homologically trivial. This in turn implies that the action of ¥, on B(g, SO) is
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homologically trivial. We also have that B(g, SO) is an H—space and hence abelian.
Thus B(g, SO) ~ hofib ,oB(q’SO(_)) for every ¢ > 2 and it is a nonunital E,-ring
space by Theorem 2.3. This line of argument can also be used to prove the analogous
statement for the commutative [-rig n — B(gq, O(n)). O

As remarked in [1, Theorem 6.3], the natural map Q2 B(g, G) — QBG admits a splitting
up to homotopy. It is given by a factorization of the usual homotopy equivalence
G — QBG. Indeed we have that G = F; B(q, G) = F1BG, where F; denotes
the first layer in the usual filtration of the geometric realization of these simplicial
spaces. Hence, the adjoint of £¥G — BG factors through Q2 B(¢, G). Note that this
splitting does not in general admit a delooping; see [1, Section 6] for a counterexample.
Nevertheless, we have the following theorem. Here E(g, G) denotes the pull-back of
the universal G—bundle EG over BG. It is homotopy equivalent to the homotopy fiber
of the inclusion B(g,G) — BG.

Theorem 4.2 Forall ¢ > 2, and G = U, SU, SO, O and Sp, there is a homotopy
split fibration of infinite loop spaces

E(g,G) — B(q,G) — BG.
In particular there is a splitting of spaces
B(q,G) ~BGx E(q, G).
Both are natural in the entry q, meaning that both are compatible with the filtration

maps.

In order to prove the theorem, we will need to know the fundamental group of B(g, G)
for the groups in question. We have the following general result:

Lemma 4.3 Let G be a topological group with a CW-structure. Assume 7y(G) is
abelian and that the natural homomorphism G — 7y(G) splits. Then, for all ¢ > 2,

m1(B(g. G)) = mo(G).

Proof Consider XG = FyB(q, G) = F1BG. As the 1-skeleton of the realization of
a (good) simplicial space is contained in the first filtration [11, Proposition 11.4], any
map from S! to B(g, G) will factor through £G. Hence the map =G — B(q, G) is
surjective on fundamental groups.

The fundamental group of a suspension XX for any space X has fundamental group
the free group over the set o(X) — {1}; hence we have

m1(2G) = F(g | g € mo(G) —{1}).
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The inclusion ¥ G — BG induces the surjective map of fundamental groups 71 (XG) —
1o(G) which sends a generator g to the element g € mo(G) and, more generally, the
word g1 e --- e g; to the product of the elements g --- gz . To see this geometrically,
consider 7o(G) as a subgroup of G, and note that the 2—simplex (g, /) defines a
homotopy from the 2—letter word g e /1 to the product element g/.

We now note that, as 7o(G) is abelian, the 2—simplex (g, /1) is contained in B, (g, G)
for ¢ > 2. Hence all the above relations are already satisfied in 71 (B(q, G)). As the
factorization 1 (XG) — m1(B(q, G)) — m1(BG) is surjective, the result follows. O

Proof of Theorem 4.2 As E G, > *, for every ¢ > 2 we have a homotopy fibration
sequence E(q, Goo) = B(q, Goo) = BG . As the map on the right is a map of infinite
loop spaces, the homotopy fiber E (g, Goo) is an infinite loop space. It remains to show
that it splits.

Let G, denote one of the groups U(n), SU(n), SO(n), O(n) or Sp(n), so that
G = colim, G, denotes the group U, SU, SO, O or Sp, respectively. For each
fixed ¢ > 2, the assignment n — QB(q, Gy,) defines a commutative [-rig with p
given by block sum and m given by tensor product of matrices. In the same way
the assignment n — QBG, also defines a commutative [-rig and the inclusion map
QB(gq, Gy) —> Q2BG, defines a morphism of commutative I -rigs.

We claim that the commutative [-rigs G—, Q2B(q, G—) and QBG_ satisfy the hy-
potheses of Theorem 3.1. Indeed, except in the case G = O, the group G, =~ QBG,
is path-connected for every n > 0 and, as wo(2B(¢q, G,)) = 71 (B(g, Gp)) is trivial
by Lemma 4.3, QB(g, G,) is also path-connected. When G = O,

mo(R2B(q. O(n))) = m1B(q. O(n)) = Z/27Z

for each n > 1 by Lemma 4.3. The multiplication in o2 B(¢g, O(n)) is compatible
with direct sum and stabilization. This checks the second condition in Theorem 3.1.

Except in the cases G = SO or G = O, the action of ¥, is homologically trivial
as conjugation by any element in the path component of the identity is trivial, up
to homotopy, and G, is path-connected. This implies that X, acts homologically
trivially on Goo, 2B(q, Gso) and QBG . The same conclusion can be obtained for
G = SO or G = O using a similar argument as in the proof of Theorem 4.1. Hence
the first condition from Theorem 3.1 holds.

To verify the third condition, observe that the commutator group of 71 (2B(g, Gy)) =
1 (B(q, Gy)) is trivial, as this group is abelian in all cases. Finally, 2B(q, G) is an
abelian space since it is a loop space and hence in particular an H —space.
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By Theorem 3.1 we thus have maps of E,—spaces
Goo = QB(g,Goo) = 2BG oo

whose composition is a homotopy equivalence. Taking classifying spaces is compatible
with E,—space structures and hence the above splitting deloops to give the splitting
of the theorem. d

We have concentrated so far on compact groups such as O(n) and U(n), although
the methods clearly extend to other linear groups. Using some results by Pettet and
Souto [16] and Bergeron [3] we can prove the following theorem:

Theorem 4.4 Suppose that G is the group of complex or real points in a reductive
linear algebraic group (defined over R in the real case). Let K C G be a maximal
compact subgroup. Then the inclusion map i: B(q, K) — B(gq, G) is a homotopy
equivalence for every ¢ > 2.

Proof By [3, Theorem I] it follows that the inclusion map i,: B,(¢, K) — Bn(q, G)
is a homotopy equivalence for all ¢ > 2 and all #» > 0. Thus the inclusion map induces
a simplicial map ix: B«(¢, K) — B«(q, G) that is a levelwise homotopy equivalence.
Since G is assumed to be the group of complex or real points in a reductive linear
algebraic group (defined over R in the real case), we can identify G with a Zariski
closed subgroup of SL (C) for some N > 0. Also, for every n > 0 we can see the space
By(g, G) as an algebraic variety since it is defined in terms of iterated commutators
of elements in G and such equations can be defined in terms of polynomial functions.
Moreover, the subspace S, (¢, G) C By(q, G) consisting of all n—tuples in By(q, G)
for which at least one of the coordinates is equal to 1 is an algebraic subvariety
of By(q, G). By the semialgebraic triangulation theorem (see [8, Section 1]) it follows
that By,(g, G) has the structure of a CW—complex in such a way that S} (¢, G) is a
subcomplex. In particular, it follows that the pair (B,(¢, G), S, (¢, G)) is a strong
NDR pair. This proves that B (g, G) is a proper simplicial space. The same is true
for B«(g, K). Using the gluing lemma— for example see [12, Theorem A.4] —we
obtain the result of the theorem. |

Our tools can also be used to obtain a similar filtration for the infinite loop space
defining algebraic K—theory for any discrete ring R. Indeed, suppose that R is a
discrete ring with unit and let ¢ > 2. Consider the commutative 1-rig B(¢, GL_(R))
defined by n — B(q,GL,(R)). As before the morphisms are induced by the natural
inclusions and the conjugation action of X, on B(q,GL,(R)). The multiplication
map

pinm: B(@.GLn(R)) X B(q, GLn(R)) = B(q, GLy1m(R))
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is also given by the block sum and 7 by tensor product of matrices. Note that
Theorem 3.3 applies to give

hocolimy B(g, GL_(R)) >~ hofib pB(q’GL—(R)),

By Theorem 2.3, this space has the structure of a nonunital E.,-ring space. This way
we obtain a filtration of nonunital E,-ring spaces:

hocolimy B(2, GL_(R)) C---Chocolimy B(g, GL_(R)) C---Chocolimy BGL_(R).

