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Indecomposable nonorientable PD3–complexes

JONATHAN A HILLMAN

We show that the orientable double covering space of an indecomposable, nonorientable
PD3 –complex has torsion-free fundamental group.

57P10; 57N10

One of the foundational results of Wall [12] on Poincaré duality complexes was the fact
that there is a well-defined notion of connected sum for such complexes. In dimensions
n> 2 the fundamental group of a connected sum of two PDn –complexes is the free
product of the groups of the summands. This notion is of particular interest when
n D 3 for, by the well-known work of Kneser and Milnor, every closed orientable
3–manifold has an essentially unique factorization into indecomposable 3–manifolds.
(The corresponding assertion for closed nonorientable 3–manifolds is slightly more
complicated.) Moreover, such a 3–manifold is indecomposable with respect to con-
nected sum if and only if its fundamental group is indecomposable with respect to free
product. It is perhaps less widely known that Turaev [11] has shown that each of these
results extends to the context of PD3 –complexes.

Indecomposable, orientable 3–manifolds are either aspherical, have finite fundamental
group or have fundamental group Z. This is no longer true for PD3 –complexes,
although Crisp [3] has shown that (in the orientable case) the indecomposables are
either aspherical or have virtually free fundamental group. There are examples of the
latter kind with fundamental group neither finite nor Z; see Hillman [9].

Let X be an indecomposable PD3 –complex, with fundamental group � and orientation
character w . In [9] we showed that if w 6D 1 and � is virtually free then X is homotopy
equivalent to S2 z� S1 or RP2 � S1 , so � Š Z or � Š Z˚ Z=2Z. In particular,
�C D Ker.w/ is torsion-free. We shall show that this remains true if w 6D 1 and � is
not virtually free. This result is surely well-known for 3–manifolds. We give a short
proof for this case in Section 2, which uses the “projective plane theorem” of Epstein [6]
and a result from Hillman [9]. (The fact that RP2 does not bound provides a further
restriction here which is not yet known in general.) Our main result is Theorem 6 in
Section 3:

Theorem Let X be an indecomposable, nonorientable PD3 –complex such that � has
infinitely many ends. Then � Š �C Ì Z=2Z� and �C is torsion-free, but not free.
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By passing to Sylow subgroups of the torsion in � , we may reduce potential counter-
examples to special cases, which are eliminated by Lemmas 3, 4 and 5. The arguments
are similar to those of [9].

1 Notation and major cited results

In order that this paper be reasonably self-contained we shall give here some of the
notation and results used in [9].

Let X be a PD3 –complex, with fundamental group � and orientation character w ,
and let XC be the orientable covering space, with fundamental group �C D Ker.w/.
If H � � then we shall write HC D H \ �C . It is convenient to say that such a
subgroup H is orientable if H D HC . (This usage depends upon the orientation
character w .) Let Z=2Z� denote a subgroup of order two on which w 6D 1.

If G is a group, jGj, G0 and �G shall denote the order, commutator subgroup and centre
of G , while if H � G then CG.H / and NG.H / are the centralizer and normalizer,
respectively. Let F.r/ be the free group of rank r .

If R is a ring, two finitely presentable left R–modules M and N are stably isomorphic
if M1˚Ra ŠN ˚Rb for some a, b � 0. Let ŒM � denote the stable isomorphism
class of M .

A homomorphism wW G!f˙1g defines an anti-involution of ZŒG� by xgDw.g/g�1

for all g 2 G . Tietze move considerations show that if A is any finite presentation
matrix for the augmentation ideal IG then the stable isomorphism class of the left ZŒG�–
module JG with presentation matrix the conjugate transpose Atr is well-defined [11].

A graph of groups .G; �/ consists of a graph � with origin and target functions o and t

from the set of edges E.�/ to the set of vertices V .�/, and a family G of groups Gv
for each vertex v and subgroups Ge �Go.e/ for each edge e , with monomorphisms
�eW Ge ! Gt.e/ . (We shall usually suppress the maps �e from our notation.) In
considering paths in � we shall not require that the edges be compatibly oriented.

