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On the periodic v2–self-map of A1
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The spectrum Y WDM2.1/^C� admits eight v1 -self-maps of periodicity 1 . These
eight self-maps admit four different cofibers, which we denote by A1Œij � for i; j 2

f0; 1g . We show that each of these four spectra admits a v2 -self-map of periodicity 32 .

55Q51

This paper is dedicated to the memory of Mark Mahowald (1931–2013)

1 Introduction

Convention Throughout this paper, we work in the stable homotopy category of
spectra localized at the prime 2.

Let K.n/ be the nth Morava K–theory. Let C0 be the category of 2–local finite spectra,
Cn � C0 the full subcategory of K.n�1/–acyclics and C1 the full subcategory of
contractible spectra. Hopkins and Smith [8] showed that the Cn are thick subcategories
of C0 (in fact, they are the only thick subcategories of C0 ), and they fit into a sequence

C0 � C1 � � � � � Cn � � � � � C1:

We say a finite spectrum X is of type n if X 2 Cn n CnC1 .

A self-map vW †kX !X of a finite spectrum X is called a vn –self-map if

K.n/�.v/W K.n/�.X /!K.n/�.X /

is an isomorphism. For a finite spectrum X , a self-map vW †kX ! X can also be
regarded as an element of �k.X ^DX /, where DX is the Spanier–Whitehead dual
of X .

For any ring spectrum E , let

�E�W ��._/!E�._/
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denote the E–Hurewicz natural transformation. Let k.n/ denote the connective cover
of K.n/. If vW Sk!X ^DX is a vn –self-map, then �k.n/�.v/2 k.n/�.X ^DX / has
to be the image of vm

n 2 k.n/� �D F2Œvn�, for some positive integer m, under the map

k.n/��X^DX W k.n/�! k.n/�.X ^DX /;

where �X^DX W S
0!X ^DX is the unit map. The value m is called the periodicity

of the vn –self-map v . We call v a minimal vn –self-map for X if v is a vn –self-map
with minimal periodicity. An easy consequence of [8, Theorem 9] is that the periodicity
of a minimal vn –self-map is always a power of 2.

Hopkins and Smith showed, among other things, that every type-n spectrum admits a
vn –self-map, and the cofiber of a vn –self-map is of type nC 1. However, not much is
known about the minimal periodicity of such vn –self-maps.

The sphere spectrum S0 is a type-0 spectrum with a v0 –self-map 2W S0! S0 . The
cofiber of this v0 –self-map is the type-1 spectrum M.1/. The spectrum M.1/ is
known to admit a unique minimal v1 –self-map of periodicity 4. The cofiber of this
v1 –self-map is denoted by M.1; 4/. In 2008, Behrens, Hill, Hopkins and the third
author [1] showed that the minimal v2 –self-map on M.1; 4/ has periodicity 32.

Instead of S0 , we can start with the type-0 spectrum C�, the cofiber of �W S1! S0 .
The spectrum C� admits a nonzero v0 –self-map 2^ 1C�W C�! C�, with cofiber
M.1/ ^ C� WD Y . The type-1 spectrum Y admits eight minimal v1 –self-maps of
periodicity 1. These eight maps are constructed by Davis and the third author [3] using
stunted projective spaces. The cofiber of any of the v1 –self-maps is referred to as A1 .
Though there are eight different v1 –self-maps, there are only four different homotopy
types of the cofibers A1 ; see [3, Proposition 2.1].

Let A.1/ be the subalgebra of the Steenrod algebra A generated by Sq1 and Sq2 . It
turns out that the cohomology of any homotopy type of A1 is a free A.1/–module on
one generator. However, different homotopy types of A1 have different A–module
structures, which are distinguished by the action of Sq4 . We depict the cohomologies of
the four different spectra A1 in Figure 1 where the square brackets represent an action
of Sq4 , the curved lines represent an action of Sq2 , and the straight lines represent an
action of Sq1 . The subalgebra A.1/ has four different A–module structures, each of
which corresponds to a homotopy type of A1 . Any A–module structure on A.1/ has a
nontrivial Sq4 action on the generator in degree 1 forced by the Adem relations. How-
ever, there are choices for Sq4 actions to be trivial or nontrivial on generators in degree 0

and degree 2, thus giving us four different A–module structures. We denote the differ-
ent homotopy types of A1 using the notation A1Œij � where i and j are the indicator
functions for the action of Sq4 on the generators in degree 0 and degree 2, respectively.
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Figure 1: The A–module structures of H�.A1Œ00�/ , H�.A1Œ10�/ , H�.A1Œ01�/

and H�.A1Œ11�/

Remark 1.1 (determining A–module structure on Spanier–Whitehead duals) For
every finite spectrum X , there is an isomorphism

H�DX �DDH�X;

where we have Spanier–Whitehead duality on the left hand side and A–module duality
on the right hand side. Thus, finding out the Spanier–Whitehead duality relations
between the spectra A1Œij � boils down to finding the A–module duality relations
between the A–modules depicted in Figure 1. The naïve guess is that dualizing these
A–modules is equivalent to merely “flipping them upside down”. However, this is not
the case. For an A–module M and its dual DM , there is a pairing

h�;�iW M ˝DM ! F2

which is A–bilinear. Therefore, for elements x;y 2M and a 2A, we have

hax;y�i D hx; �.a/y�i;

where �W A!A is the antipode, and hence

.ax/� D
X

fgWaxD�.a/gg

g�:

Because �.Sq1/D Sq1 and �.Sq2/D Sq2 , the naïve guess is correct when it comes
to actions of Sq1 and Sq2 . However, because we have �.Sq4/D Sq4

CSq3Sq1 , the
naïve guess breaks down when considering the actions of Sq4 . Thus we find that
H�.A1Œ00�/ is dual to H�.A1Œ11�/, while H�.A1Œ10�/ and H�.A1Œ01�/ are self-dual.
It follows that the spectra A1Œ01� and A1Œ10� are Spanier–Whitehead self-dual, whereas
A1Œ00� and A1Œ11� are Spanier–Whitehead dual to each other.
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It is worth noting that A1 is created in a way similar to M.1; 4/, where C� is analogous
to S0 , and Y is analogous to M.1/. The minimal v1 –self-map of Y has periodicity 1,
which is less than the periodicity of the minimal v1 –self-map on M.1/, which is 4.
Hence, it is natural to ask if any of the four models of A1 admit a v2 –self-map of
periodicity less than that of M.1; 4/.

In [3, Theorem 1.4(ii)], Davis and the third author claimed, incorrectly, that the peri-
odicity of the minimal v2 –self-maps on M.1; 4/ and the two self-dual models of A1 ,
namely A1Œ01� and A1Œ10�, was 8. After successfully correcting the v2 –periodicity of
M.1; 4/ in [1], the v2 –periodicity of A1 was called into question by the third author.
He conjectured that the minimal v2 –self-map of A1 should have periodicity 32, which
is also the periodicity of the minimal v2 –self-map of M.1; 4/.

The goal of this paper is to prove the following correction of [3, Theorem 1.4(ii)], as
reported in Remark 1.4 of [1]:

Main Theorem For all four models of A1 , the minimal v2 –self-map

vW †192A1!A1

has periodicity 32.

Notation 1.2 To lighten the notations, we use Exts;t
T
.X / to denote Exts;t

T
.H�.X /;F2/,

where T is a subalgebra of the Steenrod algebra A.

Notation 1.3 For any ring spectrum E , we denote the unit map by �E W S0!E . The
unit map �E induces the Hurewicz natural transformation

�E�W ��._/!E�._/

as introduced earlier. When E D A1 ^DA1 , we simply use �W S0! A1 ^DA1 to
denote the unit map. Let i W S0 ,!A1 be the map that represents the inclusion of the
bottom cell. Let j W A1^DA1!A1 denote the map 1A1

^Di . Given a map between
two spectra f W X ! Y , the unit map �E induces a map in E–homology, which we
denote by

E�.f /W E�X !E�Y;

and also a map of Adams spectral sequences, which we denote by

f E
� W Ext�;�

A
.E ^X /! Ext�;�

A
.E ^Y /:
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Outline

The proof of Main Theorem consists of two parts, namely

� the nonexistence part, where we eliminate the possibility of a v2 –self-map of A1

of periodicity lower than 32,

� the existence part, where we show that there exists a v2 –self-map of A1 of
periodicity 32.