As is well known, the conjugation action of X, on BGL,(R) is homologically trivial.
It follows from Theorems 3.1 and 3.3 that we have an equivalence

BGLoo(R)T =~ hofib pB B ~ hocolimy BGL_(R).

Thus the above gives a filtration of nonunital E—ring spaces with final space weakly
homotopy equivalent to the algebraic K—theory of R. However, unlike the case
of BGL,(R), we do not know whether the conjugation action of ¥, on B(g, GL,(R))
is homologically trivial, and we expect that the natural map

B(q,GLoo(R)) — hocolimy B(g, GL_(R))
is not a homology isomorphism.

In a similar way we can obtain a filtration of Q(S°). For this note that the conjugation
action of ¥, on BY, is homologically trivial. Therefore, by the Barratt—Priddy—
Quillen theorem, the level zero component of Q(S°) is equivalent to the homotopy
colimit over I of the classifying spaces of the symmetric groups:

00(S%) ~ (BZso)t ~ hofib pB¥— ~ hocolimy BY _.

Consider the commutative [-rig B(g, ¥_) defined by n +— B(gq, £,). The structural
maps are given by conjugation of %, and inclusions in an analogous way as above.
Then by Theorem 2.2 we have a filtration of nonunital E,—ring spaces

hocolimg B(2, £-) C -+ C hocolimp B(g, £-) C -+- C hocolimp BE_ =~ Q(S°).

As in the case of B(g, GL,(R)), the conjugation action of X, on B(g, X,) may fail to
be homologically trivial (for example this is the case for the conjugation action of Xj
on B(2,X3); see [1]). The conditions of Theorem 3.3 are satisfied but the homotopy
types of the spaces hocolimy B(g, ¥_) ~ hofib pB @.%-) remain to be determined.
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Corollary 4.5 The spaces
hocolimy B(gq, GL—(R)) ~ hofib pB(q,GL,(R))’
hocolimy B(g, ¥_) >~ hofib pB(q,E_)

provide filtrations of nonunital E,-ring spaces with final target the classical nonunital
E oo —ring spaces BGLoo(R)" and Q¢ (S?).

S Transitional nilpotence, bundles and K-theory

In this section we extend the notions of transitionally commutative bundles and com-
mutative K—theory as defined in [2] to more general g—nilpotent notions for ¢ > 2,
reflecting the filtration induced by the descending central series of the free groups. We
will show that these geometrically defined theories are represented by the infinite loop
spaces Z x B(q,U).

Definition 5.1 For a CW—complex X a principal G-bundle 7: £ — X is said to
have transitional nilpotency class at most ¢ if there exists an open cover {U;}ier
of X such that the bundle w: E — X is trivial over each U; and for every x € X the
group generated by the collection {p; j(x)};,; is a group of nilpotency class at most ¢q.
Here p; j: Ui NUj — G denotes the transition functions, and i and j run through all
indices in I for which x € U; N U;. The minimum of all such numbers ¢ is said to be
transitional nilpotency class of n: £ — X .

The principal G-bundle p,: E(q,G) — B(q,G) is universal for all principal G-
bundles with transitional nilpotency class less than ¢.

Theorem 5.2 Assume that G is an algebraic subgroup of GL (C) for some N > 0,
X is a finite CW-complex and that w: E — X is a principal G —bundle over X . Then,
for any q > 2, the classifying map f: X — BG of & factors through B(q,G) (up to
homotopy) if and only if 7 has transitional nilpotency class less than q .

Proof The case ¢ =2 was treated in [2, Theorem 2.2] and in fact this theorem is true
for any Lie group in this case. The proof goes through verbatim also for ¢ > 2 using
the fact that when G is an algebraic subgroup of GL(C), then the simplicial space
By« (q, G) is proper, as was pointed out in the proof of Theorem 4.4. |

As [ZX, BG| = [X, 2BG] and the canonical map QB(q, G) — QBG always admits a
splitting up to homotopy, any principal G —bundle on a suspension XX has transitional
nilpotency class less than ¢ for all g. However, the nilpotency structure is not unique
in general, not even up to isomorphism in the sense of the following definition:
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Definition 5.3 Let 7o: E9 — X and 7;: £y — X be two principal G -bundles with
transitional nilpotency class less than ¢. We say that these bundles are g—transitionally
isomorphic if there exists a principal G-bundle p: E — X x [0, 1] with transitional
nilpotency class less than ¢ such that 7o = p|,—1(xx{oy) and 71 = p|p—1(xx{1})-

A complex vector bundle w: E — X is said to have transitional nilpotency class less
than ¢ if the corresponding frame bundle, under a fixed Hermitian metric on E, has
transitional nilpotency class less than ¢. Theorem 4.2 can then be interpreted to say that
any vector bundle is stably of transitional nilpotency class less than ¢ for all ¢ > 2, and
there is a functorial choice of such a structure. The set Vecty_pii(X) of g—transitionally
isomorphism classes of complex vector bundles over X with transitional nilpotency
class less than ¢ is a monoid under the direct sum of vector bundles. The g-nilpotent
K—theory of X is defined as the associated Grothendieck group.

Definition 5.4 K, _,i(X) := Gr(Vectg_pnii(X)).

Tensor products induce a natural multiplication on K;_nij(X) just as in classical K-
theory.

Theorem 5.5 For any finite CW—complex X there is a natural isomorphism of rings
Kq_nil(X) = [X, 7 x B(q, U)]

Hence, it is the zeroth term of a multiplicative generalized cohomology theory.

Proof Let X be a finite CW—complex. By working one path-connected component
at a time, we may assume without loss of generality that X is path-connected. By
Theorem 5.2,
Vecty nit(X) = [X, | | BG. U(n))]
n=0

as abelian monoids, where the addition is induced by direct sum of matrices on the right
hand side. Any injection N x N — N induces a linear injection C*®° x C*® — C°,
which in turn induces an H —space product on Z x B(q, U). The natural inclusions
B(q,U(n)) — B(q,U) define a map

[X, | | B. U(n))] —[X,Z x B(q, U)].

n=0

As the symmetric groups act by homotopy equivalences on B(g, U), we see that the
above map is compatible with the product structure on both sets, ie it is a map of
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monoids. By the universal property of the Grothendieck construction, this map factors
through a unique map of abelian groups

Kgit(X) = [X.Z x B(q. U)].

As X is compact, any map X — B(g, U) factors through some B(g, U(n)) for some
large enough n. Hence the above map is surjective.