The fundamental group of .G; �/ is the group �G with presentation

hGv; te j tegt�1
e D �e.g/8g 2Ge; te D 18e 2E.T /i;

where T is some maximal tree for � . Different choices of maximal tree give isomorphic
groups. We may assume that .G; �/ is reduced: if an edge joins distinct vertices then
the edge group is isomorphic to a proper subgroup of each of these vertex groups. The
corresponding � –tree T is incompressible in the terminology of [5], so T and G are
essentially unique, by [5, Proposition IV.7.4]. An edge e is a loop isomorphism at v if
o.e/D t.e/D v and the inclusions induce isomorphisms Ge ŠGv .
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Since fundamental groups of PDn –complexes are FP2 [12], � is the fundamental
group of a finite graph of groups .G; �/, where all vertex groups are finite or have one
end and all edge groups are finite. (See [5, Theorem VI.6.3].) We may assume that
� is indecomposable as a proper free product, by the splitting theorem, so .G; �/ is
indecomposable: all edge groups are nontrivial. A graph of groups .G; �/ is admissible
if it is reduced, all vertex groups are finite or one-ended groups and all edge groups are
nontrivial finite groups.

Turaev gave the following characterization of the group pairs .�;w/ which may be
realized by finite PD3 –complexes [11]:

Theorem Let � be a finitely presentable group and wW �! f˙1g a homomorphism.
Then there is a finite PD3 –complex K with �1.K/Š � and w1.K/D w if and only
if ŒI� �D ŒJ� �.

We wish to adapt the results from [9, Section 7] to the cases when � has infinitely
many ends and w 6D 1. In particular, we use the following two results to control the
possible edge groups:

(1) Crisp’s theorem [3, Theorem 17] If X is a PD3 –complex and g2�D�1.X /

has prime order p and infinite centralizer C�.g/ then p D 2, g is orientation-
reversing and C�.g/ has two ends.

(2) The normalizer condition [10, Proposition 5.4.2] A proper subgroup of a
nilpotent group is properly contained in its normalizer.

Note also that if G is a finite subgroup of � then the centralizer C�.G/ has finite
index in the normalizer N�.G/.

The main result (Theorem 6 below) involves consideration of the finite groups with
periodic cohomology, of period dividing 4. A finite group has cohomological period
2 if and only if it is cyclic, and has cohomological period 4 if and only if it is a
product B �Z=dZ with .jBj; d/D 1, where B is a generalized quaternionic group
Z=aZ Ì Q.2i/ (with a odd), an extended binary polyhedral group T �

k
(of order 23 �3k ),

O�
k

(of order 24 � 3k ) or I� D SL.2; 5/ (of order 23 � 3 � 5) or a metacyclic group
Z=aZ Ì�1 Z=2eZ (for some odd a and e � 1).

There seems to be no one reference with a complete proof of the above assertion. The
six families of finite groups with periodic cohomology are determined in [1, pages
142–150]:

(1) Z=aZ Ì Z=bZ;

(2) Z=aZ Ì .Z=bZ�Q.2i// for i � 3;
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(3) Z=aZ Ì .Z=bZ�T �
k
/ for k � 1;

(4) Z=aZ Ì .Z=bZ�O�
k
/ for k � 1;

(5) .Z=aZ Ì Z=bZ/�SL.2;p/ for p � 5 prime;

(6) Z=aZ Ì .Z=bZ�TL.2;p// for p � 5 prime.

Here a, b and the order of the quotient by the metacyclic subgroup Z=aZ Ì Z=bZ
are relatively prime. See [1, pages 142–150] for further details on the groups TL.2;p/
(with TL.2;p/0 Š SL.2;p/, of index 2) and the actions in the semidirect products. If
such a group G contains a semidirect product Z=mZÌ� Z=nZ, where � has image of
order k , then the cohomological period of G is a multiple of 2k . (See [2, Exercise 6,
page 159].) The class of groups of period dividing 4 follows on applying this criterion
to the groups of the above list.