The proof makes use of several important differentials in the Adams spectral sequence
that computes the homotopy groups of the spectrum tmf . As an A–module (see
Hopkins and the third author [7]),

H�.tmf / �DA==A.2/;

where A.2/ is the subalgebra of A generated by Sq1 , Sq2 and Sq4 . Therefore, by a
change of rings formula, the E2 page of that Adams spectral sequence simplifies to

(1.4) E
s;t
2
D Exts;t

A.2/
.S0/) �t�s.tmf /:

The E2 page is periodic with the periodicity generator b4
3;0

, which lives in bidegree
.s; t/D .8; 8C 48/. The periodicity generator b4

3;0
and its square b8

3;0
are not present

in the E1 page of the above spectral sequence. There exist differentials

(1.5) d2.b
4
3;0/D e0r and d3.b

8
3;0/D wgr

in the Adams spectral sequence computing tmf� . But in that spectral sequence, b16
3;0

is
a nonzero permanent cycle which detects the periodicity generator �8 2 �192.tmf /.
All the details mentioned above are well documented by Henriques [6].

The unit map �k.2/W S0! k.2/ factors through tmf (see [1, Remark 1.3]): ie we have

(1.6) �k.2/W S
0
�tmf
��! tmf

r
�! k.2/:

The map induced by r in homotopy

r�W tmf�! k.2/�

maps �8n 7! v32n
2

, which is why tmf can detect periodic v2 –self-maps. This can be
observed through a map of Adams spectral sequences. Since

H�.k.2// �DA==E.Q2/

(due to Lellmann [9]), by a change of rings formula, we have

E
s;t
2
D Exts;t

E.Q2/
.S0/) �t�s.k.2//:
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The E2 page is simply a polynomial algebra generated by v2 in bidegree .s; t/ D
.1; 1C 6/. The spectral sequence collapses due to sparseness, giving us the expected
result ��.k.2//DF2Œv2�. The map r W tmf!k.2/ induces a map of spectral sequences

E2 D Exts;t
A.2/

.S0/ +3

r�

��

�t�s.tmf /

r�

��

E2 D Exts;t
E.Q2/

.S0/ +3 �t�s.k.2//

which sends b4n
3;0

to v8n
2

in the E2 page, and therefore sends b16n
3;0

to v32n
2

in
the E1 page.

Next we study the commutative diagram of spectral sequences:

(1.7)

tmf�
tmf��

//

��

tmf�.A1 ^DA1/

��

Ext�;�
A.2/

.S0/

7?

�
tmf
�
//

��

Ext�;�
A.2/

.A1 ^DA1/

2:

��

k.2/�
k.2/��

// k.2/�.A1 ^DA1/

Ext�;�
E.Q2/

.S0/
�
k.2/
�

//

7?

Ext�;�
E.Q2/

.A1 ^DA1/

2:

Since A1 is a type-2 spectrum, �8 has a nonzero image under the composite

tmf�
r�
�! k.2/�

k.2/��
����! k.2/�.A1 ^DA1/:

Therefore, tmf��.�
8n/ 2 tmf�.A1^DA1/ is the lift of k.2/��.v

32n
2
/. Similarly, at the

level of E2 pages, we see that

�
tmf
� .b

4n
3;0/ 2 Ext

A.2/
.A1 ^DA1/

is the lift of �k.2/� .v8n
2
/. In Section 3, we argue that the differentials in (1.5) induce a

d2 differential and a d3 differential in the spectral sequence

Exts;t
A.2/

.A1 ^DA1/) tmf�.A1 ^DA1/;

Algebraic & Geometric Topology, Volume 17 (2017)



On the periodic v2 –self-map of A1 663

supported by �tmf
� .b

4
3;0
/ and �tmf

� .b
8
3;0
/, respectively. This means that k.2/��.v

8
2
/ and

k.2/��.v
16
2
/ do not lift to tmf�.A1 ^DA1/, thereby establishing the “nonexistence

part” of Main Theorem.

The proof of the existence part of Main Theorem can roughly be divided into two parts:

� the lifting part, where we show that

�
tmf
� .b

4n
3;0/ 2 Ext8n;48nC8n

A.2/
.A1 ^DA1/

lifts to an element ev8n
2
2 Ext8n;48nC8n

A
.A1 ^DA1/ under the map

�tmf�W Ext�;�
A
.A1 ^DA1/! Ext�;�

A.2/
.A1 ^DA1/;

� the survival part, where we show that ev32n
2

is a nonzero permanent cycle in the
Adams spectral sequence

E2 D Exts;t
A
.A1 ^DA1/) �t�s.A1 ^DA1/

for all n> 0.

To achieve the lifting part, we use a Bousfield–Kan spectral sequence

E
s;t;n
1
WD Exts�n;t

A.2/
.H�.X /˝A==A.2/˝n;F2/) Exts;t

A
.H�.X /;F2/;

which is also otherwise known as the algebraic tmf spectral sequence.

For the survival part of the argument, we show that the d2 and d3 differentials of (1.5)
lift along the zigzag of spectral sequences:

(1.8)

�t�s.A1 ^DA1/

�tmf �

��

Ext
A
.A1 ^DA1/

�tmf �

��

3;

�t�s.tmf /
�
tmf
�

// tmft�s.A1 ^DA1/

Exts;t
A.2/

.S0/
�
tmf
�

//

9A

Exts;t
A.2/

.A1 ^DA1/

3;

Since ev8
2

supports a d2 differential and ev16
2

supports a d3 differential, ev32
2

can only
support a dr differential for r � 4 by the Leibniz rule. There is another d3 differential

(1.9) d3.v
20
2 h1/D g6

Algebraic & Geometric Topology, Volume 17 (2017)
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in the Adams spectral sequence for ��.tmf / which lifts along (1.8). The lifts of the
differentials in (1.5) and (1.9), along with the multiplicative structure, allow us to
deduce that there is no nonzero element in the E4 page of

Exts;t
A
.A1 ^DA1/) �t�s.A1 ^DA1/

for s � 36 and t � s D 191. As a result, ev32
2

is a nonzero permanent cycle, which
detects a 32–periodic v2 –self-map of A1 .

Notation 1.10 Let T be any subalgebra of A, for example, E.Q2/, A.2/ or A itself.
Let X be any spectrum with a map f W S0!X . Throughout the paper, we will denote
any nonzero image of a 2 Ext�;�

T
.S0/ under the map

f�W Ext�;�
T
.S0/! Ext�;�

T
.X /

using the same notation.

Use of Bruner’s Ext software

We will use Bruner’s Ext software [2] for two purposes. Given any A.2/–module M

which is finitely generated as an F2 –vector space, the program can compute the
groups Exts;t

A.2/
.M;F2/ to the extent of identifying generators in each bidegree within

a finite range, determined by the user. Since we are interested in Exts;t
A.2/

.X / for
finite spectra X , such as A1 ^DA1 , whose cohomology structures as A.2/–modules
are known, this suits our task perfectly. The second purpose is the following: As
any finite spectrum X is an S0 –module, Ext�;�

A.2/
.X / is a module over Ext�;�

A.2/
.S0/.

Given an element x 2 Exts;t
A.2/

.X /, the action of Ext�;�
A.2/

.S0/ can be computed using
the dolifts functionality of the software.

One should also be aware that Main Theorem is by no means a consequence of
the programming output. However, parts of the proof are reduced to pure algebraic
computation, which can be performed using Bruner’s program.

Organization of the paper

In Section 2, we use the May spectral sequence to compute Ext�;�
A.2/

.A1/. In particular,
we establish a vanishing line of slope 1

5
, which will be useful for subsequent use of

the algebraic tmf spectral sequence. In Section 3, we use the differentials in (1.5) to
conclude that A1 cannot admit a v2 –self-map of periodicity less than 32. We then use
the algebraic tmf spectral sequence to lift the differentials in (1.5) along the zigzag
(1.8), so that in the Adams spectral sequence

Exts;t
A
.A1 ^DA1/) �t�s.A1 ^DA1/;

Algebraic & Geometric Topology, Volume 17 (2017)
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we have nonzero differentials d2.ev8
2
/ and d3.ev16

2
/. In Section 4, we use the algebraic

tmf spectral sequence to lift the differential (1.9) along the zigzag (1.8). Finally, in
Section 5, we complete the proof of Main Theorem.

In the Appendix, we provide a description of Bruner’s Ext software to familiarize the
readers with its usage. A summary of the output of the Bruner’s program that is needed
for some of the results in Section 5 is listed in the tables from the online supplement.

Acknowledgments Bhattacharya and Egger would like to thank Mark Behrens, Bob
Bruner, Paul Goerss, Mike Hill and Mike Mandell for their invaluable assistance and
encouragement throughout this project, as well as Irina Bobkova for some helpful
discussions. We are greatly indebted to the anonymous referee for pointing out sev-
eral subtle mistakes and gaps in our logical deductions, which ultimately led to the
correct proof.