To prove that it is injective, suppose that the image of [4] — [B] € Ky i(X) in
[X,Z x B(q,U)] is zero. Let us write fp: X — B(gq,U) for the image of a map
representing B in the colimit B(g,U) = colim,cn B(g,U(n)). Since B(gq,U) is
a grouplike H —space, the induced product on Map(X, B(g, U)) is also a grouplike
H —space structure. Let fg: X — B(q,U) be a homotopy inverse for fp under
this product. Since X is compact, we may factor fps through a finite stage of the
colimit and find a corresponding bundle B’ over X with transitional nilpotency class
less than ¢ which is classified by the map fp/. It follows that B @ B’ is stably
g—transitionally isomorphic to the trivial bundle ¢; of rank & = dim B + dim B’. By
our assumption, we see that the image of [4 @ B'] —[ex] in [X,Z x B(gq, U)] is also
zero. This means that A @ B’ is stably ¢ —transitionally isomorphic to a trivial bundle,
say A ® B’ @ €; = €x4,. We then have the relation

[A]-[B]=[4® B’ ®&/] —[ex44] =0
in Ky 4i1(X), which completes the proof. O
This answers the question raised in [2] for ¢ = 2. Moreover, we have a sequence of
cohomology theories and maps between them,
Kcom(X) = K27nil(X) - K37nil(X) > > Kq—nil(X) >t K(X)

By Theorem 4.2, topological K—theory splits off ¢g—nilpotent K—theory for all ¢ > 2.
These theories are not well understood and would seem to warrant further attention.
For example in [2] it was shown that K.om(S?) = K(S’) for 0 < i < 3, but that
Keom(S*) # K(S*).

We leave it to the reader to formulate g-nilpotent versions of real and hermitian
K-theory.
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Stable functorial decompositions of F(R"*!, j)* Ay, X )

JIE WU
ZIHONG YUAN

We first construct a functorial homotopy retract of Q"T!X"+1 X for each natu-
ral coalgebra-split sub-Hopf algebra of the tensor algebra. Then, by computing
their homology, we find a collection of stable functorial homotopy retracts of
FR"™ ! )t ag, XU

55P35; 55P48, 55P65

1 Introduction

In the 1970s, Snaith [12] proved iterated loop suspensions of a space can be split
stably into simpler pieces. This is called the Snaith splitting. In detail, let X be a
path-connected CW—complex, with X /) the j—fold self smash product of X . Let
F(R™*1, j) be the j™ configuration space of R”*! and X j be the symmetric group
on j letters. Let Dj(X) denote the smash product F(R"*!, /)T Ag X ). There is a
homotopy equivalence

Subsequently, it was shown that similar splittings can be applied to a more general
space CX ; see Cohen, May and Taylor [4; 5] and May and Taylor [8].

A few years later, Bodigheimer [2] showed a unified form of all these splittings.
Let K be a finite complex, Ky a subcomplex and X a connected CW—complex.
Let M be a smooth, parallelizable n—manifold with a submanifold M, such that
(M, My) ~ (K, Ky). For the space Map(K, Ko; £" X)) of based maps from K/K
to X" X, there is a stable splitting

where Dy (M, My; X) for k = 1 are simpler pieces constructed from the labeled
configuration space C(M, My; X).

Snaith splitting is one kind of stable splitting. Recently, the techniques of stable
splittings have been applied to toric topology. For instance, Bahri, Bendersky, Cohen and

Published: 14 March 2017 DOI: 10.2140/agt.2017.17.895


http://msp.org
http://www.ams.org/mathscinet/search/mscdoc.html?code=55P35, 55P48, 55P65
http://dx.doi.org/10.2140/agt.2017.17.895

896 Jie Wu and Zihong Yuan

Gitler [1] found various stable splittings of polyhedral product functors. Dobrinskaya [6]
proved that the loop space of the polyhedral product shares similar decompositions as
the Snaith splitting.

Here we study further functorial decompositions of the Snaith splitting. More precisely,
we will focus on the functorial homotopy decompositions of F(R”T1, j)T A 5 X (0,
When 1 = 0, we have F(R"T!, j)TAg, XU) = X(), Selick and the first author [11]
showed that if p =2 and H«(X;Z/p) has a nontrivial Steenrod operation then the
irreducible functorial decomposition component of X /) and the 2—row Young diagram
with distinct row numbers are in one-to-one correspondence. In this paper, we will
study the case when n > 0.

The main idea driving this paper comes from functorial homotopy decompositions
of QX X : For each natural coalgebra-split sub-Hopf algebra (see Definition 2.2), there
is a functorial homotopy retract of QX X with the inclusion an 2—map; see Li, Lei
and Wu [7] and Selick and Wu [10]. Among all the natural coalgebra-split sub-Hopf
algebras, we mainly focus on a special one. Let L)** be the maximal 7,,—projective
submodule functor of the free Lie algebra functor L,, (see Section 2.1). For a graded
(alternatively ungraded) Z/p-module V', the tensor algebra 7T'(L;;**(V')) generated
by Lp# (V') is a natural coalgebra-split sub-Hopf algebra (Proposition 2.3). Following
from Section 2.3, there is geometric realization of L}**(V'), denoted by L5;**(X),
such that QX L7 (X) is a functorial homotopy retract of QXX . Furthermore, the
inclusion is an 2 —map.

For a space X" X, we have that QX LP# (X" X)) is a functorial homotopy retract of
QX"+l X with the inclusion an Q—map. Applying the loop functor 7 times, we can
obtain a functorial homotopy retract of Q71 %" X with the functorial the homotopy
inclusion an Q”*!—map. It can be shown that this retract is a (n41)—iterated loop
suspension (Lemma 3.1). Now a natural question is: what is the relation between the
Snaith splitting of the retract and the Snaith splitting of the original (n+1)—iterated
loop suspension? To answer this question, we have the following main result:

Theorem 1.1 Let X be a 1—connected p—local suspension of finite type. For the
natural coalgebra-split sub-Hopf algebra T (L™ (V')), there is an n'! desuspension
XTI E" X of the topological space L™ (X" X)) and a sufficient large integer t
such that ' Dj (S 7"LS** " X) is a functorial homotopy retract of ' Djpm(X).

This article is organized as follows. In Section 2, we give a brief introduction about
natural coalgebra-split sub-Hopf algebras of the tensor algebra, functorial homotopy
retracts of QXX and the homology of Q”T1X#T1 X Section 3 constructs natural
homotopy retracts of Q"1 %71 X from natural coalgebra-split sub-Hopf algebras of
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the tensor algebra. In Section 4, we compute the homology image of X™"L}**¥" X
in the homology Q"T!X"*1 X In Section 5, a collection of the functorial stable
homotopy retract of F(R"T1, j)*Ax X () is constructed. Additionally, the proof of
Theorem 1.1 is given in this section. An example is given in Section 6.

2 Preliminaries

Let k = Z/ p be the ground ring; p is a prime. All topological spaces are assumed to
be p-local CW—complexes. All homology is taken with the coefficients Z/ p unless
otherwise stated.

2.1 T,-projective module

Let V be a graded (ungraded) k—-module. Let 7' (V') be the tensor algebra generated
by V', namely

T(V)=>Y Ve
n=0

A Hopf algebra structure can be given over 7'(V) by setting V' to be primitive. Let
T,(V)=V®" Then T and T, can be viewed as functors from the category of graded
(ungraded) k—modules to the category of graded (ungraded) k—modules.

Let M and N be functors from the category of graded (ungraded) k—modules to
the category of graded (ungraded) k—modules. M is a submodule functor of N if
M (V)< N(V) for each graded (ungraded) k—module V', and M is a retract of N if
there are natural transformations i: M — N and r: N — M of k-modules such that
ros=1id: M — M . A retract of T} is related to a k(X,)—projective module (see [7,
Proposition 2.10]). Hence, if M is a retract of 7}, we also call it T;,—projective.

Let L(V) be the free Lie algebra generated by V. Then L is a submodule functor
of T. Let L,(V)= L(V)NT,(V). From Selick and the first author [10], there exists
a submodule functor L)** of L, with the following properties:

Proposition 2.1 [10, Section 6] (1) L)* is T, —projective.

(2) Each T, -projective submodule functor of Ly, is a retract of L)**.
Up to isomorphism, Ly*** is the maximal T, —projective submodule functor of Ly.