2 3–manifolds

The result is relatively easy (and no doubt well-known) in the case of irreducible
3–manifolds, as we may use the sphere theorem, as strengthened by Epstein [6].

Theorem 1 Let M be an indecomposable, nonorientable 3–manifold with funda-
mental group � . If � has infinitely many ends then � Š �C Ì Z=2Z� and �C is
torsion-free, but not free.

Proof Let P be a maximal set of pairwise nonparallel 2–sided projective planes
in M . Then P is nonempty, since M is indecomposable and � has infinitely many
ends. In particular, � Š �C Ì Z=2Z� , since the inclusion of a member of P splits
w D w1.M /W �! Z=2Z. Let PC be the preimage of P in MC . Then PC is a set
of disjoint 2–spheres in MC , and the components of MC nPC each double cover a
component of M nP . Each such component of M nP is indecomposable [6].

Suppose that M nP has a component Y with virtually free fundamental group. Then
the double DY is indecomposable (see [9, Lemma 2.4]), nonorientable and �1.DY /

is virtually free. Moreover, �1.DY /ŠZ˚Z=2Z� , since the inclusion of a boundary
component of Y splits w . (See [9, Theorems 7.1 and 7.4].) But then DY ŠRP2 �S1 ,
so Y Š RP2 � Œ0; 1�. This is contrary to the hypothesis that the members of P are
nonparallel. Thus the components of M nP are punctured aspherical 3–manifolds.

Let � be the graph with vertex set �0.M nP/ and edge set P , with an edge joining
contiguous components. Then �C Š G �F.s/, where G is a free product of PD3 –
groups (corresponding to the fundamental groups of the components of M nP ), and
s D ˇ1.�/. Hence �C is torsion-free.
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We remark also that each component Y of M nP has an even number of boundary
components, since �.@Y / is even (for any odd-dimensional manifold Y ), by Poincaré
duality. Thus the vertices of the graph � have even valence.

Example The canonical involution � of the topological group T 3 D R3=Z3 has 8

isolated fixed points (the points of order 2). Let X be the complement of an equivariant
open regular neighbourhood of the fixed point set, and let M DD.X=h�i/. Then M

is indecomposable and nonorientable, and � Š .Z3 �Z3 �F.7//Ì Z=2Z� .

3 PD3–complexes

Suppose now that X is an indecomposable PD3 –complex, with fundamental group �
and orientation character w . Then � is finitely presentable, so � Š �G , where .G; �/
is an admissible graph of groups.

Lemma 2 Let X be an indecomposable, nonorientable PD3 –complex with � D

�1.X /Š �G , where .G; �/ is an admissible graph of groups.

(1) If e is an edge with Go.e/ or Gt.e/ infinite, then Ge D Z=2Z� .

(2) If X 6' S2 z�S1 then � Š �C Ì Z=2Z� .

(3) If all finite vertex groups are 2–groups then they are nonorientable and all edge
groups are Z=2Z� .

Proof Suppose first that the vertex groups are all finite. Then X ' S2 z�S1 (if all the
vertex groups are orientation-preserving) or RP2 �S1 (otherwise), by Theorems 7.1
and 7.4 of [9], respectively, so the lemma holds. Hence we may assume that .G; �/ has
at least one infinite vertex group Gv and at least one edge e with o.e/D v or t.e/D v .
If w.g/ D 1 for some g 2 Ge of prime order then both GC

o.e/
and GC

t.e/
would be

finite, by [3, Theorem 14]. But then Gv would be finite, contrary to hypothesis. Thus
Ge D Z=2Z� , and the inclusion of Ge into � splits w , so � Š �C Ì Z=2Z� .

