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On RO.G/–graded equivariant “ordinary” cohomology
where G is a power of Z=2

JOHN HOLLER

IGOR KRIZ

We compute the complete RO.G/–graded coefficients of “ordinary” cohomology
with coefficients in Z=2 for G D .Z=2/n . As an important intermediate step, we
identify the ring of coefficients of the corresponding geometric fixed point spectrum,
revealing some interesting algebra. This is a first computation of its kind for groups
which are not cyclic p–groups.

55N91

1 Introduction

The notion of a cohomology theory graded by elements of the real representation ring
(RO.G/–graded cohomology) is a key concept of equivariant stable homotopy theory
of a finite or compact Lie group G . Like much of stable homotopy theory, perhaps one
of the first known examples was K-theory. Atiyah and Singer [4] introduced equivariant
K-theory of a compact Lie group G and proved that it is naturally RO.G/–graded. In
fact, Bott periodicity identifies many of the “dimensions” in RO.G/, and relates others
to “twistings” (see Karoubi [7] and, for a more recent treatment, Freed, Hopkins and
Teleman [9]). Pioneered by Adams and Greenlees [10], the general RO.G/–graded
stable homotopy theory found firm foundations in the fundamental book of Lewis, May
and Steinberger [22].

Despite the clear importance of the concept, beyond K-theory, calculations of RO.G/–
graded cohomology are few and far in between. Perhaps the most striking case is “or-
dinary” RO.G/–graded cohomology. Bredon [5] discovered Z–graded G–equivariant
cohomology associated with a coefficient system which is “ordinary” in the sense that
the cohomology of a point is concentrated in a single dimension. It was later discovered
(Lewis, May and McClure [20]) that such a theory becomes RO.G/–graded when
the coefficient system enjoys the structure of a Mackey functor (see Dress [8]), which
means that it allows building in an appropriate concept of transfer. Strikingly, the
RO.G/–graded coefficients were not known in any single nontrivial case.
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Complete calculations of RO.Z=2/–graded coefficients, however, are important in
Real-oriented stable homotopy theory, because they exhibit the analogy with the
complex-oriented case. Real orientation was, once again, discovered first by Atiyah [3]
in the case of K-theory, and was subsequently extended to cobordism by Landweber [19].
RO.Z=2/–graded cohomology with coefficients in the Burnside ring Mackey functor
was calculated by Stong [21]. A systematic pursuit of real-oriented homotopy theory
was started by Araki [2], and developed further by Hu and Kriz [13] with many
calculations, including a complete calculation of the RO.G/–graded coefficients of
Landweber’s Real cobordism spectrum. In the process, Hu and Kriz [13] also calculated
the RO.Z=2/–graded ordinary cohomology of the “constant” Mackey functors Z
and Z=2 (ie the Mackey functors uniquely extending the constant coefficient systems).
A major development was the work of Hill, Hopkins and Ravenel [12], who partially
extended the calculations of [13] to Z=.2k/ (with special interest in kD 3), and applied
this to solving the Kervaire–Milnor problem by showing the nonexistence of manifolds
of Kervaire invariant 1 in dimensions > 126. A still more complete calculation of
RO.G/–graded ordinary equivariant cohomology of the constant Mackey functors
for G D Z=.2k/ was more recently given in Hu and Kriz [14].

Still, no calculations of RO.G/–graded cohomology beyond K-theory were known for
groups other than where G is a primary cyclic group. In a spin-off of their joint solution
with Ormsby [16] of Thomason’s homotopy limit problem for Hermitian K-theory,
Hu and Kriz [15] computed the RO.G/–graded coefficients of topological Hermitian
cobordism, which has G D Z=2�Z=2. However, this is a rather special case, where
many periodicities occur.

The purpose of the present paper is to calculate the RO.G/–graded coefficients of
the ordinary equivariant cohomology of the “constant” Z=2 Mackey functor for
G D .Z=2/n . There are several reasons to focus on this case. The group .Z=2/n

has an exceptionally simply described real representation ring, thus eliminating the
need to handle representation-theoretical exceptions such as distinguishing between
real and complex (let alone, quaternionic) representations. The coefficients Z=2 are
more convenient than Z, since they eliminate the need to consider extensions. Despite
all this, the complete answer is complicated, however, and in general, we are only able
to present it in the form of the cohomology of an n–stage chain complex.

Our method is based on isotropy separation, a term coined by Greenlees and May [11],
to mean considering separately the contributions of subgroups of G . An isotropy
separation spectral sequence was developed in Abram and Kriz [1], but we use a
different spectral sequence here. The reason is that in [1], we are not concerned
with RO.G/–graded coefficients, but rather with computing the complete Z–graded
coefficients of equivariant complex cobordism of a finite abelian group G as a ring.
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Based on generalizing the method of Kriz [17] in the case of G D Z=p , in the case
of Z–graded equivariant complex cobordism, one can set up a spectral sequence of
rings which collapses to E2 in a single filtration degree. This means that the complete
ring structure can be recovered, which is a special property of complex cobordism. It
is worth mentioning that the spectral sequence of [1] contains many “completed” (for
example, uncountable) terms.

The case of ordinary RO.G/–graded equivariant cohomology is quite different, however,
in that the spectral sequence fails to collapse to a single degree. Even for G D Z=p ,
we observe that a part of the coefficients are in filtration degree 0 and a part in
filtration degree �1 (graded homologically). This caused us to give up, at least for
now, calculating the complete ring structure, and use a spectral sequence which is more
amenable to calculations instead.