2.2 Coalgebra-split sub-Hopf algebras

A coalgebra-split sub-Hopf algebra is a retract of 7'(V') with additional Hopf algebra
and coalgebra structures.
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Definition 2.2 Let B be a submodule functor of 7. We say B(V) is a natural
coalgebra-split sub-Hopf algebra of T (V) if:
(1) B(V) is a natural sub-Hopf algebra of 7' (V') with natural inclusion of Hopf
algebras jy: B(V)— T(V).
(2) There is a natural coalgebra transformation ry: T (V) — B(V) with ry o jp =
idp(yy.

If B(V) is a natural coalgebra-split sub-Hopf algebra defined as above, the natural
maps jp and ry are called an associated natural inclusion and associated natural
retraction of B(V'), respectively.

A natural coalgebra-split sub-Hopf algebra is a tensor algebra. Let Q(1') be the set
of indecomposable elements of B(1); this is a k—submodule of B(V). We have a
natural isomorphism of Hopf algebras

B(V)=T(Q(V)).
Define the maps k- and ) as the canonical inclusion and projection
ky: Q(V) = T(Q(V)) = B(V),
Yy B(V)=T(Q(V)) — 0(V).
These definitions imply the following commutative diagrams:

iy o

ow) rwv) o) rw)

P P

B(V) B(V)

Here jj is a Hopf algebra homomorphism, 7y~ is a coalgebra homomorphism, ryo jpr =
idp(yy, the maps ky and vy are homomorphisms of k—modules, and i) and ¢y are
defined as the compositions of the other two maps in the triangle.

If B(V) is a sub-Hopf algebra of T (V') only, then properties of Q(V') can imply a
coalgebra-split structure of B(V').

Proposition 2.3 [7, Theorem 5.2] Let B(V') be a natural sub-Hopf algebra of T (V).
Then the following statements are equivalent:

(1) B(V) is a natural coalgebra-split sub-Hopf algebra of T(V').

(2) Each Q,(V) = Q(V)N Ty(V) is naturally equivalent to a T,,—projective sub-
functor of L.

(3) Each Q,, is T, —projective.
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Since L;** is a T,—projective subfunctor of L, Proposition 2.3 implies 7' (L;**(V))
is a natural coalgebra-split sub-Hopf algebra of T'(V).

2.3 Functorial homotopy retracts of X X

Let A and B be functors from the (homotopy) category of path-connected p—local
CW-—complexes to the (homotopy) category of spaces. Let C be a subcategory of the
(homotopy) category of path-connected p—local CW—complexes. A is a functorial
homotopy retract of B over C if, for each object X in C, there are natural maps
ix: A(X)— B(X) and ry: B(X)— A(X) such that ryoiyx ~id4(x). The homotopy
need not be natural. The maps iy and ry are called an associated natural inclusion
and associated natural retraction of A, respectively.

The functorial homotopy retracts of 2X X are related to natural coalgebra-split sub-
Hopf algebras of T(V). Let X be a CW—complex. X is a p—local suspension of
finite type if X is homotopic equivalent to XY ), the suspension of the p-localization
of a finite CW—complex Y. Let B(V) be a natural coalgebra-split sub-Hopf algebra
of T(V) and Q(V) be the set of indecomposable elements of B(V'). A functorial
homotopy retract of 23X X can be constructed from B(V) and Q(V).

Theorem 2.4 [10, Theorem 1.1; 13, Theorem 3.3] Let X be a 1—connected p—local
suspension of finite type. Let B(V') be a natural coalgebra-split sub-Hopf algebra
of T(V) with associated natural inclusion jy: B(V)— T(V), and Q(V) the set of
indecomposable elements of B(V). Then there is a functorial space Q(X) with a
natural map iy: Q(X) — QXX such that:

(1) QX Q(X) is a natural homotopy retract of QX X with associated natural inclu-
sion Qiy, where iy: XQ(X) — XX is the adjoint of iy: Q(X) —> QXX :

ix

0(X) QX

(1) \ /
QIX

QYQ(X)

Here the map Q(X) — QX Q(X) is the canonical suspension map.

(2) Q(X) has a wedge decomposition. In detail, there are elements A, € Z.(%,,) for
m = 2 such that Q(X) = V;,—y Om(X), where Qpm(X) = hocolim; X,
Here %, acts on X ™ by permuting factors.

(3) H«(Q(X)) = Q(H+«(X)) and Hy(QXQ(X)) = B(H «(X)). Furthermore, the
induced diagram from diagram (1) satisfies (Qiyx)« = J Ho(X):
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iX*

O(H«(X)) T(H«(X))
B(H (X))

In following discussions, we denote the map Qiy by jx . It follows from the theorem
that X Q(X) is a functorial homotopy retract of 23X with an associated natural
inclusion jy: QY Q(X) — QXX which is a loop map.

2.4 Homology of Q"+1x»+lx

Let X be a connected CW—-complex. All homology is taken with Z / p—coefficients. The
homology of Q”T1X7+1X can be formulated by Hy X , Dyer—Lashof operations Q°,
Browder operations A, (we will also use [—, —],), a function &, and a function ¢j,.
The function ¢, is defined for p > 2 only.

To formulate the homology of Q"T1%”+1X  aset T,X will be defined first. For
convenience, we list the construction of 7, X for p > 2 only in the following. The
case for p = 2 is similar.

Let V = HyX. Anelement x € V is a A,—product of weight 1 (w(x) = 1); the
weight of [a, b], is defined by w([a, b],) = w(a) + w(b). We say x € V is a basic
An—product of weight 1. Assume the basic A,—product of weight j < k has been
defined and totally ordered; the basic A,—product of weight k is of the form [a, b],
such that:

(1) o(a,bln) =k.

(2a) a and b are basic A,—products, with a < b. If b = [c, d], for ¢ and d basic
thena>=c<d.

(2b) If a is a basic A,—product of weight 1 and n 4 degree(a) is odd, then [a, a], is
also a basic A,—product of weight 2.

Let I = (e1,51,...,&k,Sk) be a 2k—tuple of integers with s; > ¢; and e =0 or 1.
I is admissible if psj —ej = sj_; for 2 < j < k. Define functions e, d, [ and b as
follows:

(i) Excess e(l)=2s;—¢&1 — Zf:2[2sj- (p—1)—¢j].
(i) Degree d(I)= Z}‘Zl[Zsj(p —1)—¢j].
(iii) Length [(J)=k.
(v) b(I)=e,.
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If ] =, thenlete(/) =00 and d()=1(I)=b(I)=0.
For I = (1,51, ....&k,5k), let Q1 y = BE1Q%1... Bek Ok y . Define the set T, X by
T,X = {Qly ‘ y a basic Ay—product, I admissible, e(I) + b(1) > |y|,

if 7 =(e1,51,....6.5¢), then s < 2(n +¢)}.

Here we denote &,x by Q" 19/2x and ¢,x by O 19/2x for x € Hyz X ,and |y| is
the degree of y.

For a prime p, the homology H,Q"T!2"+1X is a functor of HyX, denoted by
W, Hy X . On the other hand, let A7, X be the free commutative algebra generated by
the set 7, X. We have the following theorem:

Theorem 2.5 [3, Theorem 3.1, Lemma 3.8] For a connected X , there is an isomor-
phism of algebras
WoH X = AT, X.

Remark Here we use W, Hy, X as another notation for HyQ"T1 X7t X . In fact, it
can be defined independently as an 4 R, A,—Hopf algebra with conjugation (see [3,
Section 2]).