Suppose that all finite subgroups are 2–groups. Let f be an edge such that the vertex
groups Go.f / and Gt.f / are finite. If Gf DGo.f / (or Gt.f / ) then f must be a loop
isomorphism, since .G; �/ is reduced. But then C�.Gf / is infinite, so Gf D Z=2Z� ,
by Crisp’s theorem. Since .G; �/ is reduced, f must be the only edge, contrary
to the assumption that there is an infinite vertex group. Thus we may assume that
Go.f / and Gt.f / each properly contain Gf . Since Go.f / and Gt.f / are 2–groups
and hence nilpotent, N�.Gf / is infinite, by the normalizer condition. Since C�.Gf /

has finite index in N�.Ge/ we must have Gf DZ=2Z� , by Crisp’s theorem. Since �
is connected it follows easily that every finite vertex group is nonorientable and every
edge group is Z=2Z� .
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The next two lemmas consider two parallel special cases, involving a prime p , which
is odd or 2, respectively.

Lemma 3 Let X be an indecomposable PD3 –complex with � D �1.X / Š � Ì W ,
where � is orientable and torsion-free, and W has order 2p for some odd prime p .
Then X is orientable.

Proof Suppose that X is not orientable. Then � and � are infinite. Since � has a
subgroup W of finite order > 2, we may assume that � Š �G , where .G; �/ is an
admissible graph of groups with r � 1 finite vertex groups and at least one edge. Let
s D ˇ1.�/.

Each finite vertex group is mapped injectively by any projection from � onto W with
kernel � . If a vertex group Gv has prime order then every edge e with one vertex
at v is a loop isomorphism, since .G; �/ is reduced. But then � has just one vertex
and � Š Gv Ì F , which contradicts the hypothesis. Hence all finite vertex groups
are isomorphic to W . If an edge e is a loop isomorphism then GCe Š Z=pZ has
infinite normalizer, contradicting Crisp’s theorem. If there is an edge e with Ge of
order p then both of the vertex groups Go.e/ and Gt.e/ are finite, by Lemma 2. But
then ŒGo.e/ W Ge �D ŒGt.e/ W Ge �D 2, so N�.Ge/ is infinite, which again contradicts
Crisp’s theorem. Since the orientation character w factors through W it follows that
every edge group is Z=2Z� and w is nontrivial on every vertex group.

Since each edge group is Z=2Z� , w is nontrivial on each vertex group, so �CD�GC is
the fundamental group of a graph of groups .GC; �/ with the same underlying graph � ,
trivial edge groups and vertex groups GCv for all v2V .�/. Hence �CŠG �F.s/�P ,
where G is a free product of orientable PD3 –groups and P is a free product of r copies
of Z=pZ. We have P Š F.t/Ì Z=pZ for some t � 0. (In fact, t D .p� 1/.r � 1/,
by a simple virtual Euler characteristic argument.)

Let a 2 � be such that a2 D 1 and w.a/ D �1, and let � Š � Ì Z=2Z� be the
subgroup generated by � and a. Then � is also the group of a PD3 –complex, since it
has finite index in � . The involution of �C induced by conjugation by a maps each
indecomposable factor which is not infinite cyclic to a conjugate of an isomorphic
factor [7]. However, its behaviour on the free factor F.s/ may be more complicated.

Let wW ZŒ��!RD ZŒhai�D ZŒa�=.a2� 1/ be the linear extension of the orientation
character. Then Ihai Š zZ D R=.aC 1/. We may factor out the action of �C on a
ZŒ��–module by tensoring with R. The derived sequence of the functor R˝w �

applied to the augmentation sequence

0! I� ! ZŒ��! Z
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gives an exact sequence

0!H1.� IR/D �=�
0
!R˝w I� !R! Z! 0:

The inclusion of hai into � splits the epimorphism from R˝w I� onto Ihai , so
R˝w I� Š �=�

0˚ zZ.

Let  be the normal subgroup of � generated by G [F.s/ and let H be the image
of  in �=�0 . Then similar arguments show that

R˝w I� DH ˚ .R˝w I�= /;

R˝w I� DH ˚ .R˝w I�= /:

The groups P and its normal subgroup F.t/ have presentations

P D hbi ; 1� i � r j b
p
i D 18ii

and

F.t/D hxi;j ; 1� i � r � 1; 1� j � p� 1 j i;

where xi;j has image b
j
1
b
�j
iC1

in P for 1 � i � r � 1 and 1 � j � p� 1. (If p D 2

we shall write xi instead of xi;1 for 1� i � r � 1.)