Another key ingredient in our computation is the concept of geometric fixed points
of an RO.G/–graded equivariant cohomology theory. This concept was introduced
(using a different terminology) by tom Dieck [6], who calculated the geometric fixed
points of equivariant complex cobordism. As far as we know, the term geometric fixed
points was coined by Greenlees and May, and is recorded in Lewis, May, Steinberger
and McClure [22]. Unlike actual fixed points, the geometric fixed point coefficients
are periodic with respect to all nontrivial irreducible real representations of G . Thus,
instead of RO.G/–graded, the geometric fixed points are, again, only Z–graded. This
is a big advantage in expressing the answer. Note that the ring RO..Z=2/n/ is huge: it
is the free abelian group on 2n generators! On the downside, the term “geometric” fails
to carry the expected implications in the case of ordinary equivariant cohomology: we
know of no geometry that would help calculating them. Still, in the case G D .Z=2/n ,
a complete calculation of the geometric fixed point ring of HZ=2 is possible using
spectral sequence methods. This is our Theorem 2.

The main method of this paper is, basically, setting up another spectral sequence which
enables the calculation of the coefficients of HZ=2.Z=2/n by investigating how they
differ from the coefficients of the geometric fixed points. There results a spectral
sequence, which, in a fairly substantial range of RO.G/–graded dimensions, collapses
to E2 in degree 0. More precisely, the range is, graded homologically, suspensions by
elements of RO.G/ where summands of nontrivial irreducible representations occur
with nonpositive coefficients. Alternately, graded cohomologically, this is the range
of suspensions by actual representations, possibly minus a trivial representation. (As it
turns out, however, in this case, when the trivial representation has a negative coefficient,
the cohomology group is 0.) In this case, we can both recover the complete ring struc-
ture, since the ring embeds into the ring of geometric fixed points tensored with RO.G/.
We also have a nice concise formula for the Poincaré series in this case (Theorem 5).
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In the case of completely general RO.G/–dimension with G D .Z=2/n , we are only
able to give a spectral sequence in n filtration degrees, which collapses to E2 and calcu-
lates the RO.G/–graded coefficient group of HZ=2G . Thus, this gives an algebraically
defined chain complex whose homology are the desired groups (Theorem 7). We give
an example of a complete calculation of the Poincaré series of the RO.G/–graded
coefficients of HZ=2Z=2�Z=2 (the case nD 2), which clearly shows that the answer
gets complicated, and additional complications arise for n� 3.

The present paper is organized as follows: In Section 2, we introduce the necessary con-
ventions and notation. In Section 3, we compute the geometric fixed points. In Section 4,
we compute the coefficients in dimensions involving elements of RO.G/ where non-
trivial irreducible representations have nonpositive coefficients (graded homologically).
In Section 5, we calculate the chain complex computing the complete RO.G/–graded
coefficients of HZ=2G for G D .Z=2/n . In Section 6, we treat the example of nD 2.
The authors apologize to the readers for not stating their theorems in the introduction.
Even in the prettiest cases, the theorems involve quite a lot of notation and technical
prerequisites. We prefer to state them properly in the text.

Recent developments: odd primes, and hyperplane arrangements While this pa-
per was under review, several developments took place. A generalization of the present
result to .Z=p/n for p an odd prime was found by Holler. The authors also found out
that the ring described in Theorem 2 is a previously known object in algebraic geometry,
related to a certain compactification of complements of hyperplane arrangements
referred to as the reciprocal plane.

More concretely, for a set S D fz˛g of equations of hyperplanes through 0 in an affine
space Spec.F Œu1; : : : ; un�/ of a field F , one considers the subring RS of

(1)
� Y
˛2S

z˛

��1
F Œu1; : : : ; un�

generated by the elements z�1˛ (which correspond to our elements x˛ ). The ring
was first described by Terao [24], and a particularly nice presentation was found
by Proudfoot and Speyer [23]. In the case of an odd prime p , one deals analogously
with the subring „S of

(2)
� Y
˛2S

z˛

��1
F Œu1; : : : ; un�˝F ƒ.du1; : : : ; dun/

generated by z�1˛ and d log.z˛/, which are topologically in dimensions 2 and 1,
respectively. The analogues of the constructions of [23; 24] in this graded-commutative
case, and the reciprocal plane compactification, were recently worked out by S Kriz [18].
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Our emphasis is quite different form the authors of [23; 24], who, doing classical alge-
braic geometry, were mostly interested in characteristic 0. Their arguments, however,
work in general. The ring described in Theorem 2 (and its Z=p analogue discovered by
Holler, ie the geometric fixed point ring of HZ=pG where G D .Z=p/n ) is related to
the hyperplane arrangement of all hyperplanes through 0 in the n–dimensional affine
space over Z=p . It follows, however, from the descriptions of [23; 24; 18] that for a
subset S 0 of a hyperplane arrangement S , the ring RS 0 (resp. „S 0 ) is a subring of RS
(resp. „S ). It follows in turn that for every hyperplane arrangement in G D .Z=p/n ,
the Z–graded part of the coefficient ring of the spectrumV

˛2S
S1˛ ^HZ=pG

is RS for p D 2, and „S for any odd prime p .