2 Computation of Exts;t
A.2/

.A1/ and its vanishing line

J P May in his thesis [10] introduced a filtration of the Steenrod algebra called the
May filtration, which induces a filtration of the cobar complex C.F2;A�;F2/. This
filtration gives a trigraded spectral sequence

E
s;t;u
1
D F2Œhi;j W i � 1; j � 0�) Exts;t

A
.S0/; jhi;j j D .1; 2

j .2i
� 1/; 2i � 1/;

with differentials dr of tridegree .1; 0; 1�2r/, which converges to the E2 page of the
Adams spectral sequence

E
s;t
2
D Exts;t

A
.S0/) �t�s.S

0/:

The element hi;j corresponds to the class Œ�2j

i � in the cobar complex C.F2;A�;F2/.
We stick to the notation introduced by Tangora in his thesis [12]. For example, h1;j is
abbreviated by hj . Meanwhile, there are many elements hi;j that are not d1 –cycles
in the May spectral sequence, however, even in these cases, the Leibniz rule means
that h2

i;j will be d1 –cycles. To get around the awkwardness of talking about h2
i;j in

later pages of the May spectral sequence, where hi;j may not even exist, Tangora
uses bi;j to denote h2

i;j from the May E2 page onwards.

One can use the same May filtration on the subalgebra A.2/ of A, to obtain a filtration
on the cobar complex C.F2;A.2/�;F2/. Thus we get a May spectral sequence with
finitely many differentials

F2Œh0; h1; h2; h2;0; h2;1; h3;0�) Exts;t
A.2/

.S0/;

Algebraic & Geometric Topology, Volume 17 (2017)
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all of which have been computed using techniques of [12]. The bigraded ring Exts;t
A.2/

.S0/

is the Adams E2 page for the homotopy groups of tmf .

We have obtained A1 by a series of cofibrations

S1 �
�! S0

! C�; C�
2
�! C�! Y and †2Y

v1
�! Y !A1:

The maps 2, � and v1 are detected by h0 , h1 and h2;0 , respectively, in the May
spectral sequence. Using the fact that cofiber sequences induce long exact sequences
of E1 pages of the May spectral sequence, we get that the E1 page of the May spectral
sequence converging to Exts;t

A.2/
.A1/ is

F2Œh2; h2;1; h3;0�) Exts;t
A.2/

.A1/:

Alternatively, using a change of rings formula, we see that there is a quasi-isomorphism
of cobar complexes

C.F2;A.2/�;A.1/�/ �D C.F2; .A.2/==A.1//�;F2/:

Since, C.F2; .A.2/==A.1//�;F2/ is a quotient of C.F2;A.2/�;F2/, the May filtration
on C.F2;A.2/�;F2/ induces a filtration on C.F2; .A.2/==A.1//�;F2/. As a result, we
have a May spectral sequence

(2.1) E
s;t;u
1

.A1/D F2Œh2; h2;0; h3;0�) Exts;t
A.2/

.A1/

that is a module over the May spectral sequence for S0 ,

(2.2) E
s;t;u
1

.S0/D F2Œh0; h1; h2; h2;0; h2;1; h3;0�) Exts;t
A.2/

.S0/:

The d1 differentials in (2.2) come from the coproduct on A.2/� . It is well known that
d1.h2/D0, d1.h2;1/Dh1h2 and d1.h3;0/Dh0h2;1Ch2h2;0 . Under the quotient map

F2Œh0; h1; h2; h2;0; h2;1; h3;0�� F2Œh2; h2;1; h3;0�;

all the images of the above differentials map to zero. Therefore, there are no d1

differentials in (2.1).

One can use Nakamura’s formula to compute higher May differentials. The operations
Sqi on the cobar complex of C.F2;A�;F2/, defined by Sqi.x/D x[i xC ıx[iC1 x

(see [11]), satisfy

Sq0.hi;j /D h2
i;j ; Sq0.bi;j /D b2

i;j and Sq1.hi;j /D hi;jC1;

as well as Cartan’s formulas (see [11, Propositions 4.4 and 4.5])

Sq0.xy/D Sq0.x/Sq0.y/ and Sq1.xy/D Sq1.x/Sq0.y/CSq0.x/Sq1.y/;

Algebraic & Geometric Topology, Volume 17 (2017)



On the periodic v2 –self-map of A1 667

whenever x and y are represented by elements in appropriate pages of the May spectral
sequence. In particular, we have

Sq1.x
2/D 0

for every x . The differential ı in the cobar complex C.F2;A�;F2/ satisfies the relation

(2.3) ıSqi D SqiC1ı

for i �0 (see [11, Lemma 4.1]), and is often called Nakamura’s formula in the literature.

Since the May spectral sequence (2.2) is obtained by filtering the cobar complex,
Nakamura’s formula (2.3) helps to find differentials in (2.2). Furthermore, because the
cobar complex C.F2; .A.2/==A.1//�;F2/ is a quotient of C.F2;A.2/�;F2/, (2.3) can
also help us to find differentials in (2.1).

Lemma 2.4 In the May spectral sequence

F2Œh2; h2;1; h3;0�) Exts;t
A.2/

.A1/;

we have the differentials

d2.b2;1/D h3
2; d3.b3;0/D h2

2h2;1 and d4.b
2
3;0/D h2b2

2;1;

and the spectral sequence collapses at E5 .

Proof In the May spectral sequence for S0 (2.2), there is a differential

d2.b2;1/D h3
2

which implies the corresponding d2 differential in the May spectral sequence for A1

(2.1). The element b3;0 is represented by the element Œ�3j�3� in the cobar complex
C.F2;A.2/�;F2/. Since b3;0DSq0h3;0 , we apply Nakamura’s formula (2.3) to obtain

Sq1.d1.h3;0//D Sq1.h0h2;1C h2h2;0/

D h2
0h2;2C h1h2

2;1C h2
2h2;1C h3h2

2;0

D h2
2h2;1

in the May spectral sequence for A1 (2.1). Therefore, it must be the case that, in the
cobar complex C.F2; .A.2/==A.1//�;F2/,

ı.Œ�3j�3�/D Œ�
4
1 j�

4
1 j�

2
2 �C elements of higher May filtration.

As a result, in (2.1), we have

d3.b3;0/D h2
2h2;1:
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Since Sq0.b3;0/D b2
3;0

, we can apply Nakamura’s formula (2.3) in a similar way to
obtain

d4.b
2
3;0/D h2b2

2;1

in the May spectral sequence for S0 (2.2) as well as A1 (2.1).

For every r , we have that E
�;�;�
r .A1/ is a differential graded module over E

�;�;�
r .S0/.

Since b4
3;0

is a permanent cycle in (2.2), multiplication by b4
3;0

commutes with differen-
tials in (2.1). The elements of E

�;�;�
5

.A1/ that are not multiples of b4
3;0

are permanent
cycles by sparseness. Therefore, the elements of E

�;�;�
5

.A1/ that are multiples of b4
3;0

are permanent cycles as well, and thus (2.1) collapses at the E5 page.

In Figure 2, the solid line of slope 1 represents multiplication by h1 , while the solid
line of slope 1

3
represents multiplication by h2 . The element b4

3;0
is the periodicity

generator of Ext�;�
A.2/

.A1/ and the solid lines in that part (right) are simply a repetition
of the earlier pattern (left). This matches the output of Bruner’s program [2] for
Exts;t

A.2/
.A1/, though different models of A1 may have different hidden extensions

some of which might not be detected in the May spectral sequence.

We have thus computed the E1 page of the May spectral sequence converging to
Exts;t

A.2/
.A1/. While Bruner’s program [2] shows that different spectra have different

hidden extensions, we are mainly interested in a vanishing line for Exts;t
A.2/

.A1/, which
will not be affected by these hidden extensions.

Lemma 2.5 The group Exts;t
A.2/

.A1/ is zero if

s > 1
5
.t � s/C 1;

and for t � s � 29, it is zero if
s > 1

5
.t � s/:

In other words, there is a vanishing line

y D 1
5
xC 1:

Proof Of the three generators of the E1 page, h2 has slope 1
3

, h2;1 has slope 1
5

and h3;0 has slope 1
6

. However, while Exts;t
A.2/

.A1/ contains infinitely large powers
of h2;1 and h3;0 , it only contains powers up to 2 of h2 . Hence, the vanishing line
of Exts;t

A.2/
.A1/ must have slope 1

5
, determined by b2

2;1
. Now, since h2b2

2;1
D 0, the

vanishing line for stems greater than 29 is y D 1
5
x and a glance at Figure 2 gives us

the y –intercept of the overall vanishing line.
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Figure 2: The E1 page of the May spectral sequence for Ext
A.2/

.A1/
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3 A d2 and a d3 differential

In this section, we first show that b4
3;0

and b8
3;0

in Exts;t
A.2/

.A1 ^ DA1/ support
a d2 and a d3 differential, respectively. Then we show that these differentials lift to
Exts;t

A
.A1 ^DA1/ under the map of spectral sequences:

Exts;t
A
.A1 ^DA1/

�tmf �

��

+3 �t�s.A1 ^DA1/

�tmf �

��

Exts;t
A.2/

.A1 ^DA1/ +3 tmft�s.A1 ^DA1/

Some of the proofs in this section as well as in the subsequent sections use Bruner’s
program [2]. We provide the Appendix to help readers familiarize themselves with
this software.