The quotient �=hhGii is the fundamental group of the (possibly unreduced) graph of
groups .G; �/ with vertex groups W (or Z=2Z� ) and edge groups Z=2Z� , obtained
by replacing each infinite vertex group Gv of .G; �/ by Gv=GCv DZ=2Z� . Thus if W

is abelian (so has an unique element of order 2) then �=hhGii Š .F.s/�P /�Z=2Z� .
Hence �= Š P �Z=2Z� and �= Š F.t/�Z=2Z� , so

R˝w I�= Š .R=.p; a� 1//r ˚ zZ;

R˝w I�= Š .R=.a� 1//t ˚ zZD Zt
˚ zZ:

The quotient ring R=pRD Fp Œa�=.a
2� 1/ is semisimple, so p–torsion R–modules

have unique factorizations as sums of simple modules. Since I� ˝w R and I�˝w R

satisfy Turaev’s criterion (and projective R–modules are Z–torsion-free), the p–torsion
submodule of R˝w I� has the same numbers of summands of types R=.p; a� 1/

and R=.p; aC 1/, and similarly for R˝w I� . Since R˝w I�= is p–torsion-free,
the number of summands of types R=.p; a� 1/ and R=.p; aC 1/ in H must also be
equal. On the other hand, R˝w I�= has r > 0 summands of type R=.p; a� 1/ and
none of type R=.p; aC1/. These conditions are inconsistent, so � is not the group of
a nonorientable PD3 –complex.
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If W is not abelian then it has an unique conjugacy class of elements of order 2, and
�= Š P Ì Z=2Z� and �= Š F.t/Ì Z=2Z� have presentations

ha; bi ; 1� i � r j a2
D 1; b

p
i D 1; abiaD b�1

i 8ii

and

ha; xi;j ; 1� i � r � 1; 1� j � p� 1 j a2
D 1; axij aD xi;p�j 8i; j i;

respectively. (In particular, �= Š F.t=2/�Z=2Z�.) In this case,

R˝w I�= Š .R=.p; aC 1//r ˚ zZ;

R˝w I�= ŠRt=2
˚ zZ:

Consideration of the p–torsion submodules again shows that R˝w I� and R˝w I�
cannot both satisfy Turaev’s criterion, and hence that � is not the group of a non-
orientable PD3 –complex. Thus X must be orientable.

The case p D 2 involves slightly different calculations.

Lemma 4 Let X be an indecomposable PD3 –complex with � D �1.X /Š � Ì W ,
where � is orientable and torsion-free, and W has order 4. Then X is orientable.

Proof As in Lemma 3, we suppose that X is not orientable, so � and � are infinite,
and may assume that � Š �G , where .G; �/ is an admissible graph of groups with
r � 1 finite vertex groups and at least one edge. We continue with the notation P ,  ,
a and R from Lemma 3.

The inclusions of the edge groups split w , by Lemma 2. In this case, W Š .Z=2Z/2D
Z=2Z˚Z=2Z� and has two orientation-reversing elements. Note that P is now a
free product of r copies of Z=2Z.

The quotient �= is the group of a finite graph of groups with all vertex groups W

and edge groups Z=2Z� . Since P is a free product of cyclic groups, �= has a
presentation

ha; bi ; 1� i � r j a2
D 1; b2

i D .awi/
2
D .awibi/

2
D 18ii;

where wi D 1 and wi 2 F.t/ for 2 � i � r . The free subgroup F.t/ has basis
fxi j 1� i � r � 1g, where xi has image b1biC1 in P , and �= has a presentation

ha; xi ; 1� i � r � 1 j a2
D 1; axiaD xibiC1wiC1biC1w

�1
iC1 8ii:

In this case,
R˝w I�= Š .R=.2; a� 1//r ˚ zZ;

R˝w I�= Š Zr�1
˚ zZ:
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Since R=.2; aC 1/DR=.2; a� 1/, torsion considerations do not appear to help. If
r > 1 we may instead compare the quotients by the Z–torsion submodules, as in [9,
Lemma 7.3], since finitely generated torsion-free R–modules are direct sums of copies
of R, Z and zZ, by [4, Theorem 74.3]. We again conclude that � is not the group of a
nonorientable PD3 –complex.