2 Conventions and notation

Throughout this paper, let G D .Z=2/n . Then the real representation ring of G is
canonically identified as

RO.G/D ZŒG��;

where G� D Hom.G;Z=2/. Recall [22] that for H � G , we have the family F ŒH �
consisting of all subgroups K �G with H ªK . (In the case of H DG , we see that
F ŒG� is simply the family P of proper subgroups of G .) Recall further that for any
family F (a set of subgroups of G closed under subconjugation, which is the same as
closed under subgroups, as G is commutative), we have a cofibration sequence

EFC! S0!eEF ;

where EF is a G–CW-complex whose K–fixed point set is contractible when K 2 F
and empty otherwise. For our choice of G , we may then choose a model

(3) BEF ŒH � D
V

˛2G�

˛jH¤0

S1˛:

Here S1˛ is the direct limit of Sn˛ with respect to the inclusions

(4) S0! S˛

given by sending the non-basepoint to 0. The other construction we use is the fam-
ily F.H/ of all subgroups of a subgroup H �G . We will write simply

EG=H DEF.H/:
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The cardinality of a finite set S will be denoted by jS j. We will also adopt a convention
from [13] where, for an RO.G/–graded spectrum E , the Z–indexed coefficients
(D homotopy groups) of E are denoted by E� , while the RO.G/–indexed coefficients
will be denoted by E? . As is customary, we will also denote by S.V / the unit sphere
of a representation V , while by SV we denote the 1–point compactification of V . The
RO.G/–graded dimension of a homogeneous element x 2E? will be denoted by jxj.

3 The geometric fixed points

In this section, we compute the coefficients of the geometric fixed point spectrum
ˆGHZ=2. We have

(5) ˆGHZ=2D .BEF ŒG� ^HZ=2/G :

By (3), suspension of HZ=2 by any nontrivial irreducible real representation of G
gives an isomorphism on coefficients, so the coefficients

�
ˆG†‹HZ=2

�
�

are only
Z–graded, not RO.G/–graded. More specifically, we have a cofibration sequence

(6) EG=Ker.˛/C! S0! S1˛;

so smashing over all nontrivial 1–dimensional representations ˛ , using (3), we may
represent

BEF ŒG� ^HZ=2

as the iterated cofiber of a .2n�1/–dimensional cube of the form

(7) HZ=2^
V

0¤˛2G�
.EG=Ker.˛/C! S0/:

Taking coefficients in (7) then gives a spectral sequence converging to ˆGHZ=2� .
Now also note that

(8) EG=H1 � � � � �EG=Hk 'EG=.H1\ � � � \Hk/:

From this, we can calculate the spectral sequence associated with the iterated cofiber
of the cube (7). Let us grade the spectral sequence homologically, so the term HZ=2� ,
which equals Z=2, is in E10;0 . The rest of the E1–term is then given as

(9) E1p;� D
M
S2Sp

SymZ=2

��
G=
T
fKer.˛/ j ˛ 2 Sg

���
�yS ;

where Sp is the set of all subsets of G� X f0g of cardinality p . (The last factor yS
of (9) is only a generator written to distinguish the summands.) Now the E2–term can
also be calculated using the following:
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Lemma 1 Consider the differential @ on

Qn D Z=2fyS j S � .Z=2/
n
X f0gg

given by

(10) @.yS /D
X
s2S

hSXfsgiDhSi

ySXfsg:

Then the homology is the Z=2–vector space (freely) generated by a set Fn described
inductively as follows:

F1 D fy∅; yf.1/gg;

Fn D Fn�1[fyS[fxg j S 2 Fn�1; x 2 .Z=2/
n�1
� f1gg:

In other words, Fn consists of the basis elements yS where S are all the Z=2–linearly
independent (in G� ) subsets in (not necessarily reduced) row echelon form with respect
to reversed order of columns (so the first pivot is in the last possible column etc).

Proof Consider a differential on Qn given by

(11) d.yS /D
X
s2S

ySXfsg:

Then the homology is 0 for n > 0 and Z=2 for nD 0. Now consider an increasing
filtration on Qn by making the filtration degree 
.S/ of a basis element yS equal to
rankhSi, the rank of the Z=2–vector space generated by S . Then the E1–term is what
we are trying to calculate.

On the other hand, in the answer C D Z=2.Fn/ suggested in the statement of the
lemma (which, note, consists of elements of E1 ), the formula for d1 is the same as
the formula (11) for d . We claim that

(12) H�.C; d/D 0:

To see this, note that for any fixed nonempty set S in row echelon form, the subcomplex
CS generated by yS 0 subsets of S 0 � S is just a tensor product of copies of

(13) Z=2 Š�!Z=2;

and hence satisfies
H�.CS ; d /D 0:

On the other hand, C for n > 0 is a sum of the complexes CS where S ranges over
maximal linearly independent subsets of .Z=2/n in row echelon form (ie those which
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have exactly n elements), while the intersection of any subset of those complexes

CS1\���\Sk D CS1 \ � � � \CSk

has zero homology because

.1; 0; : : : ; 0/ 2 S1\ � � � \Sk

and hence S1\ � � � \Sk ¤∅. This implies (12).

Now the statement follows by induction on n using comparison theorems for spectral
sequences. More concretely, if we denote by C 0 � C the subcomplex generated by
linearly independent subsets S with jS j< n, and Q0 �Qn the subcomplex generated
by sets S which span a subspace of dimension < n, then the induction hypothesis
(given that an intersection of vector subspaces is a vector subspace), shows that the
embedding C �Qn restricts to a quasi-isomorphism

(14) C 0 �Q0:

Since the homologies of both C and Qn are 0, we see that the homomorphism on
degree n subcomplexes must induce an isomorphism on homology, thus implying that
the degree n part of the E1–term of our spectral sequence for Qn is just the degree n
part of C (which is, of course, isomorphic to Z=2).