There is a weight filtration defined on W, H. X . For an element 01y in T, X, letits
weight w(Q'y) be defined by

w(Q1y) = p'Daw(y),

where /(1) is the length of the tuple 7 and w(y) is the weight of the basic A, —product y.
Since HyQ"T1E"T1X is the commutative algebra generated by 7, X, we can define
the weight of the product Q7 y - Qf /y/ as

o(Q'y-0"y) = (@) +w (@)
This makes H,Q"+1X"T1X a filtered algebra by defining the filtration as
FWyH X = {x € H,Q"T12" 1 X | w(x) < k).

Let ExWyHy X = Fi W, Hy X/ Fi_1 Wy Hi X . There is a geometric realization of
E;W,H X .

Proposition 2.6 [3, Section 4] H.(F(R""! k)t Ag, X®) = E, W, H X,
2.5 Homology suspensions and transgressions

The homology suspension is defined as the homomorphism

ox = pod~': Hi(QB) <2 Hy1(PB,2B) 25 Hy i1 (B),
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where p: PB — B is the map p(u) = u(1). The transgression is the differential map
in the Serre spectral sequences. Fix a fibration ' — E — B with connected B and F;

in the associated Serre spectral sequence, the transgression 7 is the differential
. n n
dn: En,O — EO,n—l‘

Some general properties of o4 and t are listed as follows:

Proposition 2.7 ~[9, Propositions 6.10 and 6.11] (1) Let f: X — QY be a pointed
map and f: XX — Y be its adjoint; then the homology suspension o4 and the
suspension ¥y: Hyx X — Hy11 XX form a commutative diagram:

Hyor () L5 H,y(@)
lE* f~ lo'*
Hy(SX) —=— Hy(Y)

(2) If B is simply connected, then in the Serre spectral sequence of 2 B — PB — B
there is a commutative diagram:

q a1 q
Ean = EO,q_l

Lo

O
Hy(B) +—— Hy,_1(F)
In particular, the image of 04 is transgressive.
Consider the relation between t and the Browder operation [—, —|, ; we have:

Proposition 2.8 If X is connected, then in the Serre spectral sequence of

Qn-i-lzn-HX_) PQnEl’l-FlX_) ann+1X

we have
T([sx1. .o [5Xk—1. 8XkIn—1ln—1) = X1, ... [Xk—1, Xkcluln
10'sx = (=P olx,
where sx is the image of x € Hy X under the isomorphism X4: Hy X — Hy1 12X .

This proposition is implicit in the proof of [3, Theorem 3.2].

3 Functorial homotopy retracts of "1 X7+l x

Let B(V') be a natural coalgebra-split sub-Hopf algebra of 7°(V) and Q(V') the set of
indecomposable elements of B(V). Let X be a 1—connected p-local suspension of
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finite type. It follows from Theorem 2.4 that QX Q (X" X) is a functorial homotopy
retract of QX (X" X). By applying the loop functor n times, we can obtain that
Q"1 Q(2"X) is a homotopy retract of Q"1 %”+1 X and the natural inclusion

anE"X: Qﬂ-’-l zQ(ZnX) s Qn+1 En+1X
is an Q"1 _map. If X is a co-H-space, the space Q(Z"X) can be desuspended n

times:

Lemma 3.1 If X is a co-H-space, then there is a space Q(X) such that Q(2"X) is
naturally homotopic to X" Q(X).

Proof Since Q(X) = Vy» Om(X), it is sufficient to prove Qn(Z"X) can be
desuspended » times. Let X M) be the m—fold self smash product of X . The definition
of 0, (X" X) implies a homotopy commutative diagram:

¢
(=nx)m . (znx)m
(2) shuffling isomorphism T T shuffling isomorphism

mn g

EmnX(m) ZmnX(m)

Here
p=Am= Y koo: (Z"X)"™ — (£"X)"™,
oEX,
3) — 20
p= > keo(—1)"Simo: xym _, xm
0EX

and the vertical maps are the natural shuffling homeomorphisms.

Let Opm(X) = hocolim(; X 1t is obvious that

=" Qpm(X) =~ hocolimg,, s x M) = hocolimg (2" X)™ = 0,y (2" X).

Thus,
O(E"X) = Viey Om(Z"X) = Vs S O (X) = " Ve, S0 0, (X).
It is clear that all homotopy equivalences are natural. a

Remark This lemma shows that \/fnozzZ”(m_l)Qm (X) is the n'" desuspension
of O(X"X). For convenience, in later discussion, X" Q(X"X) is used to de-
note the space V,on°:22"(m_l)ém(X). Similarly, we use X770, X" X to denote
1m0 0 (X).
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For the space X" Q (X" X), there is a natural inclusion
E—nQEnX_> Qn-i-lzn-i-l(z—annX)Sm)Qn+12n+1X.
Up to homotopy, this map is the adjoint map of

Jsnx

03X > QX (03" X) 5 Q3 (2" X).

This composition is exactly the functorial map iy: Q(Y) — QXY , where ¥ = ¥" X .
In summary, we have the following theorem:

Theorem 3.2 Let X be a 1 —connected p—local suspension of finite type. If B(V')
is a natural coalgebra-split sub-Hopt algebra of T (V) and Q(V) is the set of in-
decomposable elements of B(V'), then there exists a functorial homotopy retract
Qtlyrtl($="0%"X) with a natural inclusion

i: Qn+lzn+l(z—nQEnX)_)Qn+lzn+1X
which is an Q"1 —map. Furthermore,

H(S7"0%"X) = Q(HA(2"X)).

4 Y "L™*¥"X and its homology image in "+t1X"+1x

Let L** be the maximal 7, —projective submodule functor of L,,. The tensor algebra
T (L (V)) is a natural coalgebra-split sub-Hopf algebra with the set of indecompos-
able elements L;;**(V'). Then we have two spaces L**(X) and X" Lp*¥" X' . Fur-
thermore, Q"1 £ 1 (R~ Max 511X jg a functorial homotopy retract of Q"1 +1y,
The inclusion map is

Q" jsn
(4) in,X: E—anaxEnX - Qn+1 En-i—l(z—nL%axEnX) Jznx Qn+1 En-f‘lX’
which is the adjoint of the map
Jenx

inx: LTS X — QR (LM 5" X) 25 o5 (37 X).

To analyze the homology image of ¥ "LI*37X in Q"T1¥"+1 X we need to
compute

(in.x)s: HeXT"LEXRNY 5 HQ"TIxmtl Y,
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From the properties of the homology suspension o4 (see Proposition 2.7), we obtain a
commutative diagram

nin.X)*

Q
H S sy — 5 H QPSS gn X) @ x)s H . Qntlygntly
lzin) la*((n) Jain)
Hyqn LB ("X ) =——= Hy1n LD (Z"X) G Hy1nQE(Z"X)

where Efkn) and oin) mean n—fold compositions.

For x € Hy X, denote the image of x under the isomorphism Xy: Hx X — Hyy 12X
by sx. Consequently, s”x is used to denote E,(kn)(x). Let [x1,X2,...,Xm|s be an
arbitrary A,—product of weight m formed by elements x1, ..., X, . For an element
[s"x1,8"X2, ..., 8" xmlo in Hyyn, Lp™*(X"X), with x; € Hy X, denote its inverse
image under the isomorphism

S H S TLNNSX - Hyyn LI (27 X)
by s7"[s"x1,5" X2, ..., 5" Xm]o.

For the map 1, x , we have the following lemma:

Lemma 4.1 Under the homomorphism
(. x)s: He(ET"LPX"X) — H*(Qn—i-l En+1X),
’ m

ST"s"xq,8" %2, ..., 8" Xm]o is mapped to [X1, X2, ..., Xm]n, With X; € Hx X .