The case when p D 2 and r D 1 requires a little more work. Let N be the R–module
presented by the transposed conjugate of

�
2

a�1

�
. If fe; f g is the standard basis for

R2 then N DR2=R.2eC .aC 1/f /. The Z–torsion submodule of N is generated
by the image of .a� 1/e and has order 2, but is not a direct summand. The quotient
of N by its Z–torsion submodule is generated by the images of e and f � e , and
is a direct sum Z˚ zZ. In particular, it has no free summand. It now follows easily
that H ˚ zZ˚R=.2; a� 1/ is not stably isomorphic to H ˚ zZ˚N . Therefore I�
and I� cannot both satisfy Turaev’s criterion, so � is not the group of a nonorientable
PD3 –complex. Thus X must be orientable.

Our final lemma is needed to cope with three exceptional cases.

Lemma 5 Let G D H Ì Z=2Z, where H D T �
1

, O�
1

or I� . Suppose that every
element of G divisible by 4 is in H . Then G has a subgroup W of order 6 such that
ŒW WW \H �D 2.

Proof Let g be an element of order 2 whose image generates G=H .

Suppose first that H D T �
1

, with presentation

hx; y; z j x2
D .xy/2 D y2; z3

D 1; zxz�1
D y; zyz�1

D xyi:

Then �T �
1
Dhx2i has order 2. The outer automorphism group Out.T �

1
/ is generated by

the class of the involution � which sends x , y and z to y�1 , x�1 and z2 , respectively.
(See [8, page 221].) Hence � preserves the subgroup S of order 3 generated by z .

If conjugation by g induces an inner automorphism of T �
1

, there is an h 2 T �
1

such
that gxg�1 D hxh�1 for all x 2 T �

1
. Then gh D hg and h2 is central in T �

1
, so

.h�1g/2 D h2 has order dividing 4. Therefore h�1g has order 2, by hypothesis.

Otherwise we may assume that there is an h 2 GC such that gxg�1 D h�.x/h�1

for all x 2 T �
1

, so � is conjugation by h�1g . Since � is an involution, .h�1g/2 is
central in T �

1
. We again see that h�1g has order 2. In each case, h�1g normalizes S ,

so the subgroup W generated by S and h�1g has order 6, while h�1g 62 H , so
ŒW WW \H �D 2.
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The commutator subgroup of O�
1

is T �
1

. Since this is a characteristic subgroup, it is
preserved by g . The group T �

1
is a nonnormal subgroup of I� , of index 5. Since g acts

as an involution on the set of conjugates of T �
1

, we may assume that it preserves T �
1

.
In each case the lemma follows easily from its validity for H D T �

1
.

We may now give our main result.

Theorem 6 Let X be an indecomposable, nonorientable PD3 –complex such that
� D �1.X / has infinitely many ends. Then:

(1) � Š �G , where .G; �/ is an admissible graph of groups with all vertex groups
one-ended and all edge groups Z=2Z� .

(2) � Š �C Ì Z=2Z� .

(3) �C Š G �H , where G is a nontrivial free product of PD3 –groups and H is
free. In particular, �C is torsion-free.

Proof Let � Š �G , where .G; �/ is an admissible graph of groups. At least one
vertex group is infinite, for otherwise � has two ends, by [9, Theorems 7.1 and 7.4].
Hence �C ŠG �H , where G is a nontrivial free product of PD3 –groups and H is
virtually free. Therefore �C is virtually torsion-free. Let � be the intersection of the
conjugates in � of a torsion-free subgroup of finite index in �C , and let �W �! �=�

be the canonical projection. Then � is orientable, torsion-free and of finite index, and
w factors through �=� .