Now by Lemma 1, the E2–term of the spectral sequence of the cube (7) is

(15) E2 D
M
S2Fn

SymZ=2

��
G=

T
fKer.˛/ j ˛ 2 Sg

���
�yS

(where we make the identification G� Š .Z=2/n ).

Now consider, for 0¤ ˛W G! Z=2, the map

(16) f˛W ˆ
G=Ker.˛/HZ=2� Dˆ

G=Ker.˛/.HZ=2/Ker.˛/
� !ˆGHZ=2�:

It is fairly obvious that for n D 1 the spectral sequence associated with the (1–
dimensional) cube (7) collapses to E1 and that in fact

(17) ˆG=Ker˛HZ=2� D Z=2Œx˛�;

where in the spectral sequence, the element x˛ is filtration degree 1 and is represented
by the set f.1/g if we make the identification G=Ker.˛/Š Z=2. We will also denote
the image under (16)

f˛.x˛/ 2ˆ
GHZ=2

by x˛ .
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Theorem 2 We have

(18) ˆG�HZ=2DZ=2Œx˛ j ˛ 2G
�
Xf0g� =.x˛xˇ Cx˛x
Cxˇx
 j ˛CˇC
 D 0/;

where the classes x˛ are in dimension 1.

Before proving the theorem, it is useful to record the following algebraic fact:

Proposition 3 Let f˛1; : : : ; ˛kg be a minimal Z=2–linearly dependent subset of
G� X f0g, where k � 3. Then the ring Rn on the right-hand side of (18) satisfies

(19) �k�1.x˛1 ; : : : ; x˛k /D 0:

(Here �i denotes the i th elementary symmetric polynomial.)

Proof We will proceed by induction on k . For k D 3, this is by definition. Suppose
k > 3 and suppose the statement is true with k replaced by k � 1. Compute in Rn ,
where we denote ˇ D ˛k�1C˛k :

(20) �k�1.x˛1 ; : : : ;x˛k /

D.x˛kCx˛k�1/.x˛1� � �x˛k�2/Cx˛kx˛k�1�k�3.x˛1 ; : : : ;x˛k�2/

D.x˛kCx˛k�1/.x˛1� � �x˛k�2/C.x˛kCx˛k�1/xˇ�k�3.x˛1 ; : : : ;x˛k�2/

D.x˛kCx˛k�1/�k�2.xˇ ;x˛1 ; : : : ;x˛k�2/:

Now fˇ; ˛1; : : : ; ˛k�2g is also a minimal linearly dependent set (note that minimal-
ity is equivalent to the statement that ˛1; : : : ; ˛k�1 are linearly independent and
˛1C � � �C˛k D 0). Therefore, the right-hand side of (20) is 0 in Rn by the induction
hypothesis.

Proof of Theorem 2 We know that ˆG�HZ=2 is a ring, since ˆGHZ=2 is an
E1–ring spectrum. By (16), we know that the elements x˛ represent elements of
ˆG�HZ=2, and hence polynomials in the elements x˛ do as well. Now it is important
to note that (15) is not a spectral sequence of rings. However, there are maps arising
from smashing n cubes (7) (over HZ=2) for nD 1, and from this, it is not difficult to
deduce that for S linearly independent, a monomial of the form

(21)
Y
s2S

xrss where rs � 1

is represented in (15) by

(22) S �
Y
s2S

xrs�1s :

(Note that by Lemma 1, for S not linearly independent, (22) does not survive to E2 .)
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By Lemma 1, we know that such elements generate the E2–term as a Z=2–module, so
we have already proved that the spectral sequence associated with the cube (7) collapses
to E2 .

Now counting basis elements in filtration degree 2 shows that ˆG�HZ=2 must have a
quadratic relation among the elements x˛ , xˇ , x
 when

˛CˇC 
 D 0:

(It suffices to consider nD 2.) The relation must be symmetric and homogeneous for
reasons of dimensions, so the possible candidates for the relation are

(23) x˛xˇ C x˛x
 C xˇx
 D 0

or

(24) x˛xˇ C x˛x
 C xˇx
 C x
2
˛C x

2
ˇ C x

2

 D 0:

We will prove the theorem by finding a basis of the monomials (21) of the ring on the
right-hand side of (18) and matching them, in the form (22), with the E2–term (15).

Before determining which of the relations (23), (24) is correct, we observe (by induction)
that the ring Rn given by relation (23) satisfies (with the identification G� Š .Z=2/n )

(25) Rn DRn�1˝Z=2Œx.0;:::;0;1/�C
X

˛2..Z=2/n�1Xf0g/�f1g

Rn�1˝ x˛ �Z=2Œx˛�

and that the ring R0n obtained from the relations (24) satisfies a completely analogous
statement with Ri replaced by R0i . By the identification between (21) and (22), we
see that we obtain a Z=2–module of the same rank as the E2–term of the spectral
sequence of (7) in each dimension if and only if the sum (25) for each n is a direct sum
(and similarly for the case of R0n ). Since we already know that the spectral sequence
collapses to E2 , we know that this direct sum must occur for whichever relation (23)
or (24) is correct, and also that the “winning” relation (23) (resp. (24)), ranging over
all applicable choices of ˛ , ˇ and 
 generates all the relations in ˆG�HZ=2.