Lemma 3.1 In the Adams spectral sequence

E
s;t
2
D Exts;t

A.2/
.A1 ^DA1/) tmft�s.A1 ^DA1/;

we have d2.b
4
3;0
/D e0r and d3.b

8
3;0
/D wgr .

Proof Recall the well known differentials (1.5) in the Adams spectral sequence

E
s;t
2
D Exts;t

A.2/
.S0/) tmft�s:

Using Bruner’s program, we see that e0r and wgr both have nonzero images in
Exts;t

A.2/
.A1 ^DA1/. Hence, in the map of Adams spectral sequences

E
s;t
2
D Exts;t

A.2/
.S0/

��

+3 tmft�s

��

E
s;t
2
D Exts;t

A.2/
.A1 ^DA1/ +3 tmft�s.A1 ^DA1/

we have established that in the (abusive) Notation 1.3, we have

Exts;t
A.2/

.S0/
�
tmf
�
��! Exts;t

A.2/
.A1 ^DA1/;

b4
3;0 7! b4

3;0;

b8
3;0 7! b8

3;0;

e0r 7! e0r;

wgr 7! wgr:
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Therefore, the d2 differential of (1.5) forces a d2 differential

d2.b
4
3;0/D e0r

in the Adams spectral sequence for tmf�.A1^DA1/. By the Leibniz rule, d2.b
8
3;0
/D 0

and hence b8
3;0

is nonzero in the E3 page. The d3 differential in (1.5) will force a
nonzero d3 differential

d3.b
8
3;0/D wgr

in the Adams spectral sequence for tmf�.A1 ^DA1/ as claimed, provided the image
of wgr is nonzero in the E3 page. Thus we have to show that there does not exist a
differential of the form d2.x/D wgr .

Using Bruner’s program [2], we check that wgr 2 Ext19;95C19
A.2/

.S0/ maps nontrivially
to Ext19;95C19

A.2/
.A1/. Therefore if we have d2.x/D wgr in

Exts;t
A.2/

.A1 ^DA1/) tmft�s.A1 ^DA1/;

then x must map to a nonzero element, say x0 , under the map

j�W Ext17;96C17
A.2/

.A1 ^DA1/! Ext17;96C17
A.2/

.A1/;

and we will have d2.x
0/D wgr in

Exts;t
A.2/

.A1/) tmft�s.A1/:

There is exactly one generator of Ext17;96C17
A.2/

.A1/, and that generator is b4
3;0
�y under

the pairing

Ext8;48C8
A.2/

.S0/˝Ext9;48C9
A.2/

.A1/! Ext17;96C17
A.2/

.A1/:

It is clear that d2.y/ D 0 as Ext11;47C11
A.2/

.A1/ D 0; see Figure 2. Thus using the
Leibniz rule, we see that

d2.b
4
3;0y/D e0r �y:

Using [2], we check that e0r �y D 0. Therefore, wgr is nonzero in the E3 page of the
spectral sequence

Exts;t
A.2/

.A1 ^DA1/) tmft�s.A1 ^DA1/;

and therefore
d3.b

8
3;0/D wgr

in this spectral sequence.
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The fact that v16
2
2 k.2/�.A1 ^DA1/ does not lift to tmf�.A1 ^DA1/ implies that

v2k

2
2k.2/�.A1^DA1/ for 1�k�4 does not lift to tmf�.A1^DA1/. Indeed, suppose

that for k D 0; 1; 2 or 3 the element v2k

2
2 k.2/�.A1 ^DA1/ lifts to an element

x 2 tmf�.A1 ^DA1/;

then x24�k

would be a lift of v16
2

as A1 ^ DA1 is a ring spectrum. This would
contradict Lemma 3.1. Since the unit map for k.2/ factors through the unit map of tmf
(1.6), Lemma 3.1 implies the following:

Theorem 3.2 The spectrum A1 cannot admit a v2 –self-map of periodicity 16 or less.

Next we describe an algebraic resolution which will allow us to lift the d2 differential
and the d3 differential of Lemma 3.1 to the Adams spectral sequence

E
s;t
2
D Exts;t

A
.A1 ^DA1/) �t�s.A1 ^DA1/:

We will briefly recall the resolution described in [1, Section 5], and how it is used to
lift elements of Ext groups over A.2/ to Ext groups over A. Consider the A–module

A==A.2/ WDA˝A.2/ F2;

and denote by A==A.2/ the kernel of the augmentation map

A==A.2/! F2:

When we consider the triangulated structure of the derived category of A–modules,
we get maps

A==A.2/! F2!A==A.2/Œ1�

and a resulting diagram

F2
// A==A.2/Œ1� // A==A.2/˝2Œ2� // � � �

A==A.2/

OO

A==A.2/˝A==A.2/Œ1�

OO

A==A.2/˝A==A.2/˝2Œ2�

OO

to which we shall apply the functor Exts;t
A
.H�.X /˝�;F2/ to get a spectral sequence,

which we shall refer to as the algebraic tmf spectral sequence to reflect the fact
that A==A.2/ is the cohomology of tmf . This spectral sequence will be trigraded,
with E1 page

E
s;t;n
1
D Exts;t

A
.H�.X /˝A==A.2/˝A==A.2/˝nŒn�;F2/

�D Exts�n;t
A.2/

.H�.X /˝A==A.2/˝n;F2/;
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which converges to
Exts;t

A
.H�.X /;F2/:

For any element in the algebraic tmf spectral sequence in tridegree .s; t; n/, we will
refer to s as its Adams filtration, t as the internal degree and n as the algebraic tmf
filtration. The differential dr has tridegree .1; 0; r/. It is shown in [4] that

A==A.2/ �D
M
i�0

H�.†8iboi/;

where boi denotes the i th bo–Brown–Gitler spectrum of [5]. As a result the E1 page
of the algebraic tmf spectral sequence simplifies to

E
s;t;n
1
D

M
i1;:::;in�1

Exts�n;t�8.i1C���Cin/
A.2/

.X ^ boi1
^ � � � ^ boin

/) Exts;t
A
.X /:

We will attempt to exploit the relative sparseness of the E1 page, especially its vanishing
line properties, in the case when X DA1 ^DA1 .

Remark 3.3 (the cellular structure of bo–Brown–Gitler spectra) The spectrum bo0

is the sphere spectrum. The cohomology of the spectrum bo1 as a module over the
Steenrod algebra can be described through the following picture, with the generators
labeled by cohomological degree:

�

0
�

4
�

6
�

7

where the straight line, curved line and square bracket describe the actions of Sq1, Sq2

and Sq4, respectively. Note that the 4–skeleton of bo1 is C� . Indeed, the boi fit
together to form the following cofiber sequence

boi�1! boi!†4iB.i/;

where B.i/ is the i th integral Brown–Gitler spectrum as described in [5]. Therefore
for every i � 1, the 7–skeleton of boi is bo1 and the 4–skeleton of boi is C� .

One can compute Exts;t
A.2/

.A1 ^ DA1 ^ boi/ from Exts;t
A.2/

.A1 ^ DA1/ using the
Atiyah–Hirzebruch spectral sequence or with Bruner’s program [2].

Lemma 3.4 The group

Exts;t
A.2/

.A1 ^DA1 ^ boi1
^ � � � ^ boin

/

is zero if s > 1
5
..t � s/C 6/.
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Proof We showed in Lemma 2.5 that Exts;t
A.2/.A1/ has a vanishing line s D 1

5
.t � s/

for t � s � 30 and a vanishing line of s D 1
5
.t � s/C 1 overall. The only generator

of Exts;t
A.2/

.A1/ with a slope greater than 1
5

is h2 , so if we kill off h2 by considering
Exts;t

A.2/
.A1 ^C�/ then the vanishing line is precisely s D 1

5
.t � s/.

As we mentioned in Remark 3.3, the 4–skeleton of any boi is C� and the next cell is
in dimension 6. So we can build boi by attaching finitely many cells of dimension at
least 6 to C� . Hence by using the Atiyah–Hirzebruch spectral sequence and the fact
that 1

5
.x�6/C1< 1

5
x , one can see that the vanishing line of A1^boi is sD 1

5
.t�s/.