If F is a finite subgroup then �jF is injective, and ��1.�.F // has finite index in � .
Hence ��1.�.F // has a graph of groups structure in which all finite vertex groups are
isomorphic to subgroups of F . In particular, if F is a nonorientable 2–group then at
least one of these vertex groups is a nonorientable 2–group, so there is a g 2 F such
that g2 D 1 and w.g/D�1, by Lemma 2(3). Hence, if, moreover, F is cyclic, then
it has order 2.

Assume that there is a nonorientable finite vertex group Gv . Then Gv has a non-
orientable Sylow 2–subgroup S.2/, so there is a g 2 S.2/ such that g2 D 1 and
w.g/ D �1. The orientable subgroup GCv has periodic cohomology, with period
dividing 4, by [9, Theorems 4.3 and 4.6]. Moreover, every element of Gv divisible
by 4 is in GCv , by the argument of the previous paragraph.

Let g be an element of order 2 whose image generates Gv=GCv . We may assume
that GCv Š B �Z=dZ, where B is either Z=aZ Ì Q.2i/ (with a odd and i � 3),
T �

k
or O�

k
(for some k � 1), I� or Z=aZ Ì�1 Z=2eZ (with a odd and e � 1), as in

the penultimate paragraph of Section 1 above. Suppose first that GCv is not a 2–group.
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Then it has a nontrivial subgroup S of order p for some odd prime p . If d > 1 we
may assume that p divides d , and then S is characteristic in GCv . This is also the
case if GCv Š Z=aZ Ì Q.8/ or Z=aZ Ì�1 Z=2eZ with a odd (so p divides a), or
GCv Š T �

k
or O�

k
with k > 1 (so p D 3). In these cases, S is normalized by g and

the subgroup H generated by S and g has order 2p . The remaining possibilities are
that GCv Š T �

1
�Z=dZ, O�

1
�Z=dZ or I� �Z=dZ. For these cases we appeal to

Lemma 5 to see that Gv has a nonorientable subgroup W of order 2p .

Since ��1�.W / has finite index in � , it is again the group of a nonorientable PD3 –
complex. This complex has an indecomposable factor whose group has W as one of its
finite vertex groups, so has fundamental group � Ì W . But this factor is nonorientable,
so contradicts Lemma 3.

Therefore we may assume that GCv is a 2–group. If S.2/C 6D 1 (ie if GCv is a
nontrivial 2–group) it is cyclic or generalized quaternionic, so has an unique central
element of order 2 (see [9, Lemma 2.1]). Hence Gv has a finite index subgroup
W Š Z=2Z�Z=2Z� . As before, passage to ��1�.W / leads to a contradiction, by
Lemma 4.

Therefore all finite vertex groups are orientable. But the graph � is connected, and any
edge connecting a finite vertex group to an infinite vertex group must be nonorientable,
as in Lemma 2. Since there is at least one infinite vertex group there can be no finite
vertex groups.

The second assertion follows from part (2) of Lemma 2, and �C D �GC is the
fundamental group of a graph of groups .GC; �/ with the same underlying graph � ,
trivial edge groups and vertex groups GCv all PD3 –groups. Hence �C is torsion-free,
but not free.

As observed at the end of Section 2, when X is a 3–manifold and .G; �/ is an
admissible graph of groups such that � D �G , all vertices of � have even valence.
Can this observation be extended to the case of PD3 –complexes? Although there are
indecomposable PD3 –complexes which are not homotopy equivalent to 3–manifolds
[9; 12], it remains possible that every indecomposable, nonorientable PD3 –complex is
homotopy equivalent to a 3–manifold.

Corollary 7.5 of [9] follows immediately from Crisp’s theorem and Theorem 6. (The
argument in [9] assumed that � is virtually free.) We restate it here:

Corollary 7 Let X be a PD3 –complex and g 2 � D �1.X / a nontrivial element of
finite order. If C�.g/ is infinite then g has order 2 and is orientation-reversing, and
C�.g/D hgi �Z.
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Question Are there any examples other than RP2 � S1 of indecomposable PD3 –
complexes whose groups have a central element of order 2 with infinite centralizer?
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