We will complete the proof by showing that (24) generates a spurious relation, and
hence is eliminated. This cannot be done for n D 2, as we actually have R2 Š R02
via the (nonfunctorial isomorphism) replacing the generators x˛ , xˇ and x
 with
x˛C xˇ , x˛C x
 and xˇ C x
 .

We therefore must resort to nD 3. Let ˛1 D .1; 0; 0/, ˛2 D .0; 1; 0/, ˛3 D .0; 0; 1/,
˛4D .1; 1; 1/. Applying the computation (20) in the proof of Proposition 3 to compute
�3.x˛1 ; x˛2 ; x˛3 ; x˛4/ in the ring R03 , we obtain

�3.x˛1 ; x˛2 ; x˛3 ; x˛4/D .x˛1Cx˛2/.x
2
˛3
Cx2˛4Cx

2
ˇ /C.x˛3Cx˛4/.x

2
˛1
Cx2˛2Cx

2
ˇ /:
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As this is clearly not symmetrical in x˛1 , x˛2 , x˛3 , x˛4 , by permuting (say, using a
4–cycle) and adding both relations, we obtain a spurious relation in dimension 3 and
filtration degree 2, which shows that the analogue of (25) with Ri replaced by R0i fails
to be a direct sum for nD 3, thereby excluding the relation (24), and completing the
proof.

From the fact that (25) is a direct sum, we obtain the following:

Corollary 4 The Poincaré series of the ring Rn is

1

.1� x/n

nY
iD1

.1C .2i�1� 1/x/:

4 The coefficients of HZ=2 suspended by a G–representation

In this section, we will compute explicitly the coefficients of HZ=2 suspended by

(26) V D
X

˛2G�Xf0g

m˛˛

with m˛ � 0.

Theorem 5 (i) For m˛�0 and G�Š .Z=2/n , recalling (26), the Poincaré series of

†VHZ=2�
is

(27) 1

.1�x/n

� X
.Z=2/kŠH�G�

.�1/k
� n�kY
iD1

.1C .2i�1� 1/x/

�
xl
�

where
l D kC

X
˛2HXf0g

m˛:

(ii) For m˛ � 0, the canonical map

†VHZ=2! BEF ŒG� ^HZ=2

(given by the smash product of the inclusions Sm˛˛!S1˛ ) induces an injective
map on Z–graded homotopy groups.

We need the following purely combinatorial result. Leth n
k

i
D
.2n� 1/ � .2n�1� 1/ � � � .2n�kC1� 1/

.2k � 1/ � .2k�1� 1/ � � � .21� 1/
:
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Note that this is the number of k–dimensional Z=2–vector subspaces of .Z=2/n . The
following statement amounts to part (i) of Theorem 5 for m˛ D 0.

Lemma 6 We have

nX
kD0

.�1/k
h n
k

i
xk

n�kY
iD1

.1C .2i�1� 1/x/D .1� x/n:

Proof Induction on n. We haveh n
k

i
D

h n�1
k

i
C 2n�k

h n�1
k�1

i
;

so by the induction hypothesis,

nX
kD0

.�1/k
hn
k

i
xk

n�kY
iD1

.1C .2i�1� 1/x/

D

nX
kD0

.�1/k
�hn�1

k

i
C 2n�k

hn�1
k�1

i�
xk

n�kY
iD1

.1C .2i�1� 1/x/:

Splitting the right-hand side into two sums, we get

n�1X
kD0

.�1/k
hn�1
k

i
xk

n�kY
iD1

.1C .2i�1� 1/x/

C

nX
kD1

.�1/k2n�k
hn�1
k�1

i
xk

n�kY
iD1

.1C .2i�1� 1/x/

D .1� x/nC

n�1X
kD0

.�1/k
hn�1
k

i
xk

n�k�1Y
iD1

.1C .2i�1� 1/x/2n�k�1

C

nX
kD1

.�1/k2n�k
hn�1
k�1

i
xk

n�kY
iD1

.1C .2i�1� 1/x/

D .1� x/n:

Proof of Theorem 5 We will proceed by induction on n. Assume (i) and (ii) are true
for lower values of n. Then, for the given n, we proceed by induction on

`D jf˛ 2G� jm˛ > 0gj:
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For `D0, (i) follows from Lemma 6 and (ii) is obvious (by ring structure of ˆGHZ=2).
Suppose `� 1 and (i), (ii) are true for lower values of `. Setting

(28) V` D
X̀
iD1

m˛i˛i ;

we will study the effect on coefficients .‹/� of the cofibration sequence

(29) S.m`˛`/C ^†
V`�1HZ=2 // †V`�1HZ=2 // †V`HZ=2:

First, we observed that the first map factors through the top row of the diagram:

(30)

.EG=Ker˛`/C ^†V`�1HZ=2 //

��

†V`�1HZ=2

��

.EG=Ker˛`/C ^BEF ŒG�^HZ=2 // BEF ŒG�^HZ=2

Next, the right column of (30) is injective on .‹/� by (ii) for `� 1, and hence the top
row, and hence also the first map (29), is 0 on .‹/� .

Now the Poincaré series of

(31) .S.m`˛`/C ^†
V`�1HZ=2/G�

is
1�xm`

1�x
times the Poincaré series of

(32) .†V`�1HZ=2/Ker˛`
� ;

which, when multiplied by x and added to the Poincaré series of

.†V`�1HZ=2/G� ;

is (27) by the induction hypothesis. This proves (i).

To prove (ii), we observe that the elements of (31) are generated by powers of x˛`
multiplied by elements of (32), so again, we are done by the induction hypothesis.