One can build A1^boi1
^� � �^boin

from A1^boi1
, iteratively using cofiber sequences,

which depend on the cell structure of boi2
^� � �^boin

. Since we have already established
that Exts;t

A.2/
.A1^ boi1

/ has vanishing line s D 1
5
.t � s/ and that boi2

^ � � � ^ boin
is a

connected spectrum, we conclude, using the Atiyah–Hirzebruch spectral sequence, that
the vanishing line for Exts;t

A.2/
.A1 ^ boi1

^ � � � ^ boin
/ is s D 1

5
.t � s/.

However, DA1 has cells in negative dimension, in fact the bottom cell is in dimen-
sion �6. Again by using the Atiyah–Hirzebruch spectral sequence, one concludes that
the vanishing line for Exts;t

A.2/
.A1 ^DA1 ^ boi1

^ � � � ^ boin
/ is

s D 1
5
.t � sC 6/

for any ik � 1, completing the proof.

Corollary 3.5 The group Exts;t
A
.A1 ^DA1/ is zero if

s > 1
5
.t � s/C 11

5
;

and for t � s � 23, it is zero if

s > 1
5
.t � s/C 6

5
:

The result is a straightforward consequence of Lemma 2.5, Lemma 3.4 and the algebraic
tmf spectral sequence.

Lemma 3.6 The element

b4
3;0 2 Ext8;48C8

A.2/
.A1 ^DA1/

lifts to an element ev8
2

under the map

�tmf�W Ext8;48C8
A

.A1 ^DA1/! Ext8;48C8
A.2/

.A1 ^DA1/:
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Proof Consider the algebraic tmf spectral sequence:

E
s;t;n
1
D

M
i1�1;:::;in�1

Exts�n;t�8.i1C���Cin/
A.2/

.A1 ^DA1 ^ boi1
^ : : : boin

/

��

Exts;t
A
.A1 ^DA1/

The element b4
3;0

has tridegree .s; t; n/ D .8; 48 C 8; 0/ D .8; 56; 0/ in the above
spectral sequence. The element dn.b

4
3;0
/ has tridegree .9; 56; n/ and hence belongs to

Ext9�n;56�8.i1C���Cin/
A.2/

.A1 ^DA1 ^ boi1
^ � � � ^ boin

/

for some .i1; : : : ; in/ where ik � 1. We will show that the above group is zero for all
n� 1 and for all tuples .i1; : : : ; in/ where ik � 1.

By Lemma 3.4 the above group is zero if

(3.7) 1
5
.56� 8.i1C � � �C in/� 9C nC 6/ < 9� n;

which is trivially satisfied for n> 4.

For nD 1, (3.7) becomes
1
5
.54� 8i1/ < 8;

thus i1 > 1; so it suffices to verify that

Ext8;48
A.2/

.A1 ^DA1 ^ bo1/D 0:

For nD 2, (3.7) becomes
1
5
.55� 8.i1C i2// < 7;

thus i1C i2 > 2; so it suffices to verify that

Ext7;40
A.2/

.A1 ^DA1 ^ bo1 ^ bo1/D 0:

For nD 3, (3.7) becomes

1
5
.56� 8.i1C i2C i3// < 6;

thus i1C i2C i3 > 3; so it suffices to verify that

Ext6;32
A.2/

.A1 ^DA1 ^ bo1 ^ bo1 ^ bo1/D 0:

For nD 4, (3.7) becomes

1
5
.57� 8.i1C i2C i3C i4// < 5;
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thus i1C i2C i3C i4 > 4; so it suffices to verify that

Ext5;24
A.2/

.A1 ^DA1 ^ bo1 ^ bo1 ^ bo1 ^ bo1/D 0:

For all four models of A1 , Bruner’s program [2] shows that all the groups we expected
to be zero are in fact zero.

Corollary 3.8 For all n 2N , the elements b4n
3;0
2 Ext8n;48nC8n

A.2/
.A1^DA1/ lift to an

element ev8n
2
2 Ext8n;48nC8n

A
.A1 ^DA1/ under the map �tmf� .

Proof Since A1 ^DA1 is a ring spectrum, it follows that the map

�tmf�W Exts;t
A
.A1 ^DA1/! Exts;t

A.2/
.A1 ^DA1/

is a map of algebras. By Lemma 3.6, b4
3;0

lifts and thus b4n
3;0

lifts for every n 2N .

Remark 3.9 The lift of ev8n
2

in Corollary 3.8 may not be unique. The indeterminacy
in the choice of ev8n

2
consists of elements of higher algebraic tmf filtration.

Lemma 3.10 In the Adams spectral sequence

E
s;t
2
D Exts;t

A
.A1 ^DA1/) �t�s.A1 ^DA1/;

there is a d2 –differential
d2.ev8

2
/D e0r CR

and a d3 –differential
d3.ev16

2
/D wgrCS

for some R and S in algebraic tmf filtration greater than zero.

Proof Recall that e0r and wgr are elements in Ext�;�
A
.S0/ (see [12]), which maps

nontrivially (see Lemma 3.1) under the composite

Ext�;�
A
.S0/! Ext�;�

A.2/
.S0/! Ext�;�

A.2/
.A1 ^DA1/:

Therefore, by inspecting the commutative diagram

(3.11)

Ext�;�
A
.S0/

�tmf �

��

��
// Ext�;�

A
.A1 ^DA1/

�tmf �

��

Ext�;�
A.2/

.S0/
�
tmf
�
// Ext�;�

A.2/
.A1 ^DA1/

we see that e0r and wgr are nonzero image in Ext�;�
A
.A1^DA1/. Since ev8

2
and ev16

2

are lifts of b4
3;0

and b8
3;0

, respectively, the differentials of Lemma 3.1 force the differ-
entials as claimed.

Algebraic & Geometric Topology, Volume 17 (2017)



On the periodic v2 –self-map of A1 677

4 Another d3 differential

The goal of this section is to lift the d3 differential (1.9) in the spectral sequence for
tmf� to a d3 differential

d3.Av20
2

h1 /D g6

in the Adams spectral sequence

E
s;t
2
D Exts;t

A
.A1 ^DA1/) ��.A1 ^DA1/

along the zigzag (1.8).

The element g 2 Ext4;20C4
A

.S0/ is Tangora’s name [12] for the element detected
by b2

2;1
in the May spectral sequence

F2Œhi;j W i > 0; j � 0�) Exts;t
A
.S0/:

In the literature, the same name is adopted for its image in Ext4;20C4
A.2/

.S0/.

Lemma 4.1 In the Adams spectral sequence

E
s;t
2
D Exts;t

A.2/
.A1 ^DA1/) tmft�s.A1 ^DA1/;

the element g6 is hit by a d3 differential

d3.v
20
2 h1/D g6:

Proof From the calculation in Lemma 2.4, it is clear that g6 D b12
2;1

has a nonzero
image in Ext24;120C24

A.2/
.A1/. Since we have a factorization of maps

Ext24;120C24
A.2/

.S0/! Ext24;120C24
A.2/

.A1 ^DA1/! Ext24;120C24
A.2/

.A1/;

we have that g6 must also be nonzero in the Adams E2 page for tmf�.A1 ^DA1/.

To show that it is also nonzero in the Adams E3 page, we must exclude the possibility
that g6 2 Ext24;120C24

A.2/
.A1 ^DA1/ might be hit by a d2 differential

d2.yx/D g6

for some elements yx 2 Ext22;121C22
A.2/

.A1 ^DA1/. In such a case, yx would have to
map to a nonzero element x 2 Ext22;121C22

A.2/
.A1/ and there would exist a differential

(4.2) d2.x/D g6
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in the Adams spectral sequence

E
s;t
2
D Exts;t

A.2/
.A1/) tmft�s.A1/

as g6 ¤ 0 2 Ext24;120C24
A.2/

.A1/. From the calculations of Lemma 2.4, there is exactly
one possible nonzero x 2 Ext22;121C22

A.2/
.A1/. Using Bruner’s program [2] (see (A.2))

we see that this x is a multiple of gb4
3;0

under the pairing

Ext12;68C12
A.2/

.S0/˝Ext10;53C10
A.2/

.A1/! Ext22;121C22
A.2/

.A1/; gb4
3;0˝ xx 7! x:

Clearly d2.xx/D 0 as Ext12;52C12
A.2/

.A1/D 0, and hence by the Leibniz rule, we get

d2.x/D ge0r � xx:

However, ge0r D 0 in Ext14;67C14
A.2/

.S0/, therefore d2.x/D 0. It follows that the d2

differential in (4.2) cannot exist and g6 is a nonzero element in the E3 page of the
spectral sequence

Exts;t
A.2/

.A1 ^DA1/) tmft�s.A1 ^DA1/:

Thus the d3 differential of (1.9) in Adams spectral sequence

Exts;t
A.2/

.S0/) tmft�s

forces the d3 differential
d3.v

20
2 h1/D g6

in the Adams spectral sequence for tmf�.A1 ^DA1/ as claimed.