Proof We prove this lemma by induction on n. For n = 1, there is a commutative
diagram:

—1 7 max —1 7 max (i1 x)« 252
HE'Lmsy o goosE-iimsy) % g grsry
lZ* lo'* lU*
Hysy LIX(SX) ———— H,  LO%(2X) — 2 p L ox2x

The bottom row is the natural inclusion
(1,x)%: Ly (sH« X) — T (sHy X).

The upper row is exactly (i1 _x)«. Since the first map of the upper row is a natural
inclusion, we only need to prove

(Qil,X)*(s_l[sxl,sxz, co s SXmlo) = [X1, X2, ..., Xml1-

Algebraic € Geometric Topology, Volume 17 (2017)



906 Jie Wu and Zihong Yuan

To prove this, we consider a natural commutative diagram of Serre path fibrations
QLYM(EX) —— PLI¥(XX) —— Lp*(EX)
Q222X ——— PQRIY ——— Q22X

which implies a natural morphism of Serre spectral sequences. Therefore, for the
transgression t, there is an equality by naturality,

to(i1,x)x = (i1 x)x0T.
In the Serre spectral sequence of the path fibration
Q*2%X — PQYIX — QX%X,

we have the equality (see Proposition 2.8)

T[sxt, ..., SXmlo = [X1,. .o Xml1-
Hence,
(Qi1,x)« (s [sx1. 52, ... 5Xmlo) = (Ri1,x)% 0 T([5X1. 52, . ... 5Xm]o))
=10 (i1, x)+([sx1,5x2,...,5Xmo)
= t([sx1,5X2,...,5Xm]o)
=[x1,...,Xml1.

Now assume this lemma is true for n < k. For n = k, there is a commutative diagram:

@ ir, x)x
H s kpmxsky — f,Qksk(n—k [ mxyk x) BT H.Qk sk y
lz* lo‘* la*
@iy sx)x
Hyp 1 DKL (Sh X)) —— Hyp QFTLD (S X) Hyp Qksk+1x

lzik—l) laik—l) J/Uik—l)

(ik,X)*

Hyy LMK Y e H, L3k X H,  Q3k1x
The composition of the second row is (ix—; xx ). By induction,
-~ 1—
(Tk—1,2x)x(s k[skxl,skxz, ... ,skxm]o) =[SX1,8X2, ..., SXmlk—1.

The horizontal rows of left commutative squares are natural inclusions. So, the above
identity implies

—1- 1—
(Qk ik—1,5x)*(s k[skxl,skxz,...,skxm]o) =[sX1,8%X2, ..., SXmlr—1-
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Note that we need to prove

(Qkik,X)*(s_k[skxl,skxz, .. .,Skxm]o) =[X1,X2, ..., Xmlk-

It follows from the commutative diagram

k ¢ k k— : k k— : k
QF Lmax(sk ) —— pQi-lpmax gk y) —— Qk—1 pmax sk x)

lﬂkik,x l lﬁk_lik—l.zx

Qk—i-lzk—i-lX SN PQk2k+1X N kak-HX

and the induced Serre spectral sequences that

(@ ik x)x 0t =70 (@ Tig_y mx).

Thus,
(Qkik,X)*(s_k[skxl,skxz, ... ,skxm]o)
= (Qkik,X)* o r(sl_k[skxl,skxz, e ,skxm]o)
=to (Qk_lik_l,zx)*(sl_k[skxl,skxz, e ,skxm]o)
=t([sx1,5X2, ..., 8Xmlk—1)
=[x, Xmlk-
This completes the proof. a

S Further decompositions of the Snaith splitting

Fix an integer n > 0. The space Q"1 X”T1 X has the Snaith splitting
TRQUHIET LY ~ V2 RC PR, j)tag, X = V5203 D; (X).

Here F(R"*!, ) is the j™ configuration space of R”*1, and D;(X) is the smash
product F(R"!, j)* Ay, X)) From the above splitting, D;(X) is a natural stable
retract of Q"T1E"+1 X The homology of D;(X) (see Proposition 2.6) is

H(Dj(X)) = FjWyHy X/ Fj_1 Wy He X = Ej Wy Hy X.

In other words, H Dj(X) consists of the homology classes in Hi Qrtlyntly with
weight ;.

It follows from Theorem 3.2 that Q71 2"+ (Z™"IMaX3n X') 5 a functorial homotopy
retract of Q7T 2" +1 X Hence we can apply the Snaith splitting to both spaces and
compare D;(EZ7"L)¥*¥"X') with Dgy(X) for nonnegative integers j, m and q.
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Proof of Theorem 1.1 In Lemma 3.1, we have proved that the n'" desuspension
ST EX of L™ (X" X) exists. The left part of the main theorem will be proved
in two steps. First, the stable case will be proved. We claim that there are stable maps

¢
EXD;(ETLRENX) /= E®DjpX
¥
such that
W* o ¢* =id,
that is:

b
Hy(S®°D; S M55 X) — 5 HyS®D ;X

X lw*

H, S®°D; S mxsn X

Recall that Q"1 £+ (T MaX 1 ') js a natural homotopy retract of Q"1 ¥+ x
ie there exist maps

g
Qn-i—l Zn-}—l (Z_nLﬁaXEnX) — QIS Y
h
such that

hog~id.

Furthermore, g is an Qnrtl —map. In fact, g can be chosen to be Q" jynx (see (4)).
Applying the Snaith splitting, we have a diagram as follows:
EOO
EOOQ”+1 En+l(2_"LmaXE”X) _g) EOOQ"'H En+1X
m ¢

]

(5) vj?l 300 D] (E_nLﬁaX ZnX) vq?l ZOODqX
5;' Tl P;' Sq H Pq
D TTLmA T X $®D, X

where p; and p, are the canonical projections to the g™ components, and s(’I and sg4
are the canonical inclusions from the ¢ component to the whole spaces.

Next, consider their induced maps on homology. Recall that

o0 o0
H Z®PQUH S Y = H, Q'S X = (P HiDg X =~ @) H.Z®° Dy X
q=1 q=1
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and
H.DyX = EqW, Hy X.

Hence (pg)+ is isomorphic to the canonical projection from the direct sum to the g™
summand, and (s4) is isomorphic to the canonical inclusion from the g" summand
to the whole direct sum. That is,

(Pq)«
EBEanH*X T E,WyH.X.
g=1 (Sti)*

Thus, we obtain a diagram of homology:

(Z°°g)«
Wy Ho (7L X)) ————— W Hi X

(Zh)«
l IR l R

@ E; W, Ho (T "Lax g1 X) @ E;WnHi X
izl q=1
(S;)* Tl (P;)* (5g)% Tl (Pa)*
EjWyH,S"LI* 5" X E Wy H X

Now the claim below is obvious:
0 if h#q,
Let us consider the composition

(Z>°g)«

EiW,H % ”LmaXE”X WnH*(E_"LmaXE”X) W, He X

An element of E; W, H,X7"L)** X" X can be written as

Ol y1(z1s v zm) - QB ya (21, zm) - Ok v (21, - Zm),

where y;i(z1,...,zm) (1 <i <k) are basic A,—products formed by zq, ..., z, for
zi € HyX7"Lp#*¥" X, and the product 0liy, ... 0%ky; is a homology class of
H, Q131X of weight j. That g is an Q"+!—map implies that g+ 01 = 01 g,
and g«[x, ¥]n = [g+X, g« ¥]n. Thus,

g+ (01 yi(z1. o zm)) = Q1 yilguzi. ... gxzm).