5 The complex calculating RO.G/–graded coefficients

To calculate the RO.G/–graded coefficients of HZ=2G in dimensions given by virtual
representations, we introduce another spectral sequence. In fact, we will again use the
cofibration sequence (6), but we will rewrite it as

(33) S0! S1˛!†EG=Ker.˛/C:
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We will smash the second maps of (33) over all ˛ 2G� X f0g, to obtain a cube

(34)
V

˛2G�Xf0g
.S1˛!†EG=Ker.˛/C/

whose iterated fiber is S0 . Our method is to smash with HZ=2G and take RO.G/–
graded coefficients to obtain

(35)
� V
˛2G�Xf0g

.S1˛!†EG=Ker.˛/C/^HZ=2
�
?
;

thus yielding a spectral sequence calculating HZ=2? .

However, there is a key point to notice which drastically simplifies this calculation.
Namely, smashing (6) with EG=Ker.˛/C , the first morphism becomes an equivalence,
thus showing that

(36) EG=Ker.˛/C ^S
1˛
' �:

Together with (8), this shows that the only vertices of the cube (34) which are nonzero
are actually those of the form where all the elements ˛ for which we take the term
S1˛ in (34) are those not vanishing on some subgroup A�G , while those elements ˛
for which we take the term †EG=Ker.˛/C are those nonzero elements of G� which
do vanish on A, ie nonzero elements of .G=A/� . The corresponding vertex of (34) is
then a suspension of

(37) grA.S
0/DEG=AC ^BEF ŒA�:

We also put
grA.HZ=2/D grA.S

0/^HZ=2:

Because of the high number of zero terms, the spectral sequence may be regraded
by rankZ=2.A/, thus having only n, instead of 2n � 1, filtration degrees. (Note that
the cube (34) may be reinterpreted as a “filtration” of the spectrum S0 ; from this point
of view, we have simply observed that many of the filtered parts coincide.)

It is now important, however, to discuss the grading seriously. Since we index coef-
ficients homologically, we will write the spectral sequence in homological indexing.
Additionally, we want the term grG.S

0/ be in filtration degree 0 (since that is where
the unit is). Thus, the (homologically indexed) filtration degree of (37) is

p D rank.A/�n

(a nonpositive number). Thus,

�k

�XP
˛2G�Xf0gm˛˛grA.HZ=2/

�
�E1rank.A/�n;kCn�rank.A/;
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or, put differently, for a given choice of the elements m˛ ,

(38) E1p;q D
M

rank.A/DnCp

�qCp�
P
m˛˛ grA.HZ=2/ for p D�n; : : : ; 0:

We will next describe explicitly the differential

(39) d1W E1p;q!E1p�1;q:

Let us first introduce some notation. To this end, we need to start out by describing the
E1–term more explicitly.

In effect, we can calculate grA.HZ=2/? by taking first the A–fixed points using
Theorem 2 with G replaced by A, and then applying the Borel homology spectral
sequence for G=A. This spectral sequence collapses because there exists a splitting:

(40)
A

�
//

D
��

G

r
��

A

However, the splitting is not canonical, and this is reflected by the choice of generators
we observe. More explicitly, the splitting determines for each representation

0¤ ˇW A! Z=2

an extension
žW G! Z=2:

One difficulty with describing Borel homology is that it does not naturally form a ring.
Because of that, it is more convenient to describe first the coefficients of

(41) 
A.HZ=2/ WD F.EG=AC;BEF ŒA�/^HZ=2:

This is an (E1–) ring spectrum, and its ring of coefficients is given by

(42) 
A.HZ=2/? DMŒ.y˛u
�1
˛ /˙1�ŒŒy˛ j ˛ 2 .G=A/

�
X f0g��=.y˛C˛0 �y˛ �y˛0/

where

M D Z=2Œx ž; u
˙1
ž
; u˙1
žC˛
j ˇ 2 A� X f0g; ˛ 2 .G=A/� X f0g�

=.xz̨x žC xz̨xz
 C x žxz
 j ˛CˇC 
 D 0/

and the RO.G/–graded dimensions of the generators are

ju
 j D �
; jx
 j D 1 and jy
 j D �1:
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We may then describe grA.HZ=2/? as the .dimZ=2.G=A//
th (D only nontrivial) local

cohomology module of the ring 
A.HZ=2/ with respect to the ideal generated by the
elements y˛ . Note that after taking A–fixed points first, this is the usual computation of
G=A–Borel homology from the corresponding Borel cohomology. Recall that H�I .R/
for a finitely generated ideal I of a commutative ring R is obtained by choosing finitely
many generators y1; : : : ; y` of I , tensoring, over R , the cochain complexes

R! y�1i R

(with R in degree 0) and taking cohomology. It is, canonically, independent of the
choice of generators. In the present case, we are simply dealing with the power series
ring R in dimZ=2.G=A/ generators over a Z=2–algebra, and the augmentation ideal.
Taking the defining generators of the power series ring, we see immediately that only
the top local cohomology group survives.

We note that the basic philosophy of our notation is

(43) “y˛ D x�1˛ ”:

As a first demonstration of this philosophy, let us investigate the effect of a change of
the splitting (40). Writing metaphorically

(44) x žC˛x žC x žC˛x˛C x žx˛ D 0;

we get

(45) x žC˛x žy˛C x žC˛C x ž D 0;

from which we calculate

(46) x žC˛ D x ž.1C x žy˛/
�1
D

1X
kD0

xkC1
ž

yk˛ :

This formula is correct in 
A.HZ=2/? and hence can also be used in the module
grA.HZ=2/? .