Our next goal is to lift this d3 differential to the Adams spectral sequence

Exts;t
A
.A1 ^DA1/) �t�s.A1 ^DA1/:

The main tool at our disposal is the algebraic tmf spectral sequence, described in
Section 3.

Lemma 4.3 The elements g6 and v20
2

h1 lift to Exts;t
A
.A1 ^DA1/ under the map

�tmf�W Exts;t
A
.A1 ^DA1/! Exts;t

A.2/
.A1 ^DA1/:

Proof In the proof of Lemma 4.1, we showed that g6 is a nonzero element if
Ext24;120C24

A.2/
.A1 ^DA1/. Since g6 is an element of Ext24;120C24

A
.S0/, from the
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commutative diagram

Ext�;�
A
.S0/

��
//

�tmf �

��

Ext�;�
A
.A1 ^DA1/

�tmf �

��

Ext�;�
A.2/

.S0/
�
tmf
�
// Ext�;�

A.2/
.A1 ^DA1/

it easily follows that g6 lifts to Ext24;120C24
A

.A1 ^DA1/ under the map �tmf� .

It is known that v20
2

h1 D b8
3;0
� v4

2
h1 under the pairing

Ext16;96C16
A.2/

.S0/˝Ext5;25C5
A.2/

.S0/! Ext21;121C21
A.2/

.S0/; b8
3;0˝ v

4
2h1 7! v20

2 h1:

Therefore the same relation v20
2

h1D b8
3;0
�v4

2
h1 is true in Ext21;121C21

A.2/
.A1^DA1/ as

�
tmf
� W Exts;t

A.2/
.S0/! Exts;t

A.2/
.A1 ^DA1/

is a map of algebras. From Corollary 3.8, we already know that b8
3;0

lifts to

ev16
2
2 Ext16;96C16

A
.A1 ^DA1/:

Using the algebraic tmf spectral sequence

E
s;t;n
1
D

M
i1�1;:::;in�1

Exts�n;t�8.i1C���Cin/
A.2/

.A1 ^DA1 ^ boi1
^ � � � ^ boin

/

��

Exts;t
A
.A1 ^DA1/

and the vanishing lines established in Lemma 3.4, we see v4
2
h1 2Ext5;25C5

A.2/
.A1^DA1/

also has a lift
ev4
2h1 2 Ext5;25C5

A
.A1 ^DA1/:

Therefore,
ev16

2
� ev4

2h1 2 Ext21;121C21
A

.A1 ^DA1/

is a lift of v20
2

h1 , as

�tmf�W Exts;t
A
.A1 ^DA1/! Exts;t

A.2/
.A1 ^DA1/

is a map of algebras.
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We will denote any lift of v20
2 h1 by Av20

2
h1 2 Ext21;121C21

A
.A1 ^DA1/. One should

be aware that the choice of Av20
2

h1 is not unique. The indeterminacy in the choice of
Av20
2

h1 consists of elements of higher algebraic tmf filtration. This does not cause
problems later in the paper because of the following technical lemma.

Lemma 4.4 Suppose that we have a nontrivial differential dr .x/D y in the Adams
spectral sequence for a spectrum X ,

E
s;t
2
D Exts;t

A
.X /) �t�s.X /:

If x has algebraic tmf filtration greater than zero, then so does y .

Proof If the algebraic tmf filtration of x is greater than zero then the map of spectral
sequences

Exts;t
A
.X / +3

�tmf �

��

�t�s.X /

�tmf �

��

Exts;t
A.2/

.X / +3 tmft�s.X /

sends x to 0. Therefore,
�tmf�.y/D �tmf�.dr .x//

D dr .�tmf�.x//

D 0;

which means that the algebraic tmf filtration of y is greater than zero.

Lemma 4.5 In the Adams spectral sequence

Exts;t
A
.A1 ^DA1/) �t�s.A1 ^DA1/;

there exists a d3 differential
d3.Av20

2
h1 /D g6:

Proof It is easy to check that Lemma 4.1, along with the map of Adams spectral
sequences

E
s;t
2
D Exts;t

A
.A1 ^DA1/ +3

��

�t�s.A1 ^DA1/

��

E
s;t
2
D Exts;t

A.2/
.A1 ^DA1/ +3 tmft�s.A1 ^DA1/

induced by �tmf , forces a d3 differential (also see Remark 4.7)

(4.6) d3.Av20
2

h1 /D g6
CR;
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where R is an element of algebraic tmf filtration greater than zero. Studying the
algebraic tmf spectral sequence for A1^DA1 , using the vanishing lines of Lemma 3.4
and using the fact that (checked using Bruner’s program)

Ext23;113C23
A.2/

.A1^DA1^bo1/D 0 and Ext22;106C22
A.2/

.A1^DA1^bo1^bo1/D 0;

we conclude that R is in fact zero.

Remark 4.7 Lemma 4.4 in particular eliminates the possibility of a differential of the
form

dr .S/D g6;

where S is in the higher algebraic tmf filtration. This is needed for the conclusion of
(4.6).

5 Proof of Main Theorem

Recall from Corollary 3.8 that there are candidates in the E2 page of the Adams
spectral sequence

(5.1) E
s;t
2
D Exts;t

A
.A1 ^DA1/) �t�s.A1 ^DA1/;

denoted by ev8n
2

, that can detect an 8n–periodic v2 –self-map. Since ev8
2

supports
a d2 differential and ev16

2
supports a d3 differential (see Lemma 3.10), by the Leibniz

formula ev32
2

is a nonzero d3 –cycle. The only way ev32
2

can fail to detect a 32–periodic
v2 –self-map is by supporting a nonzero dr differential for r � 4 in the Adams spectral
sequence (5.1). So we look for candidates in the E2 page of (5.1) that can potentially
be the target of a nonzero dr differential supported by ev32

2
for r � 4. Such elements

will live in Exts;t
A
.A1 ^DA1/ with t � s D 191 and Adams filtration s � 36. We use

the algebraic tmf spectral sequence to detect such candidates. The goal of this section
is to argue that any such candidate is either zero or not present in the E4 page of the
spectral sequence (5.1).

From Section 3, we recall the algebraic tmf spectral sequence:

E
s;t;n
1
D

M
i1;:::;in�1

Exts�n;t�8.i1C���Cin/
A.2/

.boi1
^ � � � ^ boin

^A1 ^DA1/

��

Exts;t
A
.A1 ^DA1/

An easy consequence of the vanishing line established in Lemma 3.4 is the following.
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Lemma 5.2 The only potential contributors to Exts;t
A
.A1^DA1/ for t � sD 191 and

s � 36 come from the following summands of the algebraic tmf E1 page:

Exts;t
A.2/

.A1 ^DA1/˚
M

1�i�3

Exts�1;t�8i
A.2/

.A1 ^DA1 ^ boi/

˚

M
1�i�2

Exts�2;t�8�8i
A.2/

.A1 ^DA1 ^ bo1 ^ boi/

˚Exts�3;t�24
A.2/

.A1 ^DA1 ^ bo1 ^ bo1 ^ bo1/:

While the result holds for all models of A1 , the computations will be slightly different
for different models, and so we will treat these models separately. Since A1Œ00� and
A1Œ11� are Spanier–Whitehead dual to each other, we can treat the cases of A1Œ00� and
A1Œ11� as one case. We will then have to treat the cases of the self-dual spectra A1Œ01�

and A1Œ10� separately. The completeness of the tables in this section will be justified
by the more detailed tables in the online supplement.

Notation 5.3 The elements of E
s;t;n
1

, the E1 page of the algebraic tmf spectral
sequence for A1 ^DA1 , which are nonzero permanent cycles, will detect nonzero
elements of Exts;t

A
.A1^DA1/. Therefore we place an element x 2E

s;t;n
1

in bidegree
.t � s � n; s C n/. Thus the elements that may contribute to the same bidegree of
Exts;t

A
.A1 ^DA1/ are placed together. With this arrangement any differential in the

algebraic tmf spectral sequence will look like Adams d1 differential. The generators of

E
s;t;n
1
D

M
i1;:::;in�1

Exts�n;t�8.i1C���Cin/
A.2/

.A1 ^DA1 ^ boi1
^ � � � ^ boin

/

will be denoted by dots in the following manner (recall that bo0 D S0 ):

� elements with nD 0 are denoted by a � ,

� elements with nD 1; i1 D 1 are denoted by a ı1 ,

� elements with nD 1; i1 D 2 are denoted by a ı2 ,

� elements with nD 2; i1 D 1; i2 D 1 are denoted by a ˇ,

� and N/A stands for “not applicable,” ie coordinates of the table which are
irrelevant to our arguments.