By Lemma 4.1, for an element s "[s"xy,...,5"xplo in HyX7"LP* "X, with
x; € Hy X, we have

(T "X, 8" xXmlo) = [X1. - X
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It follows that g4«z; is of weight m for each element z; € H, X 7"L}** X" X . Thus, the
weight of Qi y;(g«z1,...,g+2Zm) is equal to the weight of Qi y; multiplied by m.
Finally,

(5%°8)x 0 (5)4) (Ej W HyS "L 5" X) € Ejy W Hi X,
Now let ¢j 4 = pgoX*°gos; and ¥4 = p; o Z°°hos,. We can obtain that

(Vj.0)x © (D7.9)x = (P))x 0 (Z%h)x 0 ((5g)x © (Pg)«) © (EFg)x 0 (5})x.

Since
Im((E%g)x 0 (5))4) € Ejm W Hi X,
we have:
(1) If g # jm, then
(5g)% © (Pg)| E;pH. x = 0.
Thus (Vj,q)% 0 (¢j.4)« = 0.
(2) If g = jm, then
(5g)% © (Pq)*|E,~mH*X =id.
Thus (Yj,q) 0 ($j,q)x = (P;)* 0 (X%h)x0(E27°g)x0 (S]/)* =id.
Let ¢ = ¢j jm and ¥ = ¥ jm. The discussion above implies that
This completes the proof of step one.

In step two, it will be proved that the stable maps ¢ and ¥ can be induced from
unstable maps. Recall diagram (5).

There are an integer #; and a map
pg: DQU Ity s, X
such that
2®p, TRQMH IRty 5 3D, X
is homotopic to the map p, [4, Theorem 7.1]. Similarly, we have a map
5q: D2 Dy X — xQrtiyntly

for some integer 7. This map induces the stable map s,. Similarly, we can obtain
maps ﬁ]f and E]/ inducing maps p} and sj’. for integers 73 and 74, respectively:

17]/ ] Qn-l-l En-l—l (E_nLﬁaxEnX) — D] (E_HL;I;HXE”X),
E]{: EMDJ'(E_HL;”XE”X) — 21‘4971-}-1 En+1 (E—nLﬁaX ZnX)
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Let ¢t = max{t;,t,,3,14}. There are four maps p;, s;, [7; and Ej’ up to X’. For
simplicity, we still denote them by p;, s5;, p j’ and Ejf . Then there is a diagram:

Xig
Eth—i_lZn—i_l(Z_anEaxEnX) — Eth+12n+1X

Sth
i i
SID; LT Y YDy X
Define two maps q; and 1; as follows:
¢ = pjmo E'gos): T Dj(ET"LIS"X) > ' Djm X,
= p} oS hoSjm: ' DjmX — X' Dj(ZTLINT"X).
Pj J J J 'm
The map ¥ o ¢ induces an identity on the homology:
(KZ)* o (‘Z)* = (EOO‘Z)* o (2004_5)* =Yxopsx =1d.
By the Whitehead theorem, we have Yogisa homotopy equivalence. It follows that
(Vop) loyogp~id.
The maps _
¢: T'Dj(T"LIE"X) — X' Djm X,
(Wop) loy: B DjmX — ' Dj (LM X),
imply that ¥/ D;j ("L %" X) is a homotopy retract of ¥’ Dj,, X . Note that we

assume all spaces are CW—complexes, thus all constructions are natural up to homotopy.
This completes the proof of step two. a

From the proof, we can obtain a corollary for the stable case.

Corollary 5.1 Let X be a 1—connected p—local suspension of finite type. For the natu-
ral coalgebra-split sub-Hopf algebra T'(L**(V')), the spectrum X*°D; (X "Ly X" X)
is a functorial stable homotopy retract of ¥°° D, (X). In other words, there are maps

¢
NOD;(STMLMNENY) 7 £%°D;,, X  suchthat Yo ~id.
W

6 Example

Let X be a p—local 2—cell complex. Denote the Steenrod algebra by 4. Let V =
H«(X:;7Z/p). Assume that there are two generators « and v in V such that Plv =u,
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where P, is the dual operation of Steenrod operation P!. Furthermore, assume that
the degrees of u and v are both odd; denote them by |u| and |v|, respectively.

Recall 7! L;*X X is a stable functorial homotopy retract of Dp X . Thus, we have
a stable functorial homotopy decomposition

DpX = (ST'LINTX) v M, X.

In the following, the homology of this decomposition and the A—module structure of
each piece for p = 5 will be computed.

6.1 Additive basis

In H,Q2%2X, denote the 1-bracket (of Browder operation) [x1, ..., [Xm—1, Xm]1: 1
by [X1,...,Xm]1. The basic 1-bracket (ie basic A;—product) with weight no greater
than 5 are

u<v<[u,v]y <[u,u,v]y <[v,u,v]; <[u,u,u,v]; <[v,u,u,v]y <[v,v,u,v]
<[u,u,u,u,v]y <[v,u,u,u,v]; <[v,v,u,u,v]; <[v,v,v,u,v];

<[[u, ]y, [w, u, v]i]1 <[[u,v]y, [v,u, v]i]i.

Since |u| and |v| are odd, [u, u]; and [v, v]; are trivial. All the basic 1—products above
are of odd degrees.

Recalling Proposition 2.6, we have the following additive basis of H 4 DyX:
©) u-lu,u,u,v]y, u-v,u,u,v)y, u-fv,v,u, vy, v-u,u,u,vly, v-[v,u,u,vl,
ve[v,v,u, v]y, [u,v]i-[u,u, vy, [u,v]iv,u,v]y, uvlu,u, vy, u-vv,u,vl,

[, u,u,u,v)y, [v,u,u,u,v]y, [v,v,u,u,v];, [v,v,v,u,v],

[, V)1, [u, w, vy, ([, vl [vsu, v, Sius Syv, Sru, §pv.

In H,Q%X2X, the first two rows of this basis are decomposable. The others are
indecomposable.

6.2 Module structures over the Steenrod algebra

Let P;: HxX — Hy_5,(p—1)X be the dual operation of the Steenrod operation P”.
We have a right A—-module structure on H, D5 X . For convenience, we still write the
Steenrod operation P on the left.

There is a new additive basis of H « Ds X which is invariant under Steenrod operations
(see [13, Proposition 5.2]):
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@M u-lu,u,u,vly, u-lv,u,u,vly, u-lv,v,u, vy, 2v-[u,u,u,vli—u-[v,u,u,vl,
2v-[v,u,u, vy +u-[v,v,u, vy, v-[v,v,u,vly, [u,v];-u,u, v,
[u,v]y -[v,u,v]1,u-v-[u,u,v]y, u-v-lv,u,vly, —u,u,u,u,vl,
—vou,u,u, o]y + ([u, V) [ws w, vs, 2[v, v, usw, o] = [[us v v, w, v
—[v.v,v,u o]y, lu, o]y, [usw,vls, ([, v]n, v, u, v)ih,

Sru, Giv, Eru, §v.
For x € H D, X, let A(x) be the right A-module generated by x. Define 4—modules
M; for 1 <i <5 as follows:

(1) My = A([[u, v]1,[v,u, v]1]1), with
[, vl [0, 2, 0] Js 25 o, vl o, wl s
2) My=A(u-v-[v,u,v];), with
u-v-[v,u,v]lL’gu'v-[u,u,v]l.
(3) M3 = A([u,v]; -[v, u, v];), with
[u, v]1 - [v, u, v]y L%[u, vy - [u, u, v]h.

4) My = A(&;v). The diagram shows the additive basis of My:

P, é‘lv

_[va v, v, U, v]l

|7

2[1), U,u,u,v]l_[[u,v]l,[v,u,v]l]l P;:
Lr
v u u u, vy ([u, V] [u V)] P}

I

_[u’ u,u,u, v]l

o \ /
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(5) Ms=A(v-[v,v,u,v];,u-[v,v,u,v];), with:

v-[v,v,u, v

P}
2v-[v,u,u, vy +u-[v,v,u,v); u-fv,v,u,v);
P} lPi
2v-[u,u,u, vly —u-[v,u,u,v); u-fv,u,u, vl
P} lPi
u-lu,u,u, vy ———u-fu,u,u, v

It is obvious that there is an isomorphism of right 4—modules

HiDsX =M, &M, ®M;& My ® Ms.