Next, we will describe the differential d1 of (38). These connecting maps will be the
sums of maps of degree �1 of the form

(47) dAB W grA.HZ=2/?! grB.HZ=2/?;

where B �A is a subgroup with quotient isomorphic to Z=2. Let ˇW A!Z=2 be the
unique nontrivial representation which vanishes when restricted to A. The key point is
to observe that the canonical map

(48) EG=AC ^BEF ŒB� ^S1ž �!� EG=AC ^BEF ŒA�
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is an equivalence, and hence (47) can be calculated by smashing with HZ=2 the
connecting map

(49) EG=AC ^BEF ŒB� ^S1ž!†EG=BC ^BEF ŒB�:

Consequently, (47) is a homomorphism of 
AHZ=2?–modules, and is computed, just
like in dimension 1, by making the replacement

x ž 7! y�1
ž

and multiplying by y ž . (Note that independence of the splitting ž at this point follows
from topology; it is a nontrivial fact to verify purely algebraically.)

We have thereby finished describing the differential d1 of the spectral sequence (38).
The main result of the present section is the following:

Theorem 7 The spectral sequence (38) collapses to E2 .

We will first prove some auxiliary results.

Lemma 8 The Borel homology spectral sequence of any cell HZ=2G –module with
cells

(50) †‹GC ^HZ=2

collapses to E2 .

Proof Taking G–fixed points, we obtain a cell HZ=2–module with one cell for each
cell (50). Now the homotopy category of HZ=2–modules is equivalent to the derived
category of F2–vector spaces, and a chain complex of F2–modules is isomorphic to a
sum of an acyclic module and suspensions of F2 .

Lemma 9 Let G and H be finite groups, let X be an G–cell spectrum, and let Y be
an H –cell spectrum (all indexed over the complete universe). Then

.HZ=2G�H ^ i]X ^ j]Y /
G�H

' .HZ=2G ^X/
G
^HZ=2 .HZ=2H ^Y /

H :

Here on the left-hand side, i] is the functor introducing trivial H –action on a G–
spectrum and pushing forward to the complete universe, while j] is the functor
introducing trivial G–action on an H –spectrum and pushing forward to the complete
universe.
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Proof First consider Y D S0 . Then we have the forgetful map

.i]X ^HZ=2/G�H ! .X ^HZ=2/G

which is an equivalence because it is true on cells.

In general, we have a map

Z� ^T � ! .Z ^T /� ;

so take the composition

.X ^HZ=2/G ^ .Y ^HZ=2/H D .i]X ^HZ=2/G�H ^ .j]Y ^HZ=2/G�H

! .i]HZ=2^ j]Y ^HZ=2/G�H

! .i]X ^ j]Y /
G�H

(the last map coming from the ring structure on HZ=2). Then again this map is an
equivalence on cells, and hence an equivalence.

Lemma 10 Recalling again the notation (26), we have:

(a) The spectral sequence (35) for

(51) ��†
VHZ=2

with all m˛ � 0 collapses to the E2–term in filtration degree 0.

(b) Let m˛ � 0 for all ˛ and let

S D f˛ 2G� X f0g jm˛ ¤ 0g:

Suppose the subgroup of G� spanned by S has rank m. Then the spectral
sequence (35) for (51) collapses to E2 in filtration degree �m.

Proof Recall the notation (28). Let G�Xf0gD f˛1; : : : ; ˛2n�1g. When ˛k is linearly
independent of ˛1; : : : ; ˛k�1 , we have

(52) ��†
VkHZ=2Š ��.†

Vk�1HZ=2/G˝��.†
m˛k
HZ=2/Z=2;

where 
 is the sign representation of Z=2 by Lemma 9. Note that in the case (b), we
may, without loss of generality, assume mD n (ie that S spans G� ) and that what we
just said occurs for k D 1; : : : ; n and additionally that m˛i < 0 for i D 1; : : : ; n.

When ˛k is a linear combination of ˛1; : : : ; ˛k�1 , and m˛k ¤ 0, we use the cofibration
sequence

(53) S.m˛k˛k/C ^†
Vk�1HZ=2!†Vk�1HZ=2!†VkHZ=2
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in the case (a) and

(54) †VkHZ=2!†Vk�1HZ=2!DS.�m˛k˛k/C ^†
Vk�1HZ=2

in the case (b). If we denote each of these cofibration sequences symbolically as

A! B! C;

then in the case (a), (53) gives a short exact sequence of the form

(55) 0!E1A!E1B!E1C ! 0

of the spectral sequence of (35) where in the A–term, we replace G by Ker.˛k/ and
HZ=2 by S.mk˛k/C ^HZ=2. By the induction hypothesis, however, the homology
of E1A is concentrated in the top filtration degree, which is �1 from the point of view
of G , and the homology of E1B is concentrated in filtration degree 0, so the long
exact sequence in homology gives

(56) 0!E2!E2C !†E2A! 0;

which is all in filtration degree 0, so our statement follows.

In the case (b), by our assumptions, we have k > n. Additionally, (54) gives a short
exact sequence

(57) 0!†�1E1C !E1A!E1B! 0;

but by the induction hypothesis (using the fact that a set of generators of G� projects
to a set of generators of the factor group Ker.˛k/� ), the homology of the first and last
term is concentrated in filtration degree �n, so (57) translates to the same short exact
sequence with E1 replaced by E2 , which is entirely in filtration degree �n, and the
statement follows.