5.1 The case A1 D A1Œ00� or A1 D A1Œ11�

We begin by laying out, in Table 1, the elements of the E1 page of the algebraic
tmf spectral sequence, in Notation 5.3. The table makes it clear that all elements
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s n t � s 189 190 191

40 0 0 0

39 0 h��i WD Y 0
39

h� � �i WDX 0
39

38 N/A h� � � � �i WD Y 0
38

h� � �i WDX 0
38

37 N/A
h� � � � �i h� � � � �i WDX 0

37

hı1 ı1 ı1 ı1 ı1ı1i hı1 ı1 ı1 ı1 ı1 ı1 ı1ı1i WDX 1
37

h� � �i WDX 0
36

36 N/A N/A hı1ı1i WDX 1
36

hˇˇˇˇˇˇi WDX 1;1
36

Table 1: E1 page of the algebraic tmf spectral sequence for Exts;t
A
.A1 ^DA1/ ,

where A1 DA1Œ00� or A1 DA1Œ11� , stem 189–191 .

s n t � s 70 71

15 h��i D g�6Y 0
39

h� � �i D g�6X 0
39

14 h� � � � �i D g�6Y 0
38 h� � ��i D g�6X 0

38

13
h� � � � �i h� � � � � � �i D g�6X 0

37

hı1 ı1 ı1 ı1 ı1ı1i hı1 ı1 ı1 ı1 ı1 ı1 ı1ı1i D g�6X 1
37

12 N/A
hı1 ı1 ı1 ı1 ı1ı1i D g�6X 1

36

hˇˇˇˇˇˇi D g�6X 1;1
36

Table 2: E1 page of the algebraic tmf spectral sequence for Exts;t
A
.A1 ^DA1/ ,

where A1 DA1Œ00� or A1 DA1Œ11� , stem 70–71 .

with t � s D 191, with the possible exception of those in X 0
36

, are permanent cycles in
the algebraic tmf spectral sequence. Our goal is to show that every linear combination
of elements in X

i1;:::;in
s is either absent or zero in the E4 page of the Adams spectral

sequence. Using Bruner’s program (for details see Tables 1–4 from the online supple-
ment), we observe that a lot of these elements are multiples of g6 in the E1 page of
the algebraic tmf spectral sequence, which we record in Table 2.

Lemma 5.4 Every element of

X 0
39˚X 0

38˚X 0
37˚X 1

37˚X 1
36˚X 1;1

36

is present in the Adams E2 page, but is either zero or absent in the Adams E4 page.
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Proof Tables 1–4 of the online supplement make clear that multiplication by g6

surjects onto X 0
39
˚X 0

38
˚X 0

37
˚X 1

37
˚X 1

36
˚X 1;1

36
. Notice that for any

x D g6
�y 2X 0

39˚X 0
38˚X 0

37˚X 1
37˚X 1

36˚X 1;1
36 ;

both x and y are nonzero permanent cycles in the algebraic tmf spectral sequence.
Indeed, the target of any differential supported by y , must have algebraic tmf filtration
greater than y and from Table 2 it is clear no such element is present in the appropriate
bidegree. Hence y is present in the Adams E2 page. The same argument holds for x .

Case 1 When x D g6 � y 2 X 0
39
˚X 0

38
˚X 1

37
˚X 1

36
˚X 1;1

36
, then both x and y

are permanent cycles in the algebraic tmf spectral sequence as the differentials must
increase algebraic tmf filtration. In fact these elements are permanent cycles in the
Adams spectral sequence for either degree reasons or by Lemma 4.4. If y is a target of
a differential in the algebraic tmf spectral sequence or an Adams d2 differential, then
y is zero in the E3 page. Consequently, x D g6 �y is zero in the E3 page as well. If
y is not a target of such differentials, then we have

d3.Av20
2

h1 �y/D Av20
2

h1 � d3.y/C d3.Av20
2

h1 / �y D g6
�y D x:

In either case, x is zero in the E4 page.

Case 2 When x D g6 � y 2 X 0
37

and y is a permanent cycle, then we can argue
x D g6 �y is zero in the E4 page as we did in the previous cases. If

d2.y/D y0;

then y0 must belong to g�6Y 0
39

. Since multiplication by g6 is a bijection between
g�6Y 0

39
and Y 0

39
, we get

d2.x/D d2.g
6
�y/D g6

� d2.y/C d2.g
6/ �y D g6

�y0 ¤ 0:

Therefore, x is absent in the E4 page.

Thus we are left with the case when x 2X 0
36

.

Lemma 5.5 Every element of X 0
36

is either zero or absent in the Adams E4 page.

Proof X 0
36

is spanned by three generators fs1; t1; t2g. Using Bruner’s program, we
explore the following relations in the E1 page of the algebraic tmf spectral sequence:

s1 D b4
3;0 �x1;

t1 D b4
3;0 �y1 D b8

3;0 � z1;

t2 D b4
3;0 �y2 D b8

3;0 � z2;

Y 0
38 3 e0r �x1 ¤ 0;

e0r �y1 D 0;

e0r �y2 D 0;

Y 0
39 3 wgr � z1 ¤ 0;

Y 0
39 3 wgr � z2 ¤ 0;
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s# t�s! 94 95 s# t�s! 142 143

23 0 0 30 0 0

22 0 0 29 h� � � � �i h� � � � �i

21 0 0 28 N/A
h�Dx1;�Dy1;�Dy2iWDZ28

hı1ı1i

20 N/A h�Dz1;�Dz2iWDZ20

Table 3: E1 page of the algebraic tmf spectral sequence for Exts;t
A
.A1 ^DA1/ ,

where A1 DA1Œ00� or A1 DA1Œ11� .

and wgr � z1 and wgr � z2 are linearly independent. In Bruner’s notation, s1 D 3664 ,
t1 D 3665 , t2 D 3666 , x1 D 2832 , e0r �x1 D 3825 , y1 D 2833 , y2 D 2834 , z1 D 201 ,
wgr � z1 D 391 , z2 D 202 and wgr � z2 D 392 ; see Table 5 from the online supplement.

From Table 3, it is clear that any element in Z20 and Z28 are permanent cycles.

Case 1 If x D �1s1C ı1t1C ı2t2 ¤ 0 in the Adams E2 page with �1 ¤ 0, then

d2.x/D �1d2.ev8
2
�x1/D �1.e0r �x1/¤ 0:

Thus x is not present in the E4 page.

Case 2 If x D ı1t1C ı2t2 ¤ 0, then

d2.x/D 0:

If x ¤ 0 in the Adams E3 page, then

d3.x/D ı1d3.ev16
2
� z1/C ı2d3.ev16

2
� z2/D wgr � .ı1z1C ı2z2/¤ 0:

Thus x is not present in the E4 page.

This proves Main Theorem in the cases A1 DA1Œ00� or A1 DA1Œ11�.

5.2 The case A1 D A1Œ01� or A1 D A1Œ10�

A priori, A1Œ01� and A1Œ10� are two different spectra and we must therefore give
two different proofs of Main Theorem. However, it turns out that Tables 4 and 5 are
identical for A1Œ01� and A1Œ10�, and therefore the exact same arguments will apply to
both spectra. For A1Œ01�, refer to Tables 6–9 of the online supplement, and for A1Œ10�,
refer to Tables 10–13 of the online supplement, to observe that most of the elements in
Table 4 are multiples by g6 of elements in Table 5.
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snt � s 190 191

39 0 h�i WDX 0
39

38 h� � ��i WD Y 0
38

h�i WDX 0
38

37
h� � ��i h� � � � �i WDX 0

37

hı1 ı1 ı1 ı1 ı1ı1i hı1 ı1 ı1 ı1 ı1 ı1 ı1ı1i WDX 1
37

36 N/A hˇˇi WDX 1;1
36

Table 4: E1 page of the algebraic tmf spectral sequence for Exts;t
A
.A1 ^DA1/ ,

where A1 DA1Œ01� , stem 190–191 .

snt � s 70 71

15 0 h�i D g�6X 0
39

14 h� � ��i D g�6Y 0
38

h��i D g�6X 0
38

13
h� � � � �i h� � � � � � �i D g�6X 0

37

hı1 ı1 ı1 ı1 ı1ı1i hı1 ı1 ı1 ı1 ı1 ı1 ı1ı1i D g�6X 1
37

12 N/A
hı1 ı1 ı1 ı1 ı1ı1i

hˇˇi D g�6X 1;1
36

Table 5: E1 page of the algebraic tmf spectral sequence for Exts;t
A
.A1 ^DA1/ ,

where A1 DA1Œ01� , stem 70–71 .