6.3 T7'LY™XX and M, X

L3™(V') has abasis [[u, v], [u, u, v]], [[u, v], [v, u, v]] [10, Proposition 11.6]. It follows
from Lemma 4.1 that this basis is mapped by the map

iv: HeST'LYYSX - H Q222X to [l vy, [w,u, vli]y. [ vl [v.w o).

Thus we can obtain the homology of X! L™ XX and MsX . The following equations
are isomorphisms of right 4-modules:

Ho(ZT'LT™SX) = My, HioMsX = My, ® M3 ® My ® Ms.

Remark As aright A—module, H .M, » X 1is splittable, so it is natural to ask whether
Mp X is splittable as a topological space, particularly whether the functorial homotopy
decomposition exists or not.
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Spin, statistics, orientations, unitarity

THEO JOHNSON-FREYD

A topological quantum field theory is hermitian if it is both oriented and complex-
valued, and orientation-reversal agrees with complex conjugation. A field theory
satisfies spin-statistics if it is both spin and super, and 360°—rotation of the spin
structure agrees with the operation of flipping the signs of all fermions. We set up a
framework in which these two notions are precisely analogous. In this framework,
field theories are defined over VECTR, but rather than being defined in terms of
a single tangential structure, they are defined in terms of a bundle of tangential
structures over Spec(R). Bundles of tangential structures may be étale-locally
equivalent without being equivalent, and hermitian field theories are nothing but
the field theories controlled by the unique nontrivial bundle of tangential structures
that is étale-locally equivalent to Orientations. This bundle owes its existence to the
fact that 7' (Spec(R)) = 71 BO(oc0) . We interpret Deligne’s “existence of super fiber
functors” theorem as implying that 75'(Spec(R)) = 72 BO(o0) in a categorification
of algebraic geometry in which symmetric monoidal categories replace commutative
rings. One finds that there are eight bundles of tangential structures étale-locally
equivalent to Spins, one of which is distinguished; upon unpacking the meaning
of a field theory with that distinguished tangential structure, one arrives at a field
theory that is both hermitian and satisfies spin-statistics. Finally, we formulate in
our framework a notion of reflection-positivity and prove that if an étale-locally-
oriented field theory is reflection-positive then it is necessarily hermitian, and if an
étale-locally-spin field theory is reflection-positive then it necessarily both satisfies
spin-statistics and is hermitian. The latter result is a topological version of the famous
spin-statistics theorem.

14A22, 57R56, 81T50

0 Introduction

The main result of this article is a topological version of the spin-statistics theorem.
The usual spin-statistics theorem (see Streater and Wightman [25]) asserts that in a
unitary quantum field theory on Minkowskian spacetime, the fields of the theory live in
a supervector space, the even (or bosonic) fields are integer spin representations of the
Lorentz group, and the odd (or fermionic) fields are half-integer spin representations. In
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other words, the spin of a particle agrees with its parity. Here unitarity is actually two
conditions: a hermiticity condition (asserting that the determinant-(—1) component
of the Lorentz group acts complex-antilinearly) and a reflection-positivity condition
related to the requirement that the Hamiltonian of the quantum field theory have positive
spectrum.

To formulate a version in the functorial setting of topological quantum field theory, we
need

¢ to have orientations and spin structures on our source bordism category,

¢ to have complex supervector spaces in our target category, but to be able to talk
about complex-antilinear maps as well as antisuper maps (ie maps that treat even
and odd parts differently),

¢ to be able to link these structures on source and target categories.

We will solve all three problems by introducing generalizations of oriented and spin
R-linear field theories (we generally drop the words “topological” and “quantum’)
that we call étale-locally-oriented and étale-locally-spin. Etale-locally-oriented and
étale-locally-spin field theories admit a natural notion of “reflection-positivity” (defined
in terms of a certain “integration” map taking in an étale-locally-oriented or -spin field
theory and producing an unoriented R—linear field theory). With this technology in
place, our main result is the following version of the spin-statistics theorem:

Theorem 0.1 Every once-extended étale-locally-spin reflection-positive topological
quantum field theory is hermitian (hence unitary) and satisfies spin-statistics.

By definition, a field theory is unextended if it is defined in codimensions 0 and 1, and
once-extended if it is defined in codimensions 0, 1, and 2. Corollary 4.8, which we
prove only in outline, extends Theorem 0.1 to more-than-once-extended field theories.
Freed and Hopkins prove a similar spin-statistics theorem in [12, Theorem 11.3], but
there are notable differences between the approach used there and the one used in this

paper.

As a warm-up to Theorem 0.1, in Section 1 we develop in detail the notions of étale-
local orientation and reflection-positivity in the context of unextended field theories.
The following analog of Theorem 0.1 follows almost immediately from the definitions:

Theorem 0.2 Every unextended étale-locally-oriented reflection-positive field theory
is hermitian.
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The parallel between Theorem 0.1 and Theorem 0.2 is an indication of the second main
theme of this paper, which is to argue that hermiticity and spin-statistics phenomena
arise from the same source. Note also that we reverse part of the logic from the standard
spin-statistics theorem: as usually presented, hermiticity is a required assumption in
order to imply spin-statistics; in our version, hermiticity and spin-statistics are both
forced by reflection-positivity.

In order to define étale-locally-oriented manifolds, we consider local structures on
manifolds that range over not (as in the case of orientations) sets, but schemes over R.
There are precisely two local structures that are étale-locally-over-Spec(R) isomorphic
to orientations. The two versions of étale-local-orientations are usual-orientations and
hermitian structures; the latter are characterized by the property that the scheme of
hermitian structures on a point is Spec(C) and that the restriction map

{hermitian structures on [0, 1]} — {hermitian structures on {0, 1}}

is the “antidiagonal” map Spec(C) — Spec(C) Xgpec(r) Spec(C) sending A to (4, A).
Hermitian structures owe their existence to the fact that the absolute Galois group
of R happens to be the same as the group 7pO(c0) of connected components of the
orthogonal group.

Each étale-local-orientation leads to a version of étale-locally-oriented field theory:
in addition to the usual (unextended) oriented bordism category BORDgr_l, 4 there is
a hermitian bordism category BORDSC_TL 4 Which is not a category but rather a stack
of categories over Spec(R); the two types of field theories are symmetric monoidal
functors of stacks of categories BORDSr_Ld — VECTR and BORDI(}Ie_rl’d — VECTR,
where VECTR is enhanced to the stack of categories QCOH. As such, our notion of
étale-locally-oriented field theory involves infusing both the source and target categories
with R—algebraic geometry. The two versions unpack to R-linear oriented field theories

and to hermitian field theories in the usual sense.

Our definition of étale-locally-spin structures requires a categorification of (some basic
notions from) real algebraic geometry. We begin this program in Section 2. Our main
contribution here is to categorify the notion of field and to interpret Deligne’s existence
of fiber functors [9] as asserting that the categorified algebraic closure of R is not C
but rather the category SUPERVECT¢ of complex supervector spaces. (As we will use
a slight modification of the main result of [9], we include a complete proof.)

Remark 0.3 As is already apparent, we will be working both with fields in the sense
of commutative algebra and field theories in the sense of physics, and English includes
an unfortunate terminological conflict. We don’t have a good solution to this problem,
but will stick to