To continue the proof of Theorem 7, let again

G� X f0g D f˛1; : : : ; ˛2n�1g:

Consider

(58) †V2n�1HZ=2;

and let, this time, without loss of generality,

m˛1 ; : : : ; m˛q < 0 and m˛qC1 ; : : : ; m˛2n�1 � 0:

Let A D Ker.˛1/ \ � � � \ Ker.˛q/. We will consider the sequence of cofibrations
(53) with q � k < 2n� 1. Resolving this recursively, we may consider this as a cell
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object construction in the category of HZ=2G –modules, with “cells” of the form of
suspensions (by an integer) of

(59) G=.Ker. j̨1/\� � �\Ker. j̨p //C ^†
VqHZ=2 where q<j1< � � �<jp�2n�1:

By the degree of a cell c , we shall mean the number

deg.c/D n� rank.Ker. j̨1/\ � � � \Ker. j̨p //;

and by the A–relative degree of c , we shall mean

degA.c/D rank.G=A/�rank
�
Ker. j̨1/\� � �\Ker. j̨p / =Ker. j̨1/\� � �\Ker. j̨p /\A

�
:

We see easily from the construction that cells of a given degree are attached to cells of
strictly lower degree, and that cells of a given A–relative degree are attached to cells of
lesser or equal A–relative degree. (Roughly speaking, “more free” cells are attached to
“less free” ones.)

Lemma 11 The spectral sequence arising from the cube (35) with HZ=2 replaced by
the complex formed by our “cells” of A–relative degree d collapses to E2 concentrated
in filtration degree d � rank.G=A/.

Proof Within a given A–relative degree d , attaching cells of each consecutive degree
results in a short exact sequence of the form (55) where the first two terms collapse
to E2 in filtration degree d � rank.G=A/� 1 and d � rank.G=A/, respectively. Thus,
there results a short exact sequence of the form (56) in filtration degree d � rank.G=A/,
as claimed.

(The rest of) the proof of Theorem 7 Filtering cells of (58) by A–relative degree,
we obtain a spectral sequence E converging to E2 of the spectral sequence of the
cube (35) for (58). By Lemma 11, all the terms will be of the same (35)-filtration
degree � rank.G=A/, which is the complementary degree of E . (Note that in this
discussion, we completely ignore the original topological degree.) Thus, being con-
centrated in one complementary degree, E collapses to E2 in that complementary
degree.

However, by precisely the same arguments, we can write a variant zE of the spectral
sequence E in homotopy groups (rather than (35) E1–terms) of the filtered pieces
of (58) by A–relative degree. By Lemma 11, zE 1 Š E1 , and d1

zE
, d1E have the same

rank (since they are computed by the same formula). It follows that zE 2 Š E2 , both
collapsing to a single complementary degree. Therefore, it follows that E2 (of the
spectral sequence associated with (35) for (58)) is isomorphic to the homotopy of (58),
and hence the spectral sequence collapses to E2 by a counting argument.
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6 Example: n D 2

In the case n D 2, there are only three sign representations ˛ , ˇ , 
 which play a
symmetrical role and satisfy

(60) ˛CˇC 
 D 0 2G�;

which means that the Poincaré series of the homotopy

(61) ��.†
k˛C`ˇCm
HZ=2/

can be written down explicitly.

First recall that by Theorem 5, for k; `;m� 0, the Poincaré series is

(62) 1

.1�x/2
.1C x� x1Ck � x1C`� x1CmC x2CkC`Cm/:

If k; ` < 0 and m� 0, by the proof of Lemma 10, the formula (62) is still valid when
multiplied by x�2 (since all the homotopy classes are in filtration degree �2).

If k; `<0 and m>0, in the proof of Theorem 7, AD0, so the A–relative degree and the
degree coincide. Further, by (60) and our formula for the differential d1 of the spectral
sequence of (35), the differential d1E has maximal possible rank (ie “everything that
can cancel dimensionwise will”). We conclude that the E2 is concentrated in filtration
degrees �1 and �2. By the cancellation principle we just mentioned, the Poincaré
series can still be recovered from the formula (62). If we write the expression (62) as

(63) PC.x/�P�.x/;

where PC.x/ (resp. �P�.x/) is the sum of monomial summands with a positive
coefficient (resp. with a negative coefficient) then the correct Poincaré series in this
case is

x�2PC.x/C x
�1P�.x/;

the two summands of which represent classes in filtration degree �2 and �1, respec-
tively.

Similarly, one shows that if k; `� 0 and m< 0, the E2 collapses to filtration degrees
0 and �1, and the Poincaré series in this case is

PC.x/C x
�1P�.x/:

All other cases are related to these by a symmetry of .Z=2/2 .

Remark It might seem natural to conjecture that the classes of different filtration
degrees in E2 may be of different dimensions, with a gap between them (evoking the
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“gap condition” which was proved for Z=2 in [13], and made famous for the group Z=8
by the Hill, Hopkins and Ravenel [12] work on the Kervaire invariant 1 problem).
However, one easily sees that for n � 3, classes of different filtration degrees may
occur in the same dimension. For example, by Lemma 9 and by what we just proved,
such a situation always occurs for ��†4˛C4ˇ�2
C4ıHZ=2 where ˛ , ˇ , 
 are the
three sign representations of Z=2�Z=2�Z=2 factoring through the projections to
the first two copies of Z=2, and ı is the sign representation which factors through the
projection onto the last Z=2.
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