Lemma 5.6 All elements of

(5.7) X 0
39˚X 0

38˚X 0
37˚X 1

37˚X 1;1
36

are present in the Adams E2 page, but are zero in the Adams E4 page.

Proof Differentials in the algebraic tmf spectral sequence increase algebraic tmf
filtration. Therefore, as Tables 4 and 5 make clear, all elements of (5.7) are permanent
cycles in the algebraic tmf spectral sequence and are therefore present in the Adams E2

page. Furthermore, all these elements are permanent cycles in the Adams spectral
sequence, either for degree reasons or by Lemma 4.4.

Tables 6–13 of the online supplement make clear that multiplication by g6 is surjective
onto (5.7). Therefore, any element xDg6 �y in (5.7) which is not zero in the Adams E3

page is a target of a d3 differential

d3.Av20
2

h1 �y/D d3.Av20
2

h1 / �yC Av20
2

h1 � d3.y/D g6
�y D x;

hence zero in the E4 page.

Algebraic & Geometric Topology, Volume 17 (2017)

http://msp.org/agt/2017/17-2/agt-v17-n2-x02-supplement.zip


On the periodic v2 –self-map of A1 687

Appendix: General remarks on the use of Bruner’s program

Since many of our proofs relied on the output of Bruner’s program, we append some
facts about the program to justify our claims.

The program takes as input a graded module M over A (or A.2/) that is a finite
dimensional F2 –vector space and computes Exts;t

A
.M;F2/ (or Exts;t

A.2/
.M;F2/) for t

in a user-defined range, and 0� s� MAXFILT, where one has MAXFILTD 40 by default.
The structure of M as an A–module is encoded in a text file named M, placed in the
directory A/samples in the way we will now describe.

The first line of the text file M consists of a positive integer n, the dimension of M as
an F2 –vector space, whose basis elements we will call g0; : : : ;gn�1 . The second line
consists of an ordered list of integers d0; : : : ; dn�1 , which are the respective degrees of
the gi . Every subsequent line in the text file describes a nontrivial action of some Sqk

on some generator gi . For instance, if we have

Sqk.gi/D gj1C � � �Cgjl ;

we would encode this fact by writing the line

i k l j1 ...jl

followed by a new line. Every action not encoded by such a line is assumed to be
trivial. To ensure that such a text file in fact represents an honest A–module, we must
run the newconsistency script, which will alert us if:

� the text file contains a line

i k l j1 ...jl

and it turns out that one of the dj is not equal to di C k , or

� the module taken as a whole fails to satisfy a particular Adem relation.

Example A.1 Consider the A–module given by Figure 3, where generators are de-
picted by dots and actions of Sq1 , Sq2 and Sq4 are depicted by straight lines, curved
lines and square brackets, respectively.

Based on this picture, we get the text file in Figure 4, which we call A1-00_def. We
go to the directory A2 and run:

./newmodule A1-00 ../A/samples/A1-00_def

cd A1-00
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� g0

� g1

� g2

� g3

� g7

� g6

�g5

�g4

Figure 3: H�A1Œ00� as an A–module

Now we are ready to compute. Running the script

./dims 0 250

will compute Exts;t
A.2/

.A1Œ00�/ for 0� s � MAXFILTD 40 and 0� t � 250. To see the
Ext group, one runs

./report summary

./vsumm A1-00 > A1-00.tex
pdflatex A1-00.tex

to produce a pdf document A1-00.pdf as in the online supplement.

As this file makes apparent, the generators of the Ext group (as an F2 vector space)
are stored in the computer with names such as sg , where s is the Adams filtration of
the generator, and g is some way of ordering all generators of filtration s . It should
be emphasized that g is not the stem of the generator. In A1-00.pdf from the online
supplement, for instance, the generator 12 is the second generator of filtration 1, but it
is in stem 6. This file also tells us the action of the Hopf elements h0 through h3 , so
that in our example, h2 multiplied by the generator 12 equals the generator 22 .

By running

./display 0 A1-00_

to produce single-page pdf documents A1-00_1.pdf, A1-00_2.pdf, : : : , it is also
possible to see the Ext group in the visually more appealing form of a chart, as shown
in A1-00_1.pdf from the online supplement.

The program is also capable of computing dual modules via the dualizeDef script, and
tensor products via the tensorDef script. Both executables are conveniently located in
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8

0 1 2 3 3 4 5 6

0 1 1 1
0 2 1 2
0 3 1 3
0 6 1 7
1 2 1 4
1 3 1 5
1 4 1 6
1 5 1 7
2 1 1 3
2 2 1 5
3 2 1 6
3 3 1 7
4 1 1 5
5 2 1 7
6 1 1 7

Figure 4: The text file A/samples/A1-00_def

the A/samples directory where we put our module definition text files. Thus, running

./dualizeDef A1-00_def DA1-00_def

./tensorDef A1-00_def DA1-00_def ADA1-00_def

produces the text file ADA1-00_def, with which we proceed in the same way as earlier
with A1-00_def.

While ADA1-00.pdf only shows the action of the Hopf elements h0 through h3 , the
scripts cocycle and dolifts enable the user to input a specific generator and find
the action of much of Exts;t

A.2/
.S0/ on that specific generator. Let us do this with the

generator 06 2 Ext0;0
A.2/

.A1Œ00�^DA1Œ00�/ by going to directory A2 and running

./cocycle ADA1-00 0 6

which will create a subdirectory A2/ADA1-00/0_6. To find the action of all elements
of Exts;t

A.2/
.S0/ with 0� s � 20 on 06 , we go back to directory A2/ADA1-00 and run:

./dolifts 0 20 maps
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Now ADA1-00/0_6 will contain several text files, among them brackets.sym (which
contains information about Massey products) and Map.aug (which contains information
about the action of Exts;t

A.2/
.S0/ on 06 ).

The generators of Exts;t
A.2/

.S0/ are stored in the computer in the format sg . Here we
include a list of important elements of Exts;t

A.2/
.S0/ and their sg representations:

g D 48 2 Ext4;20C4
A.2/

.S0/

b4
3;0 D 819 2 Ext8;48C8

A.2/
.S0/

e0r D 1018 2 Ext10;47C10
A.2/

.S0/

b8
3;0 D 1654 2 Ext16;96C16

A.2/
.S0/

wgrD 1956 2 Ext19;95C19
A.2/

.S0/

v20
2 h1 D 2185 2 Ext21;121C21

A.2/
.S0/

g6
D 2490 2 Ext24;120C24

A.2/
.S0/

We’d like to know what sg.06/ 2 Ext
A.2/

.A1Œ00� ^DA1Œ00�/ is in the notation of
ADA1-00.pdf. Of course, sg.06/ is in filtration s , so we only need to specify which
of the generators in filtration s make up sg.06/. If, for instance, we have

sg.06/D sg1C � � �C sgn;

then ADA1-00/0_6/Map.aug will contain the lines:

s g1 g

s g2 g
:::

s gn g

Now, in the Adams spectral sequence

Exts;t
A.2/

.S0/) tmft�s;

we have

d2.b
4
3;0/De0rD10182Ext10;47C10

A.2/
.S0/ and d3.b

8
3;0/D19562Ext19;95C19

A.2/
.S0/:

It follows that if
1018.06/D 10x 2 Ext8;8C47

A.2/
.A1 ^DA1/

and
1956.06/D 19y 2 Ext19;19C95

A.2/
.A1 ^DA1/;
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then b4
3;0
2 Ext8;48C8

A.2/
.A1 ^DA1/ and b8

3;0
2 Ext16;96C16

A.2/
.A1 ^DA1/ support a d2

differential and a d3 differential, respectively. By doing the above steps for all four
versions of A1 , and checking the respective Map.aug files, each contain lines

10 x 18

19 y 56

justifying the claim in Lemma 3.1.

Using the tools we have so far described, it is easy to verify the claim from the proof
of Lemma 4.1, that for all four models of A1 we have

(A.2) gb4
3;0 � 103 D 227:

It is similarly easy to verify that if A1 DA1Œ00� or A1 DA1Œ11�, we have

ge0r � 103 D 0;

while if A1 DA1Œ01� or A1 DA1Œ10�, we have

ge0r � 103 D 240 D g6:

Finally, in order to run the algebraic tmf spectral sequence, we will also need do
computations involving the bo–Brown–Gitler spectra. We give the A.2/–module
definitions for the cohomologies of bo1 and bo2 in bo1_def and bo2_def from the
online supplement.
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